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Abstract

Motivated by telecommunication applications, we investigate ways to estimate the parameters
of a nonhomogeneous Poisson process with linear rate over afinite interval, based on the number
of counts in measurement subintervals. Such a linear arrival-rate function can serve as a
component of a piecewise-linear approximation to a general arrival-rate function. We consider
ordinary least squares (OLS), iterative weighted least squares (IWLS) and maximum likelihood
(ML), al constrained to yield a nonnegative rate function. We prove that ML coincides with
IWLS. As areference point, we also consider the theoretically optimal weighted least squares
(TWLS), which is least squares with weights inversely proportional to the variances (which
would not be known with data). Overall, ML performs aimost as well as TWLS. We describe
computer simulations conducted to eval uate these estimation procedures. None of the procedures
differ greatly when the rate function is not near O at either end, but when the rate function is near
0 a one end, TWLS and ML are significantly more effective than OLS. The number of
measurement subintervals (with fixed total interval) makes surprisingly little difference when the
rate function is not near O at either end. The variances are higher with only two or three
subintervals, but there usualy is little benefit from going above ten. In contrast, more
measurement intervals help TWLS and ML when the rate function is near O at one end. We
derive explicit formulas for the OLS variances and the asymptotic TWLS variances (as the
number of measurement intervals increases), assuming the nonnegativity constraints are not
violated. These formulas reveal the statistical precision of the estimators and the influence of the
parameters and the method. Knowing how the variance depends on the interval length can help
determine how to approximate general arrival-rate functions by piecewise-linear ones. We also

develop statistical tests to determine whether the linear Poisson model is appropriate.



1. Introduction and Summary

Traffic measurements and traffic models have long played an important role in
telecommunications systems, e.g., see Cole[5] and Rahko [17]. However, the emergence of new
services and new technologies has led to new kinds of traffic and new traffic models, e.g., see
Frost and Melamed [8], Leland, Taggu, Willinger and Wilson [1]], Meier-Hellstern, Wirth, Yan
and Hoeflin[15] and Part1 of Roberts [18]. Just as with overflow traffic associated with
aternative routing, in many new situations the classical Poisson process traffic model is not

nearly appropriate. On the other hand, in other situations it evidently is still appropriate.

We want to be able to determine if a Poisson process traffic model is appropriate and, when it
is, we want to be able to estimate its parameters from measurements. These issues are relatively
well understood in the familiar setting of homogeneous arrival processes, i.e., when the arrival
rate is constant. However, in redity the arrival process is typically nonhomogeneous; i.e., the
arrival rate typicaly varies significantly in time, e.g., see pp. 258-260 and Chapter 6 of Hall [9].
It is much easier to detect departures from a homogeneous Poisson process than from a
nonhomogeneous Poisson process. Indeed, we may actually have a Poisson process when we
think we do not, if we do not properly account for the nonhomogeneity; i.e., predictions of higher
variability associated with non-Poisson homogeneous processes can often be explained by
fluctuations in the deterministic arrival-rate function of a nonhomogeneous Poisson process; e.g.,
see Holtzman and Jagerman [10]. This led us in [13] to consider non-Poisson homogeneous

processes as approximations for non-homogeneous Poisson processes.

A major difficulty with the nonhomogeneous Poisson process model is that it has infinitely
many parameters. In particular, it is parameterized by its arrival-rate function A(t). A natura
first step is to restrict attention to special parametric families of arrival-rate functions. In many

cases it is reasonable to regard the arrival-rate function as linear over appropriate subintervals,



i.e., as piecewise linear. For example, data show that the arrival-rate function for telephone calls
over a day is very nonlinear, but it often is reasonable to approximate it by a linear function
within single hours, especially when the available data are summaries over subintervals (e.g., five

minutes). Thelinearity isahelpful simplification because it reduces the number of parameters.

A specific motivating application for usis the AT&T long distance network. Summaries of
telephone calls by origin and destination (for the more than 100 major switches) are currently
collected every five minutes. Figure 1 displays these summaries for three origin-destination pairs
in one hour. Since the time is between 8:00 am and 9:00 am, it is not surprising that there is
significant increase over the hour. This example shows that the rates might not nearly be

constant, but that they might be approximately linear over one hour.

Hence, in this paper we consider the case of alinear rate over a subinterval. In particular, we
assume that we have a nonhomogeneous Poisson process over the interval [0, T] with arrival-rate

function
A(t) =a+bt, 0<st<sT, Q

and we investigate how to estimate the two parameters a and b in (1) and the arrival rates A (t)
based on arrival process data. We assume that the overal time interval (0,T] is divided into N
measurement subintervals ((k—1) T/N, kT/N], 1 < k < N, and we observe the number of points
in each. In addition to finding estimators a and b for the parameters a and b in (1), we want to
provide insight into the choice of the interval length T and the number N of measurement
subintervals. Having a larger T will yield better estimates if the arrival-rate function is indeed
nearly linear, but it can yield worse estimates if the arrival-rate function is only nearly linear over
short intervals. Having a larger N may be more costly, but may improve the quality of the

estimate.



We primarily focus on the variance of the estimators as a function of the parameters and the
method. Explicit expressions for the variances enable us to see how the parameters a,b, T and N
affect the estimation. We do not specifically discuss how to choose subintervals to approximate a
general arrival-rate function by a piecewise-linear arrival-rate function, but our variance formulas

can help make the choice.

Our estimation might be based on a single realization of an arrival process or multiple
independent samples. For example, we might have data from the same hour on the same day of
the week for n different weeks. If we consider the N sample means obtained from the Nn
observations, then the variances of al the estimators we consider are inversely proportional to n.

Since the effect of n is predictable, we henceforth only consider thecasen = 1.

