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Queueing applications are often complicated by dependence among interarrival times and service times, e.g.,

when there are multiple customer classes with class-dependent service-time distributions, or when arrivals

are departures or overflows from other queues or superpositions of such complicated processes. We show that

the robust queueing approach for single-server queues proposed by Bandi, Bertsimas and Youssef (2015) can

be extended to describe the impact of dependence among interarrival times and service times on customer

waiting times and the remaining workload in service time as a function of the traffic intensity in the queue.

Thus, robust queueing can be useful to develop performance approximations for queueing networks and other

complex queueing systems.
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1. Introduction

Robust optimization is proving to be a useful approach to optimization problems for complex

stochastic models; e.g., see Bertsimas et al. (2011), Ben-Tal et al. (2009) and Beyer and Sendhoff

(2007). Bandi et al. (2015) have applied this approach to create a robust queueing (RQ) theory,

which can be used to generate approximations for performance measures in complex queueing

systems, including networks of queues as well as single queues. They show that this approach
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provides an alternative way to develop relatively simple performance approximations like those in

the queueing network analyzer in Whitt (1983b).

The starting point of their RQ approach is the representation of the customer waiting times

in a general stable stationary G/G/1 single-server queue with unlimited waiting space and the

first-come first-served (FCFS) service discipline as the maximum of a sequence of partial sums,

using the Loynes (1962) reverse-time construction. As we explain in §2,

Wn =Mn ≡max{Sk : 0≤ k≤ n}, n≥ 1, (1)

where Sk is the kth partial sum with S0 ≡ 0 and ≡ denotes equality by definition. Instead of a

detailed stochastic model, they place deterministic constraints on the possible interarrival times

and service times thorough the partial sums Sk. Then the RQ optimization problem is solved to

yield an upper bound on the waiting time, which can be a basis for approximations of the mean

steady-state waiting time.

In any robust optimization problem, a critical role is played by the deterministic constraints

representing the stochastic elements. Given the representation of the waiting times in terms of

partial sums, Bandi et al. (2015) base their constraints on the central limit theorem (CLT) for

partial sums Sk. Treating the partial sums Sa
k of the interarrival times Uk and the partial sums Ss

k

of the service times Vk separately leads to the two uncertainty sets

Ua ≡ {(U1, . . . ,Un) : S
a
k ≥ kma −

√
kba, 1≤ k≤ n}, and

Us ≡ {(V1, . . . , Vn) : S
s
k ≤ kms +

√
kbs, 1≤ k≤ n}, (2)

where ma ≡E[Uk ] and ms ≡E[Vk], while ba and bs are parameters to be specified. Thinking of the

GI/GI/1 model in which the interarrival times Uk and service times Vk come from independent

sequences of independent and identically distributed (i.i.d.) random variables with finite variances

σ2
a and σ2

s , the CLT suggests that ba = βσa and bs = βσs for an appropriate constant β, which

measures the number of standard deviations away from the mean in a Gaussian approximation.
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The RQ optimization with objective function (1) subject to the constraints in (2) has a simple

solution, which depends on only a few parameters; see Theorem 1 in §2.

In this paper we develop new RQ formulations for the general stationary G/G/1 model that

provide ways to expose the impact of dependence among the interarrival times and service times

on the mean steady-state waiting time and its continuous-time analog, the virtual waiting time

or workload. This dependence commonly arises in queueing networks and multi-class settings, as

illustrated by Fendick et al. (1989, 1991). In turn, multi-class queues and associated queueing

network models are applied widely, e.g., to analyze the performance of communication, healthcare

and production systems, as in Badidi et al. (2005), Cochran and Roche (2009), Gayon et al. (2009),

Hall (2006) and Hall (2012).

We show that the new RQ is intimately connected to previous performance approximations for

queues based on indices of dispersion (scaled variance-time curves) in Fendick and Whitt (1989).

There it was shown that the impact of the dependence in the offered traffic upon the mean steady-

state workload E[Zρ] as a function of the traffic intensity ρ can be approximated characterized

by the index of dispersion for work (IDW), {Iw(t) : t ≥ 0}. The IDW Iw(t) is a scaled version of

the variance of the total input of work over the interval [0, t]; see §5 and §7.4. The main idea is

that the time interval over which dependence has impact on the steady-state performance should

increase as the traffic intensity ρ increases; i.e., (3) and (9) in Fendick and Whitt (1989) suggest

the approximation

E[Zρ]≈
τρIw(t(ρ))

2(1− ρ)
, 0<ρ< 1, (3)

where the mean service time is τ and t(ρ) is an increasing function of ρ on the interval (0,1)

with t(ρ) → ∞ as ρ→ 1 and t(ρ) → 0 as ρ→ 0. Heavy-traffic and light-traffic limits show that

approximation (3) is asymptotically correct as ρ ↑ 1 and as ρ ↓ 0; see (45). The new RQ provides

ways to define the function t(ρ) in the challenging intermediate cases; see Theorem 5 and the

examples in §8.

Here is how the rest of this paper is organized: After reviewing the basic RQ approach from

Bandi et al. (2015) in §2, we relate it to established theory for the GI/GI/1 queue and associated



Whitt and You: Dependence in Single-Server Queues

4 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

heavy-traffic (HT) limits in §3. We then present a version of RQ involving one uncertainty set

instead of two in §4. We introduce a new RQ formulation for the continuous-time workload process

in §5.

In §6 we propose the new uncertainty sets leading to RQ formulations exposing the impact of

dependence among the interarrival times and service times. We also provide background on the

supporting functional CLT (FCLT) for the arrival and service processes and the HT FCLT for

the waiting time and workload processes. In §7 we establish theory for the RQ with dependence,

showing the connections to the indices of dispersion and associated approximations. In §8 we

illustrate with numerical examples. In §9 we draw conclusions. In §9.2 we discuss how the new RQ

can be applied.

2. Robust Queueing for the Single Server Queue

We now review the robust queueing (RQ) approach developed in Bandi et al. (2015), elaborating

upon (1) and (2). We consider customer waiting times (before receiving service) in the single-

server queue with unlimited waiting space and the FCFS service discipline; e.g., as in Chapter X

of Asmussen (2003) and Chapter 6 of Sigman (1995). The waiting time of customer n satisfies the

recursion

Wn = (Wn−1 +Vn−1 −Un−1)
+ ≡max{Wn−1 +Vn−1 −Un−1,0}, (4)

where Vn−1 is the service time of customer n− 1 and Un−1 is the interarrival time between the

arrival times of customers n− 1 and n. If we initialize the system by having a customer 0 arrive

to find an empty system, then Wn can be represented in (1) using reverse-time indexing with

Sk ≡X1 + · · ·+Xk and Xk ≡ Vn−k −Un−k, 1≤ k≤ n.

If we extend the reverse-time construction indefinitely into the past from a fixed present state,

thenWn ↑W with probability 1 as n→∞, allowing for the possibility thatW might be infinite. For

the stable stationary G/G/1 case with E[Uk] <∞, E[Vk]<∞ and ρ≡ E[Vk]/E[Uk ]< 1, P (W <

∞) = 1; e.g., see Loynes (1962) or §6.2 of Sigman (1995).
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Bandi et al. (2015) developed approximations for Wn in (1) and the limit W for the G/G/1

model by performing the maximization in (1) subject to the constraints in (2). They also provided

an extension to cover the heavy-tailed case, where finite variances might not exist; then
√
k in (2)

is replaced by k1/α for 0<α≤ 2.

The RQ formulation in (1) and (2) is attractive because the optimization has a simple solution

in which all constraints are satisfied as equalities.

Theorem 1. (worst-case waiting time, Theorem 2 of Bandi et al. (2015)) For the stationary

G/G/1 single-server queue, the solution of the RQ optimization (1) with uncertainty sets in (2),

where m=E[Vk ]−E[Uk]< 0 and b≡ bs + ba > 0, is

W ∗
n = max{mk+ b

√
k : 0≤ k≤ n}

≤ max{mx+ b
√
x : x≥ 0}=mx∗ + b

√
x∗ =

b2

4|m| and x∗ =
b2

4m2
, (5)

In addition, W ∗
n is maximized at one of the integers immediately above or below x∗ for all n≥ x∗.

Remark 1. (when steady-state is reached) Unlike the stochasticG/G/1 model, where steady state

is approached over time, W ∗
n in (5) is actually constant for n ≥ x∗. The deterministic time x∗ in

RQ is analogous to the relaxation time for the stochastic single server queue, as discussed in Cohen

(1982), and can serve as an approximation of it. The scaling by 1− ρ in W ∗
n for n≥ x∗ in (5) is

consistent with the spatial scaling in the heavy-traffic limit, while the scaling by (1− ρ)2 in x∗ is

consistent with the time scaling in the heavy-traffic limit and thus the relaxation time; e.g., see §3

and (28) and (29) in §6.1.

3. The GI/GI/1 Queue and Heavy Traffic

It turns out that RQ is intimately connected to heavy-traffic theory for the single-server queue,

as in Ch. 9 of Whitt (2002). Hence, we provide a quick review of the GI/GI/1 special case and

associated heavy-traffic approximations.

