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Abstract

Motivated by telecommunication applications, we investigate ways to estimate the parameters

of a nonhomogeneous Poisson process with linear rate over a finite interval, based on the number

of counts in measurement subintervals. Such a linear arrival-rate function can serve as a

component of a piecewise-linear approximation to a general arrival-rate function. We consider

ordinary least squares (OLS), iterative weighted least squares (IWLS) and maximum likelihood

(ML), all constrained to yield a nonnegative rate function. We prove that ML coincides with

IWLS. As a reference point, we also consider the theoretically optimal weighted least squares

(TWLS), which is least squares with weights inversely proportional to the variances (which

would not be known with data). Overall, ML performs almost as well as TWLS. We describe

computer simulations conducted to evaluate these estimation procedures. None of the procedures

differ greatly when the rate function is not near 0 at either end, but when the rate function is near

0 at one end, TWLS and ML are significantly more effective than OLS. The number of

measurement subintervals (with fixed total interval) makes surprisingly little difference when the

rate function is not near 0 at either end. The variances are higher with only two or three

subintervals, but there usually is little benefit from going above ten. In contrast, more

measurement intervals help TWLS and ML when the rate function is near 0 at one end. We

derive explicit formulas for the OLS variances and the asymptotic TWLS variances (as the

number of measurement intervals increases), assuming the nonnegativity constraints are not

violated. These formulas reveal the statistical precision of the estimators and the influence of the

parameters and the method. Knowing how the variance depends on the interval length can help

determine how to approximate general arrival-rate functions by piecewise-linear ones. We also

develop statistical tests to determine whether the linear Poisson model is appropriate.



1. Introduction and Summary

Traffic measurements and traffic models have long played an important role in

telecommunications systems, e.g., see Cole [5] and Rahko [17]. However, the emergence of new

services and new technologies has led to new kinds of traffic and new traffic models, e.g., see

Frost and Melamed [8], Leland, Taqqu, Willinger and Wilson [1]], Meier-Hellstern, Wirth, Yan

and Hoeflin [15] and Part I of Roberts [18]. Just as with overflow traffic associated with

alternative routing, in many new situations the classical Poisson process traffic model is not

nearly appropriate. On the other hand, in other situations it evidently is still appropriate.

We want to be able to determine if a Poisson process traffic model is appropriate and, when it

is, we want to be able to estimate its parameters from measurements. These issues are relatively

well understood in the familiar setting of homogeneous arrival processes, i.e., when the arrival

rate is constant. However, in reality the arrival process is typically nonhomogeneous; i.e., the

arrival rate typically varies significantly in time, e.g., see pp. 258-260 and Chapter 6 of Hall [9].

It is much easier to detect departures from a homogeneous Poisson process than from a

nonhomogeneous Poisson process. Indeed, we may actually have a Poisson process when we

think we do not, if we do not properly account for the nonhomogeneity; i.e., predictions of higher

variability associated with non-Poisson homogeneous processes can often be explained by

fluctuations in the deterministic arrival-rate function of a nonhomogeneous Poisson process; e.g.,

see Holtzman and Jagerman [10]. This led us in [13] to consider non-Poisson homogeneous

processes as approximations for non-homogeneous Poisson processes.

A major difficulty with the nonhomogeneous Poisson process model is that it has infinitely

many parameters. In particular, it is parameterized by its arrival-rate function λ(t). A natural

first step is to restrict attention to special parametric families of arrival-rate functions. In many

cases it is reasonable to regard the arrival-rate function as linear over appropriate subintervals,
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i.e., as piecewise linear. For example, data show that the arrival-rate function for telephone calls

over a day is very nonlinear, but it often is reasonable to approximate it by a linear function

within single hours, especially when the available data are summaries over subintervals (e.g., five

minutes). The linearity is a helpful simplification because it reduces the number of parameters.

A specific motivating application for us is the AT&T long distance network. Summaries of

telephone calls by origin and destination (for the more than 100 major switches) are currently

collected every five minutes. Figure 1 displays these summaries for three origin-destination pairs

in one hour. Since the time is between 8:00 am and 9:00 am, it is not surprising that there is

significant increase over the hour. This example shows that the rates might not nearly be

constant, but that they might be approximately linear over one hour.

Hence, in this paper we consider the case of a linear rate over a subinterval. In particular, we

assume that we have a nonhomogeneous Poisson process over the interval [ 0 ,T] with arrival-rate

function

λ(t) = a + bt , 0 ≤ t ≤ T , (1)

and we investigate how to estimate the two parameters a and b in (1) and the arrival rates λ(t)

based on arrival process data. We assume that the overall time interval ( 0 ,T] is divided into N

measurement subintervals ( (k − 1 ) T / N , kT / N], 1 ≤ k ≤ N, and we observe the number of points

in each. In addition to finding estimators â and b̂ for the parameters a and b in (1), we want to

provide insight into the choice of the interval length T and the number N of measurement

subintervals. Having a larger T will yield better estimates if the arrival-rate function is indeed

nearly linear, but it can yield worse estimates if the arrival-rate function is only nearly linear over

short intervals. Having a larger N may be more costly, but may improve the quality of the

estimate.
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We primarily focus on the variance of the estimators as a function of the parameters and the

method. Explicit expressions for the variances enable us to see how the parameters a ,b ,T and N

affect the estimation. We do not specifically discuss how to choose subintervals to approximate a

general arrival-rate function by a piecewise-linear arrival-rate function, but our variance formulas

can help make the choice.

Our estimation might be based on a single realization of an arrival process or multiple

independent samples. For example, we might have data from the same hour on the same day of

the week for n different weeks. If we consider the N sample means obtained from the Nn

observations, then the variances of all the estimators we consider are inversely proportional to n.

Since the effect of n is predictable, we henceforth only consider the case n = 1.

It is important to emphasize that we are interested in this linear Poisson process model from

two points of view. First, we obviously want to understand how different estimation procedures

perform when the model is approximately valid. Second, we want to develop ways to determine

whether or not the linear Poisson model is appropriate. The model is not valid if the arrival

process is not Poisson or if the arrival-rate function over the designated subinterval is nonlinear.

We develop ways to test whether the linear Poisson model is appropriate. Such a test might be

based on a single realization of the process or upon multiple realizations.

There is a substantial history of statistical inference for nonhomogeneous Poisson processes,

e.g., see Basawa [1], Brown [2] and Snyder and Miller [19], but we are unaware of any work

closely related to what we do here. In the physical sciences it is more natural to consider Poisson

processes with nonlinear rates; see [1] and [19].

We are ultimately interested in characterizing arrival processes so that we can analyze the

performance of telecommunications and other service systems with these arrival processes. There

is a growing literature on ways to analyze service system models with nonhomogeneous Poisson
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arrival processes; e.g., see Choudhury, Lucantoni and Whitt [4], Davis, Massey and Whitt [6],

Hall [9], Massey and Whitt [12], Taaffe and Ong [20] and references cited in these sources. In

this paper we investigate ways to select nonhomogeneous Poisson arrival process models given

arrival process data. Less attention has been given to fitting arrival process models to data; see

Basawa [1] and Hall [9].

