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Queueing applications are often complicated by dependence among interarrival times and service times. Such dependence

is common in networks of queues, where arrivals are departures from other queues or superpositions of such complicated

processes, especially when there are multiple customer classes with class-dependent service-time distributions. We show

that the robust queueing approach for single-server queues proposed by Bandi, Bertsimas and Youssef (2015) can be

extended to yield improved steady-state performance approximations in the standard stochastic setting that includes

dependence among interarrival times and service times. We propose a new functional robust queueing formulation for the

steady-state workload that is exact for the steady-state mean in the M/GI/1 model and is asymptotically correct in both

heavy traffic and light traffic. Simulation experiments show that it is effective more generally.
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1. Introduction

Robust optimization is proving to be a useful approach to complex optimization problems involving signif-

icant uncertainty; e.g., see Bandi and Bertsimas (2012), Bertsimas et al. (2011) and references therein. In

that context, the primary goal is to create an efficient algorithm to produce useful practical solutions that

appropriately capture the essential features of the uncertainty. Bandi et al. (2015) have applied this approach

to create a robust queueing (RQ) theory, which can be used to generate performance predictions in com-
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plex queueing systems, including networks of queues as well as single queues. Indeed, they construct a full

robust queueing analyzer (RQNA) to develop relatively simple performance descriptions like those in the

queueing network analyzer (QNA) in Whitt (1983).

Our goal in this paper is to make further progress in the same direction. We do so by introducing new

RQ formulations and evaluating their performance. We too want to obtain useful performance descriptions

for complex queueing networks, but here we only consider a single queue. We judge our RQ formulations

by their ability to efficiently generate useful performance approximations for the given stochastic model,

which so far has been mostly intractable.

As emphasized in Bandi and Bertsimas (2012), the intractability is usually due to high dimension, but

high dimensionality can occur in many different ways. The RQ in Bandi et al. (2015) emphasize the high

dimension arising when we consider a network of queues instead of a single queue. Instead, in this paper

we focus on the high dimension that occurs in a single queue when there is complex stochastic dependence

over time in the arrival and service processes. In a sequel, Whitt and You (2016), we focus on the high

dimension that occurs in a single queue when the deterministic arrival-rate function is time-varying. For

both problems, we find that the robust optimization approach is remarkably effective. Here we show that,

with an appropriate choice of parameters, all our new RQ solutions are asymptotically correct in the heavy-

traffic limit. Our most promising new RQ solutions in (18) and (28) are asymptotically correct in both

light traffic and heavy-traffic. Our simulation experiments show that the new RQ solutions provide useful

approximations more generally.

1.1. Dependence Among Interarrival Times and Service Times

Even though we only focus on one single-server queue, we too ultimately want to develop methods that

apply to complex networks of queues. We view the present paper as an important step in that direction,

because experience from applications of QNA has shown that a major shortcoming is its inability to ade-

quately capture the dependence among interarrival times and service times at the individual queues in the

network. That was dramatically illustrated by comparisons of QNA to model simulations in Sriram and

Whitt (1986), Fendick et al. (1989) and Suresh and Whitt (1990).
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Dependence among successive interarrival times at a queue is a common phenomenon, usually because

that queue is actually part of a network of queues. For example, arrival processes in queueing networks

are often superpositions of other arrival processes or departure processes from other queues, as depicted in

Figure 1.

Queue

Server

Queue 1 Queue 2 Queue n

Figure 1 Common queueing network structure that can induce dependence among interarrival times: superpositions of arrival

processes (top) and flow through a series of queues (bottom)

In most manufacturing production lines, an external (or initial) arrival process is often far less variable

than a Poisson process by design, while complicated processing operations, such as those involving batch-

ing, often produce complicated dependence among the interarrival times at subsequent queues; e.g., see

the example in §3 of Segal and Whitt (1989). In both manufacturing and communication systems, depen-

dence among successive interarrival times and among successive interdeparture times at a queue often

occurs because there are multiple classes of customers with different characteristics, e.g., Bitran and Tiru-

pati (1988). Multiple classes can even cause significant dependence (i) among interarrival times, (ii) among

service times and (iii) between interarrival times and service times, which all can contribute to a major

impact on performance, as shown by Fendick et al. (1989) and reviewed in §9.6 of Whitt (2002).

In service systems, an external customer arrival process often is well modeled by a Poisson process,

because it is generated by many separate people making decisions independently, at least approximately,

but dependence may be induced by over-dispersion, e.g., see Kim and Whitt (2014) and references there. In

contrast, internal arrivals within a network of queues are less likely to be well approximated by a Poisson

process, because the flow through queues disrupts the statistical regularity of a Poisson process. In particular,

service-time distributions are often not nearly exponential, while the interdeparture times in steady state

from anM/GI/1 queue, withGI meaning that the service times are independent and identically distributed

(i.i.d.), are themselves i.i.d. only if the service-time distribution is exponential, in which case the departure
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process is again Poisson. In other words, there are no non-deterministic non-Poisson renewal departure

processes from an M/GI/1 queue, e.g., see Disney and Konig (1985).

The dependence among interarrival times and service times has long been recognized as a major dif-

ficulty in developing effective approximations for open queueing networks, such as treated by QNA in

Whitt (1983); e.g., see Whitt (1995) and references therein. Refined performance approximations have been

proposed using second-order partial characterizations of dependence, using indices of dispersion (variance-

time functions), which involve correlations among interarrival times as well as means and variances; e.g.,

see Cox and Lewis (1966), Heffes (1980), Heffes and Luantoni (1986), Sriram and Whitt (1986), Fendick

et al. (1989, 1991) and Fendick and Whitt (1989). Our new RQ formulations will exploit these same par-

tial characterizations of the dependence among interarrival times and service times; see §3.3 and §4. Even

though we only consider a single queue here, in §6 we introduce a new framework in which we hope to

develop a full RQNA based on the results in this paper.

1.2. Main Contributions

1. In this paper, we introduce several new RQ formulations for the steady-state waiting time and work-

load in a single-server queue and make useful connections to the general stationaryG/G/1 stochastic model

and the GI/GI/1 special case. In particular, we show how to choose the RQ parameters so that these RQ

solutions all are asymptotically exact for the steady-state mean in the heavy-traffic limit.

2. In addition to new parametric versions of RQ as in Bandi et al. (2015), we introduce new functional

formulations that captures the impact of dependence among the interarrival times and service times over

time upon the steady-state performance of the queue as a function of the traffic intensity ρ. (See the uncer-

tainty sets in (9) and (15).)

3. We introduce the first RQ formulations for the continuous-time workload process and show that it is

advantageous to do so. We show how to choose the RQ parameters so that that the solution of the functional

RQ for the workload coincides with the steady-state mean in the M/GI/1 model for all traffic intensities

and is simultaneously asymptotically correct in both heavy traffic and light traffic for the general G/G/1

model, including the dependence.
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4. We conduct simulation experiments showing that the new functional RQ for the workload is effective

in exposing the impact of the dependence among the interarrival times and service times over time upon the

mean steady-state workload as a function of the traffic intensity.

5. We provide a road map for the application to networks of queues by introducing a new framework for

an RQNA based on indices of dispersion.

1.3. More Related Literature

Mamani et al. (2016) also incorporated dependence within a robust optimization formulation for a problem

in inventory management (which we might call RI), but otherwise there is relatively little overlap with this

paper. They point to early inventory work by Scarf (1958) and then Moon and Gallego (1994). The new

RQ work is also related to Whitt (1984a), which used optimization subject to constraints on the first two

moments to understand the range of possible values in the performance approximations in QNA. Klincewicz

and Whitt (1984) and Whitt (1984b) construct tighter bounds based on additional constraints to enforce a

realistic shape on the underlying interarrival-time distribution. This work showed that we can hope to obtain

useful accuracy like 20% relative error, but that we cannot hope to obtain extraordinarily high accuracy,

such as only 5% error, given the usual partial information based on the first two moments. And that is not

yet considering the dependence. Ignoring the dependence can lead to much bigger errors, as in Fendick

et al. (1989) and §9.6 of Whitt (2002).

1.4. Organization of the Paper

In §2, after reviewing RQ for the steady-state waiting time in the single-server queue from §2 and §3.1

of Bandi et al. (2015), we develop an alternative formulation whose solution coincides with the Kingman

(1962) bound and is asymptotically correct in heavy-traffic. In §3 we introduce new parametric and func-

tional RQ formulations for the continuous-time workload process and characterize their solutions. In §4 we

introduce the index of dispersion for work (IDW) and incorporate it in the RQ. We develop closed-form RQ

solutions and show that the functional RQ is asymptotically correct in both heavy and light traffic. In §5

we conduct simulation experiments for the two network structures in Figure 1. These experiments demon-

strate (i) the strong impact of dependence upon performance and (ii) the value of the new RQ in capturing
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the impact of that dependence. In §6 we introduce a new framework for applyiing the results in this paper

to develop a new RQNA that better captures the dependence. Finally, in §7 we draw conclusions. Addi-

tional supporting material appears in the e-companion, in particular, (i) additional discussion, (ii) additional

theoretical support, (iii) more results for the waiting time and (iv) more simulation examples.

2. Robust Queueing for the Steady-State Waiting Time

We start by reviewing the RQ developed in §2 and §3.1 of Bandi et al. (2015), which involves separate

uncertainty sets for the arrival times and service times. We then construct an alternative formulation with a

single uncertainty set and show, for theGI/GI/1 queue, that a natural version of the RQ solution coincides

with the Kingman (1962) bound and so is asymptotically correct in the heavy-traffic limit. We show that

both formulations provide insight into the relaxation time for the GI/GI/1 queue, the approximate time

required to reach steady state.

We use the representation of the waiting time (before receiving service) in a general single-server queue

with unlimited waiting space and the first-come first-served (FCFS) service discipline, without imposing

any stochastic assumptions. The waiting time of arrival n satisfies the Lindley (1952) recursion

Wn = (Wn−1 +Vn−1 −Un−1)
+ ≡max{Wn−1 +Vn−1 −Un−1,0}, (1)

where Vn−1 is the service time of arrival n− 1, Un−1 is the interarrival time between arrivals n− 1 and n,

and ≡ denotes equality by definition. If we initialize the system by having an arrival 0 finding an empty

system, thenWn can be represented as the maximum of a sequence of partial sums, using the Loynes (1962)

reverse-time construction; i.e.,

Wn =Mn ≡ max
0≤k≤n

{Sk}, n≥ 1, (2)

using reverse-time indexing with Sk ≡X1+ · · ·+Xk andXk ≡ Vn−k−Un−k, 1≤ k≤ n and S0 ≡ 0. (Bandi

et al. (2015) actually look at the system time, which is the sum of an arrival’s waiting time and service time.

These representations are essentially equivalent.)

If we extend the reverse-time construction indefinitely into the past from a fixed present state, then Wn ↑

W ≡ supk≥0 {Sk} with probability 1 as n→∞, allowing for the possibility that W might be infinite. For
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the stable stationary G/G/1 stochastic model with E[Uk ] <∞, E[Vk ] <∞ and ρ ≡ E[Vk]/E[Uk] < 1,

P (W <∞) = 1; e.g., see Loynes (1962) or §6.2 of Sigman (1995).

Bandi et al. (2015) propose an RQ approximation for the steady-state waiting time W by performing a

deterministic optimization in (2) subject to deterministic constraints, where we can ignore the time reversal.

Treating the partial sums Sa
k of the interarrival times Uk and the partial sums Ss

k of the service times Vk

separately leads to the two uncertainty sets (for W )

Ua ≡ {Ũ ∈R
∞ : Sa

k ≥ kma − ba
√
k, k≥ 0} and Us = {Ṽ ∈R

∞ : Ss
k ≤ kms+ bs

√
k, k≥ 0}, (3)

where Ũ ≡ {Uk : k ≥ 1} and Ṽ ≡ {Vk : k ≥ 1} are arbitrary sequences of real numbers in R
∞, Sa

k ≡

U1 + · · ·+Uk and Ss
k ≡ V1 + · · ·+Vk, k≥ 1, S0 ≡ 0, and ma, ms, ba and bs are parameters to be specified.

The constraints in (3) are one sided because that is what is required to bound the waiting times above, as

we can see from (1) and (2). Thus, the RQ optimization can be expressed as

W ∗ ≡ sup
Ũ∈Ua

sup
Ṽ ∈Us

max
k≥0

{Ss
k −Sa

k}. (4)

where Sa
k (Ss

k) is a function of Ũ (Ṽ ) specified above. Versions of this formulation in (4) and others in this

paper also apply to the transient waiting time Wn, but we will focus on the steady-state waiting time.