Let the model be specified by (i) the traffic intensity ρ, 0 < ρ < 1, and (ii) two independent

sequences of i.i.d. nonnegative random variables {Vk : k≥ 1} and {Uk : k≥ 1} with E[Vk] =E[Uk] =
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1, V ar(Vk) = σ2
s <∞ and V ar(Uk) = σ2

a <∞. In the model with traffic intensity ρ, we use the

scaled interarrival times be ρ−1Uk, k≥ 1.

The associated squared coefficients of variation (scv’s, variance divided by the square of the

mean) are then c2s = σ2
s and c2a = σ2

a (ρ cancels out). Then for Xk ≡Xk(ρ), E[Xk] ≡m ≡m(ρ) =

(1− ρ−1) =−(1− ρ)/ρ < 0 and V ar(Xk)≡ σ2
x ≡ σ2

x(ρ) = σ2
s + σ2

a(ρ) = c2s + ρ−2c2s <∞. The reverse-

time construction in (1) is not needed in this setting because the random variables Xk are i.i.d.

An exact expression for the distribution of the steady-state waiting time W is known, but

complicated in general. As reviewed in Abate et al. (1993), where computation is discussed, the

Laplace transform is given by the Spitzer formula

E[e−sW ] = exp{
∞
∑

k=1

k−1E[e−s(Sk)
+ − 1]},

which implies that

E[W ] =
∞
∑

k=1

E[(Sk)
+]/k and V ar(W ) =

∞
∑

k=1

E[((Sk)
+)2]/k

but the distribution of S+
k is complicated in general. For the M/GI/1 special case with a Poisson

arrival process, we have c2a = 1 and the classic Pollaczek-Khintchine formula (for E[Vk] = 1)

E[W (ρ)] =
ρ(c2s +1)

2(1− ρ)
=

σ2
x(1)

2|m(ρ)| .

The standard heavy-traffic (HT) approximation is obtained by letting ρ ↑ 1, e.g., see Chapters 5

and 9 of Whitt (2002). In that limit, the final PK formula has the limit

lim
ρ↑1

{(1− ρ)E[W (ρ)]}→ c2s +1

2
=
σ2
x(1)

2
.

The HT logic leads to approximating the sequence of partial sums {Sk : k≥ 0} by Brownian motion

(BM) with drift, {σB(t) +mt : t≥ 0}, where m≡m(ρ), σ ≡ σx(1) =
√

c2a + c2s and the associated

sequence of waiting times by reflected Brownian motion (RBM). That leads to the associated HT

approximation for the steady-state waiting time

WHT
d
=MHT ≡ sup{σB(t)+mt : t≥ 0},
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for m=m(ρ) = 1− ρ−1 < 0 and σ2 = σ2(1) = (c2a + c2s)> 0, which has an exponential distribution,

i.e.,

P (WHT >x) = e2xm/σ2

, x≥ 0, and E[WHT ] =
σ2(1)

|2m(ρ)| =
ρ(c2s + c2a)

|2(1− ρ)| . (6)

Insightful derivations of (6) for RBM as well as the transient distributions of RBM, exploiting

martingales and stochastic calculus, are given in Harrison (1985); see §1.8, §1.9, §3.6 and §5.6 plus

the background material.

Just as for the RQ formulas, the HT formulas can benefit from tuning. For example, the HT

approximation could be taken to be E[WHT ] = σ2(ρ)/|2m(ρ)| = ρ(c2s + ρ−2c2a)/|2(1 − ρ)|, which

corresponds to the Kingman (1962) upper bound. The ratio of these two mean formulas goes to 1

as ρ→ 1.

4. One Uncertainty Set Instead of Two

From §2, it is evident that the waiting times depend on the service times and interarrival times

only through their difference Xn. Thus, instead of the two uncertainty sets in (2), we propose the

single uncertainty set

Ux ≡ {X̃n : S
x
k ≤ (k∨ kL)E[Xk] + bx

√

k ∨ kL, 1≤ k≤ n}, (7)

where a ∨ b ≡max{a, b}, X̃n ≡ (X1, . . .Xn) ∈ R
n, for Sx

k = Ss
k − Sa

k and Xk ≡ Vn−k − ρ−1Un−k. To

avoid excessively strong constraints for small values of k, not justified by the CLT, we replace k

by k∨ kL on the right in (7), but the lower bound kL has no impact if chosen appropriately.

The conclusions of Theorem 1 remain unchanged with the uncertainty set changed from (2) to

(7), but there is a significant difference in the interpretation of the constant b.

Corollary 1. (worst-case waiting time with a single uncertainty set) For the stationary G/G/1

single-server queue with m= E[Vk ]− ρ−1E[Uk]< 0, the solution of the RQ optimization (1) with

uncertainty sets in (7) is

W ∗
n ≡ max{Wn : X̃n ∈ Ux}=max{m(k ∨ kL)+ bx

√

k∨ kL : 1≤ k≤ n}

≤ max{my+ by
√
y : y ≥ kL}=my∗ + bx

√
y∗ =

b2x
4|m| and y∗ =

b2x
4m2

, (8)



Whitt and You: Dependence in Single-Server Queues

8 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

provided that kL < y∗. In addition, W ∗
n is maximized at one of the integers immediately above or

below y∗ for all n≥ y∗.

Corollary 2. (the GI/GI/1 queue with a single uncertainty set) If, in addition to the assump-

tions of Corollary 1, the model is GI/GI/1, where the service times are independent of the inter-

arrival times, and if we let b= β
√

V ar(X1), then

bx = β
√

V ar(V1)+ ρ−2V ar(U1), (9)

If we furthermore let β ≡
√
2, then formula (8) with (9) agrees with the Kingman (1962) upper

bound for the mean wait EW , which is asymptotically correct in the HT limit as ρ→ 1. In contrast,

the RQ in Theorem 1 is not asymptotically correct in HT if we let bs = β(
√

V ar(V1) and ba =

β(
√

V ar(U1); then we would have b= bs + ba = β(σs+ ρ−1σa) instead of the asymptotically correct

form of b=
√

b2s + b2a = β(
√

σ2
s + ρ−2σ2

a) in (9).

Bandi et al. (2015) used the two constants ba and bs in (2) as tuning control parameters to

develop approximations, e.g., by doing statistical fitting with data. Corollaries 1 and 2 suggest

doing the same with (9) and the single parameter β in (9).

5. The Continuous-Time Workload

We now extend the RQ approach to the continuous-time workload in the G/G/1 single-server

queue. The workload at time t is the amount of unfinished work in the system at time t; it is also

called the virtual waiting time because it represents the waiting time a hypothetical arrival would

experience at time t. The workload is more general than the virtual waiting time because it applies

to any work-conserving service discipline. We consider the workload primarily because it can serve

as a convenient more tractable alternative to the waiting time, as shown in Fendick and Whitt

(1989).

Given a sequence {(Uk, Vk)} of interarrival times and service times, the arrival counting process

can be defined by

A(t)≡max{k≥ 1 :U1 + · · ·+Uk ≤ t} for t≥U1 (10)
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and A(t)≡ 0 for 0≤ t < U1, while the total input of work is

Y (t)≡
A(t)
∑

k=1

Vk, t≥ 0, (11)

and the remaining workload at time t, starting empty at time 0, is

Z(t)≡ Y (t)− t− inf {Y (s)− s : 0≤ s≤ t}, t≥ 0. (12)

We start with the stationary sequence of mean-1 variables {(Uk, Vk)} and insert the traffic inten-

sity by letting the interarrival times be ρ−1Uk. That makes Aρ(t) = A(ρt), Yρ(t) = Y (ρt) and

Zρ(t) = Z(ρt), where A, Y and Z are defined in terms of the mean-1 variables as in (10)-(12).

Finally, we let these continuous-time processes be time-stationary versions; see Sigman (1995) for

the technical details about stationary random marked point processes.

5.1. Another Reverse-Time Construction

As in §6.3 of Sigman (1995), we again use a reverse-time construction to represent the workload

in a single-server queue as a supremum, so that the RQ optimization problem becomes a maxi-

mization over constraints expressed in an uncertainty set, just as before, but now it is a continuous

optimization problem. Let Zρ(t) be the workload at time 0 of a system that started empty at time

−t. Then Zρ(t) can be represented as

Zρ(t)≡ sup{Y (ρs)− s : 0≤ s≤ t}, t≥ 0, (13)

where Y (s) is defined as (11), but is interpreted as the total work in service time to enter over the

interval [−s,0]. That is achieved by letting Vk be the kth service time indexed going backwards from

time 0 and A(s) counting the number of arrivals in the interval [−s,0]. Then Nρ(s)≡ Y (ρs)− s

is the net input over the interval [−s,0] with traffic intensity ρ. Paralleling the waiting time in

§2, Zρ(t) increases monotonically to Zρ as t→ ∞. In an appropriate stationary framework, Zρ

corresponds to the steady-state workload with traffic intensity ρ < 1 and satisfies P (Zρ <∞) = 1;

see §6.3 of Sigman (1995).
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5.2. Robust Queueing in Continuous Time

Paralleling (7), (13) specifies an RQ optimization problem with the uncertainty set

Uz ≡ {Ñρ(t) :Nρ(s)≤−(1− ρ)(s∨ tL)+ bz
√
s∨ tL, 0≤ s≤ t}, (14)

where we regard Ñρ(t) ≡ {Nρ(s) : 0 ≤ s ≤ t} as an arbitrary real-valued function on the interval

[0, t]. We again include the lower bound, tL here, but again it does not affect the RQ optimization

if chosen appropriately.

