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Abstract

The stationary Erlang loss model is a classic example of an insensitive queueing system: The

steady-state distribution of the number of busy servers depends on the service-time distribution

only through its mean. However, when the arrival process is a nonstationary Poisson process, the

insensitivity property is lost. We develop a simple effective numerical algorithm for the

M t/PH/s/0 model with two service phases and a nonhomogeneous Poisson arrival process, and

apply it to show that the time-dependent blocking probability with nonstationary input can be

strongly influenced by the service-time distribution beyond the mean. With sinusoidal arrival

rates, the peak blocking probability typically increases as the service-time distribution gets less

variable. The influence of the service-time distribution, including this seemingly anomalous

behavior, can be understood and predicted from the modified-offered-load and stationary-

peakedness approximations, which exploit exact results for related infinite-server models.

Key Words: nonstationary queues; time-dependent arrival rates; nonhomogeneous Markov chains;

transient behavior; Erlang loss model; blocking probability; insensitivity; infinite-server queues;

modified-offered-load approximation.



1. Introduction and Summary

The classic Erlang loss model, which we denote by M/GI/s/0, has s homogeneous servers in

parallel, no-extra waiting room, and independent and identically distributed (i.i.d.) service times

that are independent of a Poisson arrival process. Arrivals finding all servers busy are lost, i.e.,

blocked without affecting future arrivals. Let S be a generic service time and let

G(t) ≡ P(S ≤ t), t ≥ 0, be its (general) cumulative distribution function (cdf). We assume that

S has mean 1 and that the Poisson arrival process has rate α. Erlang (1918) showed that the

steady-state blocking probability in this model is

B(s ,α) = (αs / s! )/
k = 0
Σ
s

(αk / k! ) ; (1)

see Brockmeyer, Halstrom and Jensen (1960) and §3.3 of Cooper (1982).

Erlang recognized that the blocking probability in (1) depends on the service-time distribution

only through its mean; indeed his primary argument was for the case of a deterministic service-

time distribution. However, a proper proof was first provided by Sevastyanov (1957). This result

is now part of a substantial insensitivity theory; e.g., see Chapter 6 of Franken et al. (1981) and

Chapter 12 of Whittle (1986).

While the Erlang loss model has had many successful applications, it fails to represent the

nonstationarity of real arrival processes. It has long been recognized that a much more realistic

model is the M t/GI/s/0 model, in which the arrival process is a nonhomogeneous Poisson process

with deterministic arrival rate function α ≡ α(t), but this model is much more difficult to

analyze. Palm (1943) focused on the M t/GI/s/0 model and investigated various ways to

approximate the time-dependent blocking probability. (Throughout this paper the time-dependent

blocking probability is defined as the time-dependent probability that all servers are busy.)

Among other things, Palm noted that if the arrival rate changes slowly, then the stationary model
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with the instantaneous rate (i.e., the pointwise stationary approximation; e.g., see Green and

Kolesar (1991) and Whitt (1991))) is approximately correct.

A common engineering approach is to use the stationary Erlang loss model with a constant

arrival rate obtained as an average over an appropriate time interval during which the system is

most heavily loaded, e.g., a busy hour. With this busy hour approach, the assumed arrival rate in

the model is usually greater than or equal to the real arrival rate the majority of the time, so that

the computed blocking probability tends to be conservative. This approach has been remarkably

successful, especially when designing systems with a fixed number of servers that must be able to

satisfy demand at any time. This approach is less successful for systems in which the number of

servers varies dynamically, e.g., as with operator staffing. In order to determine the number of

servers needed as a function of time, we want to be able to approximately determine the time-

dependent blocking probability.

Analyses of time-dependent blocking usually assume exponential service times. This is in

part obviously due to the exponential case being easier to analyze, but this focus may also be due

in part to the well known insensitivity property that holds for the stationary model. The

exponential distribution has also been shown to fit the data; indeed Erlang (1918) did statistical

analysis showing that telephone call holding times are well approximated by an exponential

distribution. However, telecommunications has evolved since then. Now the exponential

distribution is not always considered appropriate. For example, with two or more classes of

customers, each with exponential service times having different means, the overall service times

have a hyperexponential distribution (a mixture of exponential distributions), which can be

substantially more variable than an exponential distribution.