It is important to emphasize that we are interested in this linear Poisson process model from
two points of view. First, we obviously want to understand how different estimation procedures
perform when the model is approximately valid. Second, we want to develop ways to determine
whether or not the linear Poisson model is appropriate. The model is not valid if the arrival
process is not Poisson or if the arrival-rate function over the designated subinterval is nonlinear.
We develop ways to test whether the linear Poisson model is appropriate. Such a test might be

based on a single realization of the process or upon multiple realizations.

There is a substantial history of statistical inference for nonhomogeneous Poisson processes,
e.g., see Basawa [1], Brown [2] and Snyder and Miller [19], but we are unaware of any work
closely related to what we do here. In the physical sciencesit is more natural to consider Poisson

processes with nonlinear rates; see[1] and [19].

We are ultimately interested in characterizing arrival processes so that we can analyze the
performance of telecommunications and other service systems with these arrival processes. There

is agrowing literature on ways to analyze service system models with nonhomogeneous Poisson



arrival processes; e.g., see Choudhury, Lucantoni and Whitt [4], Davis, Massey and Whitt [6],
Hall [9], Massey and Whitt [12], Taaffe and Ong [20] and references cited in these sources. In
this paper we investigate ways to select nonhomogeneous Poisson arrival process models given
arrival process data. Less attention has been given to fitting arrival process models to data; see

Basawa [1] and Hall [9].

In our study we consider three different estimation procedures: (1) ordinary least squares
(OLS), (2) iterative weighted least squares (IWLS) and (3) maximum likelihood (ML). These
estimation procedures are described in detail in Sections2-5. OLS is the natural simple
estimator; the other two are attempts to do better. The ML approach is discussed by Basawa [1]
and Snyder and Miller [19]. We are led to consider weighted least squares, because the
observations have unequal variances. To achieve the best linear unbiased estimator, we would
want weights inversely proportional to the variances (see Section 2). Our IWLS procedure
estimates the desired weights from estimates of the variances, which in turn depend on estimates
of the parameters a and b, successively improving the estimates for both (a,b) and the weights by
iteration. When our estimates of (ab) produce weights, which in turn reproduce these same

estimates of (a,b), the iteration has converged.

We prove a fundamental result linking these estimators; the proof appears in Section 8. This
is reminiscent of the classical result for linear models with i.i.d. normally distributed residuals;
then ML coincides with OLS. Indeed, it can be deduced from the theory of generalized linear
models; see p. 31 of McCullagh and Nelder [14].

Theorem 1. The ML estimators coincide with the solution of IWLS.

We also study these estimators by computer simulation. Given the parameters a,b, T and N,
we randomly generate the resulting Poisson random variables and study how the estimation

procedures perform. Since we know the parameters with the smulation, we also can consider the



theoretical optimal weighted least squares (TWLS), obtained by using weights inversely

proportional to the known variances (depending on a and b).

From our numerical experience, we find that the three estimation procedures (OLS, ML and
TWLS) do not differ much from each other when the rate function is not nearly O at either end;
i.e., they al tend to be unbiased and they all have nearly the same variances. The estimators fail
to be precisely unbiased because of adjustments to account for nonnegativity constraints. Even
though ML and IWLS coincide by Theorem 1, differences can occur due to numerical accuracy of
the algorithms. We found that the ML procedure developed here was more robust for very large

N.

We will show that OLS tends to be as good as TWLS when the slope b is relatively small,
while TWLS tend to be significantly better than OLS when b is large and the rate function is near
0 at one endpoint. Indeed, we show that when the rate function is O at one endpoint, as occurs
when the nonnegativity constraint is violated, then ML and TWLS coincide and that these are
significantly more effective than OLS, primarily because they predict the intercept (awhena = 0
and a + bT when a + bT = 0) much better; i.e., the bias created by adjustments to the
nonnegativity constraints is substantially less with ML and TWLS. The IWLS estimator usually

converges very quickly (e.g., 2-5 iterations) to an estimator very close to the TWLS estimator.

As a basis for understanding the performance of these estimation procedures, we develop
analytical formulas for the variances of the OLS and TWLS estimators, assuming that the
nonnegativity conditions are not violated. Since the numerical results show that ML is very close
to TWLS, these formulas give a clear quantitative description of the statistical precision of both
the OLS and ML procedures and the advantage of ML over OLS, provided that the rate function

isindeed not near O at either end.

As should be anticipated, we find that the total length of the interval, T, is very important, so



we should strongly prefer long intervals if linearity is not sacrificed. However, we find that the
number N of measurement subintervals makes surprisingly little difference. When the rate
function is not near O at either end, the variances decrease as N — oo, but rapidly converge to
limits. The variance values are noticeably larger for N = 2,3 or 4, but hardly at al by N = 10.
The insignificance of N might be anticipated because the total number of Poisson countsin [0, T]
is independent of N. The insignificance of N is established by extensive simulation results and
explicit formulas for OLS. For OLS we have smple formulas for the variances for all N, but for
TWLS we only have simple formulas for the asymptotic variances as N - o; we develop an
algorithm to compute the TWLS variances for all finite N. Our numerical experience indicates
that the dependence on N depicted by the OL S formulas applies approximately (but not exactly)

to the dependence on N for the other estimators.

The role of N is different, however, when the rate function is near O at one end. Then
increasing the number of measurement subintervals still does not help OLS, but it improves the
performance of the ML and TWLS methods, with there being greater improvement for TWLS.
For example, when a = 0, both the bias and the sample standard deviation are decreasing in N
for TWLS. For a0 and large N, ML does not perform as well as TWLS, but ML is significantly

better than OL S in this setting.