As in §2, our formulation is motivated by a CLT. In §6.1 we will show that Y (s) in (11) obeys

a CLT, which supports (14). The same reasoning as before yields the following analog of Theorem

1 and Corollary 1.

Corollary 3. (worst-case workload for the single-server queue) For the stationary G/G/1 single-

server queue, the solution of the RQ optimization (13) with uncertainty sets in (14) is

Z∗
ρ(t) = max{−(1− ρ)(s∨ tL)+ bz

√
s∨ tL : 0≤ s≤ t}

= −(1− ρ)x∗+ bz
√
x∗ =

b2z
4|1− ρ| and x∗ ≡ x∗(ρ) =

b2z
4(1− ρ)2

(15)

for all t≥ x∗ provided that tL ≤ x∗.

Formula (15) coincides with (8) if bz = ρbx, so that the two RQ frameworks are essentially

equivalent. That should not be surprising, because the steady-state workload is the same as the

steady-state waiting time in the M/GI/1 queue and the HT limit is the same as for the waiting

time in the GI/GI/1 queue. Hence, (15) also can be compared to the formulas in §3.

6. Stochastic Dependence

We can extend the RQ formulations for the general G/G/1 model in §4 and §5 to allow time

dependence and stochastic dependence in the interarrival times and service times by expressing

the uncertainty sets in (7) and (14) directly in terms of the means and variances, in particular,

respectively as

Ux′ ≡ {X̃n : S
x
k ≤E[Sx

k ] + b′x
√

V ar(Sx
k ), 1≤ k≤ n}. (16)
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and

Uz′ ≡ {Ñρ(t) :Nρ(s)≤E[Nρ(s)]+ b′z

√

V ar(Nρ(s)), 0≤ s≤ t}. (17)

For simplicity, we omit the lower bounds on the indices k and t in (16) and (17), but they could

be included. For the GI/GI/1 model with its i.i.d. assumptions, in the case of finite variances,

the previous case in (7) emerges as a special cases with and b′x = bx/
√

V ar(Xk). These are the

approximations we would use if we simply chose to ignore the dependence; i.e., they correspond to

using the stationary-interval method for approximating the arrival and service processes in Whitt

(1982).

Remark 2. (dependence between interarrival times and service times) For the general G/G/1

model, the RQ uncertainty set (16) is more general than the RQ uncertainty set (2) because it can

capture the impact of correlations between the interarrival times and service times, as can be seen

from the variance formula

V ar(Sx
k ) = V ar(Ss

k −Sa
k ) = V ar(Ss

k)+V ar(Sa
k)− 2Cov(Ss

k, S
a
k), k≥ 1.

These correlations can have an impact, as illustrated for queues with multiple customer classes

having class-dependent service times by Fendick et al. (1989), which is reviewed in Example 9.6.1

of Whitt (2002).

Remark 3. (justification of uncertainty set (14)) Even for theGI/GI/1 model, the justification for

the continuous-time workload uncertainty set (14) is more complicated than the previous discrete-

time uncertainty sets, because there are constants c1 and c2 such that V ar(Aρ(s)) = c1s and

V ar(Yρ(s)) = c2s for all s if and only if the arrival process is a Poisson process, in which case c1 = ρ

and c2 = ρE[V 2]; see §2.5 of Ross (1996). Nevertheless, the uncertainty set (14) can be justified

for all GI/GI/1 queues and more general models by the CLT for Y (t), as we explain in the next

section; see Corollary 5.
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6.1. The FCLT with Weak Dependence

Henceforth we focus on the general stationaryG/G/1 model, allowing stochastic dependence among

the interarrival times and service times. In this context we can still apply the CLT to motivate the

uncertainty sets, but now we apply the CLT and its generalization to a functional CLT (FCLT)

for weakly dependent stationary sequences, as in Theorems 19.1-19.3 of Billingsley (1999) and

Theorem 4.4.1 of Whitt (2002).

To state the basic FCLT underlying the RQ approach to the waiting time and workload processes,

we consider a sequence of models indexed by n with stationary sequence of interarrival times and

service times. As in §3, we assume that the models are generated by a fixed sequence of mean-1

random variables {(Uk, Vk)}, with the interarrival times in model n being Un,k ≡ ρ−1
n Uk. For each

n, let the sequence of pairs of partial sums be {(Sa
n,k, S

s
n,k : k ≥ 1}. Let λn = ρn and µn = 1 denote

the arrival rate and service rate in model n. Let ⌊x⌋ denote the greatest integer less than or equal

to the real number x. Let D2 be the two-fold product space of the function space D and let ⇒

denote convergence in distribution. For this initial FCLT, we let ρn → ρ as n→∞ for arbitrary

ρ > 0. Let random elements in the function apace D2 be defined by

(

Ŝa
n(t), Ŝ

s
n(t)

)

≡ n−1/2
([

Sa
n,⌊nt⌋ − ρ−1

n nt
]

,
[

Ss
n,⌊nt⌋ −nt

])

, t≥ 0.

Theorem 2. (FCLT for partial sums of interarrival times and service times) Let {(Uk, Vk) : k≥ 1}

be a weakly dependent stationary sequence with E[Uk ] =E[Vk ] = 1. Let Un,k = ρ−1
n Uk and Vn,k = Vk,

n≥ 1, and assume that the variances and covariances satisfy

0<ρ−2σ2
A ≡ lim

n→∞
{n−1V ar(Sa

n)}<∞, 0<σ2
S ≡ lim

n→∞
{n−1V ar(Ss

n)}<∞

and ρ−1σ2
A,S ≡ lim

n→∞
{n−1Cov(Sa

n, S
s
n)}. (18)

Then (under additional regularity conditions assumed, but not stated here)

(

Ŝa
n, Ŝ

s
n

)

⇒
(

Ŝa, Ŝs
)

in D2 as n→∞, (19)
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where
(

Ŝa, Ŝs
)

is distributed as zero-drift two-dimensional Brownian motion (BM) with covariance

matrix

Σ=







ρ−2σ2
A ρ−1σ2

A,S

ρ−1σ2
A,S σ2

S






.

Proof. The one-dimensional FCLT’s for weakly dependent stationary sequences in D can be used

to prove the two-dimensional version in Theorem 2. First, the limits for the individual processes

Ŝa
n and Ŝs

n imply tightness of these processes in D, which in turn implies joint tightness in D2.

Second, the Cramer-Wold device in Theorem 4.3.3 of Whitt (2002) implies that limits for the finite-

dimensional distributions for all linear combinations (which should be implied by the unstated

regularity condition) implies the joint limit for the finite-dimensional distributions (fidi’s). Finally,

tightness plus convergence of the fidi’s implies the desired weak convergence by Corollary 11.6.2 of

Whitt (2002).

As a consequence of Theorem 2, we also have an associated FCLT for scaled random elements

associated with Sx
n,k ≡ Ss

n,k −Sa
a,k and Yn(s)≡

∑An(s)

i=1 Vn,i =
∑A(ρns)

i=1 Vi = Y (ρns), s≥ 0, for A and

Y in (10) and (11). Let B(t) be standard (zero drift and unit variance) one-dimensional BM and

let e be the identity function in D, i.e., e(t) = t. Let
d
= mean equal in distribution, as processes if

used for stochastic processes.

Corollary 4. (joint FCLT for basic processes) Under the conditions of Theorem 2,

(

Ŝa
n, Ŝ

s
n, Ŝ

x
n, Ŷn

)

⇒
(

Ŝa, Ŝs, Ŝx, Ŷ
)

in D4 as n→∞, (20)

where
(

Ŝx
n(t), Ŷn(t)

)

≡ n−1/2
([

Sx
n,⌊nt⌋ − (1− ρ−1

n )nt
]

,
[

Yn,⌊nt⌋ − ρnnt
])

, t≥ 0, (21)

and Ŝx = Ŝs − Ŝa d
= σXB, with variance function

σ2
X ≡ σ2

X(ρ) = ρ−2σ2
A +σ2

S − 2ρ−1σ2
A,S, 0<σ2

X <∞, (22)

for ρ−2σ2
A, σ

2
S and ρ−1σ2

A,S in (18), while

Ŷ= Ŝs ◦ ρe− ρŜa ◦ ρe d
= σYB ◦ ρe d

=
√
ρσY B, (23)
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where

σ2
Y ≡ σ2

Y (ρ) = σ2
A +σ2

S − 2σ2
A,S, 0<σ2

Y <∞, for all ρ. (24)

Hence, Ŷ= Ŝx for ρ= 1, but not otherwise.

Proof. We apply the continuous mapping theorem (CMT) using several theorems from Whitt

(2002). The CMT itself is Theorem 3.4.4. We treat the process Sx
n,k using addition. We treat the

random sum Yn in two steps. We first apply the inverse map to go from the FCLT for Sa
n,k to the

FCLT for the associated scaled counting processes, applying Theorems 7.3.2 and 13.7, which yields

limit −ρŜa ◦ ρe. Then we apply composition with centering in Corollary 13.3.2 of Whitt (2002) to

get (23).