Hence, it is natural to ask whether the service-time distribution beyond its mean matters; i.e.,

it is natural to ask if insensitivity also holds in the nonstationary model. To investigate this
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question we consider the M t/PH/s/0 model with a service-time distribution consisting of two

phases; see Chapter 2 of Neuts (1981) for more on phase type (PH) distributions. This model

allows us to treat exponential (M) distributions and both less-variable distributions such as two-

phase Erlang (E 2 ) and more-variable distributions such as two-phase hyperexponential (H 2 ).

Keeping track of the number of customers in each phase at any time, we obtain a finite-state

continuous-time Markov chain (CTMC) with time-dependent infinitesimal generator. Following

Koopman (1972), it is customary to numerically solve the ordinary differential equations (ODEs)

corresponding to the Chapman-Kolmogorov equations by applying higher-order Runge-Kutta

methods; see Gerald and Wheatley (1990), Taaffe and Ong (1987), Ong and Taaffe (1989) and

Green, Kolesar and Svoronos (1991). However, instead we employ a direct discretization

method, which produces a discrete-time Markov chain (DTMC) approximating the given CTMC.

Since the CTMC can be defined as the limit of such DTMCs, the DTMC might well be

considered the original model, so we are not particularly worried about the quality of the

approximation. However, the approximations for the CTMC are also good. Our DTMC method

is surprisingly effective (for admittedly relatively small problems). Our DTMC approach is

similar to an Euler method for solving an ODE; e.g., see §5.2 of Gerald and Wheatley (1990). In

§2 we describe the algorithm and discuss its performance. There we establish an error bound for

the DTMC algorithm applied to the M t/M/s/0 model. Our experience leads us to conclude that

calculating exact distributions in models with time-varying rates need not be extraordinarily

difficult.

Our numerical solution of the M t/PH/s/0 model shows that insensitivity does not hold.

Indeed, this conclusion can easily be deduced from analytical results for the M t/G/∞ model; see

Eick, Massey and Whitt (1993a). However, since the pointwise stationary approximations based

on (1) does have the insensitivity property, we might expect that the blocking probability in the

M t/G/s/0 model does not depend very much on the service-time distribution beyond its mean.
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However, we find that the service-time distribution beyond the mean can have a significant

impact on the time-dependent blocking probability in the nonstationary Erlang loss model. This

effect is not great if the arrival rate changes very slowly (so that the model is nearly stationary at

each point in time), but it can be significant when the arrival rate varies significantly in the time

scale of individual service times.

Once we see that the service-time distribution beyond the mean can affect the time-dependent

blocking probability in the nonstationary model, we might anticipate that greater variability

produces more blocking, but this is not the case. In §3 we show for the case of sinusoidal arrival

rates that the peak blocking probability increases when the service-time variability (with fixed

mean) decreases.

In §4 we investigate the transient behavior of a stationary model starting out empty. More

consistent with intuition, steady-state is reached more slowly when the service-time distribution

is more variable.

In §5 we show that approximations based on associated infinite-server models can help

explain the phenomena in §3 and §4. In particular, the observed influence of the service-time

distribution is predicted, both qualitatively and quantitatively, by both the modified-offered-load

approximation in Jagerman (1975) and Massey and Whitt (1993b) and the stationary-peakedness

approximation in Massey and Whitt (1993c). This helps justify the attention we have recently

given to infinite-server models in Eick, Massey and Whitt (1993a,b) and Massey and Whitt

(1993a).

2. A Simple Effective Algorithm

By focusing on the number of busy server’s in each phase of service in our M t/PH/s/0 model,

we obtain a finite-state CTMC with a time-dependent infinitesimal generator matrix A(t). The

time-dependent probability vector π(t) ≡ (π j (t) ) ≡
i
Σ P(Q s (t) = jQ s ( 0 ) = i) π i ( 0 ) then
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can be obtained as the solution to the system of ordinary differential equations (ODEs)

π′ (t) = π(t) A(t) (2)

or, equivalently,

π(t) = π( 0 ) + ∫
0

t
π(s) A(s) ds , t ≥ 0 ; (3)

see Dollard and Friedman (1979) for relevant theory. In general, we assume that A(t) has

nonpositive diagonal elements, nonnegative offdiagonal elements and zero row sums.