Here is how the rest of the paper is organized. In Section 2 we describe the weighted least
squares procedures. In Section 3 we present the formulas for the OLS variances. In section 4 we
develop the asymptotic formulas for the TWLS variances. In Section 5 we develop the ML
estimation procedure. In Section 6 we describe a simulation experiment to evauate the
estimation procedures and present some of the numerical results. In Section 7 we develop
dtatistical tests to see if the linear Poisson model is appropriate. In Section 8 we prove

Theorem 1.



2. TheLeast Squares Estimators

There are four parameters: a,b,T and N. We assume that we have a nonhomogeneous
Poisson process with rate function A(t) = a + bt over [0,T] asin (1). We count the number of
points in the N subintervals ((k—21) T/N, KT/N], 1 < k < N. This sampling procedure from a
single realization of the nonhomogeneous Poisson process over [0,T] produces N mutualy

independent Poisson random variables Y\, with means

M= (@t b @
where
xk=(k—%)%,1sksN. 3)

If we form the linear model Y = a + Bx + ¢, i.e, if weassumethat Y, = o + Bx, + &

for each k, then we can estimate the parameters a and 3 by weighted least squares; i.e., using

N N
positive weights wy, 1 < k< N, with 5 wy, = N, we can choose estimators a and B to
k=1

minimize the weighted sum of the squared errors, i.e., to find

min 3 we (Y-l + Bxi)? . ()
OB k=1

Applying calculus with (4) in the usual way, we obtain

N N
> Wi (Xk=X) (YY) Wi (X =X) Y
1

k=1 _ K

N N
2 2
> Wi (Xk—X) > Wi(Xk—X)
k=1 k=1

)

>
1]

and

a=yY-px, (6)

where



N N
x=N1Swxe and Y=N13wY,. (7)
k=1 k=1

From (2), weseethat a = aT/Nand 3 = bT/N. Hence, associated estimatorsfor a and b are

b

2[3 and 3= Qa ®)

for f& in(5) and a in (6). The resulting estimators a and b are linear functions of the observations

Y\ and are unbiased; i.e., Ea = aand Eb = b.

However, it is natural to impose the constraint that the estimated rate function a + bt be

nonnegative throughout [0, T]. This constraint reducesto

A~

420 and b= -a/T. (9)

Because of the sum of sguares in (4) is a convex function of (a,B), it is easy to determine the
constrained minimum. If the constraintsin (9) are satisfied by the solution in (5)—8), then we are
done. If not, then either (i) a < Oor (ii))a = 0 and b < —&/T. Inthefirst case, the minimum is

attained witha = Oandb = NB/T where is the solution to

N
min 3 wi (Y= Bx)? (10)
B k=1
i.e,
N
\ 2 WXk Yk
b=— "jt (11)
2 WXk
k=1
In the second case the minimum is attained with & = —bT and b = NfE/T, Wheref% is the
solution to
min 3 wi (Y =B(T=xx))*, (12)

a k=1



N
> Wi (T =x) Y
k=1
N 2
> Wi (T =xy)
k=1

- N
b=-— 13
= (13)

In this framework, the simplest procedure is ordinary least squares (OLS) in which all the
weights are the same, i.e.,, w, = 1, 1 < k £ N. However, we are motivated to consider unequal
weights because, if b # 0, then the variances of the successive Y\ variables are unequal. Since
the variable Y| has a Poisson distribution, its variance equals its mean. Thus, from (2), we see

that the variances are
_ T
VarYk—)\k=W(a+ka),1SkSN. (14)

Of course, since we do not know a and b in advance, we do not know these variances in advance.

However, if we did know the variances in advance, then we might want to use the weights

]
[EEN
oo

N
wk:%/z L, 1<ks<N, (15)

k=1 k

O
>

because these weights produce the minimum variance estimator among linear functions of the
observations Y, that are unbiased (assuming that we do not consider the constraintsin (9)). This
can be verified by a direct calculation using Lagrange multipliers as for the Gauss-Markov
theorem, as on p. 341 of Mood and Grayhill [16], or by transforming the problem to the equal-
variance case; see p. 78 of Draper and Smith [7] or p.81 of Weisberg [21]. For the
transformation, we replace Y, = a + Bxy + £, with o'y = aoi! + Borlxe + oile.
Thenoiley = (oktYyk — aoi! - Bogtxy) areindependent random variables with mean 0 and
variance 1. Hence, the standard linear regression theory can indeed be applied to the transformed

problem.
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Since we do not actually know a and b in advance with data, we cannot use the weights in
(15). However, in our simulation studies evaluating different estimators we can use the weights

(15). Wecall this case theoretically optimal weighted least squares (TWLS).

We can approach TWLS above with data by using iterative weighted least squares (IWLS).
We first perform ordinary least squares to obtain the estimates a and b. We then form the
associated estimate A, = (T/N)(& + bx,) and use this in (15) to obtain weight estimates W,.
We then successively obtain new estimates of (é,f)) and wy until insignificant change results.
Our numerical experience indicates that IWLS consistently converges very quickly (e.g., 2-5
iterations) and that the resulting estimates are very close to the TWLS estimates. See Carroll [3],

McCullagh and Nelder [14] and p. 87 of Weisberg [21] for further discussion about IWLS.

It is easy to see how the estimators are related when we make adjustments to satisfy the

N N N
nonnegativity constraints in (9). Note that (11) becomesb = N > XY /T > x¢ for OLS, but
k=1 k=1

- N N N
(11) becomesb = NS Y /TS Xx¢ = 23 Y, /T for both TWLS and IWLS, and similarly for
k=1 k=1 k=1

(13). Hence, OLS coincides with TWLS when b = 0, while IWLS coincides with TWLS

whenever the constraints (9) are violated.