Thinking of the general stationary G/G/1 stochastic model, where the distributions of Uk and Vk are

independent of k (but stochastic independence is not assumed), Bandi et al. (2015) assume thatma ≡E[Uk ]

andms ≡E[Vk] and assume thatma >ms, so that ρ≡ms/ma < 1. The square-root terms in the constraints

in (3) are motivated by the central limit theorem (CLT). Thinking of the GI/GI/1 model in which the

interarrival times Uk and service times Vk come from independent sequences of independent and identically

distributed (i.i.d.) random variables with finite variances σ2
a and σ2

s , the CLT suggests that ba = βaσa and

bs = βsσs for some positive constants βa and βs, perhaps with β = βa = βs. With this choice, these new

parameters measure the number of standard deviations away from the mean in a Gaussian approximation.

Bandi et al. (2015) also provided an extension to cover the heavy-tailed case, where finite variances might

not exist; then
√
k in (3) is replaced by k1/α for 0<α≤ 2, as we would expect from §§4.5, 8.5 and 9.7 of

Whitt (2002), but we will not discuss that extension here.
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From (1), it is evident that the waiting times depend on the service times and interarrival times only

through their difference Xn. Thus, instead of the two uncertainty sets in (3), we propose the single uncer-

tainty set (for each n)

Ux ≡{X̃ ∈R
∞ : Sx

k ≤−mk+ bx
√
k, k≥ 0}, (5)

where X̃ ≡ {Xk : k ≥ 1} ∈ R
∞, Sx

k ≡ X1 + · · · +Xk, k ≥ 1 and S0 ≡ 0, while m and bx are constant

parameters to be specified. To avoid excessively strong constraints for small values of k, not justified by the

CLT, we could replace k in the constraint bounds on the right in (5) by max{k, kL}, but that lower bound

kL has no impact if chosen appropriately. Combining (2) and (5), we obtain the alternative RQ optimization

W ∗ ≡ sup
X̃∈Ux

sup
k≥0

{Sx
k}. (6)

where Sx
k is the function of X̃ specified above.

The RQ formulations in (4) and (6) are attractive because the optimizations have simple solutions in

which all constraints are satisfied as equalities. That follows easily from the fact that Wn is a nondecreasing

(nonincreasing) function of Vk (of Uk) for all k and n. The simple closed-form solution follows from the

triangular structure of the equations; see §3.1 of Bandi et al. (2015). The following is a direct extension of

Theorem 2 of Bandi et al. (2015) to include the new RQ formulation in (6). The final statement involves an

interchange of suprema, which is justified by Lemma EC.1.

THEOREM 1. (RQ solutions for the steady-state waiting time) The RQ optimizations (4) with ma >ms > 0

and (6) with m> 0 have the solution

W ∗ = sup
k≥0

{−mk+ b
√
k} ≤ sup

x≥0
{−mx+ b

√
x}=−mx∗ + b

√
x∗ =

b2

4m
for x∗ =

b2

4m2
, (7)

wherem=ma−ms > 0. For (4), b≡ bs+ ba; for (6), b≡ bx. In (7), W ∗ is maximized at one of the integers

immediately above or below x∗ for all n≥ x∗.

We now establish implications for the GI/GI/1 and general stationary G/G/1 models. To discuss

heavy-traffic limits, it is convenient to introduce the traffic intensity ρ as a scaling factor applied to the

interarrival times. Hence, we start with a sequence {(Uk, Vk)} where E[Uk ] = E[Vk] = 1 for all k. Then
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in model ρ we let the interarrival times be ρ−1Uk, where 0< ρ < 1. Thus, ms = 1 and ma = ρ−1, so that

m≡ (1− ρ)/ρ and W ∗
n = b2ρ/4(1− ρ) in (7).

Since the CLT underlies the heavy-traffic limit theory as well as the RQ formulation, it should not be

surprising that we can make strong connections to heavy-traffic approximations. The new formulation in (6)

is attractive because, with a natural choice of the constant bx there, it matches the Kingman (1962) bound

for the mean steady-state wait E[W ] in the GI/GI/1 stochastic model and so is asymptotically correct in

heavy-traffic, whereas that is not the case for (4) with a natural choice of b. Let c2s ≡ V ar(V1)/(E[V1])
2 =

V ar(V1) and c2a ≡ V ar(U1)/(E[U1])
2 = ρ2V ar(U1) be the squared coefficients of variation (scv’s).

COROLLARY 1. (RQ yields the Kingman bound for GI/GI/1) In the setting of (6), if we let bx ≡

β
√

V ar(X1) and β ≡
√
2, then bx =

√

2(c2s + ρ−2c2a) for the GI/GI/1 model with traffic intensity ρ, so

that

W ∗ ≡W ∗(ρ) =
V ar(X1)

2|E[X1]|
=
ρ(c2s + ρ−2c2a)

2(1− ρ)
, (8)

which is the upper bound forE[W ] in Theorem 2 of Kingman (1962), so that (1−ρ)W ∗(ρ)→ (c2a+c
2
s)/2 as

ρ ↑ 1, which supports the heavy-traffic approximationW ∗(ρ)≈ ρ(c2a+c
2
s)/2(1−ρ), just as for E[W ] in the

stochastic model. On the other hand, in the setting of (4), if we let bs ≡ β
√

V ar(V1) and ba ≡ β
√

V ar(U1),

then we obtain b= bs + ba = β(cs+ ρ−1ca) instead of b=
√

b2s + b2a = β
√

c2s + ρ−2c2a, as needed.

REMARK 1. (the significance for approximations) The difference between the RQ solutions for (4) and (6)

mentioned at the end of Corollary 1 can have serious implications for approximations; e.g., if c2a = c2s = x,

then (c2a + c2s)/2 = x, while (ca + cs)
2/2 = 2x, a factor of 2 larger. Hence, if we apply (4) with ba = bs to

the simple M/M/1 queues, one is forced to have a 100% error in heavy traffic. These two coincides only

when at least one of ba and bs is 0, i.e., in D/GI/1 or GI/D/1 models, and the percentage error is the

largest when service times and arrival times have the same variability.

Exploiting the flexibility of robust optimization, Bandi et al. (2015) use statistical regression in their §7 to

refine the solution to (4). Clearly, the regression step makes the overall algorithm much more complicated.

If regression is used, it is helpful to start with a good functional form.
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These RQ formulations provide insight into the rate of approach to steady state for the GI/GI/1 model,

as captured by the relaxation time; see §III.7.3 of Cohen (1982) and §XIII.2 of Asmussen (2003). For RQ,

steady state is achieved at a fixed time, whereas in the stochastic model steady state is approached gradually,

with the error |E[Wn]−E[W ]| typically being of order O(n−3/2e−n/r) as n→∞, where r≡ r(ρ) is called

the relaxation time. As usual, we say f(t) is O(g(t)) as t→ ∞, where f and g are positive real-valued

functions, if f(t)/g(t)→ c as t→∞, where 0< c<∞.

COROLLARY 2. (relaxation time for the GI/GI/1 queue) With both (4) and (6), the place where the RQ

supremum is attained is x∗(ρ) =O((1− ρ)−2) as ρ ↑ 1, which is the same order as the relaxation time in

the GI/GI/1 model.

REMARK 2. (a functional RQ to expose the impact of dependence in theG/G/1 model) The RQ problems

in (4) and (6) can be considered instances of a parametric RQ, because they depend on the stochastic model

only through a few parameters, in particular, (ma,ms, ba, bs) in (4) and (m,bx) in (6). We can expose the

impact of dependence among the interarrival times and service times on the steady-state waiting time in the

G/G/1 model as a function of the traffic intensity ρ by introducing a new functional RQ formulation. We

replace the uncertainty set in (6) by

Ux
f ≡ {X̃ : Sx

k ≤E[Sx
k ] + b′x

√

V ar(Sx
k ), k≥ 0}. (9)

and similarly for the two constraints in (4). The constraints in (9) also can be motivated by a CLT, but with

spatial scaling by
√

V ar(Sk) instead of
√
k, as we show in §EC.4.3. The functional RQ produces a more

complicated optimization problem, but it is potentially more useful, in part because it too can be analyzed.

For brevity, we discuss this functional RQ for the waiting time in the EC because we will next develop such

a functional RQ formulation for the continuous-time workload. As discovered in Fendick and Whitt (1989),

it is convenient to focus on the steady-state workload when we want to expose the performance impact of

the dependence among interarrival times and service times.

REMARK 3. (asymptotically correct in heavy traffic for the G/G/1 model) In §EC.5.2 we observe that

Corollary 1 can be extended, with the aid of §EC.4 and §EC.5, to show that both the new parametric RQ in
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(6) and the new functional RQ with uncertainty set in (9) are asymptotically correct in heavy traffic for the

more general stationary G/G/1 model, where we regard {(Uk, Vk)} as a stationary sequence with the same

mean values, including E[Vk] = 1 and E[Uk ] = ρ−1 > 1 for all k. Now we must choose the parameter bx

appropriately to account for the dependence among the interarrival times and service times. Just as before,

that can be motivated by the CLT, but now we need a CLT that accounts for the dependence, as in Theorem

4.4.1 and §9.6 of Whitt (2002); see §EC.4.

3. Robust Queueing for the Continuous-Time Workload

We now develop RQ formulations for the continuous-time workload in the single-server queue. We develop

both a parametric RQ paralleling (6) and a functional RQ with an uncertainty set paralleling (9) in Remark

2.

The workload at time t is the amount of unfinished work in the system at time t; it is also called the

virtual waiting time because it represents the waiting time a hypothetical arrival would experience at time

t. The workload is more general than the virtual waiting time because it applies to any work-conserving

service discipline. We consider the workload primarily because it can serve as a convenient more tractable

alternative to the waiting time.

We start by developing a reverse-time representation of the workload process paralleling (2). Then we

develop both parametric and function RQ formulations and give their solutions, which closely parallels

Theorem 1. We then show that natural versions of both RQ formulations for the workload are exact for

the M/GI/1 model and are asymptotically correct in both light traffic and heavy-traffic for the general

stationary G/G/1 model.

3.1. The Workload Process and its Reverse-Time Representation

As before, we start with a sequence {(Uk, Vk)} of interarrival times and service times. The arrival counting

process can be defined by

A(t)≡max{k ≥ 1 :U1 + · · ·+Uk ≤ t} for t≥U1 (10)
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and A(t)≡ 0 for 0≤ t < U1, while the total input of work over [0, t] and the net-input process are, respec-

tively,

Y (t)≡
A(t)
∑

k=1

Vk and N(t)≡ Y (t)− t, t≥ 0, (11)

while the workload (the remaining workload) at time t, starting empty at time 0, is the reflection map Ψ

applied to N , i.e.,

Z(t) =Ψ(N)(t)≡N(t)− inf
0≤s≤t

{N(s)}, t≥ 0. (12)

As in §6.3 of Sigman (1995), we again use a reverse-time construction to represent the workload in a

single-server queue as a supremum, so that the RQ optimization problem becomes a maximization over

constraints expressed in an uncertainty set, just as before, but now it is a continuous optimization problem.

Using the same notation, but with a new meaning, Let Z(t) be the workload at time 0 of a system that

started empty at time −t. Then Z(t) can be represented as

Z(t)≡ sup
0≤s≤t

{N(s)}, t≥ 0, (13)

where N is defined in terms of Y as before, but Y is interpreted as the total work in service time to enter

over the interval [−s,0]. That is achieved by letting Vk be the kth service time indexed going backwards

from time 0 and A(s) counting the number of arrivals in the interval [−s,0]. Paralleling the waiting time

in §2, Z(t) increases monotonically to Z as t→∞. For the stable stationary G/G/1 stochastic queue, Z

corresponds to the steady-state workload and satisfies P (Z <∞) = 1; see §6.3 of Sigman (1995).