We approximate the CTMC by a DTMC and the integral (3) by the corresponding product.

For this purpose, let

K =
0 ≤ s ≤ t

sup {
i

max A ii (s)} , (4)

where [ 0 ,t] is understood to be the time interval of interest. For step size h > 0, we define a

DTMC with time-dependent transition function P ≡ {P(k) : k ≥ 0 } with elements

P i j (k) =






1 −

m≠i

m
Σ P im (k) ,

h A i j (kh) ,

i = j .

i ≠ j
(5)

To make sure that P(k) is a bonafide transition matrix for each k, we require that the step size h in

(5) be less than 1/ K for K in (4). In practice, we choose h sufficiently small (less than 1/ K) so

that the time-dependent state probabilities do not change substantially upon refinement.

We approximate π(kh) by π̃(kh), which we calculate recursively by

π̃( j h) = π̃( j − 1 ) h) P( j − 1 ) , j ≥ 1 , (6)

where π̃( 0 ) = π( 0 ). Since P( j) is sparse, the recursion (6) can be performed efficiently, e.g.,

we work with the positive elements of P( j − 1 ) instead of the matrices themselves.
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It is customary to compute time-dependent state probabilities for time-dependent Markovian

models by applying Runge-Kutta methods; e.g., Green, Kolesar and Svoronos (1991) report using

fifth- and sixth-order Runge-Kutta methods in the International Math-Science Library subroutine

DVERK. However, we found the simple DTMC method described here to be effective for the

models we consider. Moreover, since CTMCs are defined as the limit of the DTMCs we

consider, our approach seems very natural. We might well consider the approximating discrete-

time chains to be the real model. We can also directly interpret probabilistically whether the step

size is small enough; i.e., we can directly evaluate whether or not the DTMC seems to be a

reasonable model.

Of course, it is also significant that the procedure is sufficiently accurate from the point of

view of the CTMC. This is demonstrated by Table 1, which display a few numerical results for

the M t / M / s / 0 model as a function of the step size h. In any example, the accuracy can easily be

checked by refining the step size in this way (although this provides no guarantee).

To provide additional insight into this simple approach, we give an upper bound on the error

for M t / M / s / r models, which is of order h. For this purpose, we use standard norms on vectors π

and matrices A, defined by

π =
i
Σ π i and A =

i
max {

j
Σ A i j} , (7)

so that πA ≤ π . A and A 1 A 2 ≤ A 1 . A 2 . Let λ′ (t) be the derivative of λ(t), which

we assume is well defined when we use it.

Theorem. For an M t / M / s / r model with µ(t) = 1 and t = nh,

π(t) − π̃(t) ≤
k = 1
Σ
n

[ 2h 2 (λ(kh) + s)2 + 2h
0 ≤ u < h

sup {λ(kh) − λ(kh + u)} ]

≤ η ≡ 2h 2

k = 1
Σ
n

[ (λ(kh) + s)2 +
0 ≤ u < h

sup {λ′ (kh + u)} ] ,

with
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η ∼∼ η̃ ≡ 2h∫
0

t
[ (λ(u) + s)2 + λ′ (u)] du .

We prove this theorem in §6. This bound is not nearly tight, but it gives an indication of the

way the error depends on the parameters.

3. The M t/PH/s/0 Model With Periodic Arrival Rates

To study the effect of the service-time distribution on the time-dependent blocking, we

consider two situations: dynamic steady state associated with a periodic arrival rate, see Heyman

and Whitt (1984) and Thorisson (1985), and a one-time transient effect. To represent the first

situation, we consider a sinusoidal arrival rate function in this section; to represent the second

situation, we consider the transient behavior of a stationary model starting out empty in the next

section.

Example 1. Consider an arrival-rate function of the form

α(t) = α
_ _

+ β sin (γt) , t ≥ 0 , (8)

and let the system start empty at time 0. The parameters α
_ _

, β /α
_ _

and γ are the average arrival

rate, relative amplitude and frequency, respectively, see Eick et al. (1993b) for further discussion.