We conclude this section by noting that, while it is natural to apply the adjustments to satisfy
the nonnegativity constraints when we have a single data set { (xx, Yk) : 1 < k< N}, it is
natural to combine the data before making adjustments, when we have multiple samples. It is

easy to see that with a single data set, the adjustment minimizes mean square error.

3. Analytical Formulasfor Ordinary Least Squares

If we ignore the nonlinear adjustment in the OL S estimators in order to satisfy the constraints
in (9), then the estimators a and bin (5)—(8) are linear functions of the random variables Yy, so

that it is not difficult to calculate their means and variances. Since the random variables Y| are
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independent and since a Poisson distribution approaches a normal distribution as the mean
increases, it is natural to regard the joint distribution of the estimators as approximately
multivariate normal as well, but we do not exploit this property. (Either large N or large means
would imply normality, the first by the central limit theorem and the second by a direct normal

approximation for the Poisson distribution.)

If we ignore the constraints in (9), then the estimators are all unbiased, i.e, Ea = a and
Eb = b for any weights. However, the adjustment to meet the constraint introduces some bias.
For example, if b is positive but not too large, then Ea > a while Eb < b. Henceforth in this

section we ignore the constraintsin (9).

We can also calculate the variances for OLS. We use a superscript O to indicate OLS and a

subscript N to indicate the dependence on N, but we omit them from x, and Y. From (2), (3), (5)

and (8),
N ZDTD
2 (Xk=%)" Oy @ + bx)
o OND & o~ O 0 N2 Ug(2a + bT)
Var by = DTD = O— 3 . (1)
o' o ON O N2 -1 T
0% (Xk=x)°0
(k=1

N
(Part of the calculation in (16) is based on (X —%)?
k=1

T2(N2-1)/12N.) The dependence
ep

upon a,b, T and N is quite clear from (16). To see the impact of N in the standard deviation, we

can expand the N-term in inverse powers of N, i.e.,

09 O
LIS 12+ 34+ 56+0Di8DaSN—>oo. (17)
VNZ-1 2N 8N 16N oN® O

From (16) and (17), we see that the standard deviation SDV(B) for N = 10 exceeds the standard

deviation for N = oo by only about 0.5%.
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Nextitiseasy tofocusonm = a + bT/2. The OLS estimator for mis

.0 DND2 - 1 MNOyOOo 1. TU  2a+bT
Var iy = D=0 Va¥ = = Z JEEE b(k-7) 0= 57 - (18)
o'o T 10N m O

N
Since m = Z/T where Z = 3 Y, is Poisson, because it is the sum of n independent Poisson
k=1

random variables, (18) is elementary. Note that (18) isindependent of N.

Next,a = m — bT/2, so that the variance of é(N) is

D
Var aN = Var mN + D_DVar bN - TCov(mN bN) (19
04 0
where
0 0
o ~ N O ON
~T Cov(fn,by) = ~ToovON L S Yk, DZ(Xk X)YK/Z(XK X)2D
DT Nk 1 DT K=1 D

12
=—-_— _—~ S (X¢k-X)Var Y, =-b. 20
TINT=1) kzl( k%) k (20)
From (16), (18)—(20),
0 N2 O
A0 N 6(2a+bT) 2a+bT 4a
V = + b - b + — N - . 21
ar ay SNz‘lm T 5T = & 00 (21)

~0 A0 ~0 . . ,
Next, forany t, let Ay (t) = ay + byt bethe estimator of the arrival rate at timet. Then

Vain(t) = Varay + t2Varby + 2t Cov (an, by) | (22)

where

Cov(3.bY) = Cov (e, bY) - ;Var(f)g) .
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Finaly, we give approximate formulas for the mean and the standard deviation of the
intercept estimator é,?, assuming that the adjustment to satisfy the nonnegativity condition (9) is
made. This shows the bias caused by the nonnegativity constraint in (9). We assume that the
estimator é& before adjustment is normally distributed with mean 0 and variance Var a in (21).
Then 5\% = 0 when é& < 0, while éﬁ, = éﬁ when é,?, > 0. Hence, using basic properties of the

positive normal distribution, we see that the mean is

0o, A0 (M2
Ean = (V¥ N[ H04D(aN) - 0.4VB as N - o . 23)
O 2m O

and the standard deviation is

/12
0 os . R
SDéﬁﬁ Di—iD SDa,?, Eo.ss4soaﬁ, ~ 0.584Vb as N - o . (24)
D2 2T[D

4. Asymptotic Formulasfor TWLS

In this section we develop asymptotic formulas for the sample variances associated with
TWLS, i.e, using the weights in (15). We first develop formulas for the limitsasN — . Then
we consider the asymptotic form of these limiting formulas as € = bT/a gets small. The
parameter € is arelevant measure of departure from homogeneity; (T is the difference between
the left and right end points of A(t) over [0, T], whereas a is the left end point. At the outset, we
assumethat a # 0 and b # O; we consider the casesa = O and b = O at the end of this section.
We use a superscript T and a subscript N for the estimators to indicate the dependence on TWLS

and N, but we omit themin Ay, X, andw, in (2), (3) and (15).

