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This paper studies the M/M/s +M queue, i.e., the M/M/s queue with customer abandonment, also called the Erlang-A
model, having independent and identically distributed customer abandon times with an exponential distribution (the +M),
focusing on the case in which the arrival rate and the number of servers are large. The goal is to better understand the
sensitivity of performance to changes in the model parameters: the arrival rate, the service rate, the number of servers, and
the abandonment rate. Elasticities are used to show the percentage change of a performance measure caused by a small
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1. Introduction
Motivated by telephone call centers and more general cus-
tomer contact centers, in this paper we study the multi-
server queue with customer abandonments, focusing on the
case in which the arrival rate and the number of servers
are large; see Garnett et al. (2002), Gans et al. (2003), and
Borst et al. (2004) for background. In particular, we con-
sider the relatively elementary M/M/s + M model, also
known as the Erlang-A model, having a Poisson arrival
process with arrival rate �, independent and identically dis-
tributed (i.i.d.) service times (independent of the arrival
process) with an exponential distribution having mean 1/�,
s homogeneous servers working in parallel, unlimited wait-
ing room, i.i.d. customer abandon times (independent of the
arrival and service processes) with an exponential distribu-
tion having mean ma = 1/� (the +M), and the first-come
first-served service discipline. Abandonment is recognized
as an important feature in call centers, and the i.i.d. assump-
tion for the abandon times is natural for the invisible queues
occurring in call centers.
In this paper, we study the sensitivity of performance

in the Erlang-A model to changes in the model param-
eters. In doing so, we were motivated by a statistical
approach proposed by Pierson and Whitt (2006) to approx-
imate the steady-state performance of the more general
M/GI/s + GI model, having general service-time and

time-to-abandon distributions. Whitt (2005) previously pro-
posed approximating the M/GI/s + GI model by the
purely Markovian M/M/s + M�n model, having i.i.d.
exponential service times with the same mean and general
state-dependent abandonment rates. The total abandonment
rate when there are k customers waiting in queue, �k, is
approximated by

�k ≈
k∑

j=1
h�j/�� k � 0� (1.1)

where h�x ≡ f �x/�1 − F �x is the hazard function
associated with the time-to-abandon cumulative distribu-
tion function (c.d.f.) F , having probability density func-
tion f . Alternatively, one could use more complicated exact
abandonment rates in the M/M/s +GI model determined
by Brandt and Brandt (2002). (The general approach of a
state-dependent Markovian approximation was proposed by
Brandt and Brandt 1999, 2002, but the specific approach to
the M/GI/s +GI model in Whitt 2005 is different.)
Given that theM/M/s+M�n model can provide a good

approximation to the M/GI/s +GI model, it is natural to
consider directly using the M/M/s+M�n model, without
making direct reference to the exact time-to-abandon dis-
tribution. Pierson and Whitt (2006) investigate how such a
direct M/M/s + M�n model fit can work by simulating
various M/GI/s + GI models, directly estimating state-
dependent abandonment rates from the simulation output,
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and then using the M/M/s + M�n algorithm in Whitt
(2005) with these estimated abandonment rates. With ample
data (long simulation runs), the exact state-dependent aban-
donment rates estimated in that way were found to be close
to the approximation in (1.1), which provides additional
support for the approximation in (1.1). The approximate
performance was also close to the performance of the orig-
inal M/GI/s + GI model. The statistical procedure also
performed quite well with only limited data.
The effectiveness of the statistical procedure with lim-

ited data clearly depends in part upon the sensitivity of
performance in the M/M/s+M�n model to inaccuracies,
or small changes, in the abandonment rates. That led to
the present study: We wanted to see if performance in the
M/M/s + M�n model is indeed relatively insensitive to
small changes in the abandonment rates. In this paper, we
address that question for the M/M/s+M special case. Our
results here show that indeed the performance is remark-
ably insensitive to changes in the abandonment rate.
The first issue is how to evaluate the sensitivity. The

natural direct approach is to calculate derivatives of per-
formance measures with respect to the parameters, but it
is difficult to interpret the derivatives. To aid interpreta-
tion, we follow the long tradition in economics and look at
elasticities. Paralleling the price elasticity of demand, we
look at elasticities such as the arrival-rate elasticity of the
abandonment probability. The elasticity is the derivative of
the performance measures (regarded as a function of the
model parameter) multiplied by the parameter, divided by
the performance measure itself. For example, if f �� is the
abandonment probability P�Ab as a function of the arrival
rate �, having derivative f ′, then the arrival-rate elasticity
of the abandonment probability is

��f � � ≡ �f ′

f
≡ �f ′��

f ��
� (1.2)

it shows the percentage change in the abandonment prob-
ability resulting from a small percentage change in the
arrival rate. Very crudely, the sensitivity may be judged as
large or small depending on whether the elasticity is greater
than or less than 1.
The second issue is how to calculate the derivatives.