In our study we consider three different estimation procedures: (1) ordinary least squares

(OLS), (2) iterative weighted least squares (IWLS) and (3) maximum likelihood (ML). These

estimation procedures are described in detail in Sections 2–5. OLS is the natural simple

estimator; the other two are attempts to do better. The ML approach is discussed by Basawa [1]

and Snyder and Miller [19]. We are led to consider weighted least squares, because the

observations have unequal variances. To achieve the best linear unbiased estimator, we would

want weights inversely proportional to the variances (see Section 2). Our IWLS procedure

estimates the desired weights from estimates of the variances, which in turn depend on estimates

of the parameters a and b, successively improving the estimates for both (a ,b) and the weights by

iteration. When our estimates of (ab) produce weights, which in turn reproduce these same

estimates of (a ,b), the iteration has converged.

We prove a fundamental result linking these estimators; the proof appears in Section 8. This

is reminiscent of the classical result for linear models with i.i.d. normally distributed residuals;

then ML coincides with OLS. Indeed, it can be deduced from the theory of generalized linear

models; see p. 31 of McCullagh and Nelder [14].

Theorem 1. The ML estimators coincide with the solution of IWLS.

We also study these estimators by computer simulation. Given the parameters a ,b ,T and N,

we randomly generate the resulting Poisson random variables and study how the estimation

procedures perform. Since we know the parameters with the simulation, we also can consider the
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theoretical optimal weighted least squares (TWLS), obtained by using weights inversely

proportional to the known variances (depending on a and b).

From our numerical experience, we find that the three estimation procedures (OLS, ML and

TWLS) do not differ much from each other when the rate function is not nearly 0 at either end;

i.e., they all tend to be unbiased and they all have nearly the same variances. The estimators fail

to be precisely unbiased because of adjustments to account for nonnegativity constraints. Even

though ML and IWLS coincide by Theorem 1, differences can occur due to numerical accuracy of

the algorithms. We found that the ML procedure developed here was more robust for very large

N.

We will show that OLS tends to be as good as TWLS when the slope b is relatively small,

while TWLS tend to be significantly better than OLS when b is large and the rate function is near

0 at one endpoint. Indeed, we show that when the rate function is 0 at one endpoint, as occurs

when the nonnegativity constraint is violated, then ML and TWLS coincide and that these are

significantly more effective than OLS, primarily because they predict the intercept (a when a = 0

and a + bT when a + bT = 0) much better; i.e., the bias created by adjustments to the

nonnegativity constraints is substantially less with ML and TWLS. The IWLS estimator usually

converges very quickly (e.g., 2–5 iterations) to an estimator very close to the TWLS estimator.

As a basis for understanding the performance of these estimation procedures, we develop

analytical formulas for the variances of the OLS and TWLS estimators, assuming that the

nonnegativity conditions are not violated. Since the numerical results show that ML is very close

to TWLS, these formulas give a clear quantitative description of the statistical precision of both

the OLS and ML procedures and the advantage of ML over OLS, provided that the rate function

is indeed not near 0 at either end.

As should be anticipated, we find that the total length of the interval, T, is very important, so
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we should strongly prefer long intervals if linearity is not sacrificed. However, we find that the

number N of measurement subintervals makes surprisingly little difference. When the rate

function is not near 0 at either end, the variances decrease as N → ∞, but rapidly converge to

limits. The variance values are noticeably larger for N = 2 , 3 or 4, but hardly at all by N = 10.

The insignificance of N might be anticipated because the total number of Poisson counts in [ 0 ,T]

is independent of N. The insignificance of N is established by extensive simulation results and

explicit formulas for OLS. For OLS we have simple formulas for the variances for all N, but for

TWLS we only have simple formulas for the asymptotic variances as N → ∞; we develop an

algorithm to compute the TWLS variances for all finite N. Our numerical experience indicates

that the dependence on N depicted by the OLS formulas applies approximately (but not exactly)

to the dependence on N for the other estimators.

The role of N is different, however, when the rate function is near 0 at one end. Then

increasing the number of measurement subintervals still does not help OLS, but it improves the

performance of the ML and TWLS methods, with there being greater improvement for TWLS.

For example, when a = 0, both the bias and the sample standard deviation are decreasing in N

for TWLS. For a∼∼0 and large N, ML does not perform as well as TWLS, but ML is significantly

better than OLS in this setting.

Here is how the rest of the paper is organized. In Section 2 we describe the weighted least

squares procedures. In Section 3 we present the formulas for the OLS variances. In section 4 we

develop the asymptotic formulas for the TWLS variances. In Section 5 we develop the ML

estimation procedure. In Section 6 we describe a simulation experiment to evaluate the

estimation procedures and present some of the numerical results. In Section 7 we develop

statistical tests to see if the linear Poisson model is appropriate. In Section 8 we prove

Theorem 1.
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2. The Least Squares Estimators

There are four parameters: a ,b ,T and N. We assume that we have a nonhomogeneous

Poisson process with rate function λ(t) = a + bt over [ 0 ,T] as in (1). We count the number of

points in the N subintervals ( (k − 1 ) T / N , kT / N], 1 ≤ k ≤ N. This sampling procedure from a

single realization of the nonhomogeneous Poisson process over [ 0 ,T] produces N mutually

independent Poisson random variables Y k with means

λ k =
N
T_ _ (a + bx k ) , (2)

where

x k = (k −
2
1_ _ )

N
T_ _ , 1 ≤ k ≤ N . (3)

If we form the linear model Y = α + βx + ε, i.e., if we assume that Y k = α + βx k + ε k

for each k, then we can estimate the parameters α and β by weighted least squares; i.e., using

positive weights w k , 1 ≤ k ≤ N, with
k = 1
Σ
N

w k = N, we can choose estimators α̂ and β̂ to

minimize the weighted sum of the squared errors, i.e., to find

α,β
min

k = 1
Σ
N

w k (Y k − [α + βx k ] )2 . (4)

Applying calculus with (4) in the usual way, we obtain

β̂ =

k = 1
Σ
N

w k (x k − x
_

)2

k = 1
Σ
N

w k (x k − x
_

) (Y k − Y
_

)
_ __________________ =

k = 1
Σ
N

w k (x k − x
_

)2

k = 1
Σ
N

w k (x k − x
_

) Y k

_ ______________ (5)

and

α̂ = Y
_

− β̂x
_

, (6)

where
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x
_

= N − 1

k = 1
Σ
N

w k x k and Y
_

= N − 1

k = 1
Σ
N

w k Y k . (7)

From (2), we see that α = aT / N and β = bT / N. Hence, associated estimators for a and b are

b̂ =
T
N_ _ β̂ and â =

T
N_ _ α̂ (8)

for β̂ in (5) and α̂ in (6). The resulting estimators â and b̂ are linear functions of the observations

Y k and are unbiased; i.e., Eâ = a and Eb̂ = b.