AsN - oo, the sums approach integrals which can be directly integrated. First,
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T 1N NN
XN:WZWKXK_ Z)\k Xk/z)\k
k=1 k=1 k=1
T T tdt T dt T a
- Xy = / = -—— a N - o, 25
Jo zvmo oo In(1+[bT/a]) b * (29
whereIn(x) isthe natural logarithm. By the same reasoning,
N -
2 2 Wi (Xk=®n) Ak
~T ON k=1
Varby = 0=0
Tho ON
g’ d T\
02 Wi(Xk=Xn)“0
(k=1 0
~T O T (t XT)Z D_l 2b
-~ Varb, = ) 40 = ——1— a N - o, (26)
go a+bt O T(T-2%,)
ONDF 1 b
VaYy » ———— a N - , 27
ST AN T Tn@eleTa) ® @1
ON ~ 0
covinhl, Nl 0 as N o, (28)
T T
O O
and
s N . Oy ~ .0
Var ay = DED VarYy + (xy)2Var by — 2%y Cov Dﬁbl, , EYLD
T T T
o' o 0 0
T
2(X)%b
b . ) as N - . (29)

In(1+[bT/a]) T(T - 2X(:°)

Indeed, our numerical experience indicates that Cov(BI,,\A(I,) =0 for al N. For

-7 AT AT
)\N(t) =ay *t bNt,

VarAy(t) = Varay + t2Varby + 2tCov(ay,by) (30)

where
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Cov(él,, 61,) = Cov(VL - XLBL , BL) = Cov(VL , BL) - XLV&I’BL (31)

The formulas for XOTO, Var 61, and Var é:, in (25), (26) and (29) do not look much like their
counterparts for OLS. However, a connection can be seen when we develop expressions for the
TWLS asymptotic formulas as € = bT/a gets small. We will show that the asymptotic relative

difference between OLS and TWLSisof order O(e?) ase — 0.

First, applying the familiar asymptotic expansion for the logarithm, In(1+z) = z-z2/2+...,

to (25), we obtain

T T O £ 82 19 , 4 O
Xo = —M——+__—_—_e°+0 as € - 0. 32
st Tt 0L (32
Next, from (25), (26) and (32),
var 6°T° - € 1129a
T3(1- =+ = €e?+0(e®
( >t 50t (€%))
_ 12a g g2 3
= (1t 54z +0(E%) ase -~ 0. (33)

Thus, the asymptotic relative difference between the asymptotic variances Var 600 of the OLS and

TWLS methodsis

Var b -Var by, g2

: =_—_+0(%) ase - 0. (34)
Var b, 15
Next, to treat Var éoTo, note that
T2 ~T 3a € 7 2 3
)2Varb, = 2o (1+ 2 -_L 2+ N
(X)“Varb T( 5 1808 O(e”)) ase - 0O

and
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b a e € )
— _=_=(1+=-_—+0 - 0,
marey Ttz g tOE)) e
so that
AT _ 4a ag? 3
V 0 = ___ + -+ —
ara T b =T O(e’) ase - 0 (35)
and

Var 42 - Var A, g2 3
, = __+0(¢°) ase - 0. (36)
Var a, 20

So far in this section, we have excluded the casesa = O and b = 0. Thecase b = 0 is
obtained asthelimitasb — 0 asdescribed above; then TWLS coincides with OLS.
The cases a = 0 without adjustments is more complicated, so we do not treat it analytically.
T
To see the complications, note that the limiting integral fo t~Ldt diverges. We now analyze the

case in which we assume that a = 0, as we do if we make adjustments after finding a < 0. For

a = Oandfinite N, the TWLS dlope estimator is

AT 2 N
bn = — 2 Yk (37)
T =1
The associated variance is
~T _2b
VarbN = ? , (38)

which isindependent of N. By (16) and (38), whena = 0,

Varf)(,i _ 3N?

Var by N?-1

Since ML coincides with TWLS when a = 0 (see Section 5 below), formula (39) roughly

indicates how much more efficient is the ML slope estimator than the OLS slope estimator when
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aora + bTisvery smal and an adjustment is made to satisfy the constraints in (9). As shown
in Section 6, the overall relative efficiency of ML compared to OL S for the slope is actually only

about 1.5.

We also obtain (38) asymptotically from (26) asa — 0. Notethatx, — Oasa - Ofor X,

in (25). ThusVar by, ~ 2b/T2andVar 4, - Oasa - O. Incontrast, by (23),

0 N2 Oeb b b oas N - (40)

.0
Vardy = O[>
NT o ONZoigd 2

In Section 6 we will see that TWLS is indeed significantly better than OLS for estimating the

intercept in thisregion. However, ML does not share the advantage of large N.

5. Maximum Likelihood

Let p(n;a,b) be the probability that the count vector Y = (Yq,...,Yy) for the N
subintervalsisn = (nq, ..., ny) when the parameter pair is (a,b). The ML estimator is the pair

(é,B) that maximizes p(Y ;a,b) or, equivaently

N N N
Inp(Y;a,b) = = > A+ X Yiln A= 3 In(Yy!)
k=1 k=1 k=1
bT2 X
= —aT—T+ > Y In((a+bxy)(T/N)) + C (41)
k=1

for a constant C. Note that In p(Y; a,b) is a strictly concave function of (a,b) provided that
Y > Ofor somek, and a + bx, > O for al k, which we assume is the case. (If Y, = O for all

k, then (41) isobviously maximizedbya = b = 0.)
By differentiating with respect to a and b in (41), we find that the pair (a, 6) is the solution to

the two equations

k§1 a+thx, ! (42
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and
N Xk Yk T?
a+tbx, 2 (43)
k=1 k
provided that the constraintsin (9) are satisfied.
If & < 0by (42) and (43), then we set é'\NA = 0and minimize In p(Y,0,b), obtaining
by =23 Y /T?, (44)
k=1
just asin (37). If weknew that a = 0, then we would also use (44) and obtain
Var by = 2b/T<, (45)

just asin (38). Similarly, if A+bT < 0, then we set &y = —bT and maximize In p(Y,—bT,b)

to obtain

~AM N
by = -2 Y /T?. (46)
k=1

We now consider how to solve (42) and (43). Multiplying equations (42) and (43) by a and b,
respectively, and adding, we obtain the linear equation

N bT2 N
S= Y Yy=al+ 2 =5 EYy. (47)
k=1 2 =1

(We include the last expression to emphasize that aT + bT?/2 is the expected total number of

pointsin theinterval [0,T].)