Condition (18) implies that k−1V ar(Sx
k ) → σ2

X as k → ∞ for σ2
X in (22). In addition to the

conclusions of Theorem 19 and Corollary 4, we assume that the appropriate uniform integrability

holds, so that we also have the continuous-time analog

s−1V ar(Y (s))→ σ2
Y as s→∞ (25)

for σ2
Y in (24).

Theorem 2 and Corollary 4 imply ordinary CLT’s for the processes Sx
n and Yn(s), which we

discuss in the next subsection.

6.2. Alternative Scaling in the CLT

We now explain how the new uncertainty sets in (16) and (17) lead to interesting new RQ opti-

mization problems. To do so, we apply the ordinary CLT’s that follow from §6.1, illustrating by

focusing on Sx
n. As usual, the ordinary CLT follows immediately by applying the CMT with the

projection map π :D→R with π(x)≡ x(1).

Under the assumptions of Theorem 2, the CLT for the partial sums Sx
n states that

(Sx
n −nE[X1])/

√

nσ2
X ⇒N(0,1) as n→∞, (26)



Whitt and You: Dependence in Single-Server Queues

Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 15

where N(0,1) is a standard (mean-0, variance-1) normal random variable and σ2
X is the asymptotic

variance constant in (18).

At the beginning of this section we observed that the RQ framework in §4 still applies in this

setting and the optimal solution is unchanged except for interpretation of the parameter b in (7)

when we relate it to the variances. However, the CLT (as well as the FCLT) can be written in a

different way that supports the promising new RQ problem in (1) plus (16). Instead of (26), we

can also write

[Sx
n −E[Sx

n]]/
√

V ar(Sx
n)⇒N(0,1) as n→∞. (27)

The numerators in (26) and (27) are identical because E[Sx
n] = nE[X1]. The full statements in (26)

and (27) are asymptotically equivalent as n→∞ by the CMT, because

Sx
n −nEU1
√

V ar(Sx
n)

=
Sx
n −nE[U1]√

nσX

×
√
nσX

√

V ar(Sx
n)

⇒N(0,1)× 1=N(0,1).

Thus, formulation (27) leads to the RQ formulation in (1) plus (16), where we need not have

√

V ar(Sx
k ) =

√

kV ar(Xk). The same is true for the the RQ formulation in (13) plus (17).

6.3. The Associated Heavy-Traffic FCLT

Theorem 2 and Corollary 4 also can be used as a basis for establishing HT FCLT’s for the waiting-

time and workload processes. To state the HT FCLT, we let ρn → 1 as n→∞ at the usual rate;

see (29) below. Let Ŵn and Ẑn be the random elements associated with the waiting time and

workload processes, defined by

(

Ŵn(t), Ẑn(t)
)

=
(

n−1/2Wn,⌊nt⌋, n
−1/2Zn(nt)

)

, t≥ 0. (28)

Let ψ : D → D be the one-dimensional reflection map with impenetrable barrier at the origin,

assuming x(0) = 0, i.e., ψ(x)(t) ≡ x(t)− inf06s6t x(s); see §13.5 of Whitt (2002). Here is the HT

FCLT; it is is a variant of Theorem 2 of Iglehart and Whitt (1970); see §5.7 and 9.6 in Whitt

(2002). Given Corollary 4, it suffices to apply the CMT with the reflection map ψ.
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Theorem 3. (heavy-traffic FCLT) Consider the sequence of G/G/1 models as specified in §3. If,

in addition to the conditions of Theorem 2,

n1/2(1− ρn)→ η, 0< η <∞, (29)

then
(

Ŵn, Ẑn

)

⇒
(

ψ(Ŝx − ηe),ψ(Ŝx − ηe)
)

in D2 as n→∞, (30)

jointly with the limits in (20), where ψ is the reflection map and Ŝx − ηe
d
= σY B− ηe is BM with

variance constant σ2
Y in (24) and drift −η < 0, so that ψ(Ŝx − ηe) is reflected BM (RBM).

The HT approximation for the mean steady-state wait and workload stemming from Theorem

3 is

E[W (ρ)]≈E[Zρ]≈
σ2
Y

2η
≈ σ2

Y

2(1− ρ)
(31)

for σ2
Y in (24), which is independent of ρ, using the mean of the exponential limiting distribution

of the RBM ψ(σxB− ηe)(t) as t→∞, as in (6).

Remark 4. (the limit-interchange problem) the standard HT limits for the processes do not

directly imply limits for the steady-state distributions. Strong results have been obtained with

i.i.d. assumptions, e.g., see Gamarnik and Zeevi (2006) and Budhiraja and Lee (2009), but the

case with dependence is more difficult. Nevertheless, supporting results for the G/G/1 queue when

dependence is allowed appear in Szczotka (1990, 1999).

These theorems have important implications for RQ with the uncertainty sets in (7) and (14).

Corollary 5. (RQ with dependence and the original uncertainty sets) If RQ is applied with the

G/G/1 model satisfying the conditions of Theorem 2 using the uncertainty sets in (7) and (14),

where the constants are chosen to satisfy, bx = βxσX and bz = βzσY , for σ
2
X = σ2

X(ρ) in (22) and σ2
Y

in (24), then the solutions of these RQ optimizations for the mean steady-state wait and workload

are different, but they agree asymptotically in HT as ρ→ 1. They both are asymptotically correct

in HT as ρ→ 1 if βx = βz =
√
2 as in Corollary 2.
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Remark 5. (the asymptotic method) The RQ approach in Corollary 5 corresponds to approxi-

mating the arrival and service processes in the G/G/1 queue by the asymptotic method in Whitt

(1982), which develops approximations for the arrival and service processes using all the correla-

tions. That is in contrast to the stationary-interval method discussed just before §6.1, which uses

none of the correlations. Below we use RQ to develop intermediate methods in between those two

extremes.

7. Robust Queueing with Dependence

The following is our main generalization of Corollaries 1 and 3. As regularity conditions for Y (t),

we assume that V (t)≡ V ar(Y (t)) is differentiable with derivative V̇ (t) having finite positive limits

as t→∞ and t→ 0, i.e.,

V̇ (t)→ σ2
Y as t→∞ and V̇ (t)→ V̇ (0)> 0 as t→ 0, (32)

for σ2
Y in (24). These assumptions are known to be reasonable; see §7.5.

Theorem 4. (RQ exposing the impact of the dependence) Consider the general stationary G/G/1

queue with ρ < 1 with the assumptions in §6.1. (a) The solution of the RQ optimization (1) with

the single uncertainty set in (16) is

W ∗
n ≡ max{Wn : X̃n ∈Ux′}=max{Sx

k : X̃n ∈Ux′ ,1≤ k≤ n}

= max{−(1− ρ)k/ρ+ b′x
√

V ar(Sx
k ) : 1≤ k≤ n}<∞. (33)

For each ρ, 0< ρ< 1, there is an n∗ ≡ n∗(ρ)<∞ such that a finite maximum is attained at n∗ for

all n ≥ n∗. This index n∗(ρ) is unique if the differences V ar(Sx
k )− V ar(Sx

k−1) are either strictly

increasing or strictly decreasing for k ≥ 1.

(b) The solution of the RQ optimization (13) with the single uncertainty set in (17) is

Z∗(t) ≡ sup{Z(t) : Ñ(t)∈Uz′}= sup{N(s) : Ñ(t)∈Uz′ ,0≤ s≤ t}

= sup{−(1− ρ)s+ b′z
√

V (s) : 0≤ s≤ t}<∞, (34)
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For each ρ, 0< ρ< 1, there is an x∗ ≡ x∗(ρ), such that a finite maximum is attained at x∗ for all

t≥ x∗. In addition, 0<x∗ <∞ and x∗ satisfies the equation

(1− ρ) = ḣ(x) where h(x)≡ b′z
√

V (x). (35)

This time x∗(ρ) is unique for all ρ, 0< ρ< 1, if h(x) is strictly concave or strictly convex, i.e., if

ḣ(x) is strictly increasing or strictly decreasing.

Proof. The inequalities can be satisfied as equalities just as before. There are finite values k0

and s0 such that
√

V ar(Sx
k )≤

√

2σ2
Xk for all k ≥ k0 and

√

V (s)≤
√

2σ2
Y s for all s≥ s0 by virtue

of the limits in (18) and (25). That shows that the optimization can be regarded as being over

closed bounded intervals. The assumed differentiability of V implies that it is continuous, which

implies that the supremeum is attained over the compact interval. Because V̇ (x)→ V̇ (0)> 0, we

see that there exists a small s′ such that

−(1− ρ)s+ b′z
√

V (s)≥−(1− ρ)s+ b′z

√

sV̇ (0)/2> 0 for all s≤ s′.

As a consequence, the maximum in (34) must be strictly positive and must be attained at a strictly

positive time.

Henceforth, we primarily focus on the continuous-time workload.

7.1. Positive and Negative Dependence

A common case in models for applications is to have positive dependence in the input process Y ,

which holds if

Cov(Y (t2)−Y (t1), Y (t4)−Y (t3))≥ 0 for all 0≤ t1 < t2 ≤ t3 < t4. (36)

Negative dependence holds if the inequality is reversed. These are strict if the inequality is a strict

inequality. From (17) and (18) of §4.5 in Cox and Lewis (1966), which is restated in (48) and (49)

of Fendick and Whitt (1989), with positive (negative) dependence, under appropriate regularity

conditions, V̇ (t)≥ 0 and V̈ (t)≥ (≤)0.