However, it is natural to impose the constraint that the estimated rate function â + b̂t be

nonnegative throughout [ 0 ,T]. This constraint reduces to

â ≥ 0 and b̂ ≥ − â / T . (9)

Because of the sum of squares in (4) is a convex function of (α ,β), it is easy to determine the

constrained minimum. If the constraints in (9) are satisfied by the solution in (5)–(8), then we are

done. If not, then either (i) â < 0 or (ii) â ≥ 0 and b̂ < − â / T. In the first case, the minimum is

attained with â = 0 and b̂ = N β̂ / T where β̂ is the solution to

β
min

k = 1
Σ
N

w k (Y k − βx k )2 , (10)

i.e.,

b̂ =
T
N_ _

k = 1
Σ
N

w k xk
2

k = 1
Σ
N

w k x k Y k

_ __________ . (11)

In the second case the minimum is attained with â = − b̂T and b̂ = N β̂ / T, where β̂ is the

solution to

α
min

k = 1
Σ
N

w k (Y k − β(T − x k ) )2 , (12)
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i.e.,

b̂ = −
T
N_ _

k = 1
Σ
N

w k (T − x k )2

k = 1
Σ
N

w k (T − x k ) Y k

_______________ . (13)

In this framework, the simplest procedure is ordinary least squares (OLS) in which all the

weights are the same, i.e., w k = 1, 1 ≤ k ≤ N. However, we are motivated to consider unequal

weights because, if b ≠ 0, then the variances of the successive Y k variables are unequal. Since

the variable Y k has a Poisson distribution, its variance equals its mean. Thus, from (2), we see

that the variances are

Var Y k = λ k ≡
N
T_ _ (a + bx k ) , 1 ≤ k ≤ N . (14)

Of course, since we do not know a and b in advance, we do not know these variances in advance.

However, if we did know the variances in advance, then we might want to use the weights

w k =
λ k

N_ __ /
k = 1
Σ
N 


 λ k

1_ __




, 1 ≤ k ≤ N , (15)

because these weights produce the minimum variance estimator among linear functions of the

observations Y k that are unbiased (assuming that we do not consider the constraints in (9)). This

can be verified by a direct calculation using Lagrange multipliers as for the Gauss-Markov

theorem, as on p. 341 of Mood and Graybill [16], or by transforming the problem to the equal-

variance case; see p. 78 of Draper and Smith [7] or p. 81 of Weisberg [21]. For the

transformation, we replace Y k = α + βx k + ε k with σk
− 1 Y = α σk

− 1 + β σk
− 1 x k + σk

− 1 ε k .

Then σk
− 1 ε k = (σk

− 1 Y k − α σk
− 1 − β σk

− 1 x k ) are independent random variables with mean 0 and

variance 1. Hence, the standard linear regression theory can indeed be applied to the transformed

problem.
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Since we do not actually know a and b in advance with data, we cannot use the weights in

(15). However, in our simulation studies evaluating different estimators we can use the weights

(15). We call this case theoretically optimal weighted least squares (TWLS).

We can approach TWLS above with data by using iterative weighted least squares (IWLS).

We first perform ordinary least squares to obtain the estimates â and b̂. We then form the

associated estimate λ̂ k = (T / N) ( â + b̂x k ) and use this in (15) to obtain weight estimates ŵ k .

We then successively obtain new estimates of ( â , b̂) and ŵ k until insignificant change results.

Our numerical experience indicates that IWLS consistently converges very quickly (e.g., 2–5

iterations) and that the resulting estimates are very close to the TWLS estimates. See Carroll [3],

McCullagh and Nelder [14] and p. 87 of Weisberg [21] for further discussion about IWLS.

It is easy to see how the estimators are related when we make adjustments to satisfy the

nonnegativity constraints in (9). Note that (11) becomes b̂ = N
k = 1
Σ
N

x k Y k / T
k = 1
Σ
N

xk
2 for OLS, but

(11) becomes b̂ = N
k = 1
Σ
N

Y k / T
k = 1
Σ
N

x k = 2
k = 1
Σ
N

Y k / T 2 for both TWLS and IWLS, and similarly for

(13). Hence, OLS coincides with TWLS when b = 0, while IWLS coincides with TWLS

whenever the constraints (9) are violated.

We conclude this section by noting that, while it is natural to apply the adjustments to satisfy

the nonnegativity constraints when we have a single data set { (x k , Y k ) : 1 ≤ k ≤ N}, it is

natural to combine the data before making adjustments, when we have multiple samples. It is

easy to see that with a single data set, the adjustment minimizes mean square error.

3. Analytical Formulas for Ordinary Least Squares

If we ignore the nonlinear adjustment in the OLS estimators in order to satisfy the constraints

in (9), then the estimators â and b̂ in (5)–(8) are linear functions of the random variables Y k , so

that it is not difficult to calculate their means and variances. Since the random variables Y k are
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independent and since a Poisson distribution approaches a normal distribution as the mean

increases, it is natural to regard the joint distribution of the estimators as approximately

multivariate normal as well, but we do not exploit this property. (Either large N or large means

would imply normality, the first by the central limit theorem and the second by a direct normal

approximation for the Poisson distribution.)

If we ignore the constraints in (9), then the estimators are all unbiased, i.e., Eâ = a and

Eb̂ = b for any weights. However, the adjustment to meet the constraint introduces some bias.

For example, if b is positive but not too large, then Eâ > a while Eb̂ < b. Henceforth in this

section we ignore the constraints in (9).

We can also calculate the variances for OLS. We use a superscript O to indicate OLS and a

subscript N to indicate the dependence on N, but we omit them from x k and Y k . From (2), (3), (5)

and (8),

Var b̂N
O

=


 T

N_ _




2



k = 1

Σ
N

(x k − x
_

)2




2

k = 1
Σ
N

(x k − x
_

)2


 N

T_ _




(a + bx k )

_ ________________________ =


 N 2 − 1

N 2
_ _______



 T 3

6 ( 2a + bT)_ __________ . (16)

(Part of the calculation in (16) is based on
k = 1
Σ
N

(x k − x
_

)2 = T 2 (N 2 − 1 )/12N.) The dependence

upon a ,b ,T and N is quite clear from (16). To see the impact of N in the standard deviation, we

can expand the N-term in inverse powers of N, i.e.,

√ N 2 − 1

N_ _______ = 1 +
2N 2

1_ ____ +
8N 4

3_ ____ +
16N 6

5_ _____ + O


 N 8

1_ ___




as N → ∞ . (17)

From (16) and (17), we see that the standard deviation SDV( b̂) for N = 10 exceeds the standard

deviation for N = ∞ by only about 0.5%.
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Next it is easy to focus on m ≡ a + bT /2. The OLS estimator for m is

Var m̂N
O

=


 T

N_ _




2

VarY
_

=
T 2

1_ __
k = 1
Σ
N 


 N

T_ _







a + b(k −

2
1_ _ )

N
T_ _





=
2T

2a + bT_ ______ . (18)

Since m = Z / T where Z ≡
k = 1
Σ
N

Y k is Poisson, because it is the sum of n independent Poisson

random variables, (18) is elementary. Note that (18) is independent of N.