By virtue of (47), we can substitute 2(S—aT)/T?2 for b in (42), we obtain the single equation

N Y,
g(a) = ¥ =2. (48)
ax + Xy O= —al
L

First notethat a = S/Tand b = 0 aways solves (47) and (48), but there may be other solutions.
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Next note that g(a) in (48) has singularities for each x, > xfor which Y, > 0. In particular, the

singularities are at

S
= >
T for k > N/2,

all of which are greater than S/T.

By looking at the second derivative of g, we see g isinfinitely differentiable and convex in the
open interval (0,S/T). Hence, there is at most one root to equation (48) in the interval (0, S/T).

Ifg'(S/T) < 0andg(0) > 2, then thereissuch aroot. Hence, we compute these quantities:

T N OY O
00) = 5 ¥ OpeD (49)
k=1 0%k O
and
4 N
9'(ST) = ~— 2 Yi(X—Xk) . (50)
S k=1

If indeed g’ (S/T) < 0 and g(0) > 2, then we find the unique root of (48) in (0, S/T) by a
convenient method. Since derivatives are readily available, it is natural to use a Newton method

(starting at 0 since we do not want theroot at S/'T).

We aways dlow for a root to (48) with a < 0. However, using the congraint (9), we

considera = Oand 6',11' in (44) as a candidate optimum.

Next, we consider the possibility of a > S/T. However, by (47), a > S/T if and only if
b < 0. Wetreat the case b < 0 by repeating the procedure above on the reverse-time problem,
where Y. = Yy_is1, b= -b7, a + bT = a. Let g7 be g in (48) for the reverse-time

problem. Note that for the reverse-time problem

g” (SIT) = -g'(SIT) (51)
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forg' (S/T) in (50). Hence, thereisat most oneroot in (0, S/T) for the two problems.
Finally, we evaluate the likelihood for each of the candidate solutions:
(1) root of g(a) = 2in(0, SIT), b = 2(S-aT)/T?

(i) a=a"+b"T, b=-b"” for a” root of g"a) =2 in (0,S/T) and

b” = 2(s-a"T)/T?,

(iii)

Q
1

SIT,b=0 (52)

(iv) =0,b=29T?

Q
|

(vy a=-bT,b=-29T?
with the understanding that we consider (ii) only if there is no solution to (i) and (iii)-(v) only if

thereis no solution to (i) and (ii). By (41) and (47), to evaluate (iii)-(v) it sufficesto calculate

% Y In(a + bxy) (53)
k=1

for each possibility and choose the one yielding the maximum. (Notethat a + bx, > Ofor al k

. . . . M ~M
in each case.) In thisway we obtain our estimates (ay , by ).

6. Simulation Results

We wrote a simulation program (in C) to randomly generate the mutually independent
Poisson random variables Y, with means A in (2) and carry out the estimation procedures. In
Table 1 we give the sample standard deviations of the estimators a and b for each of the methods
(OLS, ML and TWLYS) in a representative set of eight cases in which the constraints in (9) are
very rarely violated, each obtained from 1000 replications. The cases are specified by the
parameter four-tuple (N, T,a,b). The constraintsin (9) were in fact never violated in this sample.
Hence, in this sample the associated sample means of a and b were consistently close to the true

valuesa and b.
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From Table 1 we see that the standard deviations for ML and TWLS are amost identical, and
are consistently less than for OLS. (The only minor exception is the last case in which the actual
slope is zero.) However, all three sample standard deviations are quite close. Moreover, the
observed OLS and TWLS standard deviations, are quite accurately predicted by the formulas in

Sections 3 and 4 (asis easily verified).

In Table 2 we give the |, distances between the estimates a and b for different pairs of

methods, based on the same 1000 replications. For example, the |, distance for a by OLS and

ML is
O 1000 Efuz
~0 M 1 0 AM[]Z
-3 - Y _al 54
[ I55) DD—1000 El ELF“ a; DB (54

Table 2 shows that ML tends to produce nearly the same estimatesas TWLS.

The information in Table 2 can aso be seen from plots of the estimator pairs, eg.,
{(é?,éi'v') 1 < i <1000}. Weillustrate by contrasting OLS-ML and ML-TWLS for the case

(12,12,100,25) in Figure 2. Thisfigure confirmsthat in this case

(TWLS-ML[O < [OLS-ML[.

In Tables 3 and 4 we present the sample means and standard deviations of the estimators a
and Bwhen T =12,a = 0and b = 10 for severa different values of N, again based on 1000
replications. In Tables5 and 6 we present the same results for the case T = 6, a = 0 and
b = 100. Sincea = 0, the nonnegativity conditions (9) are violated about half the time in these

examples. Figure 3 plots estimator pairsfor the casein Tables 5 and 6.

From Tables 3 and 5, we see that there is a significant bias in the intercept estimate due to the
adjustment to satisfy (9). From Tables 3 and 5, we see that the OLS mean and standard deviation

agree with formulas (23) and (24). We aso see that ML and TWLS are significantly better than
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OLSin this case; there is both asmaller bias and a smaller sample standard deviation.

From Tables 4 and 6, we see that there is relatively little bias in the ope. Moreover, the
three methods do not differ greatly for the slope, athough TWLS and ML actuadly have
significantly less bias than OLS. However, this bias differential is small compared to the sample

standard deviation.