Let α
_ _

= 10, β = 5 and γ = 1.

We consider five different service-time distributions, all of which are special two-phase PH

distributions; an Erlang (E 2 ), an exponential (M) and three hyperexponential (H 2 ) distributions.

All have mean 1. The squared coefficients of variation (SCV, variance divided by the square of

the mean, here the variance) are cs
2 = 0. 5 for E 2 , cs

2 = 1. 0 for M and cs
2 = 4. 0 for the three H 2

distributions. (These are fixed for E 2 and M.) An H 2 density has the form

f (t) = pλ 1 e − λ 1 t + ( 1 − p) λ 2 e − λ 2 t , t ≥ 0 , (9)

so that there are three parameters. We used as a third parameter (in addition to a mean of 1 and
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cs
2 = 4. 0)

r = pλ1
− 1 /(pλ1

− 1 + ( 1 − p) λ2
− 1 ) (10)

where λ 1 < λ 2; i.e., the proportion of the contribution to the mean provided by the component

with the smaller λ i . Formulas for p ,λ 1 and λ 2 in terms of the mean, cs
2 and r are given on p. 169

of Whitt (1984c) (Note that r here is 1 − r there.) Here we consider three values of r: 0 , 1 , 0. 5

and 0. 9.

The time-dependent blocking probability calculated by our algorithm in §2 is shown in

Figure 1. Note that dynamic steady state is achieved by the second cycle for the E 2 and M

service-time distributions, but it takes somewhat longer for the H 2 distributions. (We focus on

this issue more in §4.)

Since the maximum arrival rate is 15, the system is never exceptionally heavily loaded. If the

arrival rate were fixed at its peak rate, then the stationary blocking probability would be

B( 20 , 15 ) = 0. 046. In contrast, here the peak blocking ranges from about 0.01 for one of the H 2

distributions to about 0.035 for the E 2 distribution. On the other hand, if the arrival rate were

fixed at its average rate, then the blocking probability would be only B( 20 , 10 ) = 0. 0019. The

peak-rate stationary blocking and average-rate stationary blocking differ by a factor of about 24.

(This is to show that the time-dependence makes a big difference. When these two stationary

blocking probabilities do not differ much, there obviously is little to gain from careful analysis of

the time-dependent behavior.)

In Figure 1, we see that the peak time-dependent blocking probabilities for the different

service-time distributions can differ by as much as a factor of 3.5, so that the service-time

distribution certainly can matter. We also see that the peak blocking probabilities are ordered

according to the SCVs of the distributions, with the least variable distributions having the highest

blocking.
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From Figure 1, we also see that the service-time distribution beyond the first two moments

also matter, because the three H 2 distributions yield quite different blocking. The blocking for

the H 2 distributions is ordered according to the third parameter r. Increasing r, which

corresponds to increasing the third moment, increases the peak blocking. (This is consistent with

the known fact that, as the third moment increases, the H 2 renewal arrival process approaches a

Poisson process. The H 2 renewal arrival process approaches a batch Poisson process as the third

moment decreases; see Whitt (1984c).)

From Figure 1, we see that the peak blocking lags behind the peak arrival rate. Moreover, the

lag is roughly independent of the service-time distribution.

The conclusions described so far hold consistently in other cases, although the difference in

the time-dependent blocking is not always so great. In Figure 1 the less variable distributions

produce higher time-dependent blocking almost uniformly over time. However, in Figure 1 the

curves all coincide at their troughs, where there is nearly zero minimum blocking in each cycle.

In other examples, the minimum blocking is not negligible. At the troughs, the distributions are

also ordered, with the less variable distributions having lower minimum blocking probability. In

other words, less variable distributions tend to produce greater fluctuations in their time-

dependent blocking; they have higher peaks and lower troughs.

This phenomenon and the way the different cases approach steady state lead to a general

physical explanation: Systems with less variable service-time distributions tend to be more

responsive to arrival-rate changes. They will approach steady-state (dynamic or static) more

quickly and achieve high or low blocking levels associated with new high or low arrival rates

more quickly. Thus, less variable distributions should produce greater extremes with a periodic

arrival process.