The following is a consequence of Theorem 4 and (36).
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Corollary 6. (positive and negative dependence) The variance function V (x) is convex

(concave), so that the function h(x)≡
√

V (x) is concave if there is positive (negative) dependence,

as in (36) (with sign reversed). Moreover, a strict inequality is inherited. Thus, there exists a unique

solution to the RQ if there is strict positive dependence or strict negative dependence. Moreover,

the optimal time x∗(ρ) is strictly increasing in ρ, approaching 1 as ρ ↑ 1, so that Z∗
ρ → V̇ (∞) =

Iw(∞) = σ2
Y as ρ ↑ 1.

Proof. The results for
√

V (x) with positive dependence follow from convexity properties of

compositions. First, with positive dependence,−
√

V (x) is a convex function of an increasing convex

function, and thus convex so that
√

V (x) is concave. Second, with negative dependence, we have

V ≥ 0, V̇ (t)≥ 0 and V̈ (t)≤ (≤)0. Thus, by direct differentiation

ḧ(x) =
1

√

V (x)

(

V̈ (x)

2
− V̇ (x)

4V (x)

)

≤ 0,

with strictness implying a strict inequality.

7.2. Approximation from the Asymptotic Expansion

As we explain at the end of §7.5, for a large class of stochastic models the variance V (t) has the

asymptotic representation

V (t) = σ2
Y t+ ζ +O(e−γt) as t→∞, (37)

with γ > 0 and ζ ≤ (≥)0 in the case of positive (negative) dependence, which supports that approx-

imation V (t)≈ σ2
Y t+ ζ for t suitably large. Thus, it is natural to use this approximation in (35)

for all ρ not too small. If we do so, then we get the approximation

t∗(ρ)≈ b′2z σ
2
Y

4(1− ρ)2
− ζ

σ2
Y

. (38)

We can then insert (38) into (34) to obtain, after some algebra,

Z∗
ρ ≈−(1− ρ)t∗(ρ)+ b′z

√

σ2
Y t

∗(ρ)+ ζ =
b′2z σ

2
Y

4(1− ρ)
− (1− ρ)ζ

σ2
Y

. (39)

The first term in (39) is the HT approximation, while the second term is the refinement.
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7.3. Discrete Time: Indices of Dispersion for Intervals

We now recast the RQ solutions in Theorem 4 in terms of indices of dispersion, starting with

the discrete-time RQ solution in (33). We create scaled versions of the discrete-time variance-time

functions V ar(Sx
k ), V ar(S

a
k) and V ar(S

s
k) as functions of k with indices of dispersion for intervals

(IDI), as in Chapter 4 of Cox and Lewis (1966), defined by

Ia(k)≡
kV ar(Sa

k)

(E[Sa
k ])

2
, Is(k)≡

kV ar(Ss
k)

(E[Ss
k])

2
and Ia,s(k)≡

kCov(Sa
k , S

s
k)

E[Sa
k ]E[Ss

k]
. (40)

With (40),

√

V ar(Sx
k ) =E[U1]

√

kIx(k), k ≥ 1, and σ2
X ≡ lim

k→∞
{k−1V ar(Sx

k )}=E[U1]
2Ix(∞) (41)

where

Ix(k)≡ Ia(k)+ ρ2Is(k)− 2ρIa,s(k) for ρ≡E[V1]/E[U1 < 1. (42)

These three IDI’s Ia(k), Is(k) and Ia,s(k) were used to develop queueing approximations in Fendick

et al. (1989).

As a consequence, (16) can be rewritten as

Ux′ ≡ {X̃n : S
x
k ≤ kE[Xk] + b

′′

x

√

kIx(k), kL ≤ k ≤ n}. (43)

where b
′′

x ≡ b′xE[U1] for b
′
x in (16). To apply (43) with kL =0, we let Ix(0) = 0.

7.4. Continuous Time: The Indices of Dispersion for Counts and Work

The workload process is not only convenient because it leads to the continuous RQ optimization

problem in (34), but also because the workload process scales with ρ in a more elementary way

than the waiting times, as indicated after (12). In particular, with our scaling of the interarrival

times, we obtain a simple representation of the arrival processes as a function of the traffic intensity

via Aρ(t) ≡ A(ρt) and Yρ(t) ≡ Y (ρt), t ≥ 0, where A and Y are defined in terms of the mean-1

variables. In contrast, the scaling of the waiting times in previous sections is more complicated

because the interarrival times are scaled with ρ but the service times are not, so that Xk(ρ) ≡
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Vn−k(1)−ρ−1Un−k(1). That leads to the relatively complicated way that ρ appears in the IDI Ik(x)

in (42).

Paralleling §7.3, in the stationary framework it is useful to relate the variances of the arrival

counting process A(s) and the cumulative work input process Y (s) to associated continuous-time

indices of dispersion, studied in Fendick and Whitt (1989) and Fendick et al. (1991). With that

convention, we define the index of dispersion for counts (IDC) associated with the rate-1 arrival

process A as in §4.5 of Cox and Lewis (1966) by

Ic(t)≡
V ar(A(t))

E[A(t)]
=
V ar(A(t))

t
, t≥ 0.

and the index of dispersion for work (IDW) associated with the rate-1 cumulative input process Y

by

Iw(t)≡
V ar(Y (t))

E[V1]E[Y (t)]
=
V (t)

t
, t≥ 0.

Fendick and Whitt (1989) showed that the IDW Iw is intimately related to a scaled workload

c2Z(ρ), which can be defined by comparing to what it would be in the associated M/D/1 model;

i.e.,

c2Z(ρ)≡
E[Zρ]

E[Zρ;M/D/1]
=

2(1− ρ)E[Zρ]

E[V1]ρ
=

2(1− ρ)E[Zρ]

ρ
, (44)

Indeed, under regularity conditions, the following finite positive limits exist and are equal:

lim
t→∞

{Iw(t)} ≡ Iw(∞) = Ia(∞)+ Is(∞)− 2Ia,s(∞) = σ2
Y = c2Z(1)≡ lim

ρ→1
{c2Z(ρ)}

lim
t→0

{Iw(t)} ≡ Iw(0) = 1+ c2s = c2Z(0)≡ lim
ρ→0

{c2Z(ρ)} (45)

for c2Y in (24) and (42) and c2s ≡ V ar(V1)/E[V1]
2. The limits for Iw above and the differentiability

of Iw follow from the assumed differentiability for V (t) and limits in (32). For t→ 0 and ρ→ 0,

see §IV.A of Fendick and Whitt (1989). The IDW limits are related to the IDC limits, with the

large-time limit related to the corresponding limit for the IDI Ia in §7.3:

lim
t→∞

{Ic(t)} ≡ Ic(∞) = σ2
A = Ia(∞)≡ lim

k→∞
{Ia(k)} and lim

t→0
{Ic(t)}≡ Ic(0) = 1 (46)
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for σ2
A in (18).

The challenge is to relate c2Z(ρ) to the IDW Iw for 0< ρ< 1. For that, RQ can help. Paralleling

(43), we can express the uncertainty set Uz(ρ) in (17) as

Uz(ρ) = {Ñρ(t) :Nρ(s)≤−(1− ρ)s+ b′z
√

V (ρs), 0≤ s≤ t},

= {Ñρ(t) :Nρ(s)≤
−(1− ρ)x

ρ
+ b′z

√

V (x), 0≤ x≤ t/ρ}

= {Ñρ(t) :Nρ(s)≤−(1− ρ)x

ρ
+ b′z

√

xIw(x), 0≤ x≤ t/ρ}, 0< ρ< 1, (47)

where we have introduced ρ as a time scaling of V (s) in the first line and made the change of

variables x≡ ρs in the second line. Unlike the IDI Ix in (43), the variance V (x)≡ V ar(Y (x)) and

the IDW Iw(x) in (47) are independent of ρ. Note that (47) differs from (17) by the presence of

Iw(x). These are essentially equivalent if Iw(x) is approximately constant. However, as shown in

Fendick and Whitt (1989), Fendick et al. (1989, 1991), the IDW’s are often far from constant.

From (34) and (47), we see that the extreme points occur where the slope of h(x)≡
√

2V (x) =

√

2xIw(x) equals (1− ρ)/ρ. From (45), we anticipate that the slope of h(x) is likely to be strictly

increasing from 0 to ∞ over (0,∞). The optimal value x∗(ρ) as a function of ρ thus should be

relatively easy to see from plots of the function h.

The RQ approach allows us to establish versions of the variability fixed-point equation suggested

in (9), (15) and (127) of Fendick and Whitt (1989). For the steady-state workload Zρ, we let t→∞

in the RQ optimization (47).