3.2. Parametric and Functional RQ for the Steady-State Workload

Just as in §2, to create appropriate RQ formulations for the steady-state workload, it is helpful to have a

reference stochastic model, which can be the stable stationary G/G/1 model, where such a steady-state

workload is well defined. In discrete time, our formulation can be developed by scaling the interarrival

times, assuming that E[Vk] =E[Uk] = 1 for all k for a base stationary sequence {(Uk, Vk)} and introducing

ρ by letting the interarrival times be ρ−1Uk when the traffic intensity is ρ, 0 < ρ < 1. (That was done in

§2 right after Theorem 1.) Now, in continuous time, we do essentially the same, but now we need to work
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with continuous-time stationarity instead of discrete-time stationarity; e.g., see Sigman (1995). Hence, we

assume that there is a base stationary process {(A(t), Y (t)) : t ≥ 0} with E[A(t)] = E[Y (t)] = 1 for all

t≥ 0 and introduce ρ by simple scaling via

Aρ(t)≡A(ρt) and Yρ(t)≡ Y (ρt), t≥ 0 and 0< ρ< 1, (14)

which implies that E[Aρ(t)] =E[Yρ(t)] = ρt for all t≥ 0. Then Nρ(t)≡ Yρ(t)− t and Zρ(t) = Ψ(Yρ)(t),

t≥ 0, just as in (11) and (12). With the reverse-time construction Zρ(t) can be expressed as a supremum

over the interval [0, t], just as in (13).

Within that scaling framework, the natural parametric and functional (see Remark 2) uncertainty sets for

the steady-state workload are, respectively,

Up
ρ ≡

{

Ñρ :R
+ →R : Ñρ(s)≤−(1− ρ)s+ bp

√
s, s≥ 0

}

and

Uρ ≡Uf
ρ ≡

{

Ñρ :R
+ →R : Ñρ(s)≤E[Nρ(s)]+ bf

√

V ar(Nρ(s)), s≥ 0

}

,

=

{

Ñρ :R
+ →R : Ñρ(s)≤−(1− ρ)s+ bf

√

V ar(Nρ(s)), s≥ 0

}

, (15)

where we regard Ñρ ≡ {Ñρ(s) : 0≤ s≤ t} as an arbitrary real-valued function on R
+ ≡ [0,∞), while we

regard {Nρ(s) : s ≥ 0} as the underlying stochastic process, and {V ar(Nρ(s)) : s ≥ 0} = {V ar(Yρ(s)) :

s≥ 0} as its variance-time function, which can either be calculated for a stochastic model or estimated from

simulation or system data; see §4.3. In (15), bp and bf are parameters to be specified.

Paralleling §2, the associated parametric and functional RQ formulations are, respectively,

Z∗
p,ρ ≡ sup

Ñρ∈U
p
ρ

sup
s≥0

{

Ñρ(t)
}

Z∗
ρ ≡Z∗

f,ρ ≡ sup
Ñρ∈U

f
ρ

sup
s≥0

{

Ñρ(t)
}

. (16)

As in §2, our RQ formulations in (16) are motivated by a CLT, but here for Yρ(t) (which implies an associ-

ated CLT forNρ(t)), which we review in §EC.4; in particular, see (EC.14) and (EC.16). The same reasoning

as before yields the following analog of Theorem 1. The interchange of suprema is justified by Lemma

EC.1.
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THEOREM 2. (RQ solutions for the workload) The solutions of the RQ optimizations in (16) are

Z∗
p,ρ ≡ sup

Ñρ∈U
p
ρ

sup
s≥0

{

Ñρ(t)
}

= sup
s≥0

sup
Ñρ∈U

p
ρ

{

Ñρ(t)
}

= sup
s≥0

{

−(1− ρ)s+ bz
√
s
}

= −(1− ρ)x∗+ bz
√
x∗ =

b2z
4|1− ρ| for x∗ ≡ x∗(ρ) =

b2z
4(1− ρ)2

and (17)

Z∗
ρ ≡Z∗

f,ρ ≡ sup
Ñρ∈Uf

ρ

sup
s≥0

{

Ñρ(t)
}

= sup
s≥0

sup
Ñρ∈Uf

ρ

{

Ñρ(t)
}

= sup
s≥0

{

−(1− ρ)s+ bf

√

V ar(Nρ(s))

}

= sup
s≥0

{

−(1− ρ)s+ bf

√

V ar(Yρ(s))

}

. (18)

COROLLARY 3. (exact for M/GI/1) For the M/GI/1 model, the total input process {Yρ(t) : t ≥ 0} in

(14) is a compound Poisson process with E[Yρ(t)] = ρt and V ar(Yρ(t)) = ρt(c2s+1), so that Z∗
f,ρ =Z∗

p,ρ if

b2p = b2fρ(c
2
s + c2a). If, in addition, bf ≡

√
2, then

Z∗
p,ρ =Z∗

f,ρ =
ρ(c2s + c2a)

2(1− ρ)
=E[Zρ], (19)

where E[Zρ] is the mean steady-state workload in the M/GI/1 model with traffic intensity ρ.

3.3. The Variance-Time Function for the Total Input Process

For further progress, we focus on the variance-time function V ar(Yρ(t)) in (18). As regularity conditions

for Y (t), we assume that V (t) ≡ Vρ(t) ≡ V ar(Yρ(t)) is differentiable with derivative V̇ (t) having finite

positive limits as t→∞ and t→ 0, i.e.,

V̇ (t)→ σ2
Y as t→∞ and V̇ (t)→ V̇ (0)> 0 as t→ 0, (20)

for an appropriate constant σ2
Y . These assumptions are known to be reasonable; see §4.5 of Cox and Lewis

(1966), Fendick and Whitt (1989) and §4.3.

A common case in models for applications is to have positive dependence in the input process Y , which

holds if

Cov(Y (t2)−Y (t1), Y (t4)−Y (t3))≥ 0 for all 0≤ t1 < t2 ≤ t3 < t4. (21)
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Negative dependence holds if the inequality is reversed. These are strict if the inequality is a strict inequality.

From (17) and (18) of §4.5 in Cox and Lewis (1966), which is restated in (48) and (49) of Fendick and

Whitt (1989), with positive (negative) dependence, under appropriate regularity conditions, V̇ (t) ≥ 0 and

V̈ (t)≥ (≤)0.

REMARK 4. (example of negative dependence) Negative dependence in Y occurs if greater input in one

interval tends to imply less input in another interval. Such negative dependence occurs when there is a

specified number of arrivals in a long time interval, as in the ∆(i)/GI/1 model, where the arrival times (not

interarrival times) are i.i.d. over an interval; see Honnappa et al. (2015). This phenomenon can also occur

in queues with arrivals by appointment, where there are i.i.d. deviations about deterministic appointment

times; e.g., see Kim et al. (2015).

THEOREM 3. (RQ exposing the impact of the dependence) Consider the functional RQ optimization for

the steady-state workload in the general stationary G/G/1 queue with ρ < 1 formulated in (16) and solved

in (18). Assume that (20) holds for the variance-time function V (t)≡ Vρ(t)≡ V ar(Yρ(t)).

(a) For each ρ, 0< ρ < 1, there exists (possibly not unique) x∗ ≡ x∗(ρ), such that a finite maximum is

attained at x∗ for all t≥ x∗. In addition, 0<x∗ <∞ and x∗ satisfies the equation

(1− ρ) = ḣ(x) where h(x)≡ b′z
√

V (x). (22)

The time x∗ is unique if h(x) is strictly concave or strictly convex, i.e., if ḣ(x) is strictly increasing or

strictly decreasing.

(b) The variance function V (x) is convex (concave), so that the function h(x) ≡
√

V (x) is concave

if there is positive (negative) dependence, as in (21) (with sign reversed). Moreover, a strict inequality

is inherited. Thus, there exists a unique solution to the RQ if there is strict positive dependence or strict

negative dependence. Moreover, the optimal time x∗(ρ) is strictly increasing in ρ, approaching 1 as ρ ↑ 1,

so that Z∗
ρ → V̇ (∞) = Iw(∞) = σ2

Y as ρ ↑ 1.
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Proof. The inequalities can be satisfied as equalities just as before. There are finite values s0 such that

√

V (s)≤
√

2σ2
Y s for all s≥ s0 by virtue of the limit in (20). (Also see (EC.1) and (EC.12).) That shows

that the optimization can be regarded as being over closed bounded intervals. The assumed differentiability

of V implies that it is continuous, which implies that the supremeum is attained over the compact interval.

Because V̇ (x)→ V̇ (0)> 0, we see that there exists a small s′ such that

−(1− ρ)s+ b′z
√

V (s)≥−(1− ρ)s+ b′z

√

sV̇ (0)/2> 0 for all s≤ s′.

As a consequence, the maximum in (18) must be strictly positive and must be attained at a strictly positive

time.

The results for
√

V (x) with positive dependence follow from convexity properties of compositions. First,

with positive dependence,−
√

V (x) is a convex function of an increasing convex function, and thus convex

so that
√

V (x) is concave. Second, with negative dependence, we have V ≥ 0, V̇ (t)≥ 0 and V̈ (t)≤ (≤)0.

Thus, by direct differentiation

ḧ(x) =
1

√

V (x)

(

V̈ (x)

2
− V̇ (x)

4V (x)

)

≤ 0,

with strictness implying a strict inequality.

4. The Indices of Dispersion for Counts and Work

The workload process is not only convenient because it leads to the continuous RQ optimization problem

in (16) with solution in (18), but also because the workload process scales with ρ in a more elementary way

than the waiting times, as indicated in §3.2. In contrast, the scaling of the waiting times in previous sections

is more complicated because the interarrival times are scaled with ρ but the service times are not

It is useful to relate the variances of the arrival counting process A(s) and the cumulative work input

process Y (s) to associated continuous-time indices of dispersion, studied in Fendick and Whitt (1989) and

Fendick et al. (1991). With that convention, we define the index of dispersion for counts (IDC) associated

with the rate-1 arrival process A as in §4.5 of Cox and Lewis (1966) by

Ic(t)≡
V ar(A(t))

E[A(t)]
=
V ar(A(t))

t
, t≥ 0. (23)
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and the index of dispersion for work (IDW) associated with the rate-1 cumulative input process Y by

Iw(t)≡
V ar(Y (t))

E[V1]E[Y (t)]
=
V (t)

t
, t≥ 0. (24)

Fendick and Whitt (1989) showed that the IDW Iw is intimately related to a scaled workload c2Z(ρ),

which can be defined by comparing to what it would be in the associated M/D/1 model; i.e.,

c2Z(ρ)≡
E[Zρ]

E[Zρ;M/D/1]
=

2(1− ρ)E[Zρ]

E[V1]ρ
=

2(1− ρ)E[Zρ]

ρ
, (25)

Indeed, under regularity conditions (see §EC.4.5), the following finite positive limits exist and are equal:

lim
t→∞

{Iw(t)} ≡ Iw(∞) = σ2
Y = c2Z(1)≡ lim

ρ→1
{c2Z(ρ)}

lim
t→0

{Iw(t)} ≡ Iw(0) = 1+ c2s = c2Z(0)≡ lim
ρ→0

{c2Z(ρ)} (26)

for c2s ≡ V ar(V1)/E[V1]
2 and c2Y in (20) and (EC.7). The limits for Iw above and the differentiability of Iw

follow from the assumed differentiability for V (t) and limits in (20). For t→ 0 and ρ→ 0, see §IV.A of

Fendick and Whitt (1989).

The challenge is to relate c2Z(ρ) to the IDW Iw(t) for 0< ρ < 1 and t≥ 0. As observed by Fendick and

Whitt (1989), a simple connection would be c2Z(ρ)≈ Iw(tρ) for some increasing fucntion tρ, reflecting that

the impact of the dependence among the interarrival times and service times has impact on the performance

of a queue over some time interval [0, tρ], where tρ should increase as ρ increases. The extreme cases are

supported by (26), but we want more information.

4.1. Robust Queueing with the IDW

To obtain more information, RQ can help. As a first step, we express the solution in (18) as

Z∗
ρ = sup

s≥0

{

−(1− ρ)s+ bf

√

V ar (Yρ(s))

}

= sup
s≥0

{

−(1− ρ)s+ bf
√

ρsIw(ρs)
}

, (27)

using (24). Making the change of variables x≡ ρs, we can write

Z∗
ρ = sup

x≥0

{

−(1− ρ)x/ρ+ bf
√

xIw(x)
}

, (28)
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To further relate the RQ solution in (28) to the steady-state workload in the G/G/1 queue, we define an

RQ analog of the normalized mean workload in (25), in particular,

c2Z∗(ρ)≡
2(1− ρ)Z∗

ρ

ρ
. (29)

The RQ approach allows us to establish versions of the variability fixed-point equation suggested in (9),

(15) and (127) of Fendick and Whitt (1989).