A simple way to see that more variable service times might reduce blocking is to consider a
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deterministic s-server loss system with arrivals at times 2n + jε, 1 ≤ j ≤ 2s, for all positive

integers n, where ε is very small so that 2sε < 1. If all the service times are exactly 1, then s

customers are blocked in the interval [ 2n , 2 (n + 1 ) ) for each n. However, if s of the 2s arrivals in

[ 2n , 2 (n + 1 ) ) have service time 2, while the remaining s have service time 0 (so that the average

service time is still 1), then no customers at all are blocked.

The service-time distribution matters less as the frequency decreases. When we reduce the

frequency γ from 1.0 to 0.2. the differences are much less than in Figure 1. The H 2 curves are

close together with a peak blocking probability of about 0.03, while the exponential and Erlang

curves are close together with a peak blocking probability of about 0.044. Now the big SCV

cs
2 = 4. 0 of the H 2 distributions seems to be a key factor. Note that now the peak blocking for

the E 2 and M distributions is closer to the stationary peak blocking probability

B( 20 , 15 ) = 0. 046. To see that the influence of the service-time distribution still matters under

higher loads, we consider α
_ _

= 15, β = 10 and γ = 1. This produces results similar to Figure 1,

but less dramatic. The peak blocking probabilities for the five service-time distributions here (in

the same order) are about 0.28, 0.26, 0.24, 0.20 and 0.16.

Example 2. Our experimental evidence indicates that the influence of the service-time

distribution beyond the mean tends to decrease as s increases. However, to show that the impact

can be dramatic for very large s, we consider a simple (rather extreme) example. We let the

arrival rate be periodic, but for simplicity non-sinusoidal. Let the arrival rate be 8s in the

subintervals [ 10k, 10k + 1 ] for all k and let the arrival rate be 0 elsewhere. Let the mean service

time be 1. It is easy to see that with deterministic service times the proportion of arriving

customers blocked approaches 7/8 as s → ∞, and the time-dependent blocking probability

(probability all servers are busy) approaches 1 in the intervals [ 10k + 0. 125 , 10k + 1 ] and 0

elsewhere as s → ∞. In contrast, consider the two-point service-time distribution with

P(S = 9 ) = 1 − P(S = 0 ) = 1/9, which also has mean 1. With this service-time distribution,
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the model is equivalent to one with a Poisson arrival process having rate ( 8/9 ) s in the intervals

[ 10k, 10k + 1 ] and 0 elsewhere, with deterministic service times of size 9. For this two-point

service-time distribution, the proportion of customers blocked approaches 0 as s → ∞.

Moreover, the probability that all servers are busy approaches 0 uniformly in t as s → ∞. While

this example is not very realistic, it shows that the service-time effect need not go away when s

becomes large.

To see what happens in a more realistic example with larger s, we considered the sinusoidal

input in (8) again with s = 100. To obtain comparable experiments, we need to know how to

choose the arrival-rate parameters for different s. Here heavy-traffic asymptotics as in Jagerman

(1974) and Whitt (1984a) are helpful. In particular, the heavy-traffic asymptotics indicate that a

relevant scaling is α
_ _

(s) = s + √ s + o(√ s ), β(s) = b√ s + o√ s and γ(s) = 0 ( 1 ) as s → ∞.

Hence, to be similar to Example 1, we consider (2) with parameters α
_ _

= 90, β = 10 and γ = 1.

(This makes α
_ _

= s − √ s and β = − √ s .)

In this case, the service distribution beyond the mean still matters, but the differences are less

dramatic than in Figure 1. The peak blocking probability ranges from about 0.05 to about 0.07.

The slow convergence to dynamic steady-state for the H 2 distributions is especially evident.

4. Approach to Steady State Starting Empty

In this section we consider the stationary model with α(t) = α for all t ≥ 0, but not starting

in steady state. In particular, we consider the approach to steady state starting out empty. For the

case of exponential service times, the asymptotic behavior as s → ∞ is investigated in Mitra and

Weiss (1989).