Theorem 5. (candidate RQ solutions) Any optimal solution of the RQ in (13) with uncertainty

set (47), where t→∞, is attained at s∗(ρ)≡ x∗/ρ, where x∗ ≡ x∗(ρ) satisfies the equation

x∗ =
b′z

2ρ2Iw(x
∗)

4(1− ρ)2

(

1+
x∗İw(x

∗)

Iw(x∗)

)2

(48)

for b′z in (47). The associated RQ optimal workload is

Z∗
ρ =

b′2z ρIw(x
∗)

4(1− ρ)



1−
(

x∗İw(x
∗)

Iw(x∗)

)2


 , (49)
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which is a valid nonnegative solution provided that x∗İw(x
∗)≤ Iw(x

∗). If b′z =
√
2, then Z∗

ρ in (49)

approaches the heavy-traffic limit of the mean workload as ρ→ 1. The associated scaled workload

satisfies

c2Z∗(ρ)≡
Z∗

ρ

Z∗
ρ(M/D/1)

= Iw(x
∗)



1−
(

x∗İw(x
∗)

Iw(x∗)

)2


 , (50)

Proof. Note that xIw(x) = V (x). Because we have assumed that V (x) is differentiable, so is Iw.

We obtain (48) by differentiating with respect to x in (47) and setting the derivative equal to 0.

After substituting (48) into (47), algebra yields (49). The limits in (32) imply that x∗İw(x
∗)→ 0

and Iw(x
∗)→ Iw(∞) as ρ→ 1.

Significantly, the scaled workload c2Z∗(ρ) in (50) is independent of the constant b′z and depends on

ρ only through the solution x∗(ρ) of equation (48). Given that xİw(x)→ 0 as x→∞, it is natural

to consider the approximation

x∗(ρ)≈
(

b′zρ

2(1− ρ)

)2

Iw(x
∗(ρ)) so that Z∗

ρ ≈
b′2z ρIw(x

∗(ρ))

4(1− ρ)
and c2Z∗(ρ) = Iw(x

∗(ρ)). (51)

The first equation in (51) is a variability fixed-point equation of the form in suggested in (15) of

Fendick and Whitt (1989).

7.5. Estimation and Calculation

For applications, it is significant that the IDW Iw used in §7.4 can readily be estimated from

data from system measurements or simulation and calculated in a wide class of stochastic models.

The time-dependent variance functions can be estimated from the time-dependent first and second

moment functions, as discussed in §III.B of Fendick et al. (1991). Calculation depends on the

specific model structure.

7.5.1. The G/GI/1 Model. If the service times are i.i.d. with a general distribution having

mean τ and scv c2s and are independent of a general stationary arrival process, then as indicated

in (58) and (59) in §III.E of Fendick and Whitt (1989),

Iw(t) = c2s + Ic(t), t≥ 0, (52)

where c2s is the scv of a service time and Ic is the IDC of the general arrival process.
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7.5.2. The Multi-Class
∑

i(Gi/Gi)/1 Model. As indicated in (56) and (57) in §III.E of

Fendick and Whitt (1989), if the input comes from independent sources, each with their own arrival

process and service times, then the overall IDC and IDW are revealing functions of the component

ones. Let λi be the arrival rate, τi the mean service time of class i, and ρi ≡ λiτi be the traffic

intensity for class i with λ≡∑i λi, τ ≡
∑

i(λi/λ)τi = 1 so that ρ= λ. With our scaling conventions,

Ic(λt)≡
V ar(A(t))

E[A(t)]
=

∑

i V ar(Ai(t))

λt
=
∑

i

(

λi

λ

)

Ic,i(λit) (53)

and

Iw(λt)≡
V ar(X(t))

τE[X(t)]
=

∑

i Vi(t)

ρt
=
∑

i

(

ρiτi
ρτ

)

Iw,i(λit) for all t≥ 0. (54)

From (53) and (54), we see that Ic and Iw are convex combinations of the component Ic,i and Iw,i

modified by additional time scaling. The interaction with the time scaling in (53) and (54) with

the time scaling by n= (1− ρn)
−2 in (28) for the HT limits in Theorem 3 can have an important

implications for performance, as we illustrate in §7.5.4.

7.5.3. The IDC’s for Common Arrival Processes. The two previous subsections show

that for a large class of models the main complicating feature is the IDC of the arrival process from

a single source. The only really simple case is a Poisson arrival process with rate λ. Then Ic(t) = 1

for all t ≥ 0. A compound (batch) Poisson process is also elementary because the process Y has

independent increments; then the arrival process itself is equivalent to M/GI source. However, for

a large class of models, the variance V ar(A(t)) and thus the IDC Ic(t) can either be calculated

directly or can be characterized via their Laplace transforms and thus calculated by inverting those

transforms and approximated by performing asymptotic analysis. For all models, we assume that

the processes A and Y have stationary increments.

An important case for A is the renewal process; to have stationary increments, we assume that

it is the equilibrium renewal process, as in §3.5 of Ross (1996). Then V ar(A(t)) can be expressed

in terms of the renewal function, which in turn can be related to the interarrival-time distribution

and its transform. The explicit formulas for renewal processes appear in (14), (16) and (18) in §4.5
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of Cox (1962). The required Numerical transform inversion for the renewal function is discussed

in §13 of Abate and Whitt (1992). The hyperexponential (H2) and Erlang (E2) special cases are

described in §III.G of Fendick and Whitt (1989).

It is also possible to carry out similar analyses for much more complicated arrival processes. Neuts

(1989) applies matrix-analytic methods to give explicit representations of the variance V ar(A(t))

for the versatile Markovian point process or Neuts process; see §5.4, especially Theorem 5.4.1.

Explicit formulas for the Markov modulated Poisson process (MMPP) are given on pp. 287-289.

All of these explicit formulas above have the asymptotic form

V ar(A(t)) = σ2
A + ζ +O(e−γt) as t→∞.

Combining this with (52) yields the asymptotic expansion for V (t) in (37).

7.5.4. The Superposition of Many Component Sources. To better understand the com-

plex multi-class examples, consider the
∑

iGIi/GI/1 model where the arrival process is the super-

position of n i.i.d. renewal processes, each with rate ρ/n, so that the overall arrival rate is ρ. From

(53) and (54),

Ic,n(ρt) = Ic,1(ρt/n) and Iw,n(ρt) = Iw,1(ρt/n), t≥ 0, (55)

so that the superposition IDI and IDW differ from those of a single component process only

by the time scaling. In support of the IDC and IDW as useful partial characterizations, we see

that the expressions in (53)-(52) are consistent with the known complex behavior of queues with

superposition arrival processes, as discussed in §9.8 of Whitt (2002). As n→∞, we see evidence

of the convergence to a Poisson process; As t→∞ we see the same limit as for a single component

renewal process, i.e., Ic,n(∞) = Ic,1(∞). We see that the RQ approach can capture the complex

interaction between n and ρ.

8. Simulation Comparisons

We illustrate how the new RQ approach can be used with system data from queueing networks by

applying simulation to analyze two common but challenging network structures: (i) a queue with
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a superposition arrival process and (ii) several queues in series. The specific examples are chosen

to capture a known source of difficulty: The relevant variability parameter of the arrival process at

each queue can depend strongly on the traffic intensity of that queue, as discussed in Whitt (1995).

8.1. A Queue with a Superposition Arrival Process

We start by looking at an example of a
∑

iGi/GI/1 single-server queue with a superposition arrival

process, where (55) can be applied. Let the rate-1 arrival process A be the superposition of n= 10

i.i.d. renewal processes, each with rate 1/n, where the times between renewals have a lognormal

distribution with mean n and scv c2a = 10. Let the service-times distribution be hyperexponential

(H2), a mixture of two exponential distributions) with mean 1, c2s = 2 and balanced means as on

p. 137 of Whitt (1982). Then (55) and (45) imply that the IDW has limits Iw(0) = 1+ c2s = 3 and

Iw(∞) = c2a + c2s =12, so that the IDW is not nearly constant.

Figure 1 (left) shows a comparison between the simulation estimate of the normalized workload

c2Z(ρ) in (44) and the approximation c2Z∗(ρ) in (50) for this example. Two important observations

are: (i) the normalized mean workload c2Z(ρ) in (44) as a function of ρ is not nearly constant, and

(ii) there is a close agreement between the RQ approximation c2Z∗(ρ) in (50) from the RQ in (47)

and the direct simulation estimate; the close agreement for all traffic intensities is striking.

For this example, we see that c2Z(ρ)≈ 3 for ρ≤ 0.5, which is consistent with the Poisson approx-

imation for the arrival process and the associatedM/G/1 queue, where c2Z(ρ) = 3 for all ρ, but the

normalized workload increases steadily to 12 after ρ=0.5, as explained in §9.8 of Whitt (2002).

The estimates for Figure 1 were obtained for ρ over a grid of 99 values, evenly spaced between 0.01

and 0.99. Similarly, the RQ optimization was performed using (47) with a discrete-time estimate of

the IDW. By doing multiple runs, we ensured that the statistical variation was not an issue. For the

main simulation of the arrival process and the queue we used 5×106 replications, discarding a large

initial portion of the workload process to ensure that the system is approximately in steady state.

(The component renewal arrival processes thus can be regarded as equilibrium renewal processes,

as in §3.5 of §Ross (1996).) We let the run length and amount discarded be increasing in ρ, as
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Figure 1 A comparison between simulation estimates of of the normalized mean workload c2Z(ρ) in (44) and its

approximation c2Z∗ (ρ) in (50) from the RQ in (47) as a function of ρ for the
∑

n

i
GIi/H2/1 model with

c2s = 2 and a superposition of n i.i.d. lognormal renewal arrival processes for n= 10 and c2a = 10 (left).