THEOREM 4. (closed-form RQ solutions) Any optimal solution of the RQ in (28) is attained at s∗(ρ) ≡

x∗/ρ, where x∗ ≡ x∗(ρ) satisfies the equation

x∗ =
b2fρ

2Iw(x
∗)

4(1− ρ)2

(

1+
x∗İw(x

∗)

Iw(x∗)

)2

(30)

for bf in (18). The associated RQ optimal workload in (28) can be expressed as

Z∗
ρ =

b2fρIw(x
∗)

4(1− ρ)



1−
(

x∗İw(x
∗)

Iw(x∗)

)2


 , (31)

which is a valid nonnegative solution provided that x∗İw(x
∗) ≤ Iw(x

∗). If bf =
√
2, then the associated

scaled RQ workload satisfies

c2Z∗(ρ) = Iw(x
∗)



1−
(

x∗İw(x
∗)

Iw(x∗)

)2


 , (32)

Proof. Note that xIw(x) = V (x). Because we have assumed that V (x) is differentiable, so is Iw. We

obtain (30) by differentiating with respect to x in (28) and setting the derivative equal to 0. After substituting

(30) into (28), algebra yields (31). The limits in (20) imply that x∗İw(x
∗) → 0 and Iw(x

∗) → Iw(∞) as

ρ→ 1.

Given that xİw(x)→ 0 as x→∞, if bf =
√
2, then it is natural to consider the approximation

x∗(ρ)≈ ρ2

2(1− ρ)2
Iw(x

∗(ρ)) so that Z∗
ρ ≈

ρIw(x
∗(ρ))

2(1− ρ)
and c2Z∗(ρ) = Iw(x

∗(ρ)). (33)

The first equation in (33) is a variability fixed-point equation of the form in suggested in (15) of Fendick

and Whitt (1989).
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4.2. Heavy-Traffic and Light-Traffic Limits

The following result shows the great advantage of doing RQ with (i) the continuous-time workload and (ii)

the functional version of the RQ in (28). A proof is given in §EC.6.

THEOREM 5. (heavy-traffic and light-traffic limits) Under the regularity conditions assumed for the IDW

Iw(t), if bf ≡
√
2, then the functional RQ solution in (28) is asymptotically correct both in heavy traffic (as

ρ ↑ 1) and light traffic (as ρ ↓ 0), i.e., so that we have the following supplement to (26):

c2Z∗(1) = Iw(∞) = c2Z(1) and c2Z∗(0) = Iw(0) = c2Z(0). (34)

REMARK 5. The parametric RQ solution can be made correct in heavy traffic or in light traffic, as above,

by choosing the parameter bp appropriately, but both cannot be achieved simultaneously unless Iw(∞) =

Iw(0).

4.3. Estimating and Calculating the IDW

For applications, it is significant that the IDW Iw(t) used in §4 can readily be estimated from data from sys-

tem measurements or simulation and calculated in a wide class of stochastic models. The time-dependent

variance functions can be estimated from the time-dependent first and second moment functions, as dis-

cussed in §III.B of Fendick et al. (1991). Calculation depends on the specific model structure.

4.3.1. The G/GI/1 Model. If the service times are i.i.d. with a general distribution having mean τ

and scv c2s and are independent of a general stationary arrival process, then as indicated in (58) and (59) in

§III.E of Fendick and Whitt (1989),

Iw(t) = c2s + Ic(t), t≥ 0, (35)

where c2s is the scv of a service time and Ic is the IDC of the general arrival process.

4.3.2. The Multi-Class
∑

i(Gi/Gi)/1 Model. As indicated in (56) and (57) in §III.E of Fendick and

Whitt (1989), if the input comes from independent sources, each with their own arrival process and service

times, then the overall IDC and IDW are revealing functions of the component ones. Let λi be the arrival
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rate, τi the mean service time of class i, and ρi ≡ λiτi be the traffic intensity for class i with λ ≡
∑

i λi,

τ ≡
∑

i(λi/λ)τi = 1 so that ρ= λ. With our scaling conventions,

Ic(λt)≡
V ar(A(t))

E[A(t)]
=

∑

i V ar(Ai(t))

λt
=
∑

i

(

λi

λ

)

Ic,i(λit) (36)

and

Iw(λt)≡
V ar(X(t))

τE[X(t)]
=

∑

i Vi(t)

ρt
=
∑

i

(

ρiτi
ρτ

)

Iw,i(λit) for all t≥ 0. (37)

From (36) and (37), we see that Ic and Iw are convex combinations of the component Ic,i and Iw,i modified

by additional time scaling. The interaction with the time scaling in (36) and (37) with the time scaling

by n= (1− ρn)
−2 in (EC.17) for the HT limits in Theorem EC.2 can have an important implications for

performance, as we illustrate in §4.3.4.

4.3.3. The IDC’s for Common Arrival Processes. The two previous subsections show that for a large

class of models the main complicating feature is the IDC of the arrival process from a single source. The

only really simple case is a Poisson arrival process with rate λ. Then Ic(t) = 1 for all t≥ 0. A compound

(batch) Poisson process is also elementary because the process Y has independent increments; then the

arrival process itself is equivalent to M/GI source. However, for a large class of models, the variance

V ar(A(t)) and thus the IDC Ic(t) can either be calculated directly or can be characterized via their Laplace

transforms and thus calculated by inverting those transforms and approximated by performing asymptotic

analysis. For all models, we assume that the processesA and Y have stationary increments.

An important case for A is the renewal process; to have stationary increments, we assume that it is the

equilibrium renewal process, as in §3.5 of Ross (1996). Then V ar(A(t)) can be expressed in terms of the

renewal function, which in turn can be related to the interarrival-time distribution and its transform. The

explicit formulas for renewal processes appear in (14), (16) and (18) in §4.5 of Cox (1962). The required

Numerical transform inversion for the renewal function is discussed in §13 of Abate and Whitt (1992). The

hyperexponential (H2) and Erlang (E2) special cases are described in §III.G of Fendick and Whitt (1989).

It is also possible to carry out similar analyses for much more complicated arrival processes. Neuts (1989)

applies matrix-analytic methods to give explicit representations of the variance V ar(A(t)) for the versatile
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Markovian point process or Neuts process; see §5.4, especially Theorem 5.4.1. Explicit formulas for the

Markov modulated Poisson process (MMPP) are given on pp. 287-289.

All of these explicit formulas above have the asymptotic form

V ar(A(t)) = σ2
A + ζ +O(e−γt) as t→∞.

4.3.4. The Superposition of Many Component Sources. To better understand the complex multi-

class examples, consider the
∑

iGIi/GI/1 model where the arrival process is the superposition of n i.i.d.

renewal processes, each with rate ρ/n, so that the overall arrival rate is ρ. From (36) and (37),

Ic,n(ρt) = Ic,1(ρt/n) and Iw,n(ρt) = Iw,1(ρt/n), t≥ 0, (38)

so that the superposition IDI and IDW differ from those of a single component process only by the time

scaling. In support of the IDC and IDW as useful partial characterizations, we see that the expressions in

(36)-(35) are consistent with the known complex behavior of queues with superposition arrival processes,

as discussed in §9.8 of Whitt (2002). As n→∞, we see evidence of the convergence to a Poisson process;

As t→∞ we see the same limit as for a single component renewal process, i.e., Ic,n(∞) = Ic,1(∞). We

see that the RQ approach can capture the complex interaction between n and ρ.

5. Simulation Comparisons

We illustrate how the new RQ approach can be used with system data from queueing networks by apply-

ing simulation to analyze two common but challenging network structures in Figure 1: (i) a queue with a

superposition arrival process and (ii) several queues in series. The specific examples are chosen to capture

a known source of difficulty: These is complex dependence in the arrival process to the queue, so that the

relevant variability parameter of the arrival process at the queue can depend strongly on the traffic intensity

of that queue, as discussed in Whitt (1995). Our RQ approximmations are obtained by applying (28) after

estimating the IDC and applying (35).
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5.1. A Queue with a Superposition Arrival Process

We start by looking at an example of a
∑

iGi/GI/1 single-server queue with a superposition arrival pro-

cess, where (38) can be applied. Let the rate-1 arrival processA be the superposition of n= 10 i.i.d. renewal

processes, each with rate 1/n, where the times between renewals have a lognormal distribution with mean n

and scv c2a = 10. Let the service-times distribution be hyperexponential (H2), a mixture of two exponential

distributions) with mean 1, c2s = 2 and balanced means as on p. 137 of Whitt (1982). Then (38) and (26)

imply that the IDW has limits Iw(0) = 1+ c2s = 3 and Iw(∞) = c2a + c2s = 12, so that the IDW is not nearly

constant.

Figure 2 (left) shows a comparison between the simulation estimate of the normalized workload c2Z(ρ)

in (25) and the approximation c2Z∗(ρ) in (29) for this example. Two important observations are: (i) the

normalized mean workload c2Z(ρ) in (25) as a function of ρ is not nearly constant, and (ii) there is a close

agreement between the RQ approximation c2Z∗(ρ) in (29) and the direct simulation estimate; the close

agreement for all traffic intensities is striking. It is important to note that the parametric RQ approximations

produce constant approximations, and so cannot be simultaneously good for all traffic intensities.

For this example, we see that c2Z(ρ)≈ 3 for ρ≤ 0.5, which is consistent with the Poisson approximation

for the arrival process and the associated M/G/1 queue, where c2Z(ρ) = 3 for all ρ, but the normalized

workload increases steadily to 12 after ρ= 0.5, as explained in §9.8 of Whitt (2002).

The estimates for Figure 2 were obtained for ρ over a grid of 99 values, evenly spaced between 0.01 and

0.99. Similarly, the RQ optimization was performed using (28) with a discrete-time estimate of the IDW.

By doing multiple runs, we ensured that the statistical variation was not an issue. For the main simulation

of the arrival process and the queue we used 5× 106 replications, discarding a large initial portion of the

workload process to ensure that the system is approximately in steady state. (The component renewal arrival

processes thus can be regarded as equilibrium renewal processes, as in §3.5 of §Ross (1996).) We let the run

length and amount discarded be increasing in ρ, as dictated by Whitt (1989b). We provide additional details

about our simulation methodology in the appendix.
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Figure 2 A comparison between simulation estimates of of the normalized mean workload c2Z(ρ) in (25) and its approximation

c2Z∗(ρ) in (29) as a function of ρ for the
∑n

i
GIi/H2/1 model with c2s = 2 and a superposition of n i.i.d. lognormal

renewal arrival processes for n = 10 and c2a = 10 (left). On the right is the graphical RQ solution showing h(x) ≡

√

2xIw(x) and the tangent line with slope (1− ρ/ρ at x∗

≈ 482 for ρ= 0.9 and at x∗

≈ 17 for 0.7, as dictated by

(22).

5.2. Ten Queues in Series

This second example is a variant of examples in Suresh and Whitt (1990), exposing the complex impact

of variability on performance in a series of queues if the external arrival process and service times at a

previous queue have very different levels of variability. This example has 10 single-server queues in series.

The external arrival process is a rate-1 renewal process with H2 interarrival times having c2a = 10. (We use

the same distribution as for the service time in §5.1.) The first 9 queues all have deterministic service times.

The first 8 queues have mean service time and thus traffic intensity 0.6, while the 9th queue has mean service

time and thus traffic intensity 0.95. The last (10th) queue has an exponential service-time distribution. with

mean and traffic intensity ρ; we explore the impact of ρ on the performance of that last queue.

The deterministic queues act to smooth the arrival process at the last queue. Thus, for sufficiently low

traffic intensities ρ at the last queue, the last queue should behave essentially the same as a D/M/1 queue,

which has c2a = 0, but as ρ increases, the arrival process at the last queue should inherit the variability of the

external arrival process, and behave like anH2/M/1 queue with scv c2a = 10. This behavior is substantiated

by Figure 3, which compares simulation estimates of the normalized mean workload c2Z(ρ) in (25) at the
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last queue of ten queues in series as a function of the mean service time and traffic intensity ρ there with

the corresponding values in the D/M/1 queue (left) and with the RQ approximation c2Z∗(ρ) in (29) (right).

Figure 3 (left) shows that the last queue behaves like a D/M/1 queue for all traffic intensities ≤ 0.8, but
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Figure 3 A comparison between simulation estimates of the normalized mean workload c2Z(ρ) in (25) at the last queue of the

ten queues in series with highly variable external arrival process, but low-variability service times, as a function of the

mean service time and traffic intensity ρ there with the corresponding value in the D/M/1 queue (left) and with the

RQ approximation c2Z∗(ρ) in (29) (right).

then starts behaving more like an H2/M/1 queue as the traffic intensity approaches the value 0.95 at the

9th queue. Figure 3 (right) shows that RQ successfully captures this phenomenon and provides an accurate

approximation for all ρ.