Figure 3 tells a similar story pictorially. From Figure 3, we see that the ML and TWLS
estimators are close for the intercept, but the ML and OLS estimators are hot. The same is true

for the slope, but the difference between ML and OLS is hot nearly so great.

Figure 4 shows the estimator pairs for the same case as Figure 3, except the number of
measurement intervals is increased from N = 12 to N = 120. From Figure 4 we see that the
agreement between ML and TWLS decreases. Moreover, increasing N helps ML and TWLS, but
not OLS. However, the ML bias does not steadily decline as N increases the way the TWLS bias

does.

In conclusion, the major advantage of ML over OLS isin estimating the intercept when a B 0

(ora + bTwhena + bT E0).

7. Model Tests

In this section we discuss how we can test whether the nonhomogeneous Poisson process with
alinear rate A(t) = a + bt isareasonable model for data over the interval [0, T]. The possible
aternative hypotheses include: (i) a Poisson process with nonlinear rate, (ii) a non-Poisson
process with linear rate, and (iii) a non-Poisson process with nonlinear rate. We do not directly
examine any of these alternatives here. However, following standard statistical practice, we can
detect a poor fit of our linear Poisson model from statistics that fall outside the main region of

their distributions under the linear Poisson model.
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A simple direct procedure is to compare the observed sample standard deviations of the
estimators 4 and b based on actual data with the distributions of those same estimators from the
linear Poisson model. The linear Poisson case can be described by the histograms from

1000 replicationsin the examples here.

We can aso exploit more structure. We consider the two cases. multiple replications and a
single replication. For n independent replications, we note that the distributions of the estimators
aand b by any of our methods should be approximately normal by the central limit theorem.
Indeed, the normality was demonstrated by looking at histograms of the 1000 observations in the
examples of Table 1. However, when the nonnegativity conditions (9) are frequently violated, as
in the examples in Table 2, the y-intercept a tends to have approximately a truncated normal

distribution instead of anormal distribution, with parameters asin (23) and (24).

Henceforth, suppose that there are n replications and that the normal approximation is

! bi: let 02 and o be the actual variance of a

Ms
Ms

appropriate. Leta=n"tS 4 andb = n7?

i=1 i

1

and b. The normality implies that
n n ~
Va= 3 (4-8)%/03 and Vp = 5 (b-B)*/af, (55)
i i=1

should both have chi-square distributions with n—1 degrees of freedom. For OLS, we
approximate 62 and oZ by the exact OL'S variances associated with the estimated parameter pair
(a, b) determined in Section 3. For IWLS and ML, we approximate 02 and o? by the exact
TWLS asymptotic variances associated with the estimated parameter pair (a, b). Both of these
exact variances are relevant only under the assumption that the constraints in (9) are not violated

too frequently, which we check in our calculations of the estimate.

For a single replication, we assume that the means EY, are sufficiently large that we can

regard the Poisson variables Y as being approximately normally distributed. Then we use the
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transformation to convert the unegual variance problem to the equal variance problem, which was
used to justify the optimality of TWLS. Since we do not know the real parameters a and b, we

use our estimates. The normalized sum of squares

N A_ZD ™ ~ T
U= z Ok DYk—(a+bxk)WD , (56)
k=1 0 0

where
72 Ao~ T
should thus be approximately chi-square with N — 2 degrees of freedom.

These chi-square distributional properties should enable us to roughly gauge model
consistency. The test in (56) is able to capture significant departures from the linear Poisson
model as occur in the telephone call datain hoursimmediately after arate change.

8. Proof of Theorem 1

First notethatb = 0,a = S/T solves (42) and (43) if and only if
N
2 XYk = 52 Yk
k=1

and note the same is true for (5) and (6); then the weights in (15) are constant, so that x = T/2.

Henceforth, we consider solutionswith b # 0.

Let

P4

Kop a + bxg

forj = 0, 1, 2 and note that
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aAO + bAl =N and aAl + bA2 = T, (58)
S)thatAl = (N - aAo)/b,
_ NT _Na , a?
AZ_E_b—Z‘l'b—zAOv (59)
_ N _a
X = Ay B (60)

Therest of the proof is contained in the following two lemmas.
Lemma 1. Equation (6) holds, i.e, a = (NY/T) - bx for weights (15) with A, = a + Bxk and
b # 0if and only if (&,b) satisfies (42).

Proof. By (57) and (60), we can write (6) as

a. = - - = 1
TAg gl a + bx SbAO bg

which we seeisequivalent to (42). m
Lemma 2. Assuming that (42) holds, equation (5) is equivalent to (43).

Proof. First note that, by (57)-(60),

N (xk=%)?% %xﬁ—Zxxk + %
opoatbxe (I a+ bxg
_NgT ,a_ N g
b ;2 b bAy
Hence, using (42), we can write (5) as
E% XY _ o1
b - T, = a+bxg
NAT ,a_ NJ
b ;2 b bAy

or, equivaently,
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NT , Na _ N? _NEN Xk Yk NT _Tag
2 b bAy, TS a+by bA;, b

whichwe seeisequivalentto (43). =
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Appendix. An Alternative Three-Parameter Model

In this section we consider an approach to capture additional stochastic variability in the
arrival process. Since the Poisson distribution is approximately normal for large means, we use a
normal distribution framework. In particular, we assume that the random counts Y, are still

independent but now normally distributed with means A and variances cA for Ay in (2), where

c=0.

Using the ML approach with this normal distribution, we get

0 g .

E*vk—c(aka)W
|

[l

A 1 N
c=—
Tk§1 a + bx
_1 N YR s (60)
T Z1a+bx, N’
where
N nT 2
S= s v =ar+ 2L (61)
k=1 2
asin (47), and
NN OOYE SN
=2 ——F——>=C3 ——— +T. (62)
T Z1(a + bxy)? k=1 a + bxy

Asingb,a = S/ITandb = Oisasolution to (61) and (62). We can find another solution to (61)

and (62) asin §5.