On the right is the graphical RQ solution showing h(x) ≡
√

2xIw(x) and the tangent line with slope

(1− ρ/ρ at x∗
≈ 482 for ρ=0.9 and at x∗

≈ 17 for 0.7, as dictated by (35).

dictated by Whitt (1989). We provide additional details about our simulation methodology in the

appendix.

8.2. Ten Queues in Series

This second example is a variant of examples in Suresh and Whitt (1990), exposing the complex

impact of variability on performance in a series of queues if the external arrival process and service

times at a previous queue have very different levels of variability. This example has 10 single-server

queues in series. The external arrival process is a rate-1 renewal process with H2 interarrival times

having c2a = 10. (We use the same distribution as for the service time in §8.1.) The first 9 queues

all have deterministic service times. The first 8 queues have mean service time and thus traffic

intensity 0.6, while the 9th queue has mean service time and thus traffic intensity 0.95. The last

(10th) queue has an exponential service-time distribution. with mean and traffic intensity ρ; we

explore the impact of ρ on the performance of that last queue.

The deterministic queues act to smooth the arrival process at the last queue. Thus, for sufficiently

low traffic intensities ρ at the last queue, the last queue should behave essentially the same as a
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D/M/1 queue, which has c2a = 0, but as ρ increases, the arrival process at the last queue should

inherit the variability of the external arrival process, and behave like an H2/M/1 queue with scv

c2a = 10. This behavior is substantiated by Figure 2, which compares simulation estimates of the

normalized mean workload c2Z(ρ) in (44) at the last queue of ten queues in series as a function of

the mean service time and traffic intensity ρ there with the corresponding values in the D/M/1

queue (left) and with the RQ approximation c2Z∗(ρ) in (50) from (47) (right). Figure 2 (left) shows
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Figure 2 A comparison between simulation estimates of the normalized mean workload c2Z(ρ) in (44) at the last

queue of the ten queues in series with highly variable external arrival process, but low-variability service

times, as a function of the mean service time and traffic intensity ρ there with the corresponding value

in the D/M/1 queue (left) and with the RQ approximation c2Z∗ (ρ) in (50) from (47) (right).

that the last queue behaves like a D/M/1 queue for all traffic intensities ≤ 0.8, but then starts

behaving more like an H2/M/1 queue as the traffic intensity approaches the value 0.95 at the 9th

queue. Figure 2 (right) shows that RQ successfully captures this phenomenon and provides an

accurate approximation for all ρ.

To elaborate on this series-queue example, we show the IDW for the last queue in Figure 3. The

plot on the left shows the IDW over the long interval [0,105], while the plots in the middle and

right give a closer view of the IDW over the initial segments [0,20] and [0,400]. On the right, we

plot the IDW assuming continuous-time stationarity (which we use) together with the plot using
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the discrete-time Palm stationarity (see Sigman (1995)), which acts as if there is an arrival at time

0, so that the plot is 0 over the initial interval of length 0.95 (the deterministic service time at

the previous queue). The good performance in Figure 2 for small values of ρ depends on using the

proper (continuous-time) version.
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Figure 3 The IDW at the last queue over the interval [0,10000] in log scale (left), [0,20] (middle) and [0,400]

(right). The continuous-time stationary version used for RQ with the workload is contrasted with the

discrete-time Palm version over the initial segment on the middle and right.

We conclude this example by illustrating the discrete-time approach for approximating the

expected steady-state waiting time E[W ] using the RQ optimization in (1) with the uncertainty

set in (43). Figure 4 is the discrete analog of Figure 2. Figure 4 compares simulation estimates of

the normalized mean waiting time c2W (ρ), defined just as in (44), at the last queue of ten queues

in series as a function of the mean service time and traffic intensity ρ there with the correspond-

ing values in the D/M/1 queue (left) and with the RQ approximation c2W∗(ρ), defined just as in

(50). Figure 4 and 2 look similar, except that there is a significant difference for small velues of ρ.

In general, we do not expect RQ to be effective for extremely low ρ, because (i) the CLT is not

appropriate for only a few summands and (ii) the mean waiting time is known to depend on other

properties when ρ is small. The mean waiting time and mean workload actually are quite different

in light traffic; see §IV.A of Fendick and Whitt (1989). As explained there, the mean workload

tends to be more robust to model detail.
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Figure 4 Contrasting the discrete-time and continuous-time views: the analog of Figure 2 for the waiting time.

Simulation estimates of the normalized mean waiting time c2W (ρ), defined as in (44), at the last queue of

the ten queues in series with highly variable external arrival process, but low-variability service times,

as a function of the mean service time and traffic intensity ρ there with the corresponding value in the

D/M/1 queue (left) and with the RQ approximation c2W∗ (ρ), defined as in (47) (right).

9. Conclusions

9.1. Summary

We have shown that the robust queueing (RQ) approach in Bandi et al. (2015) can be usefully

extended to expose the impact of dependence among interarrival times and service times upon

the expected waiting time and expected workload in a general G/G/1 single-server queue as a

function of the traffic intensity ρ. First, we showed that it can be useful to replace the original

pair of uncertainty sets in (2) by the version with one uncertainty set in (7); e.g., Corollary 2

shows that RQ is asymptotically correct for the GI/GI/1 queue with the single uncertainty set,

but not for the two uncertainty sets. We have also shown that it also can be advantageous to focus

on the continuous-time workload using (14), primarily because the total workload Y (t) in (11)

scales with the traffic intensity ρ in a more elementary way, as can be seen from the asymptotic

variance parameters σ2
X in (22) and σ2

Y in (24). (In particular, σ2
X in (22) depends on ρ in a more

complicated way.) We showed that the impact of the dependence can be captured by including

versions of the variance-time functions in these uncertainty sets, as in (16) and (17). It can then
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be helpful to express the versions in (16) and (17) in terms of indices of dispersion, as in (43) and

(47).

In §3 and §6 we exposed the intimate connection between RQ and heavy-traffic theory. Corollaries

2 and 5 show that the main RQ methods for the waiting time and the workload here are both

asymptotically correct as the traffic intensity ρ increases to its critical level 1. We have also shown

that the RQ can usefully supplement previous approximations for the performance of complex

G/G/1 queues with dependence among interarrival times and service times in Fendick and Whitt

(1989). Theorem 5 shows that the solution of the continuous-time RQ optimization for the workload

identifies a time x∗(ρ) as a function of the traffic intensity ρ such that the RQ workload Z∗
ρ depends

on the IDW Iw primarily through the single value Iw(x
∗(ρ)). Particularly attractive are the formulas

for the scaled RQ workload c2Z∗(ρ) in (50) and (51), which can generate useful approximations

for the scaled workload c2Z(ρ) defined in (44). In this way, we obtain new insight into the way

dependence affects the performance of the queue as a function of the traffic intensity in the queue.

We conducted simulation experiments in §8 that show that the RQ approximations can be effec-

tive. These experiments also dramatically demonstrate the inadequacy of methods that either (i)

ignore the dependence within the flows or (ii) act as if a single-variability parameter can charac-

terize an arrival process, independent of the traffic intensity at the queue.

9.2. How Can the Results Here Be Applied?

This paper helps develop useful diagnostic tools to study complex queueing systems. This paper

adds additional support to Fendick and Whitt (1989) by showing how to measure flows (arrival

processes, possibly together with service times) in complex queueing systems and the value for

doing so in understanding congestion at a queue, as characterized by the mean workload and the

mean waiting time. In particular, we see how the variance time curves and indices of dispersion

can provide useful descriptions of the flows, enabling us with the aid of RQ to predict congestion

as a function of the traffic intensity quite accurately. These measurements can fruitfully be applied
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with either system measurements or simulations. As we indicated in §7.5, the indices of dispersion

can also be calculated for quite complex models.

As in Bandi et al. (2015), the new RQ can help develop improved performance analysis tools

for complex queueing networks. In particular, the methods here provide a basis for improving

parametric-decomposition approximations such as QNA in Whitt (1983b) by exploiting variability

functions instead of variability parameters, as proposed in Whitt (1995).

One concrete way the RQ here can be applied is to analyze the consequence of changing the

service mechanism and/or the arrival process associated with a single-server queue in a complex

queueing network. For example, assuming that (i) the same arrival process would come to a new

service mechanism and (ii) the new service mechanism produces i.i.d. service times with a distribu-

tion that can be predicted, then we could first measure the IDC of the arrival process and combine

that with (52) to obtain an estimate of the full IDW. Then we could apply RQ to estimate the

mean workload at the queue. If we are contemplating several alternative service mechanisms, we

can apply the same techniques to compare their performance impact.

As a second example, suppose that the arrival rate will increase. If that will occur in a way that

corresponds approximately to deterministic scaling of the arrival counting process, then we can

directly apply RQ to predict the performance consequence. On the other hand, if the arrival rate

increases by superposing more streams, as in Sriram and Whitt (1986), then we can apply RQ with

(53)-(55) to predict the performance consequence.

9.3. Directions for Future Research

There are many important directions for future work. It remains to use RQ with dependence to

estimate the mean waiting time and mean workload in multi-server queues. It remains to use RQ

to usefully bound and approximate the full distribution of the workload instead of just the mean.