To elaborate on this series-queue example, we show the IDW for the last queue in Figure 4. The plot on

the left shows the IDW over the long interval [0,105], while the plots in the middle and right give a closer

view of the IDW over the initial segments [0,20] and [0,400]. On the right, we plot the IDW assuming

continuous-time stationarity (which we use) together with the plot using the discrete-time Palm stationarity

(see Sigman (1995)), which acts as if there is an arrival at time 0, so that the plot is 0 over the initial interval

of length 0.95 (the deterministic service time at the previous queue). The good performance in Figure 3 for

small values of ρ depends on using the proper (continuous-time) version.
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Figure 4 The IDW at the last queue over the interval [0,10000] in log scale (left), [0,20] (middle) and [0,400] (right). The

continuous-time stationary version used for RQ with the workload is contrasted with the discrete-time Palm version

over the initial segment on the middle and right.

We conclude this example by illustrating the discrete-time approach for approximating the expected

steady-state waiting time E[W ] using the RQ optimization in (6) with uncertainty set in (9). Figure 5 is the

discrete analog of Figure 3. Figure 5 compares simulation estimates of the normalized mean waiting time

c2W (ρ), defined just as in (25), at the last queue of ten queues in series as a function of the mean service

time and traffic intensity ρ there with the corresponding values in the D/M/1 queue (left) and with the RQ

approximation c2W∗(ρ), defined just as in (29). Figure 5 and 3 look similar, except that there is a significant

difference for small velues of ρ. In general, we do not expect RQ to be effective for extremely low ρ, because

(i) the CLT is not appropriate for only a few summands and (ii) the mean waiting time is known to depend

on other properties when ρ is small. The mean waiting time and mean workload actually are quite different

in light traffic; see §IV.A of Fendick and Whitt (1989). As explained there, the mean workload tends to be

more robust to model detail.

6. An IDC Framework for a New RQNA

A main contribution of Bandi et al. (2015) was to develop a full robust queueing network analyzer (RQNA).

While we have established good RQ results for one single-server queue, it still remains to develop a full

RQNA exploiting the IDW and the results in the previous sections. In this section we propose a candidate

framework in which we hope to develop such a new RQNA. This framework exploits the IDC in §3. Given

an effective algorithm in this framework, we would then want to generalize the framework.
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Figure 5 Contrasting the discrete-time and continuous-time views: the analog of Figure 3 for the waiting time. Simulation

estimates of the normalized mean waiting time c2W (ρ), defined as in (25), at the last queue of the ten queues in series

with highly variable external arrival process, but low-variability service times, as a function of the mean service time

and traffic intensity ρ there with the corresponding value in the D/M/1 queue (left) and with the RQ approximation

c2W∗(ρ), defined as in (29) (right).

We start by specifying an initial reference stochastic queueing network model. To start, we make several

simplifying assumptions, which we would want to generalize: (i) all queues are single-server queues with

unlimited waiting space and the FCFS discipline; (ii) with m queues, the service times at these queues

come from m independent sequences of i.i.d. random variables, independent of all the external arrival

processes, where these service times have finite means and variances; (iii) each queue has its own external

arrival process (which may be null), assuming that each is a general stationary point process; (iv) these m

external arrival processes are mutually independent and exogenous, each having a finite arrival rate, with

the arrival process satisfying a FCLT with a BM limit. (v) as in the basic form of QNA in Whitt (1983),

we let departures be routed to other queues or out of the network by Markovian routing, independent of

the rest of the model history; (vi) given that the traffic rate equations are used to find the net arrival rate

at each queue, as in §4.1 of Whitt (1983), the resulting traffic intensities satisfy ρi < 1 for all i, so that the

final open network produces a stable general stationary (G/GI/1)m stochastic network model, which has

a proper steady-state distribution.
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As discussed in §2.3 of Whitt (1983) and Segal and Whitt (1989), practical applications require much

more complicated models, e.g., perhaps having input by classes with basic routes, that must be converted

into the framework above, but here we suggest the (G/GI/1)m model above as a candidate reference

stochastic model in which we want to develop a new RQNA exploiting the results in this paper.

We propose going beyond QNA by letting the variability of each arrival process, external or internal,

be partially characterized by its IDC. Let the net arrival process at queue i have IDC Ic,i(t). By (35), the

associated IDW is then Iw,i(t) = Ic,i(t)+ c2s,i, t≥ 0. Given Iw,i(t) and the net arrival rate λi determined by

the traffic equations, and thus the traffic intensity ρi, we can approximate the mean steady-state workload

at queue i, E[Zi(ρi)] for each i. We consider that as the initial objective, even though we want to extend the

algorithm to develop a full performance description.

For the (G/GI/1)m model introduced above, we specify the service time at queue i by its mean τi

and scv c2s,i, as in QNA, but now we specify the external arrival process at queue i by its rate λo,i and

IDC {Ic,o,i(t) : t≥ 0}, with o designated from outside. A simplified alternative asymptotic IDC framework

would replace the full IDC by the pair (Ic,o,i(0), Ic,o,i(∞)). Paralleling QNA, the IDC-based RQNA would

apply a network calculus to determine the final net IDC at each queue. The difficult superposition operation

is already covered by §4.3.4 and has shown to be effective in §5.1. It remains to treat the flow through a

queue and the splitting. And it remains to carefully examine the performance of alternative methods.

REMARK 6. (one uncertainty set versus two) Bandi et al. (2015) exploited their RQ for a single-server

queue based on the two separate uncertainty sets for the interarrival times and service times in (3) in order

to obtain their full RQNA algorithm. Our Remark 1 shows that choice came at a cost. Hence, it is important

to note that the new framework we propose here does not require two separate uncertainty sets.

7. Conclusions

We have formulated and solved new forms of robust queueing (RQ) for a single-server queue and shown

that the solutions relate nicely to the mean steady-state waiting time and workload in the general stationary

G/G/1 single-server queue and its GI/GI/1 special case. Unlike Bandi et al. (2015), we only consider a
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single queue, but in §6 we provide a framework that can be used to develop a new robust queueing network

analyzer (RQNA).

In §2 we introduced a new RQ formulation for the waiting time with a single uncertainty set instead of

two separate uncertainty sets. Corollary 1 shows that, if we choose a single parameter correctly, then the

RQ solution coincides with the classic Kingman (1962) bound for the GI/GI/1 queue and so is asymp-

totically correct in heav traffic. Corollary 2 show that the deterministic time where the RQ solution attains

its supremum is the same order as the relaxation time in the GI/GI/1 queue, exposing how steady state is

approached in the stochastic model.

We introduced new parametric and functional versions of RQ for the continuous-time workload in §3.

The functional versions include the variance of the total input of work as a function of time. In §4 we

introduced the indices of dispersion for counts (IDC) and work (IDW). We expressed the solution of the

functional RQ in terms of the IDW in (28), which is in a form convenient for applications, provided the

IDW is available. In §4.3 we reviewed useful properties of these important indices and indicated how they

can be calculated in stochastic models or estimated from data. Theorem 4 gives a closed-form expression

for the solution, which also provides insight; e.g. it relates to the variability fixed-point equation in equation

(15) of Fendick and Whitt (1989). Theorem 5 shows that the solution of the functional RQ for the mean

steady-state workload is asymptotically correct in both heavy traffic and light traffic.

We evaluated the new functional RQ for the workload by making comparisons with simulations of queues

with common network structure, as depicted in Figure 1. The simulations show that the RQ solutions serve

as good approximations for the mean steady-state workload as a function of the traffic intensity. They also

confirm that those common network structures can induce strong dependence, which has a significant impact

upon performance.

Finally, in §6 we introduced a framework for developing a new robust queueing network analyzer

(RQNA) based on the indices of dispersion. It remains to exploit that framework to develop such a new

RQNA. The paper shows that the functional RQ is effective in exposing the impact of the dependence

among the interarrival times and service times as a function of time upon the mean steady-state workload
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as a function of the underlying traffic intensity at the queue. Overall, the paper supports the initative begun

by Bandi et al. (2015). Clearly, many more opprotunities remain.
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e-companion

EC.1. Overview

This is an online e-companion to the main paper. It has seven sections. First, in §EC.2 we provide additional

motivation for and discussion about our RQ approach. Then §EC.3 elaborates on ways that the results can

be applied. Next, §EC.4 establishes (mostly reviews) supporting functional central limit theorems (FCLT’s),

the CLT’s that follow from them and their implications. Then in §EC.5 we develop the functional RQ for

the discrete-time waiting time mentioned in Remark 2. In §EC.6 we present additional proofs for some of

the results in the main paper. Finally, in §EC.7 we present additional simulation examples.

EC.2. Additional Motivation and Discussion

In this section we make several remarks to amplify the discussion in the main paper.

EC.2.1. Underlying Philosophy

In doing this RQ work, it is good to communicate our underlying philosophy: We view RQ, not as a way

to replace an intractable stochastic model by an alternative deterministic model, without drawing on the

axioms of probability, as suggested in Bandi and Bertsimas (2012), but instead as a way to develop improved

approximations for the performance of a given stochastic model. We think that the stochastic model often

does effectively capture essential features of the uncertainty; the main problem is its intractability. (Of

course, there also may be uncertainty about model parameters and the model itself.) Thus, we judge our

RQ formulations by their ability to efficiently generate useful performance approximations for the given

stochastic model.

EC.2.2. Why Does RQ Perform So Well?

Given that robust optimization is a way to obtain bounds in an alternative deterministic framework, without

reference to an underlying probability model, it is natural to wonder why the RQ provides such effective

approximations if we just choose a single parameter appropriately. We have tried to explain right after

Theorem 1 by explaining the close connection between RQ and heavy-traffic approximations. In particular,
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they are both based on the central limit theorem (CLT), as we review here in §EC.4. The CLT in turn says

that the probability distribution primarily depends on the mean and variance, which are precisely what

provides the basis for all the RQ constraints.

It is natural to want a still better explanation. We might ask how the RQ for the workload can provide

such a spectacularlly good approximation (exact) for the mean workload E[Z] in the M/GI/1 queue, as

shown in Corollary 3, and more generally. A partial explanation is that the net-input process in theM/GI/1

queue and for the RBM heavy-traffic limit is a Levy process (has stationary and independent increments)

with negative drift (E[N(t) =−mt), finite variance (V ar(N(t)) = vt) and no negative jumps. With such

exceptionally nice structure,

E[Z] = v/2m;

e.g., see see Kella and Whitt (1992) or §IX.3 of Asmussen (2003). A nice simple proof forM/GI/1 appears

in §5.13 of Wolfe (1989). That is the same form as the RQ solutions. It remains to say more.

EC.2.3. The Mythical Renewal Arrival Process

Experience with queueing applications has shown that most arrival processes can be classified as (i) approx-

imately a Poisson process, (ii) approximately a deterministic evenly spaced arrival process, or (iii) a com-

plex arrival process with dependence among successive interarrival times. In other words, non-Poisson

non-deterministic renewal arrival processes are extremely rare in practice. The GI/GI/1 model with inde-

pendent sequences of i.i.d. interarrival times and service times evidently has received so much attention

largely because it is relatively tractable; i.e., it is possible to analyze exactly with sophisticated tools, as in

Asmussen (2003). Explicit numerical results can then be obtained by numerical algorithms, such as numer-

ical transform inversion, as in Abate et al. (1993). The GI/GI/1 model does give a good idea about the

impact of departures from the tractable M Markovian assumption, but experience indicates that it can be

misleading. We might think that it suffices to estimate the scv of a service time or an interarrival times in

order to assess the level of variability, but that misses the dependence, and so might be a big mistake, as

illustrated by Fendick et al. (1989), as reviewed in §9.6 of Whitt (2002).
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EC.2.4. The Probability That The Constraints Are Satisfied

It is natural to ask what would be the probability in the stochastic model that the RQ constraints in (3) or (5)

would be satisfied. In fact, it is not difficult to see that, even for the basic M/M/1 model, the probability

is 0. That follows from the law of the iterated logarithm. Nevertheless, the deterministic RQ is useful. Of

course, we could consider only finitely many constraints as in Bandi et al. (2015). With a proper choice the

solution is unchanged.

EC.3. How Can the Functional RQ Results Be Applied?

This paper helps develop useful diagnostic tools to study complex queueing systems. This paper adds addi-

tional support to Fendick and Whitt (1989) by showing how to measure flows (arrival processes, possibly

together with service times) in complex queueing systems and the value for doing so in understanding con-

gestion at a queue, as characterized by the mean workload and the mean waiting time. In particular, we see

how the variance time curves and indices of dispersion can provide useful descriptions of the flows, enabling

us with the aid of RQ to predict congestion as a function of the traffic intensity quite accurately. These

measurements can fruitfully be applied with either system measurements or simulations. As we indicated

in §4.3, the indices of dispersion can also be calculated for quite complex models.