Next, a = m − bT /2, so that the variance of âN
O

is

Var âN
0

= Var m̂N
O

+


 4

T 2
_ __





Var b̂N
O

− TCov (m̂N
O

, b̂N
O

) , (19)

where

− T Cov (m̂N
O

, b̂N
O

) = − T Cov





T
N_ _

N
1_ _

k = 1
Σ
N

Y k ,


 T

N_ _


k = 1

Σ
N

(x k − x
_

) Y k /
k = 1
Σ
N

(x k − x
_

)2





= −
T(N 2 − 1 )

12_ ________
k = 1
Σ
N

(x k − x
_

) Var Y k = − b . (20)

From (16), (18)–(20),

Var âN
O

=


 N 2 − 1

N 2
_ _____



 4T

6 ( 2a + bT)_ _________ +
2T

2a + bT_ ______ − b → b +
T

4a_ __ as N → ∞ . (21)

Next, for any t, let λ̂N
0

(t) = âN
0

+ b̂N
0

t be the estimator of the arrival rate at time t. Then

Varλ̂N
0

(t) = VarâN
0

+ t 2 Varb̂N
0

+ 2t Cov ( âN
0

, b̂N
0

) , (22)

where

Cov ( âN
0

, b̂N
0

) = Cov (m̂N
0

, b̂N
0

) −
2
T_ _ Var ( b̂N

0
) .
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Finally, we give approximate formulas for the mean and the standard deviation of the

intercept estimator ãN
0

assuming that the adjustment to satisfy the nonnegativity condition (9) is

made. This shows the bias caused by the nonnegativity constraint in (9). We assume that the

estimator âN
0

before adjustment is normally distributed with mean 0 and variance Var aN
0 in (21).

Then ãN
0

= 0 when âN
0

≤ 0, while ãN
0

= âN
0

when âN
0

> 0. Hence, using basic properties of the

positive normal distribution, we see that the mean is

EãN
0

=


 2π

Var âN
0

_ ______




1/2

∼∼ 0. 4 SD( âN
0

) → 0. 4√ b as N → ∞ . (23)

and the standard deviation is

SD ãN
0

=


 2

1_ _ −
2π
1_ __





1/2

SD âN
0 ∼∼ 0. 584 SD âN

0
→ 0. 584√ b as N → ∞ . (24)

4. Asymptotic Formulas for TWLS

In this section we develop asymptotic formulas for the sample variances associated with

TWLS, i.e., using the weights in (15). We first develop formulas for the limits as N → ∞. Then

we consider the asymptotic form of these limiting formulas as ε ≡ bT / a gets small. The

parameter ε is a relevant measure of departure from homogeneity; bT is the difference between

the left and right end points of λ(t) over [ 0 ,T], whereas a is the left end point. At the outset, we

assume that a ≠ 0 and b ≠ 0; we consider the cases a = 0 and b = 0 at the end of this section.

We use a superscript T and a subscript N for the estimators to indicate the dependence on TWLS

and N, but we omit them in λ k , x k and w k in (2), (3) and (15).

As N → ∞, the sums approach integrals which can be directly integrated. First,



- 14 -

x
_

N
T

≡
N
1_ _

k = 1
Σ
N

w k x k =
k = 1
Σ
N

λk
− 1 x k /

k = 1
Σ
N

λk
− 1

→ x
_

∞
T

≡ ∫
0

T

a + bt
tdt_ _____ /∫

0

T

a + bt
dt_ _____ =

ln ( 1 + [bT / a] )
T_ ____________ −

b
a_ _ as N → ∞ , (25)

where ln (x) is the natural logarithm. By the same reasoning,

Var b̂N
T

=


 T

N_ _




2



k = 1

Σ
N

w k (x k − x
_

N
T

)2




2
k = 1
Σ
N

wk
2 (x k − x

_
N
T

) λ k

_ _________________

→ Var b̂∞
T

≡



∫

0

T

a + bt

(t − x
_

∞
T

)2
_ _______ dt





− 1

=
T(T − 2x

_
∞
T

)

2b_ _________ as N → ∞ , (26)



 T

N_ _




2

VarY
_

N
T

→
ln ( 1 + [bT / a] )

b_ ____________ as N → ∞ , (27)

Cov


 T

N_ _ b̂N
T

,
T
N_ _Y

_
N
T 




→ 0 as N → ∞ , (28)

and

Var âN
T

=


 T

N_ _




2

VarY
_

N
T

+ (x
_

N
T

)2 Var b̂N
T

− 2x
_

N
T

Cov


 T

N_ _ b̂N
T

,
T
N_ _Y

_
N
T 




→
ln ( 1 + [bT / a] )

b_ ____________ +
T(T − 2x

_
∞
T

)

2 (x
_

∞
T

)2 b_ __________ as N → ∞ . (29)

Indeed, our numerical experience indicates that Cov ( b̂N
T

, ŶN
T

) = 0 for all N. For

λ̂N
T

(t) = âN
T

+ b̂N
T

t,

Varλ̂N
T

(t) = VarâN
T

+ t 2 Varb̂N
T

+ 2tCov ( âN
T

, b̂N
T

) (30)

where
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Cov ( âN
T

, b̂N
T

) = Cov (Y
_

N
T

− x
_

N
T

b̂N
T

, b̂N
T

) = Cov (Y
_

N
T

, b̂N
T

) − x
_

N
T

Varb̂N
T

(31)

The formulas for x
_

∞
T

, Var b̂∞
T

and Var â∞
T

in (25), (26) and (29) do not look much like their

counterparts for OLS. However, a connection can be seen when we develop expressions for the

TWLS asymptotic formulas as ε ≡ bT / a gets small. We will show that the asymptotic relative

difference between OLS and TWLS is of order O(ε2 ) as ε → 0.

First, applying the familiar asymptotic expansion for the logarithm, ln ( 1 + z) = z − z 2 /2 + . . .,

to (25), we obtain

x
_

∞
T

=
2
T_ _




1 −

6
ε_ _ +

12
ε2
_ __ −

360
19_ ___ ε2 + O(ε4 ) )





as ε → 0 . (32)

Next, from (25), (26) and (32),

Var b̂∞
T

=
T 3 ( 1 −

2
ε_ _ +

60
19_ __ ε2 + O(ε3 ) )

12a_ _______________________

=
T 3

12a_ ___ ( 1 +
2
ε_ _ −

15
ε2
_ __ + O(ε3 ) ) as ε → 0 . (33)

Thus, the asymptotic relative difference between the asymptotic variances Var b̂ ∞ of the OLS and

TWLS methods is

Var b̂∞
T

Var b∞
O − Var b̂∞

T

_ ______________ =
15
ε2
_ __ + O(ε3 ) as ε → 0 . (34)

Next, to treat Var â∞
T

, note that

(x
_

∞
T

)2 Var b̂∞
T

=
T

3a_ __ ( 1 +
6
ε_ _ −

180
7_ ___ ε2 + O(ε3 ) ) as ε → 0

and
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ln ( 1 + ε)
b_ _______ =

T
a_ _ ( 1 +

2
ε_ _ −

12
ε2
_ __ + O(ε2 ) ) as ε → 0 ,

so that

Var â∞
T

=
T

4a_ __ + b −
5T
aε2
_ ___ + O(ε3 ) as ε → 0 (35)

and

Var â∞
T

Var â∞
0

− Var â∞
T

_ ______________ =
20
ε2
_ __ + O(ε3 ) as ε → 0 . (36)

So far in this section, we have excluded the cases a = 0 and b = 0. The case b = 0 is

obtained as the limit as b → 0 as described above; then TWLS coincides with OLS.

The cases a = 0 without adjustments is more complicated, so we do not treat it analytically.