Since the normal model must itself be an approximation for point processes, we suggest using

(47) and (48) to find & and b, and then (60) to get &. If @ Haandb B bin (60), then
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EcH1 and Varé@?l__lzl. (63)

For the variance approximation in (63) we use the fact that the fourth central moment of a normal

random variableis 30%.

We conclude this section by considering three different Poisson process examples. First, we
consider a Poisson process with linear rate A(t) = 100 + 25t for 0 <t < 12. Second, we

consider a Poisson process with nonlinear rate

MO = o5, 6<ts12. &0

Third, we consider a Poisson process with nonlinear rate

5225, 0<ts<3
o5, 3<t<6
75, 6<t<9
5275, 9<t<12.

A(L) = (58)

All three rate functions have the same average rate A = 250. Moreover, al three have the same
average rates over the two subintervals [0,6] and (6,12], namely, 175 and 325, respectively.

Indeed, all three have the same best linear fit according to the least squares distance
T
M ~ AimI2 = (IO (A(t) - (a+bt))?dt)*? (59)

The respective distances according to this criterion are 0, 150 and 312.2. The first case is of

course exactly linear, while the third case evidently departs from linearity more than the second.

For al three exampleswelet N = 12. Then, for all three methods, EY,, = 41 for al k, so that

the normal approximation for Y, isvery reasonable.

For these three Poisson processes we test for linear rate using the multiple-replication

statistics V, and V, in (55) and the single-replication normalized sum of squares U in (56).
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Tablel. A comparison of the sample standard deviations of the estimators a and bin a
representative set of cases based on 1000 replications of the simulation.
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Table2. A comparison of the | ,-distances between estimators a and b for pairs of methods, in
arepresentative set of cases based on 1000 replications of the simulation.
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Table3.  The sample mean and standard deviation of the y-intercept estimator a as a function
of the method and N for the case T = 12, a = 0 and b = 10, based on 1000

replications.
O g sample mean Usample standard deviation U
SN JoLs OTwis OML ZoLs OTwis DML £
0 O 0 0

o 4 9830 Oog Uogal 052 U 045 Dods
O 8 [9.840 59.845 89.845 0053 B 0.45 50.45 0
0 12 09840 9875 9872 0052 5 043 5043 [
0 24 09851 9.892 9.890 0052 [ 043 043 O
0120 U9850 9.911 9.891 U065 o 042 [o042 U
U240 89.832 109919 [9.893 go.so 0 039 0040 B

200 9.855 U9949 Uogo7 052 U 041 U040
2400 09.821 Ho99s2 Ho9o6 [osa H 042 Ho43 g

Table4.  The sample mean and standard deviation of the slope estimator b as afunction of the
method and N forthecase T = 12,a = Oand b = 10, based on 1000 replications.
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Table5.  The sample mean and standard deviation of the y-intercept estimator a as a function
of N and the method for the case of T = 6, a = 0 and b = 100, based on 1000

replications.
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Table6.  The sample mean and standard deviation of the slope estimator b as a function of N
and the method for thecase T = 6,a = Oand b = 100, based on 1000 replications.



Figure 1. Traffic count summaries for three origin-destination pairs in the AT&T long
distance network during one hour.



Figure 2. Estimator pairsforthecase T = 12, N = 12,a = 100andb = 25.



Figure 3. Estimator pairsforthecase T = 12, N = 12,a = Oand b = 100.



Figure 4. Estimator pairsforthecase T = 12, N = 120,a = Oandb = 100.



8.0

8.2

84

8.6

8.8

9.0



0 0 0 0
. Case o oLs oML o TWLS

0o O< 0. 0O 0~ 0 -~ 02 02 0O=: 02
DN DT 02 g b 0 a b 0 a b 0 a b
512 512 5100 525 57.41 51.32 86.96 51.25 56.96 51.25
n12 06 lo0 25 09.03 294 880 286 880 [j2.87

012 012 100
012 012 O 10

4167 [5.84 [0.913 [15.81 [J0.908 [5.81 [0.908
25 [J243 00417 0231 [0.403 [02.30 [J0.400

=
o
I I
N
a1
1T I B B O B R R

012 Op4 O 5 01.99 Uo.a87 0179 Uo.163 01.78 U0.163
012 512 g 10 Y 4167 52.72 50.488 52.50 80.455 52.49 50.453
%120 012 §10 g 25 198 0332 181 0316 5182 0.317
12 12 510 500 [LY F0.295 G195 H0.296 {194 H0.295

Tablel. A comparison of the sample standard deviations of the estimators a and bin a
representative set of cases based on 1000 replications of the simulation.

g Case g OLS-ML g TWLS-ML
O O- 0. 0O 0~ 0 - 0 2 02
oN pT pa g b pga pgb ga b
512 512 5100 525 82.61 80.435 50.16 B0.0ZG
n12 06 glo0 025 5214 071 §0.26 [10.087

012 pl2 0100 [ 4167 060 010 [O0.13 [j0.020
012 012 0 10 O 25 [0.82 00137 00.16 [0.027
O12 024 010 O 25 00.95 D0.080 0009 [0.008
012 512 E 10 54.167 51.14 80.190 50.18 50.029
SLZO 012 10 525 5060 0.100 50088 0.015

512 512 g 10 & 0.0 50.14 E0.024 EO'M @0.023

OOoOooOoOooooooooodg

Table2. A comparison of the | ,-distances between estimators a and b for pairs of
methods, in a representative set of cases based on 1000 replications of
the simulation.