As in Bandi et al. (2015), the new RQ can help develop improved performance analysis tools for complex

queueing networks. In particular, the methods here provide a basis for improving parametric-decomposition

approximations such as QNA in Whitt (1983) by exploiting variability functions instead of variability

parameters, as proposed in Whitt (1995). In §6 we provide a road map for the way to proceed by introducing

a candidate IDC framework for creating a new RQNA that can capture the dependence in the flows.

One concrete way the RQ here can be applied is to analyze the consequence of changing the service

mechanism and/or the arrival process associated with a single-server queue in a complex queueing network.

For example, assuming that (i) the same arrival process would come to a new service mechanism and (ii)

the new service mechanism produces i.i.d. service times with a distribution that can be predicted, then we

could first measure the IDC of the arrival process and combine that with (35) to obtain an estimate of the

full IDW. Then we could apply RQ to estimate the mean workload at the queue. If we are contemplating
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several alternative service mechanisms, we can apply the same techniques to compare their performance

impact.

As a second example, suppose that the arrival rate will increase. If that will occur in a way that corre-

sponds approximately to deterministic scaling of the arrival counting process, then we can directly apply RQ

to predict the performance consequence. On the other hand, if the arrival rate increases by superposing more

streams, as in Sriram and Whitt (1986), then we can apply RQ with (36)-(38) to predict the performance

consequence.

EC.4. Supporting Functional Central Limit Theorems (FCLT’s)

In this section we establish establish (mostly review) the supporting FCLT’s and the CLT’s that follow

from them. These are for the general stationary G/G/1 model, allowing stochastic dependence among the

interarrival times and service times. §EC.4.1 starts with a basic FCLT for partial sums of random variables

from weakly dependent stationary sequences, as in Theorems 19.1-19.3 of Billingsley (1999) and Theorem

4.4.1 of Whitt (2002).

To state the basic FCLT underlying the RQ approach to the waiting time and workload processes, we

consider a sequence of models indexed by nwith stationary sequence of interarrival times and service times.

In §EC.4.1 we establish the underlying FCLT for the partial sums of the interarrival times and service times.

Then in EC.4.2 we establish a FCLT for other basic processes. In §EC.4.3 we establish different ordinary

CLT’s that support the parametric RQ and functional RQ. Finally, in §EC.4.4 we establish heavy-traffic

FCLLT’s for the waiting time and workload processes.

EC.4.1. The Basic FCLT for the Partial Sums

As in §2, we assume that the models are generated by a fixed sequence of mean-1 random variables

{(Uk, Vk)}, with the interarrival times in model n being Un,k ≡ ρ−1
n Uk. For each n, let the sequence of pairs

of partial sums be {(Sa
n,k, S

s
n,k : k ≥ 1}. Let λn = ρn and µn = 1 denote the arrival rate and service rate in

model n. Let ⌊x⌋ denote the greatest integer less than or equal to the real number x. Let D2 be the two-fold

product space of the function space D and let ⇒ denote convergence in distribution. For this initial FCLT,

we let ρn → ρ as n→∞ for arbitrary ρ > 0. Let random elements in the function apaceD2 be defined by

(

Ŝ
a
n(t), Ŝ

s
n(t)

)

≡ n−1/2
([

Sa
n,⌊nt⌋ − ρ−1

n nt
]

,
[

Ss
n,⌊nt⌋ −nt

])

, t≥ 0.
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THEOREM EC.1. (FCLT for partial sums of interarrival times and service times) Let {(Uk, Vk) : k≥ 1} be

a weakly dependent stationary sequence with E[Uk] =E[Vk] = 1. Let Un,k = ρ−1
n Uk and Vn,k = Vk, n≥ 1,

and assume that the variances and covariances satisfy

0< ρ−2σ2
A ≡ lim

n→∞
{n−1V ar(Sa

n)}<∞, 0<σ2
S ≡ lim

n→∞
{n−1V ar(Ss

n)}<∞

and ρ−1σ2
A,S ≡ lim

n→∞
{n−1Cov(Sa

n, S
s
n)}. (EC.1)

Then (under additional regularity conditions assumed, but not stated here)

(

Ŝ
a
n, Ŝ

s
n

)

⇒
(

Ŝ
a, Ŝs

)

in D2 as n→∞, (EC.2)

where
(

Ŝ
a, Ŝs

)

is distributed as zero-drift two-dimensional Brownian motion (BM) with covariance matrix

Σ=







ρ−2σ2
A ρ−1σ2

A,S

ρ−1σ2
A,S σ2

S






.

Proof. The one-dimensional FCLT’s for weakly dependent stationary sequences in D can be used to

prove the two-dimensional version in Theorem EC.1. First, the limits for the individual processes Ŝa
n and

Ŝ
s
n imply tightness of these processes inD, which in turn implies joint tightness inD2. Second, the Cramer-

Wold device in Theorem 4.3.3 of Whitt (2002) implies that limits for the finite-dimensional distributions

for all linear combinations (which should be implied by the unstated regularity condition) implies the joint

limit for the finite-dimensional distributions (fidi’s). Finally, tightness plus convergence of the fidi’s implies

the desired weak convergence by Corollary 11.6.2 of Whitt (2002).

EC.4.2. The FCLT for Other Basic Processes

As a consequence of Theorem EC.1, we also have an associated FCLT for scaled random elements associ-

ated with Sx
n,k ≡ Ss

n,k −Sa
a,k, k ≥ 1, An(s) and Yn(s)≡

∑An(s)

i=1 Vn,i =
∑A(ρns)

i=1 Vi = Y (ρns), s≥ 0, for A

and Y in (10) and (11). Let the associated scaled processes be defined by

(

Ŝ
x
n(t), Ân(t), Ŷn(t)

)

≡ n−1/2
([

Sx
n,⌊nt⌋ − (1− ρ−1

n )nt
]

, [An(nt)− ρnnt] , [Yn(nt)− ρnnt]
)

, (EC.3)

for t≥ 0. Let B(t) be standard (zero drift and unit variance) one-dimensional BM and let e be the identity

function in D, i.e., e(t) = t. Let
d
= mean equal in distribution, as processes if used for stochastic processes.
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COROLLARY EC.1. (joint FCLT for basic processes) Under the conditions of Theorem EC.1,

(

Ŝ
a
n, Ŝ

s
n, Ŝ

x
n, Ân, Ŷn

)

⇒
(

Ŝ
a, Ŝs, Ŝx, Â, Ŷ

)

in D5 as n→∞, (EC.4)

where Ŝx = Ŝ
s − Ŝ

a d
= σXB, with variance function

σ2
X ≡ σ2

X(ρ) = ρ−2σ2
A +σ2

S − 2ρ−1σ2
A,S, 0<σ2

X <∞, (EC.5)

for ρ−2σ2
A, σ2

S and ρ−1σ2
A,S in (EC.1), while

Â=−ρŜa ◦ ρe d
=−ρσABa ◦ ρe d

= ρ3/2σYBa,

Ŷ= Ŝ
s ◦ ρe− ρŜa ◦ ρe d

= σYB ◦ ρe d
=
√
ρσY B, (EC.6)

where

σ2
Y ≡ σ2

Y (ρ) = σ2
A +σ2

S − 2σ2
A,S, 0<σ2

Y <∞, for all ρ. (EC.7)

Hence, Ŷ
d
= Ŝ

x for ρ=1, but not otherwise.

Proof. We apply the continuous mapping theorem (CMT) using several theorems from Whitt (2002).

The CMT itself is Theorem 3.4.4. We treat the process Sx
n,k using addition. We treat the counting processes

An by apply the inverse map with centering to go from the FCLT for Sa
n,k to the FCLT for the associated

scaled counting processes, applying Theorem 7.3.2, which is a consequence of Corollary 13.8.1 to Theorem

13.8.2, which follows from Theorem 13.7.1. Then the limit for Yn follows from Corollary 13.3.1. However,

it is also possible to give a more elementary direct argument. First, let Ān(t)≡ n−1An(t), t≥ 0, and note

that Ān ⇒ ρe as a consequence of the limit for An. The initial limits all hold jointly by Theorems 11.4.4

and 11.4.5. Then observe that we can apply the continuous mapping theorem with composition and addition

to treat Yn, because we can write

Yn = S
s
n ◦ Ān +An (EC.8)

i.e.,

Yn(t)≡ n−1/2

(

A(nt)
∑

k=1

−ρnt
)

, t≥ 0, (EC.9)
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while

(Ss
n ◦ Ān)(t) = n−1/2

(

A(nt)
∑

k=1

−An(nt)

)

, t≥ 0, (EC.10)

We then add to get (EC.9), observing that two terms cancel.

We now derive alternative expressions for the limit process Y. First, directly from (EC.8) we obtain

Y = S
s ◦ ρe+A=S

s ◦ ρe− ρSaρe
d
= σY B ◦ ρe d

=
√
ρσYB. (EC.11)

which justifies the expression for σ2
Y in (EC.7).

REMARK EC.1. (uniform integrability) Condition (EC.1) implies that k−1V ar(Sx
k )→ σ2

X as k→∞ for

σ2
X in (EC.5). In addition to the conclusions of Theorem EC.2 and Corollary EC.1, we assume that the

appropriate uniform integrability holds, so that we also have the continuous-time analog

s−1V ar(Y (s))→ σ2
Y as s→∞ (EC.12)

for σ2
Y in (EC.7).

EC.4.3. Alternative Scaling in the CLT

Theorem EC.1 and Corollary EC.1 imply ordinary CLT’s for the processesSx
n and Yn(s) by simply applying

the applying the CMT with the projection map π :D→R with π(x)≡ x(1).

COROLLARY EC.2. (associated CLT’s) Under the assumptions of Theorem EC.1, there are CLT’s for the

partial sums Sx
n and the total input processes Yn, stating

(Sx
n −nE[X1])/

√

nσ2
X ⇒N(0,1) as n→∞, (EC.13)

and

(Yn − ρn])/
√

nσ2
Y ⇒N(0,1) as n→∞, (EC.14)

where N(0,1) is a standard (mean-0, variance-1) normal random variable, σ2
X is the asymptotic variance

constant in (EC.1) and (EC.5), and σ2
Y is the asymptotic variance constant in (20) and (EC.7).
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Clearly, Corollary EC.2 supports the parametric RQ formulations and indicates how to choose the param-

eters bx and bp in order to produce versions that should be asymptotically correct in heavy-traffic (see the

next section). We now show that there are alternative versions of these CLT’s that support the functional RQ

formulations. First, instead of (EC.13), we can also write

[Sx
n −E[Sx

n]]/
√

V ar(Sx
n)⇒N(0,1) as n→∞. (EC.15)

Second, instead of (EC.14), we can also write

[Y (t)−E[Y (t)]]/
√

V ar(Y (t))⇒N(0,1) as t→∞. (EC.16)

The numerators in (EC.13) and (EC.15) are identical because E[Sx
n] = nE[X1] and E[Y (t)] = ρt. The

full statements in (EC.13) and (EC.15) are asymptotically equivalent as n→∞ by the CMT, because

Sx
n −nE[X1]
√

V ar(Sx
n)

=
Sx
n −nE[X1]√

nσX

×
√
nσX

√

V ar(Sx
n)

⇒N(0,1)× 1=N(0,1).

The same is true for the CLT’s in (EC.14) and (EC.16).

EC.4.4. The Associated Heavy-Traffic FCLT

Theorem EC.1 and Corollary EC.1 also provide a basis for heavy-traffic (HT) FCLT’s for the waiting-time

and workload processes. To state the HT FCLT, we let ρn → 1 as n→ ∞ at the usual rate; see (EC.18)

below. Let Ŵn and Ẑ
n be the random elements associated with the waiting time and workload processes,

defined by

(

Ŵ
n(t), Ẑn(t)

)

=
(

n−1/2Wn,⌊nt⌋, n
−1/2Zn(nt)

)

, t≥ 0. (EC.17)

Let ψ : D→ D be the one-dimensional reflection map with impenetrable barrier at the origin, assuming

x(0) = 0, i.e., ψ(x)(t) ≡ x(t)− inf06s6t x(s); see §13.5 of Whitt (2002). Here is the HT FCLT; it is is a

variant of Theorem 2 of Iglehart and Whitt (1970); see §5.7 and 9.6 in Whitt (2002). Given Corollary EC.1,

it suffices to apply the CMT with the reflection map ψ.
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THEOREM EC.2. (heavy-traffic FCLT) Consider the sequence of G/G/1 models specified above. If, in

addition to the conditions of Theorem EC.1,

n1/2(1− ρn)→ η, 0< η <∞, (EC.18)

then

(

Ŵn, Ẑn

)

⇒
(

ψ(Ŝx − ηe),ψ(Ŝx − ηe)
)

in D2 as n→∞, (EC.19)

jointly with the limits in (EC.4), whereψ is the reflection map and Ŝ
x−ηe d

= σY B−ηe is BM with variance

constant σ2
Y in (EC.7) and drift −η < 0, so that ψ(Ŝx − ηe) is reflected BM (RBM).