To see the complications, note that the limiting integral ∫
0

T
t − 1 dt diverges. We now analyze the

case in which we assume that a = 0, as we do if we make adjustments after finding â < 0. For

a = 0 and finite N, the TWLS slope estimator is

b̂N
T

=
T 2

2_ __
k = 1
Σ
N

Y k ; (37)

The associated variance is

Varb̂N
T

=
T 2

2b_ __ , (38)

which is independent of N. By (16) and (38), when a = 0,

Var b̂N
T

Var b̂N
O

_ ______ =
N 2 − 1

3N 2
_ _____ → 3 as N → ∞ . (39)

Since ML coincides with TWLS when a = 0 (see Section 5 below), formula (39) roughly

indicates how much more efficient is the ML slope estimator than the OLS slope estimator when
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a or a + bT is very small and an adjustment is made to satisfy the constraints in (9). As shown

in Section 6, the overall relative efficiency of ML compared to OLS for the slope is actually only

about 1.5.

We also obtain (38) asymptotically from (26) as a → 0. Note that x
_

∞ → 0 as a → 0 for x
_

∞

in (25). Thus Var b̂∞
T

→ 2b / T 2 and Var â∞
T

→ 0 as a → 0. In contrast, by (23),

Var âN
O

=


 N 2 − 1

N 2
_ _____



 4

6b_ __ −
2
b_ _ → b as N → ∞ . (40)

In Section 6 we will see that TWLS is indeed significantly better than OLS for estimating the

intercept in this region. However, ML does not share the advantage of large N.

5. Maximum Likelihood

Let p(n ;a ,b) be the probability that the count vector Y ≡ (Y 1 , . . . , Y N ) for the N

subintervals is n ≡ (n 1 , . . . , n N ) when the parameter pair is (a ,b). The ML estimator is the pair

( â , b̂) that maximizes p(Y;a ,b) or, equivalently

lnp(Y;a ,b) = −
k = 1
Σ
N

λ k +
k = 1
Σ
N

Y k ln λ k −
k = 1
Σ
N

ln (Y k ! )

= − aT −
2

bT 2
_ ___ +

k = 1
Σ
N

Y k ln ( (a + bx k ) (T / N) ) + C (41)

for a constant C. Note that ln p(Y; a ,b) is a strictly concave function of (a ,b) provided that

Y k > 0 for some k, and a + bx k > 0 for all k, which we assume is the case. (If Y k = 0 for all

k, then (41) is obviously maximized by a = b = 0.)

By differentiating with respect to a and b in (41), we find that the pair ( â , b̂) is the solution to

the two equations

k = 1
Σ
N

a + bx k

Y k_ ______ = T (42)
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and

k = 1
Σ
N

a + bx k

x k Y k_ ______ =
2

T 2
_ __ (43)

provided that the constraints in (9) are satisfied.

If â < 0 by (42) and (43), then we set âN
M

= 0 and minimize ln p(Y , 0 ,b), obtaining

b̂N
M

= 2
k = 1
Σ
N

Y k / T 2 , (44)

just as in (37). If we knew that a = 0, then we would also use (44) and obtain

Var b̂N
M

= 2b / T 2 , (45)

just as in (38). Similarly, if â + b̂T < 0, then we set âN
M

= − bT and maximize ln p(Y , − bT ,b)

to obtain

b̂N
M

= − 2
k = 1
Σ
N

Y k / T 2 . (46)

We now consider how to solve (42) and (43). Multiplying equations (42) and (43) by a and b,

respectively, and adding, we obtain the linear equation

S ≡
k = 1
Σ
N

Y k = aT +
2

bT 2
_ ___ =

k = 1
Σ
N

EY k . (47)

(We include the last expression to emphasize that aT + bT 2 /2 is the expected total number of

points in the interval [ 0 ,T].)

By virtue of (47), we can substitute 2 (S − aT)/ T 2 for b in (42), we obtain the single equation

g(a) ≡
k = 1
Σ
N

ax
_

+ x k



 T

S_ _ − a




Y k_ ______________ = 2 . (48)

First note that a = S / T and b = 0 always solves (47) and (48), but there may be other solutions.
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Next note that g(a) in (48) has singularities for each x k > x
_

for which Y k > 0. In particular, the

singularities are at

ak
# =

x k − x
_

x k_ _____
T
S_ _ for k > N /2 ,

all of which are greater than S / T.

By looking at the second derivative of g, we see g is infinitely differentiable and convex in the

open interval ( 0 ,S / T). Hence, there is at most one root to equation (48) in the interval ( 0 , S / T).

If g ′ (S / T) < 0 and g( 0 ) > 2, then there is such a root. Hence, we compute these quantities:

g( 0 ) =
S
T_ _

k = 1
Σ
N 


 x k

Y k_ __




(49)

and

g ′ (S / T) = −
S 2

4_ __
k = 1
Σ
N

Y k (x
_

− x k ) . (50)

If indeed g ′ (S / T) < 0 and g( 0 ) > 2, then we find the unique root of (48) in ( 0 , S / T) by a

convenient method. Since derivatives are readily available, it is natural to use a Newton method

(starting at 0 since we do not want the root at S / T).

We always allow for a root to (48) with a ≤ 0. However, using the constraint (9), we

consider â = 0 and b̂N
M

in (44) as a candidate optimum.

Next, we consider the possibility of a > S / T. However, by (47), a > S / T if and only if

b < 0. We treat the case b < 0 by repeating the procedure above on the reverse-time problem,

where Y
_

k
∗

= Y N − k + 1 , b = − b ∗ , a + bT = a ∗ . Let g ∗ be g in (48) for the reverse-time

problem. Note that for the reverse-time problem

g ∗′ (S / T) = − g ′ (S / T) (51)
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for g ′ (S / T) in (50). Hence, there is at most one root in ( 0 , S / T) for the two problems.

Finally, we evaluate the likelihood for each of the candidate solutions:

(i) root of g(a) = 2 in ( 0 , S / T) , b = 2 (S − aT)/ T 2

(ii) a = a ∗ + b ∗ T, b = − b ∗ for a ∗ root of g ∗ (a) = 2 in ( 0 , S / T) and

b ∗ = 2 (S − a ∗ T)/ T 2 ,

(iii) a = S / T , b = 0 (52)

(iv) a = 0 , b = 2S / T 2

(v) a = − bT , b = − 2S / T 2

with the understanding that we consider (ii) only if there is no solution to (i) and (iii)-(v) only if

there is no solution to (i) and (ii). By (41) and (47), to evaluate (iii)-(v) it suffices to calculate

k = 1
Σ
N

Y k ln (a + bx k ) (53)

for each possibility and choose the one yielding the maximum. (Note that a + bx k > 0 for all k

in each case.) In this way we obtain our estimates ( âN
M

, b̂N
M

).

6. Simulation Results

We wrote a simulation program (in C) to randomly generate the mutually independent

Poisson random variables Y k with means λ k in (2) and carry out the estimation procedures. In

Table 1 we give the sample standard deviations of the estimators â and b̂ for each of the methods

(OLS, ML and TWLS) in a representative set of eight cases in which the constraints in (9) are

very rarely violated, each obtained from 1000 replications. The cases are specified by the

parameter four-tuple (N ,T ,a ,b). The constraints in (9) were in fact never violated in this sample.

Hence, in this sample the associated sample means of â and b̂ were consistently close to the true

values a and b.
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From Table 1 we see that the standard deviations for ML and TWLS are almost identical, and

are consistently less than for OLS. (The only minor exception is the last case in which the actual

slope is zero.) However, all three sample standard deviations are quite close. Moreover, the

observed OLS and TWLS standard deviations, are quite accurately predicted by the formulas in

Sections 3 and 4 (as is easily verified).