Example 3. To relate to Example 1 consider the stationary Erlang loss model with s = 20 and

α = α(t) = 15, t ≥ 0, which has steady-state blocking probability B( 20 , 15 ) = 0. 046. Figure

2 shows the time-dependent blocking probability for the five PH service-time distributions when
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the system starts out empty at time 0.

First observe that the celebrated insensitivity property is reflected by the convergence of all

five curves to a common limit. Next observe that the service-time distribution has a significant

impact. The service-time distributions are ordered as in §3; lower variability means more

responsiveness; i.e., the approach to steady state is fastest with deterministic service times.

5. Insight Through Infinite-Server Approximations

We have seen that the service-time distribution can play an important role. Now it is natural

to look for simple ways to explain and predict the effect. We suggest that infinite-server

approximations can be very useful for this purpose. In this section we briefly discuss two

infinite-server approximations and the insight that they can provide.

However, the most common approximation is probably the pointwise-stationary

approximation (PSA). With PSA we approximate the time-dependent blocking probability at

time t in the M t/G/s/0 model by the stationary blocking formula (1) applied to the instantaneous

offered load α(t), which is the arrival rate since ES = 1; i.e., the approximation at time t is

B(s ,α(t) ). It is important to note that the PSA does not capture the service-time effect. Since the

stationary model has the insensitivity property, PSA produces a time-dependent blocking formula

that is independent of the service-time distribution beyond its mean. From §3 and §4, we see that

this is a shortcoming of PSA.

5.1 The Modified-Offered-Load Approximation

An alternative to PSA is the modified-offered-load (MOL) approximation; see Jagerman

(1975) and Massey and Whitt (1993b). The idea is to approximate the time-dependent blocking

probability by B(s ,m(t) ) instead of B(s ,α(t) ), where m(t) is the time-dependent mean number

of busy servers in the associated M t/G/∞ infinite-server model with the same arrival-rate function
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and the same service-time distribution. Just like PSA, MOL is exact for the stationary model.

The number of busy servers at time t in the M t/G/∞ model has a Poisson distribution with

mean

m(t) = E[∫
t − S

t
λ(u) du] = E[λ(t − S e ) ] E[S] , (11)

where S e is a random variable with the service-time stationary-excess distribution, i.e.,

P(S e ≤ t) =
E[S]

1_ ____∫
0

t
P(S > u) du , t ≥ 0 ; (12)

see §1 of Eick et al. (1993a).

An important feature of the MOL approximation is that it does depend on the service-time

distribution through the formula for the time-dependent mean m(t) in (11). Moreover, the MOL

approximation is reasonably accurate. As shown in Eick et al. (1993a,b), formula (11) is

sufficiently tractable that we can learn a great deal from it about the way m(t) depends on the

arrival-rate function and, of particular interest here, on the service-time distribution. For

example, explicit formulas for m(t) for the models of §3 and §4 are given, respectively, in (7) of

Eick et al. (1993b) and (20) of Eick et al. (1993a). For the case of service times with mean 1 and

the sinusoidal input in (8),

m(t) = α
_ _

+ β sin (γt) E[ cos (γS e ) ] − cos (γt) E[ sin (γS e ) ] . (13)

Formula (13) can be expressed conveniently in closed form in special cases, e.g., when S is

exponential,

m(t) = γ
_

+
1 + γ2

β_ _____ [ sinγt − γcosγt] ; (14)

see (15) of Eick et al. (1993b). Hyperexponential service is also treated explicitly in Eick et al.

(1993b). For phase-type service, the M t/PH/∞ model is equivalent to a network of infinite-server

queues, each with exponential service times, which is easily analyzed; see §8 of Massey and
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Whitt (1993a). In particular, the vector of means (the mean number of busy servers in each

service phase) is obtained as the solution of a k-dimensional ODE, where k is the number of

service phases. Note that the computation is much less than for the exact solution in §2; there the

ODE is 
k

s
-dimensional, where s is the number of servers and k is again the number of service

phases.

Similarly, for the transient behavior of the stationary model in §4,

m(t) = αP(S e ≤ t) (15)

for S e in (12). The first moment ES e = (cs
2 + 1 )/2 is one useful representation of the relaxation

time (time to approach equilibrium). Moreover, as indicated there, m(t) decreases as the service-

time distribution becomes more variable in the convex stochastic order.