The HT approximation for the mean steady-state wait and workload stemming from Theorem EC.2 is

E[W (ρ)]≈E[Zρ]≈
√
nσ2

Y

2η
≈ σ2

Y

2(1− ρ)
(EC.20)

for σ2
Y in (EC.7), which is independent of ρ, using the mean of the exponential limiting distribution of the

RBM ψ(σxB− ηe)(t) as t→∞.

REMARK EC.2. (the two forms of stationarity) As discussed in the beginning of §3.2, there are two forms

of stationarity, one for discrete time and the other for continuous time. When we focus on the waiting time,

we use discrete-time stationarity; when we focus on the workload, we use continuous-time stationarity. So

far in this section, we have built everything in the framework of discrete-time stationarity. However, in doing

so, we automatically can get FCLT’s in both settings. The theoretical basis is provided by Nieuwenhuis

(1989).

REMARK EC.3. (the limit-interchange problem) the standard HT limits for the processes do not directly

imply limits for the steady-state distributions. Strong results have been obtained with i.i.d. assumptions,

e.g., see Budhiraja and Lee (2009), but the case with dependence is more difficult. Nevertheless, supporting

results for theG/G/1 queue when dependence is allowed appear in Szczotka (1990, 1999). We assume that

this interchange step is also justified.
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REMARK EC.4. (the asymptotic method) The RQ approach in Theorem 2 corresponds to approximating

the arrival and service processes in the G/G/1 queue by the asymptotic method in Whitt (1982), which

develops approximations for the arrival and service processes using all the correlations. That is in contrast

to the stationary-interval method discussed just before §EC.4, which uses none of the correlations. Our RQ

approach develops an intermediate methods in between those two extremes.

EC.4.5. The Normalized Workload and the IDW: Justifying (26)

We are motivated to develop the functional RQ for the steady-state workload because of the close connection

between the IDW {Iw(t) : t ≥ 0} and the normalized mean workload {c2Z(ρ) : 0 ≤ ρ ≤ 1} established

by Fendick and Whitt (1989). The key asymptotic components are the heavy-traffic (HT) and light-traffic

(LT) limits stated here in (26). Now that we have just developed the supporting HT FCLT, we review the

theoretical support for (26).

First, the HT limit is supported by the FCLT for Ẑn in Theorem EC.2. We use the continuous-time

stationarity, justified by Remark EC.2. For the FCLT’s, we require weak dependence, which is specified by

relatively complex mixing conditions. Given the weak dependence and the FCLT, we need extra regularity

conditions to get to what is actually stated in (26). First we need the limit-interchange property discussed

in Remark EC.3 to get associated limits for the steady-state distributions. Second, we need appropriate

uniform integrability to get from convergence of random variables to convergence of their moments; see

Remark EC.1.

The LT limit is established in §IV.A of Fendick and Whitt (1989). An important observation made there

is that the LT limiting behavior is much more robust for the steady-state workload than for the steady-state

waiting time. In particular, the LT limit for the steady-state waiting time depends more on the fine structure

of the model. The LT limits provide theoretical insight into why it is easier to describe the mean steady-state

workload than the mean steady-state waiting time, even though they agree in the HT limit.

EC.5. Functional RQ for the Discrete-Time Waiting Times

We now provide extra details about the functional RQ for the steady-state waiting time, paralleling §3, as

promised in Remark 2. We introduce the indices of dispersion for intervals in §EC.5.1. We briefly mention

the heavy-traffic and light-traffic limits in §EC.5.2.
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First, paralleling the functional RQ optimization for Z∗
f,ρ in (16), we have the discrete-time analog based

on (9):

W ∗ ≡W ∗
f,ρ ≡ sup

X̃∈Ux
f

sup
k≥0

{Sx
k} . (EC.21)

where Ux
f is defined in (9). For the G/G/1 model stationary in discrete time, the reasoning for Theorem 1

leads to the alternative representation as

W ∗ = sup
k≥0

{

−mk+ bf,d
√

V ar(Sx
k )
}

(EC.22)

instead of (7), where m≡ (1− ρ)/ρ as before. We can alternative representations using indices of disper-

sion, but now for intervals instead of for counts, which we discuss next.

EC.5.1. Discrete Time: Indices of Dispersion for Intervals

We now recast the discrete-time RQ solution in (EC.22) in terms of indices of dispersion for intervals. For

that purpose, we create scaled versions of the discrete-time variance-time functions (sequences) V ar(Sx
k ),

V ar(Sa
k) and V ar(Ss

k) as functions of k. That yields the indices of dispersion for intervals (IDI), as in

Chapter 4 of Cox and Lewis (1966), defined by

Ia(k)≡
kV ar(Sa

k)

(E[Sa
k ])

2
, Is(k)≡

kV ar(Ss
k)

(E[Ss
k])

2
and Ia,s(k)≡

kCov(Sa
k , S

s
k)

E[Sa
k ]E[Ss

k ]
. (EC.23)

With (EC.23),

√

V ar(Sx
k ) =E[U1]

√

kIx(k), k≥ 1, and σ2
X ≡ lim

k→∞

{

k−1V ar(Sx
k )
}

=E[U1]
2Ix(∞) (EC.24)

where

Ix(k)≡ Ia(k)+ ρ2Is(k)− 2ρIa,s(k) for ρ≡E[V1]/E[U1]< 1. (EC.25)

These three IDI’s Ia(k), Is(k) and Ia,s(k) were used to develop queueing approximations in Fendick et al.

(1989).

As a consequence, (EC.22) can be rewritten a

W ∗
f,ρ = sup

k≥0

{

−(1− ρ)k/ρ+ bf,d
√

kIx(k)
}

. (EC.26)

Similar to the continuous-time workload, we focus on the normalized mean waiting time and RQ approxi-

mation defined by

c2W (ρ)≡ 2(1− ρ)

ρ
E[Wρ], and c2W∗(ρ)≡ 2(1− ρ)

ρ
W ∗

f,ρ. (EC.27)
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EC.5.2. Heavy-Traffic and Light Traffic Limits

By essentially the same reasoning, we can show that both the parametric RQ and the functional RQ for

the steady-state waiting time W are asymptotically exact in heavy-traffic, with the same HT limit as for

the continuous-time workload, if we choose the constant bf,d in (EC.26) appropriately. The light-traffic

behavior is much more complicated for the steady-state waiting time, as discussed in §IV.A of Fendick and

Whitt (1989) and §1 of Whitt (1989a). That is a major reason for using the workload instead of the waiting

time.

EC.6. Additional Technical Support for the Main Paper

In this section we provide additional technical support for the main paper. First, a key step in obtaining

tractable solutions of the RQ optimizations is an interchange of suprema. The following lemma shows that

this interchange is justified in all cases.

LEMMA EC.1. (interchange of suprema) The interchange of suprema below holds for any real-valued

function f(x, y)

M := sup
x∈A
y∈B

f(x, y) = sup
x∈A

sup
y∈B

f(x, y) = sup
y∈B

sup
x∈A

f(x, y),

where the joint supremumM is allowed to be infinite.

Proof By symmetry, we need only prove that

sup
x∈A
y∈B

f(x, y) = sup
x∈A

sup
y∈B

f(x, y).

Suppose the joint supremumM is finite, then there exist a sequence (xn, yn)∈A×B such that f(xn, yn)>

M − 1/n, where M is the finite joint supremum. Then, we have

sup
x∈A

sup
y∈B

f(x, y)≥ sup
y∈B

f(xn, y)≥ f(xn, yn)≥M − 1

n
, for all n> 0.

This implies that

sup
x∈A

sup
y∈B

f(x, y)≥M = sup
x∈A
y∈B

f(x, y).

The other direction of inequality is trivial by noting thatM ≥ f(x, y) and taking iterated supremum on both

sides.
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For the case where the joint supremum M is infinite, then there exist a sequence (xn, yn) ∈A×B such

that f(xn, yn)>n. Then

sup
x∈A

sup
y∈B

f(x, y)≥ sup
y∈B

f(xn, y)≥ f(xn, yn)≥ n, for all n> 0.

Hence the iterated supremum is also infinite, which completes the proof.

We now prove Theorem 5. We state and prove two separate results here.

THEOREM EC.3. (RQ in heavy traffic) Let b′z =
√
2 and assume that Iw(x) is non-negative, continuous

and that Iw(∞) ≡ limx→∞ Iw(x) exist, then we have the following heavy-traffic limit for the normalized

RQ optimal value

c2Z∗(1)≡ lim
ρ→1

2(1− ρ)

ρ
Z∗(ρ) = Iw(∞). (EC.28)

To prove Theorem EC.3, we need two lemmas.

LEMMA EC.2. (order-preservation of the RQ solution) Let f, g be two positive functions on non-negative

real numbers, satisfying f(x)≥ g(x) for all x≥ 0. Then we have

Z∗
f >Z∗

g ,

where Z∗
f is the solution to the RQ problem with f replacing Iw.

Proof Let x∗
f denote the optimal solution to the RQ problem specified by f . Then

Z∗
f =−1− ρ

ρ
x∗
f + b

√

x∗
ff(x

∗
f) ≥ −1− ρ

ρ
x∗
g + b

√

x∗
gf(x

∗
g)

≥ −1− ρ

ρ
x∗
g + b

√

x∗
gg(x

∗
g) =Z∗

g .

LEMMA EC.3. (continuity property of the normalized RQ solution) Let c2Z∗(ρ)(f) be the normalized solu-

tion to (28) with Iw replaced by f . Then c2Z∗(ρ) is a continuous function from space (Cb(R
+,R+),‖ ·‖∞) to

R
+, with the former one being the space of all continuous and bounded functions from R

+ to R
+ equipped

with the supremum norm.
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Proof Let f, g ∈ (Cb(R
+,R+),‖ · ‖∞), satisfying ‖f − g‖∞ ≤ ǫ. Then we have

f(x)− ǫ≤ g(x)≤ f(x)+ ǫ, for all x≥ 0.

Since f ∈ Cb(R
+,R+), there exist M > 0 such that f(x)<M for all x≥ 0. Then for all x >Mρ, where

Mρ ≡ (ρb′z/(1− ρ))
2
M, we have

−1− ρ

ρ
x+ b′z

√

xf(x)<−1− ρ

ρ
x+ b′z

√
xM < 0

Hence,

cZ∗(ρ)(g)≤ cZ∗(ρ)(f + ǫ) =
2(1− ρ)

ρ
sup

0≤x≤M̃ρ

{

−1− ρ

ρ
x+ b′z

√

x(f(x)+ ǫ)

}

≤ 2(1− ρ)

ρ
sup

0≤x≤M̃ρ

{

−1− ρ

ρ
x+ b′z

√

xf(x)+ b′z
√
xǫ

}

≤ 2(1− ρ)

ρ
sup

0≤x≤M̃ρ

{

−1− ρ

ρ
x+ b′z

√

xf(x)

}

+ b′z

√

M̃ρǫ (EC.29)

= cZ∗(ρ)(f)+
2(1− ρ)

ρ
b′z

√

M̃ρǫ

= cZ∗(ρ)(f)+ 2(b′z)
2
√

(M + ǫ)ǫ, (EC.30)

where M̃ρ ≡ (ρb′z/(1− ρ))2(M + ǫ) and the first inequality follows from Lemma EC.2. Similarly, we can

prove that

cZ∗(ρ)(g)≥ cZ∗(ρ)(f − ǫ)≥ cZ∗(ρ)(f)− 2(b′z)
2
√

(M + ǫ)ǫ. (EC.31)

Combining (EC.30) and (EC.31), we have

|cZ∗(ρ)(g)− cZ∗(ρ)(f)| ≤ 2(b′z)
2
√

(M + ǫ)ǫ.

Hence the lemma holds.