In Table 2 we give the l 2 distances between the estimates â and b̂ for different pairs of

methods, based on the same 1000 replications. For example, the l 2 distance for a by OLS and

ML is

 â
0

− â
M

 2 =


 1000

1_ ____
i = 1
Σ

1000
âi

0
− âi

M


2



1/2

. (54)

Table 2 shows that ML tends to produce nearly the same estimates as TWLS.

The information in Table 2 can also be seen from plots of the estimator pairs, e.g.,

{ ( âi
0

, âi
M

) : 1 ≤ i ≤ 1000 }. We illustrate by contrasting OLS-ML and ML-TWLS for the case

( 12 , 12 , 100 , 25 ) in Figure 2. This figure confirms that in this case

TWLS − ML < OLS − ML .

In Tables 3 and 4 we present the sample means and standard deviations of the estimators â

and b̂ when T = 12, a = 0 and b = 10 for several different values of N, again based on 1000

replications. In Tables 5 and 6 we present the same results for the case T = 6, a = 0 and

b = 100. Since a = 0, the nonnegativity conditions (9) are violated about half the time in these

examples. Figure 3 plots estimator pairs for the case in Tables 5 and 6.

From Tables 3 and 5, we see that there is a significant bias in the intercept estimate due to the

adjustment to satisfy (9). From Tables 3 and 5, we see that the OLS mean and standard deviation

agree with formulas (23) and (24). We also see that ML and TWLS are significantly better than
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OLS in this case; there is both a smaller bias and a smaller sample standard deviation.

From Tables 4 and 6, we see that there is relatively little bias in the slope. Moreover, the

three methods do not differ greatly for the slope, although TWLS and ML actually have

significantly less bias than OLS. However, this bias differential is small compared to the sample

standard deviation.

Figure 3 tells a similar story pictorially. From Figure 3, we see that the ML and TWLS

estimators are close for the intercept, but the ML and OLS estimators are not. The same is true

for the slope, but the difference between ML and OLS is not nearly so great.

Figure 4 shows the estimator pairs for the same case as Figure 3, except the number of

measurement intervals is increased from N = 12 to N = 120. From Figure 4 we see that the

agreement between ML and TWLS decreases. Moreover, increasing N helps ML and TWLS, but

not OLS. However, the ML bias does not steadily decline as N increases the way the TWLS bias

does.

In conclusion, the major advantage of ML over OLS is in estimating the intercept when a ∼∼ 0

(or a + bT when a + bT ∼∼ 0).

7. Model Tests

In this section we discuss how we can test whether the nonhomogeneous Poisson process with

a linear rate λ(t) = a + bt is a reasonable model for data over the interval [ 0 ,T]. The possible

alternative hypotheses include: (i) a Poisson process with nonlinear rate, (ii) a non-Poisson

process with linear rate, and (iii) a non-Poisson process with nonlinear rate. We do not directly

examine any of these alternatives here. However, following standard statistical practice, we can

detect a poor fit of our linear Poisson model from statistics that fall outside the main region of

their distributions under the linear Poisson model.
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A simple direct procedure is to compare the observed sample standard deviations of the

estimators â and b̂ based on actual data with the distributions of those same estimators from the

linear Poisson model. The linear Poisson case can be described by the histograms from

1000 replications in the examples here.

We can also exploit more structure. We consider the two cases: multiple replications and a

single replication. For n independent replications, we note that the distributions of the estimators

â and b̂ by any of our methods should be approximately normal by the central limit theorem.

Indeed, the normality was demonstrated by looking at histograms of the 1000 observations in the

examples of Table 1. However, when the nonnegativity conditions (9) are frequently violated, as

in the examples in Table 2, the y-intercept â tends to have approximately a truncated normal

distribution instead of a normal distribution, with parameters as in (23) and (24).

Henceforth, suppose that there are n replications and that the normal approximation is

appropriate. Let a
_

= n − 1

i = 1
Σ
n

â i and b
_

= n − 1

i = 1
Σ
n

b̂ i; let σa
2 and σb

2 be the actual variance of â

and b̂. The normality implies that

V a ≡
i = 1
Σ
n

( â i − a
_

)2 /σa
2 and V b ≡

i = 1
Σ
n

( b̂ i − b
_

)2 /σb
2 , (55)

should both have chi-square distributions with n − 1 degrees of freedom. For OLS, we

approximate σa
2 and σb

2 by the exact OLS variances associated with the estimated parameter pair

(a
_

, b
_

) determined in Section 3. For IWLS and ML, we approximate σa
2 and σb

2 by the exact

TWLS asymptotic variances associated with the estimated parameter pair (a
_

, b
_

). Both of these

exact variances are relevant only under the assumption that the constraints in (9) are not violated

too frequently, which we check in our calculations of the estimate.

For a single replication, we assume that the means EY k are sufficiently large that we can

regard the Poisson variables Y k as being approximately normally distributed. Then we use the
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transformation to convert the unequal variance problem to the equal variance problem, which was

used to justify the optimality of TWLS. Since we do not know the real parameters a and b, we

use our estimates. The normalized sum of squares

U ≡
k = 1
Σ
N

σ̂k
− 2 



Y k − ( â + b̂x k )

N
T_ _





2

, (56)

where

σ̂k
2

= ( â + b̂x k )
N
T_ _ ,

should thus be approximately chi-square with N − 2 degrees of freedom.

These chi-square distributional properties should enable us to roughly gauge model

consistency. The test in (56) is able to capture significant departures from the linear Poisson

model as occur in the telephone call data in hours immediately after a rate change.

8. Proof of Theorem 1

First note that b = 0, a = S / T solves (42) and (43) if and only if

k = 1
Σ
N

x k Y k =
2
T_ _

k = 1
Σ
N

Y k

and note the same is true for (5) and (6); then the weights in (15) are constant, so that x
_

= T /2.

Henceforth, we consider solutions with b ≠ 0.

Let

A j =
k = 1
Σ
N

a + bx k

xk
j

_ _______ (57)

for j = 0 , 1 , 2 and note that
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aA 0 + bA 1 = N and aA 1 + bA 2 =
2

NT_ ___ , (58)

so that A 1 = (N − aA 0 )/ b,

A 2 =
2b
NT_ ___ −

b 2

Na_ __ +
b 2

a 2
_ __ A 0 , (59)

x
_

=
bA 0

N_ ___ −
b
a_ _ . (60)

The rest of the proof is contained in the following two lemmas.

Lemma 1. Equation (6) holds, i.e., â = (NY
_

/ T) − b̂x
_

for weights (15) with λ k = â + b̂x k and

b̂ ≠ 0 if and only if ( â , b̂) satisfies (42).

Proof. By (57) and (60), we can write (6) as

a =
TA 0

N_ ____
k = 1
Σ
N

a + bx k

Y k_ _______ − b


 bA 0

N_ ___ −
b
a_ _





,

which we see is equivalent to (42).

Lemma 2. Assuming that (42) holds, equation (5) is equivalent to (43).

Proof. First note that, by (57)-(60),

k = 1
Σ
N

a + bx k

(x k − x
_

)2
_ _______ =

k = 1
Σ
N

a + bx k

xk
2 − 2x

_
x k + x

_2

_ _____________

=
b
N_ _



 2

T_ _ +
b
a_ _ −

bA 0

N_ ___




.