When we look at the MOL approximations for the examples considered, we see that the

phenomena observed in §2 and §3 are predicted, both quantitatively and qualitatively. This is

illustrated by Figure 3, which displays the MOL approximations for Example 1. Figure 3 is not

the same as Figure 1, but it is similar.

5.2 The Stationary-Peakedness Approximation

As discussed in Massey and Whitt (1993c) we can approximate the average blocking over an

interval by approximation techniques for G/G/s/0 models, which have stationary non-Poisson

arrival processes. Indeed, for the periodic arrival-rate functions considered in §2, we can regard

the model as a stationary model with a non-Poisson arrival process if we randomize over a cycle.

It is natural to use approximations based on peakedness. The peakedness is the ratio of the

variance to the mean of the steady-state number of busy servers in the associated G/G/∞ model;

see Eckberg (1983), Whitt (1984a) and references there. In general, the peakedness is quite

complicated, but there is a relatively simple approximation that is asymptotically correct as the
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arrival rate increases, namely,

z = 1 + (cA
2 − 1 ) ∫

0

∞
P(S > u)2 du (16)

and cA
2 is the asymptotic variance of the arrival process; see p. 692 of Whitt (1984a).

Given that α
_ _

< s, this approximation implies that the average blocking probability should be

increasing in the asymptotic peakedness z in (16). Hence, we can gain insight by observing how

z depends on the service-time cdf. Consistent with §3, we see that z increases as the service-time

distribution gets less variable, provided that cA
2 > 1. It is not difficult to show that indeed

cA
2 > 1 for the stationary version of a nonhomogeneous Poisson process. This somewhat

counterintuitive behavior of stationary models is discussed in Wolff (1977) and in Remarks 6 and

7 of Whitt (1984b).

6. Proof of the Theorem

We conclude the paper by proving the theorem in Section 2. For stochastic matrices P k and

Q k , it is easy to see that

k = 1
Π
n

P k −
k = 1
Π
n

Q k =
k = 1
Σ
n 


i = 1

Π
k − 1

P i (P k − Q k )
j = k + 1

Π
n

Q k





, (17)

so that


k = 1
Π
n

P k −
k = 1
Π
n

Q k ≤
k = 1
Σ
n

P k − Q k .

Similarly, let E A (t) and E B (t) are the time-dependent transition matrices associated with time-

dependent generators A(t) and B(t); E A (t) = e At when A(t) = A. Then

E A (t) − E B (t) = ∫
0

t
P A (t) (A(s) − B(s) ) E B (t) ds

and
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E A (t) − E B (t) ≤ ∫
0

t
A(s) − B(s) ds .

In addition, for any fixed generator matrix A

exp (A) − I − A = ∫
0

1
( 1 − s) A 2 exp (sA) ds (18)

by Taylor’s theorem with integral remainder. Since exp (sA) is a stochastic matrix,

exp (sA) = 1 and (18) implies that

exp (tA) − I − tA ≤
2

t 2A2
_ ______ . (19)

If A and Ã are the generators of M / M / s / r systems with arrival rates λ and λ̃, and service rates 1

(not time-varying), then

A ≤ 2 (λ + s) (20)

and

A − Ã ≤ 2λ − λ̃ .

Combining (19) and (20), we obtain

exp (hA) − I − hA ≤ 2 [ (λ + s) h]2 .

Now let P k = P(kh) in (14); let Q k = exp (hA(kh) ); and let B(t) be the time-varying generator

defined by letting B(s) = A(kh) for kh ≤ s < (k + 1 ) h. Then

E B (nh) =
k = 1
Π
n

Q k . (21)

Finally, combining these results, we obtain for t = nh
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π(t) − π̃(t) ≤ E A (t) −
k = 1
Π
n

P k

≤ E A (t) − E B (t) + E B (t) −
k = 1
Π
n

P k

≤ ∫
0

t
A(s) − B(s)ds +

k = 1
Σ
n

P k − Q k

≤
k = 1
Σ
n

2h
0 ≤ u ≤ h

sup {λ(kh) − λ(kh + u)} +
k = 1
Σ
n

2h 2 (λ(kh) + s)2 .
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FIGURE 1. Exact numerical solutions for the M t / PH / s / 0 model starting empty in Example 1
with s = 20 , α(t) = 10 + 5 SIN(t) and five service-time distributions.