Proof of Theorem EC.3. Recall that Theorem 4 suggest that the optimal solution is of orderO(ρ2/(2(1−

ρ)2)), we perform a change of variable t= 2(1−ρ)2x/ρ2 in (28) and scale the space by a constant ρ/(2(1−

ρ)). Hence, we have

c2Z∗(ρ) = sup
0≤t≤∞

{

−t+2

√

tIw

(

ρ2

2(1− ρ)2
t

)

}

. (EC.32)
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Since Iw(∞)≡ limx→∞ Iw(x) exist, there exist a T sufficiently large such that |Iw(t)− Iw(∞)|< ǫ for

all t > T . Now, we define

Ĩw(t) =



























Iw(t), t≤ T,

linear, T − ǫ < t≤ T,

Iw(∞), t > T.

By virtue of Lemma EC.3, we need only prove that cZ∗(1)(Ĩw) = Ĩw(∞) = Iw(∞).

Note that continuity and finite limit at x=∞ implies that Ix(x) is bounded, say Iw(x)<M − ǫ for all

x≥ 0. Hence we have

−t+2

√

tĨw

(

ρ2

2(1− ρ)2
t

)

≤−t+2
√
tM. (EC.33)

We assume first that the limit Iw(∞) is strictly positive. The case where Iw(∞) = 0 can be deduced

by considering a sequence of functions fn(x) such that fn(∞) > 0 and |Iw − fn|∞ < 1/n, and applying

Lemma EC.3.

Now, for the case where Iw(∞)> 0, we can choose ρ0 such that

Tρ ≡
2(1− ρ0)

2

ρ20
T <min

{

Iw(∞),2M − Iw(∞)− 2
√

M 2 − Iw(∞)M
}

,

since the right-hand-side of the inequality wil be strictly positive. Then for all ρ> ρ0, we have

sup
0≤t≤Tρ

{

−t+2

√

tĨw

(

ρ2

2(1− ρ)2
t

)

}

≤ sup
0≤t≤Tρ

{

−t+2
√
tM
}

≤ Iw(∞).

But plugging Iw(∞) into the objective function, we have the objective value Iw(∞) by the fact that

ρ2

2(1−ρ)2
Iw(∞)>T and that Ĩw(t) is constant after t > T . This implies that

c2Z∗(ρ)(Ĩw) = sup
Tρ≤t≤∞

{

−t+2

√

tĨw

(

ρ2

2(1− ρ)2
t

)

}

= sup
Tρ≤t≤∞

{

−t+2
√

tIw(∞)
}

= Iw(∞), for all ρ> ρ0.

Hence, we’ve proved that cZ∗(1)(Ĩw) = Ĩw(∞) = Iw(∞).

Next, we state the corresponding result for RQ in light traffic.
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THEOREM EC.4. (RQ in light traffic) Let b′z =
√
2 and assume that Iw(x) is non-negative, continuous

and that Iw(0)≡ limx→0 Iw(x) exist, then we have the following light-traffic limit for the normalized RQ

optimal value

c2Z∗(0)≡ lim
ρ→0

2(1− ρ)

ρ
Z∗(ρ) = Iw(0). (EC.34)

Proof As in the proof for heavy-traffic limit, we perform the same time and space scaling to get (EC.32).

For the same reason, we have (EC.33), which implies that

−t+2

√

tĨw

(

ρ2

2(1− ρ)2
t

)

≤−t+2
√
tM < 0, for all t > 4M.

Hence, we need only consider the supremum in (EC.32) over bounded interval [0,4M ]. Note also that, since

Iw(0)≡ limx→0 Iw(x) exist, for any ǫ > 0, there exist a δ > 0 such that |Iw(t)− Iw(0)|< ǫ for all x∈ [0, δ].

We now choose ρ0 such that 2ρ20M/(1− ρ0)
2< δ, and take a modification

Ĩw(t) =



























Iw(0), t < δ,

linear, δ ≤ t < δ+ ǫ,

Iw(t), t≥ δ+ ǫ,

which satisfies |Iw − Ĩw|∞ < ǫ and

c2Z∗(ρ)(Ĩw) = Iw(0), for all ρ < ρ0.

We then apply Lemma EC.3 to get the desired light-traffic limit.

EC.7. Additional Examples

In this final section we present some additional examples illustrating more complex behavior that can be

seen in the IDW IW (t) and in the normalized mean workload c2Z(ρ). All examples are for single-server

queues in series, as in §5.2. For background on this example, we refer to §4.5 of Whitt (1983), Suresh and

Whitt (1990) and §§5 and 6 of Whitt (1995).
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EC.7.1. The First Example of Queues in Series

Recall that Figure 3 illustrated the performance impact in an H2/D/1→ ·/D/1 . . .→ ·/D/1 → ·/M/1

model with a rate-1 H2 renewal external arrival process, where the interarrival times has scv c2a = 10,

followed by nine single-server queues with deterministic D service times and then a final 10th queue with

an exponential service time distribution. The first 8 queues all have mean service times and thus traffic

intensities of ρk = 0.6, while the 9th queue has mean service time and thus traffic intensity ρ9 = 0.95. We

look at the performance at the last queue as a function of the traffic intensity ρ≡ ρ10 there. Figure 3 shows

that the normalized workload at the last queue as a function of ρ. From (26), we know that the left and right

limits of the normalized mean workload are c2Z(0) = 1 + c2s = 2.0 and c2Z(1) = c2a + c2s = 11.0. Figure 3

shows that the performance is consistent with these limits, even though we cannot see the right hand limit,

because the simulation considered traffic intensities bounded above by a quantity less than 1. Nevertheless,

we see that the performance varies as a function of ρ approximately as predicted by these two limits.

Figure 3 also shows a dip in the middle consistent with the smoothing provided by the the low variability

at the first 9 queues, but the performance does not oscillate too much. Now we illustrate more complex

performance functions that can be obtained with more complex models.

In general, experience indicates that for 10 queues in series the normalized mean workload can be

bounded above and below, approximately, by

min{1, c2a, c2s,k,1≤ k≤ 9}+ c2s,10 ≤ c2Z(ρ)≤max{c2a, c2s,k,1≤ k≤ 9}+ c2s,10. (EC.35)

(The “1” appears in the minimum because the left limit at 0 is 1 + c2s.) For example, this approximate

bound is consistent with the approximatioon for the variability parmeter c2d of the departure process froma

GI/GI/1 queue in formula (38) in Whitt (1983), i.e.,

c2d ≈ (1− ρ2)c2a+ ρ2c2s. (EC.36)

The bound can be obtained by iterating that approximation forward to get an approximation for c2d,9 and

then allowing the previous traffic intensities to vary.
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For this example, the bound in (EC.35) is not too informative, concluding that 1 ≤ c2Z(ρ) ≤ 11, which

corresponds to the left and right limits. Our goal is to say more about c2Z(ρ) for 0< ρ< 1 by using the IDW

and RQ.

However, so far, the examples do not show that too much is going on in the middle except for moving

from one limit to the other. That motivates us to look at the next examples.

EC.7.2. The EHEHE→M Example with Four Internal Modes

We now consider an example of 5 single-server queues in series where the variability increases and then

decreases 5 times, with the traffic intensities at successive queues decreasing. That makes the external arrival

process and the earlier queues relevant only as the traffic intensity increases. Specifically, the example can

be donoted by

E10/H2/1→ ·/E10/1→ ·/H2/1→·/E10/1→→ ·/M/1. (EC.37)

In particular, the external arrival process is a rate-1 renewal process with E10 interarrival times, thus

c2a = 0.1. The 1st queue has H2 service times with mean 0.99 and c2s = 10 (and also balanced means, as

before), thus the traffic intensity at this queue is 0.99. The 2nd queue has E10 service time with mean and

thus traffic intensity 0.98. The 3rd queue has H2 service times with mean 0.70 and c2s = 10. The 4th queue

has E10 service times with mean and thus traffic intensity 0.5. The last (5th) queue has an exponential

service-time distribution. with mean and traffic intensity ρ. As before, we explore the impact of ρ on the

performance of that last queue.

Looking backwards starting from the 4th queue, i.e., the queue just before the last queue, the Erlang

service act to smooth the arrival process at the last queue. Thus, for sufficiently low traffic intensities ρ at

the last queue, the last queue should behave essentially the same as a E10/M/1 queue, which has c2a =0.1,

but as ρ increases, the arrival process at the last queue should inherit the variability of the previous service

times and the external arrival process, and altering between H2/M/1 and E10/M/1 as the traffic intensity

at the last queue increases. This implies that the normalized workload c2Z(ρ) in (25) as a function of ρ should

have four internal modes. (If we also count the left and right ends, there will be six modes.
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This behavior is substantiated by Figure EC.1 (left), which compares simulation estimates of the normal-

ized mean workload c2Z(ρ) in (25) at the last queue with the RQ approximation c2Z∗(ρ) in (29). It shows

that the the normalized workload at the last queue fluctuates and each mode corresponds to a previous ser-

vice process or the external arrival process. Figure EC.1 (left) also shows that RQ successfully captures all

modes and provides a reasonably accurate approximation for all ρ. Note that a new scale in the horizontal x

axis is used in Figure EC.1 (left), namely − ln(1− ρ). Since 4 out of 6 modes lies in ρ> 0.8, the new scale

act to stretch out the crowded plot under heavy traffic.
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Figure EC.1 A comparison between simulation estimation of the normalized workload c2Z(ρ) at the last queue as a function of

traffic intensity ρ with the RQ approximation c2Z∗(ρ) in (29) (left), and the IDW at the last queue over the interval

[0,10000] in log scale (right).

To conclude on this series-queue example, we show the IDW for the last queue in Figure EC.1 (right).

The x axis of the figure is in log scale for easier display. We see a more irregular plot at the right because

it is harder to directly estimate the IDW Iw(t) for very large t, but the limit as t→ ∞ can be calculated

from (26). Clearly, the IDW has the same qualitative property as the normalized workload as well as the RQ

approximation, as we expect from equation (33).

EC.7.3. A Similar Example with Highly Variable Input

In this section, we consider a similar example where the normalized workload as a function of ρ also has

several modes, but the external arrival here has high variability.
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In this example we use groups of queues in series with the same distribution and traffic intensity in

order to better bring about an adjustment in the level of variability. This device is motivated by the convex-

copmbination approximation in (EC.36). Specifically, this example has 13 single-server queues in series.

The external arrival process is a rate-1 renewal process with H2 interarrival times with c2a = 10. A group of

three queues having E10 service times with mean 0.99 is then added to smooth the highly variable external

arrivals. The next group of three queues has H2 service times with mean 0.92 and squared coefficient of

variation 5. These queues will bring up the variability of the departure process. Then, another group of three

queues with mean 0.9 has E10 service times to smooth the departure process again. The variability is then

raised by yet another group of three queues having H2 service times with mean 0.3 and c2S = 10. Finally,

the last (13th) queue has exponential service times with mean and traffic intensity ρ. As before, we explore

the impact of ρ on the performance of that last queue.

As explained in last example, for sufficiently low traffic intensities ρ at the last queue, the last queue

should behave approximately the same as an H2/M/1 queue, which has c2a = 10, but as ρ increases, the

arrival process at the last queue should inherit the variability of the previous service times and the exter-

nal arrival process, and altering between E10/M/1 and H2/M/1 as the traffic intensity at the last queue

increases. This implies that the normalized workload c2Z(ρ) in (25) as a function of ρ should have several

modes, corresponding to the variability of the external arrival process and the service processes at the first

4 groups of queues.

We then have the similar plots in Figure EC.2, which compares simulation estimates of the normalized

mean workload c2Z(ρ) in (25) at the last queue with the RQ approximation c2Z∗(ρ) in (29) (left) and shows the

IDW for this example (right). Again, we are using the same scale as in Figure EC.1 (left), i.e., − ln(1− ρ),

to stretch out the plot under heavy traffic.

Figure EC.2 (left) shows that the the normalized workload at the last queue again has four internal modes

and that RQ successfully captures all modes and provides a reasonably accurate approximation for all ρ.

Figure EC.2 (right) shows that the IDW has the same qualitative property as the RQ approximation, which

is explained in (33). However, the fluctuations in the simulation values for 0 < ρ < 1 in Figure EC.2 are

much less than in Figure EC.1.
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Figure EC.2 A comparison between simulation estimation of the normalized workload c2Z(ρ) at the last queue as a function of

traffic intensity ρ with the RQ approximation c2Z∗(ρ) in (29) (left), and the IDW at the last queue over the interval

[0,10000] in log scale (right).

We conclude that (i) the IDW and RQ do capture the qualititative behavior and (ii) the RQ approximation

based on the IDW is reasonably accurate in these difficult examples.
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