Hence, using (42), we can write (5) as

b =

b
N_ _



 2

T_ _ +
b
a_ _ −

bA 0

N_ ___




T
N_ _

k = 1
Σ
N

a + bx k

x k Y k_ ______ − x
_

T
_ ___________________

or, equivalently,
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2
NT_ ___ +

b
Na_ __ −

bA 0

N 2
_ ___ =

T
N_ _



k = 1

Σ
N

a + bx k

x k Y k_ _______ +
bA 0

NT_ ___ −
b

Ta_ __




,

which we see is equivalent to (43).
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Appendix. An Alternative Three-Parameter Model

In this section we consider an approach to capture additional stochastic variability in the

arrival process. Since the Poisson distribution is approximately normal for large means, we use a

normal distribution framework. In particular, we assume that the random counts Y k are still

independent but now normally distributed with means λ k and variances cλ k for λ k in (2), where

c ≥ 0.

Using the ML approach with this normal distribution, we get

ĉ =
T
1_ _

k = 1
Σ
N

â + b̂x k





Y k −




( â + b̂x k )

N
T_ _










2

_ ____________________

=
T
1_ _

k = 1
Σ
N

â + b̂x k

Yk
2

_ _______ −
N
S_ _ , (60)

where

S ≡
k = 1
Σ
N

Y k = âT +
2

b̂T 2
_ ___ (61)

as in (47), and

T
N_ _

k = 1
Σ
N

( â + b̂x k )2

Yk
2

_ __________ = ĉ
k = 1
Σ
N

â + b̂x k

1_ _______ + T . (62)

As in §5, a = S / T and b = 0 is a solution to (61) and (62). We can find another solution to (61)

and (62) as in §5.

Since the normal model must itself be an approximation for point processes, we suggest using

(47) and (48) to find â and b̂, and then (60) to get ĉ. If â ∼∼ a and b̂ ∼∼ b in (60), then
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E ĉ ∼∼ 1 and Var ĉ ∼∼
T 2

3N_ ___ . (63)

For the variance approximation in (63) we use the fact that the fourth central moment of a normal

random variable is 3σ4 .

We conclude this section by considering three different Poisson process examples. First, we

consider a Poisson process with linear rate λ(t) = 100 + 25t for 0 ≤ t ≤ 12. Second, we

consider a Poisson process with nonlinear rate

λ(t) =


325 ,

175 ,

6 < t ≤ 12 .

0 ≤ t ≤ 6
(57)

Third, we consider a Poisson process with nonlinear rate

λ(t) =








275 ,

375 ,

125 ,

225 ,

9 < t ≤ 12 .

6 < t ≤ 9

3 < t ≤ 6

0 ≤ t ≤ 3

(58)

All three rate functions have the same average rate λ
_

= 250. Moreover, all three have the same

average rates over the two subintervals [ 0 , 6 ] and ( 6 , 12 ], namely, 175 and 325, respectively.

Indeed, all three have the same best linear fit according to the least squares distance

 λ − λ lim 2 = (∫
0

T
(λ(t) − (a + bt) )2 dt)1/2 (59)

The respective distances according to this criterion are 0, 150 and 312.2. The first case is of

course exactly linear, while the third case evidently departs from linearity more than the second.

For all three examples we let N = 12. Then, for all three methods, EY k ≥ 41 for all k, so that

the normal approximation for Y k is very reasonable.

For these three Poisson processes we test for linear rate using the multiple-replication

statistics V a and V b in (55) and the single-replication normalized sum of squares U in (56).



References

[1] I. V. Basawa and B. L. S. Prakasa Rao, Statistical Inference for Stochastic Processes,

(Academic Press, New York, (1980).

[2] M. Brown, Statistical analysis of non-homogeneous Poisson processes. In Stochastic

Point Processes: Statistical Analysis, Theory and Applications, P. A. W. Lewis (ed.)

(Wiley, New York, 1972) 67-89.

[3] R. J. Carroll, Adapting for heteroscedasticity in linear models. Ann. Statist. 4 (1982)

1224-1233.

[4] G. L. Choudhury, D. M. Lucantoni and W. Whitt, Numerical solution of piecewise-

stationary M t /G t /1 queues, Opns. Res., to appear.

[5] A. C. Cole, Progress in forecasting and traffic measurement techniques as seen at recent

teletraffic congresses, in: Teletraffic Science for New Cost-Effective Systems, Networks

and Services, ITC-12, M. Bonatti (ed.) (Elsevier, Amsterdam, 1989) 198-206.

[6] J. L. Davis. W. A. Massey and W. Whitt, Sensitivity to the service-time distribution in the

nonstationary Erlang loss model. Management Sci., to appear.

[7] N. R. Draper and H. Smith, Applied Regression Analysis, (Wiley, New York, 1966).

[8] V. Frost and B. Melamed, Traffic modeling for telecommunication networks, IEEE

Communications Magazine 32 (1994) 70-81.

[9] R. W. Hall, Queueing Methods for Services and Manufacturing (Prentice Hall,

Englewood Cliffs, NJ, 1991).

[10] J. M. Holtzman and D. L. Jagerman, Estimating peakedness from arrival counts,

Proceedings Ninth Int. Teletraffic Congress, Torremolinos, Spain.



- R-2 -

[11] W. Leland, M. Taqqu, W. Willinger and D. Wilson, On the self-similar nature of ethernet

traffic, IEEE/ACM Trans. Networking 2 (1994).

[12] W. A. Massey and W. Whitt, Networks of infinite-server queues with nonstationary

Poisson input. Queueing Systems 13 (1993) 183-250.

[13] Massey, W. A. and W. Whitt, Stationary-process approximations for the nonstationary

Erlang loss model, Opns. Res., to appear.

[14] P. McCullagh and J. A. Nelder, Generalized Linear Models (Chapman and Hall, London,

1983).

[15] K. S. Meier-Hellstern, P. E. Wirth, Y. Yan and D. A. Hoeflin, Traffic models for ISDN

data users: office automation application, in: Teletraffic and Datatraffic in a Period of

Change, ITC-13, A. Jensen and V. B. Iversen (eds.), (Elsevier, Amsterdam, 1991) 167-

172.

[16] A. M. Mood and F. A. Graybill, Introduction to the Theory of Statistics, second ed.,

(McGraw-Hill, New York, 1963).

[17] K. Rahko, Measurements for control and modelling of teletraffic, in: Teletraffic and

Datatraffic in a Period of Change, ITC-13, A. Jensen and V. B. Iversen (eds.) (Elsevier,

Amsterdam, 1991) 609-614.

[18] J. W. Roberts, Performance Evaluation and Design of Multiservice Networks

(Commission of the European Communities, Luxembourg, 1992).

[19] D. L. Snyder and M. I. Miller, Random Point Processes in Time and Space, second ed.,

(Springer-Verlag, New York, 1991).

[20] M. R. Taaffe and K. L. Ong, Approximating Ph(t)/ M(t)/ S / C queueing systems. Ann.

Oper. Res. 8 (1987) 103-116.



- R-3 -

[21] S. Weisberg, Applied Linear Regression (Wiley, New York, 1985).