FIGURE 2. Exact numerical solutions for the M t / PH / s / 0 model starting empty in Example 3
with s = 20 , α(t) = 15 , t ≥ 0 and five service-time distributions.

FIGURE 3. The modified-offered-load approximation for the M t / PH / s / 0 model starting empty
in Example 1 with s = 20 , α(t) = 10 + 5 SIN(t) and five service-time distributions.



_ ________________________________________
Step Size

Time _ _______________________________

t h = 10 − 5 h = 10 − 4 h = 10 − 3
_ ________________________________________

0.1 0.078543 0.078546 0.078576
2 0.189019 0.189017 0.188994
4 0.030160 0.030155 0.030111
6 0.020007 0.020001 0.020030
8 0.193267 0.193269 0.193285

10 0.047267 0.047260 0.047198
12 0.012346 0.012347 0.012355
14 0.186800 0.186806 0.186865
16 0.070326 0.070318 0.070241
18 0.008969 0.008969 0.008971
20 0.167856 0.167866 0.167969_ _________________________________________ ________________________________________

accuracy 0.000010 0.000113_ ________________________________________ 



























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
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


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







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
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
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













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




Table 1. The blocking probabilities in the M t / M / s / 0 model with s = 100 and
λ(t) = 100 + 20 sin t calculated from the DTMC algorithm with various step sizes. The
accuracy measures the maximum difference from the most refined case.



_ ________________________________________
Step Size

Time _ ______________________________

t h = 10 − 5 h = 10 − 4 h = 10 − 3
_ ________________________________________

2.0 0.025060 0.025052 0.02497
2.5 0.262811 0.262882 0.26359
3.0 0.410136 0.410156 0.41036
3.5 0.459455 0.459462 0.45953
4.0 0.487940 0.487944 0.48798
4.5 0.503775 0.503777 0.50380
5.0 0.509244 0.509244 0.50925
5.5 0.505120 0.505118 0.50510
6.0 0.491032 0.491028 0.49099
6.5 0.465433 0.465427 0.46537
7.0 0.425283 0.425274 0.42519
7.5 0.365536 0.365523 0.36540
8.0 0.279290 0.279273 0.27910
8.5 0.163778 0.163757 0.16355
9.0 0.047881 0.047865 0.04771
9.5 0.001720 0.001718 0.00170

10.0 0.000000 0.000000 0.00000_ _________________________________________ ________________________________________
accuracy 0.000071 0.00078_ ________________________________________ 





























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
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Table A1. The blocking probabilities in the M t / M / s /0 model with s = 50 and λ(t) = 40t − 4t 2

on [ 0 , 10 ] calculated from the DTMC algorithm with various step sizes. The accuracy measures
the maximum difference from the most refined case.



_ ________________________________________
Step Size

Time _ _______________________________

t h = 10 − 5 h = 10 − 4 h = 10 − 3
_ ________________________________________

0.1 0.002618 0.002619 0.002625
2.0 0.001810 0.001810 0.001812
4.0 0.003233 0.003233 0.003232
4.1 0.003271 0.003270 0.003260
4.2 0.001858 0.001857 0.001845
4.3 0.000933 0.000932 0.000927
4.4 0.000884 0.000884 0.000883
4.5 0.001564 0.001564 0.001566
4.6 0.002890 0.002890 0.002890
4.7 0.003463 0.003462 0.003455
4.8 0.002274 0.002272 0.002260
4.9 0.001090 0.001089 0.001081
5.0 0.000824 0.000824 0.000822_ _________________________________________ ________________________________________

accuracy 0.000002 0.000014_ ________________________________________ 














































































































Table 1. The blocking probabilities in the M t / M / s /0 model with s = 20 and
λ(t) = 10 + 5 sin 10t calculated from the DTMC algorithm with various step sizes. The
accuracy measures the maximum difference from the most refined case.