It also remains to use RQ to obtain bounds and approximations for the range of possible values

of the mean waiting time and workload, given various constraints, in the spirit of Klincewicz and

Whitt (1984) and Johnson and Taaffe (1990, 1993), where optimization was used to expose the
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range of possible values for the mean steady-state performance measures given constraints on the

moments and the shape of the interarrival-time and service-time distribution. Most important, it

remains to apply the new RQ approach to develop improved approximations of the performance

in complex queueing networks with a variety of service disciplines. It remains to apply the present

paper to enhance the variability function approach in Whitt (1995).
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e-companion to Whitt and You: Dependence in Single-Server Queues ec1

Additional Examples

In this e-companion we present some additional examples illustrating more complex behavior

that can be seen in the IDW IW (t) and in the normalized mean workload c2Z(ρ). All examples are

for single-server queues in series, as in §8.2. For background on this example, we refer to §4.5 of

Whitt (1983b), Suresh and Whitt (1990) and §§5 and 6 of Whitt (1995).

Recall that Figure 2 illustrated the performance impact in an H2/D/1→ ·/D/1 . . .→ ·/D/1→

·/M/1 model with a rate-1 H2 renewal external arrival process, where the interarrival times has

scv c2a = 10, followed by nine single-server queues with deterministic D service times and then a

final 10th queue with an exponential service time distribution. The first 8 queues all have mean

service times and thus traffic intensities of ρk = 0.6, while the 9th queue has mean service time

and thus traffic intensity ρ9 = 0.95. We look at the performance at the last queue as a function of

the traffic intensity ρ≡ ρ10 there. Figure 2 shows that the normalized workload at the last queue

as a function of ρ. From (45), we know that the left and right limits of the normalized mean

workload are c2Z(0) = 1+c2s = 2.0 and c2Z(1) = c2a+c
2
s = 11.0. Figure 2 shows that the performance is

consistent with these limits, even though we cannot see the right hand limit, because the simulation

considered traffic intensities bounded above by a quantity less than 1. Nevertheless, we see that

the performance varies as a function of ρ approximately as predicted by these two limits.

Figure 2 also shows a dip in the middle consistent with the smoothing provided by the the low

variability at the first 9 queues, but the performance does not oscillate too much. Now we illustrate

more complex performance functions that can be obtained with more complex models.

In general, experience indicates that for 10 queues in series the normalized mean workload can

be bounded above and below, approximately, by

min{1, c2a, c2s,k,1≤ k≤ 9}+ c2s,10 ≤ c2Z(ρ)≤max{c2a, c2s,k,1≤ k≤ 9}+ c2s,10. (EC.1)



ec2 e-companion to Whitt and You: Dependence in Single-Server Queues

(The “1” appears in the minimum because the left limit at 0 is 1+ c2s.) For example, this approxi-

mate bound is consistent with the approximatioon for the variability parmeter c2d of the departure

process froma GI/GI/1 queue in formula (38) in Whitt (1983a), i.e.,

c2d ≈ (1− ρ2)c2a+ ρ2c2s. (EC.2)

The bound can be obtained by iterating that approximation forward to get an approximation for

c2d,9 and then allowing the previous traffic intensities to vary.

For this example, the bound in (EC.1) is not too informative, concluding that 1≤ c2Z(ρ)≤ 11,

which corresponds to the left and right limits. Our goal is to say more about c2Z(ρ) for 0< ρ < 1

by using the IDW and RQ.

However, so far, the examples do not show that too much is going on in the middle except for

moving from one limit to the other. That motivates us to look at the next examples.

EC.1. The EHEHE→M Example with Four Internal Modes

We now consider an example of 5 single-server queues in series where the variability increases and

then decreases 5 times, with the traffic intensities at successive queues decreasing. That makes

the external arrival process and the earlier queues relevant only as the traffic intensity increases.

Specifically, the example can be donoted by

E10/H2/1→ ·/E10/1→ ·/H2/1→·/E10/1→→ ·/M/1. (EC.3)

In particular, the external arrival process is a rate-1 renewal process with E10 interarrival times,

thus c2a = 0.1. The 1st queue has H2 service times with mean 0.99 and c2s = 10 (and also balanced

means, as before), thus the traffic intensity at this queue is 0.99. The 2nd queue has E10 service

time with mean and thus traffic intensity 0.98. The 3rd queue has H2 service times with mean 0.70

and c2s = 10. The 4th queue has E10 service times with mean and thus traffic intensity 0.5. The

last (5th) queue has an exponential service-time distribution. with mean and traffic intensity ρ. As

before, we explore the impact of ρ on the performance of that last queue.
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Looking backwards starting from the 4th queue, i.e., the queue just before the last queue, the

Erlang service act to smooth the arrival process at the last queue. Thus, for sufficiently low traffic

intensities ρ at the last queue, the last queue should behave essentially the same as a E10/M/1

queue, which has c2a = 0.1, but as ρ increases, the arrival process at the last queue should inherit

the variability of the previous service times and the external arrival process, and altering between

H2/M/1 and E10/M/1 as the traffic intensity at the last queue increases. This implies that the

normalized workload c2Z(ρ) in (44) as a function of ρ should have four internal modes. (If we also

count the left and right ends, there will be six modes.

This behavior is substantiated by Figure EC.1 (left), which compares simulation estimates of the

normalized mean workload c2Z(ρ) in (44) at the last queue with the RQ approximation c2Z∗(ρ) in (50)

from (47). It shows that the the normalized workload at the last queue fluctuates and each mode

corresponds to a previous service process or the external arrival process. Figure EC.1 (left) also

shows that RQ successfully captures all modes and provides a reasonably accurate approximation

for all ρ. Note that a new scale in the horizontal x axis is used in Figure EC.1 (left), namely

− ln(1−ρ). Since 4 out of 6 modes lies in ρ > 0.8, the new scale act to stretch out the crowded plot

under heavy traffic.

To conclude on this series-queue example, we show the IDW for the last queue in Figure EC.1

(right). The x axis of the figure is in log scale for easier display. We see a more irregular plot at

the right because it is hard to directl estimate the IDW IW (t) for very large t. Clearly, the IDW

has the same qualitative property as the normalized workload as well as the RQ approximation,

as we expect from equation (51).

EC.2. A Similar Example with Highly Variable Input

In this section, we consider a similar example where the normalized workload as a function of ρ

also has several modes, but the external arrival here has high variability.

In this example we use groups of queues in series with the same distribution and traffic intensity

in order to better bring about an adjustment in the level of variability. This device is motivated by
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Figure EC.1 A comparison between simulation estimation of the normalized workload c2Z(ρ) at the last queue

as a function of traffic intensity ρ with the RQ approximation c2Z∗(ρ) in (50) from (47) (left), and

the IDW at the last queue over the interval [0,10000] in log scale (right).

the convex-copmbination approximation in (EC.2). Specifically, this example has 13 single-server

queues in series. The external arrival process is a rate-1 renewal process with H2 interarrival times

with c2a = 10. A group of three queues having E10 service times with mean 0.99 is then added to

smooth the highly variable external arrivals. The next group of three queues has H2 service times

with mean 0.92 and squared coefficient of variation 5. These queues will bring up the variability of

the departure process. Then, another group of three queues with mean 0.9 has E10 service times

to smooth the departure process again. The variability is then raised by yet another group of

three queues having H2 service times with mean 0.3 and c2S = 10. Finally, the last (13th) queue has

exponential service times with mean and traffic intensity ρ. As before, we explore the impact of ρ

on the performance of that last queue.

As explained in last example, for sufficiently low traffic intensities ρ at the last queue, the last

queue should behave approximately the same as an H2/M/1 queue, which has c2a = 10, but as ρ

increases, the arrival process at the last queue should inherit the variability of the previous service

times and the external arrival process, and altering between E10/M/1 and H2/M/1 as the traffic

intensity at the last queue increases. This implies that the normalized workload c2Z(ρ) in (44) as
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a function of ρ should have several modes, corresponding to the variability of the external arrival

process and the service processes at the first 4 groups of queues.
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Figure EC.2 A comparison between simulation estimation of the normalized workload c2Z(ρ) at the last queue

as a function of traffic intensity ρ with the RQ approximation c2Z∗(ρ) in (50) from (47) (left), and

the IDW at the last queue over the interval [0,10000] in log scale (right).

We then have the similar plots in Figure EC.2, which compares simulation estimates of the

normalized mean workload c2Z(ρ) in (44) at the last queue with the RQ approximation c2Z∗(ρ) in

(50) from (47) (left) and shows the IDW for this example (right). Again, we are using the same

scale as in Figure EC.1 (left), i.e., − ln(1− ρ), to stretch out the plot under heavy traffic.

Figure EC.2 (left) shows that the the normalized workload at the last queue again has four

internal modes and that RQ successfully captures all modes and provides a reasonably accurate

approximation for all ρ. Figure EC.2 (right) shows that the IDW has the same qualitative property

as the RQ approximation, which is explained in (51). However, the fluctuations in the simulation

values for 0< ρ< 1 in Figure EC.2 are much less than in Figure EC.1.

We conclude that (i) the IDW and RQ do capture the qualititative behavior and (ii) the RQ

approximation based on the IDW is reasonably accurate in these difficult examples.