_ __________________________________________________________________
Case OLS ML TWLS_ __________________________________________________________________

N T a b â b̂ â b̂ â b̂_ __________________________________________________________________
12 12 100 25 7.41 1.32 6.96 1.25 6.96 1.25

120 12 100 25 7.80 1.34 7.42 1.27 7.42 1.27
12 6 100 25 9.03 2.94 8.80 2.86 8.80 2.87
12 12 100 4.167 5.84 0.913 5.81 0.908 5.81 0.908
12 12 10 2.5 2.43 0.417 2.31 0.403 2.30 0.400

120 12 10 2.5 2.44 0.418 2.30 0.398 2.30 0.397
12 24 10 2.5 1.99 0.187 1.79 0.163 1.78 0.163
12 12 10 4.167 2.72 0.488 2.50 0.455 2.49 0.453
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Table 1. A comparison of the sample standard deviations of the estimators â and b̂ in a
representative set of cases based on 1000 replications of the simulation.

_ ____________________________________________________
Case OLS-ML TWLS-ML_ ____________________________________________________

N T a b â b̂ â b̂_ ____________________________________________________
12 12 100 25 2.61 0.435 0.16 0.026

120 12 100 25 2.56 0.426 0.17 0.029
12 6 100 25 2.14 0.71 0.26 0.087
12 12 100 4.167 0.60 0.10 0.13 0.020
12 12 10 2.5 0.82 0.137 0.16 0.027

120 12 10 2.5 0.85 0.142 0.17 0.029
12 24 10 2.5 0.95 0.080 0.09 0.008
12 12 10 4.167 1.14 0.190 0.18 0.029
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Table 2. A comparison of the l 2-distances between estimators â and b̂ for pairs of methods, in
a representative set of cases based on 1000 replications of the simulation.



_ ___________________________________________________
sample mean sample standard deviation_ __________________________________________

N OLS TWLS ML OLS TWLS ML_ ___________________________________________________
4 1.32 1.05 1.06 1.95 1.62 1.62
8 1.32 0.98 0.98 1.91 1.43 1.43

12 1.32 0.80 0.81 1.91 1.23 1.25
24 1.22 0.68 0.70 1.80 1.14 1.16

120 1.21 0.53 0.64 1.88 1.04 1.11
240 1.28 0.45 0.60 1.87 1.02 1.01

1200 1.27 0.37 0.62 1.94 1.19 1.04
2400 1.43 0.29 0.63 1.96 0.75 1.05_ ___________________________________________________ 
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Table 3. The sample mean and standard deviation of the y-intercept estimator â as a function
of the method and N for the case T = 12, a = 0 and b = 10, based on 1000
replications.

_ _____________________________________________________
sample mean sample standard deviation_ ____________________________________________

N OLS TWLS ML OLS TWLS ML_ _____________________________________________________
4 9.839 9.832 9.831 0.52 0.45 0.45
8 9.840 9.845 9.845 0.53 0.45 0.45

12 9.840 9.875 9.872 0.52 0.43 0.43
24 9.851 9.892 9.890 0.52 0.43 0.43

120 9.850 9.911 9.891 0.65 0.42 0.42
240 9.832 9.919 9.893 0.50 0.39 0.40

1200 9.855 9.949 9.907 0.52 0.41 0.40
2400 9.821 9.962 9.906 0.54 0.42 0.43_ _____________________________________________________ 
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Table 4. The sample mean and standard deviation of the slope estimator b̂ as a function of the
method and N for the case T = 12, a = 0 and b = 10, based on 1000 replications.



_ ___________________________________________________
sample mean sample standard deviation_ __________________________________________

N OLS TWLS ML OLS TWLS ML_ ___________________________________________________
4 4.05 3.30 3.30 6.04 5.05 5.05
8 3.94 2.91 2.90 5.80 4.18 4.16

12 4.05 2.49 2.51 5.83 3.83 3.85
24 3.93 2.43 2.44 5.83 3.49 3.51

120 3.89 1.89 1.94 5.82 3.30 3.12
240 4.24 1.52 1.95 6.39 2.95 3.20

1200 3.86 1.29 1.88 5.76 3.08 3.10
2400 3.91 1.06 1.95 5.78 2.10 3.21_ ___________________________________________________ 
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Table 5. The sample mean and standard deviation of the y-intercept estimator â as a function
of N and the method for the case of T = 6, a = 0 and b = 100, based on 1000
replications.

_ _____________________________________________________
sample mean sample standard deviation_ ____________________________________________

N OLS TWLS ML OLS TWLS ML_ _____________________________________________________
4 99.04 98.95 98.95 3.29 2.90 2.90
8 99.07 99.09 99.09 3.18 2.76 2.75

12 99.02 99.22 99.21 3.28 2.73 2.73
24 99.07 99.23 99.23 3.29 2.66 2.69

120 99.08 99.41 99.40 3.27 2.66 2.63
240 99.00 99.58 99.43 3.29 2.51 2.56

1200 99.18 99.68 99.49 3.19 2.59 2.53
2400 99.08 99.71 99.41 3.27 2.48 2.64_ _____________________________________________________ 
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Table 6. The sample mean and standard deviation of the slope estimator b̂ as a function of N
and the method for the case T = 6, a = 0 and b = 100, based on 1000 replications.



Figure 1. Traffic count summaries for three origin-destination pairs in the AT&T long
distance network during one hour.



Figure 2. Estimator pairs for the case T = 12, N = 12, a = 100 and b = 25.



Figure 3. Estimator pairs for the case T = 12, N = 12, a = 0 and b = 100.



Figure 4. Estimator pairs for the case T = 12, N = 120, a = 0 and b = 100.
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_ __________________________________________________________________
Case OLS ML TWLS_ __________________________________________________________________

N T a b â b̂ â b̂ â b̂_ __________________________________________________________________
12 12 100 25 7.41 1.32 6.96 1.25 6.96 1.25
12 6 100 25 9.03 2.94 8.80 2.86 8.80 2.87
12 12 100 4.167 5.84 0.913 5.81 0.908 5.81 0.908
12 12 10 2.5 2.43 0.417 2.31 0.403 2.30 0.400
12 24 10 2.5 1.99 0.187 1.79 0.163 1.78 0.163
12 12 10 4.167 2.72 0.488 2.50 0.455 2.49 0.453

120 12 10 2.5 1.98 0.332 1.81 0.316 1.82 0.317
12 12 10 0.0 1.94 0.295 1.95 0.296 1.94 0.295_ __________________________________________________________________ 
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Table 1. A comparison of the sample standard deviations of the estimators â and b̂ in a
representative set of cases based on 1000 replications of the simulation.

_ _____________________________________________________
Case OLS-ML TWLS-ML_ _____________________________________________________

N T a b â b̂ â b̂_ _____________________________________________________
12 12 100 25 2.61 0.435 0.16 0.026
12 6 100 25 2.14 0.71 0.26 0.087
12 12 100 4.167 0.60 0.10 0.13 0.020
12 12 10 2.5 0.82 0.137 0.16 0.027
12 24 10 2.5 0.95 0.080 0.09 0.008
12 12 10 4.167 1.14 0.190 0.18 0.029

120 12 10 2.5 0.60 0.100 0.088 0.015
12 12 10 0.0 0.14 0.024 0.14 0.023_ _____________________________________________________ 
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Table 2. A comparison of the l 2-distances between estimators â and b̂ for pairs of
methods, in a representative set of cases based on 1000 replications of
the simulation.