The natural direct approach is to differentiate formulas for
the performance measures, but we do not do that. When
convenient formulas are available, it is natural to directly
differentiate them, but the method is limited to those per-
formance measures for which tractable formulas are avail-
able. Instead, we use the exact numerical algorithm for
the M/M/s +M model in Whitt (2005) and simple finite-
difference approximations; i.e., we approximate the deriva-
tive by

f ′�� ≈ f ��+h− f ��

h
(1.3)

for small positive h. We verify accuracy by performing
the calculation for different intervals h, e.g., h = 10−j for

j = 3�4�5. In this paper, we show that the numerical algo-
rithm is indeed effective for calculating the derivatives and
the associated elasticities.
It is significant that the numerical algorithm has a wider

scope than we exploit here. First, it applies directly to more
general M/GI/s+GI models as an approximation. In that
setting, it can be used to investigate sensitivity of perfor-
mance to other parameters. For example, the same methods
can be used to study sensitivity to variability. That can be
accomplished in a variety of ways. One way is to work with
two-parameter families of service-time or time-to-abandon
distributions, such as gamma or lognormal, and differen-
tiate with respect to the squared coefficient of variation
(CSQ, variance divided by the square of the mean) of the
distribution. It is convenient to work with CSQs because
they measure variability independent of scale (the mean).
We also show that useful insight can be gained from

heavy-traffic diffusion and fluid approximations. Especially
useful are the diffusion approximations arising in the
quality-and-efficiency-driven (QED) many-server heavy-
traffic limiting regime developed by Garnett et al. (2002).
Those approximations are easy to work with and are
remarkably accurate. Moreover, the QED approximations
tell an interesting story: The arrival-rate and service-rate
elasticities of the diffusion approximations for the standard
performance measures are all of order O�

√
s as s →
,

while the abandonment-rate elasticities of the diffusion
approximations for the same performance measures are all
of order O�1. Analysis of the elasticities of the diffusion
approximations shows that performance in the M/M/s+M
model for large s (in the QED regime) is remarkably sen-
sitive to changes in the arrival rate or the service rate, but
remarkably insensitive to changes in the abandonment rate.
We also investigate elasticities associated with determin-

istic fluid limits in the efficiency-driven (ED) many-server
heavy-traffic limiting regime, drawing upon Whitt (2004,
2006a). In contrast to the QED regime, in the ED regime
all the elasticities are of order O�1 as s →
. However,
the abandonment-rate elasticities approach 1, whereas the
others approach a limit that explodes as the traffic inten-
sity approaches 1, the critical value for stability without
abandonment. Therefore, we see another view of the same
phenomenon in the ED regime.
The different degrees of sensitivity have implications for

our concern about the underlying model in applications.
When the sensitivity of performance to a parameter is high,
we should worry more about uncertainty about that model
parameter, because the consequences from errors in speci-
fying that parameter will be greater. Because the sensitivity
to the arrival rate in the M/M/s + M model is relatively
large, we should be concerned about uncertainty about the
arrival rate. That suggests that it may be wise to directly
address uncertainty about the arrival rate in the analysis, as
has been done in Whitt (2006b).
There is a substantial body of related literature: The

sensitivity issue is closely related to the issue of model
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continuity or stability; the object there is to conclude that
performance is a continuous function of a model parame-
ter or a model distribution; e.g., see Whitt (1980), Chap-
ter 5 of Kalashnikov and Rachev (1990), Rachev (1991),
and the references therein. Sensitivity goes beyond con-
tinuity to focus on derivatives. The sensitivity issue for
Erlang models (A, B, and C) is also related to the con-
vexity issue for these models; see Harel (1990), Harel and
Zipkin (1987), Jagers and van Doorn (1991), and the ref-
erences therein. Earlier papers that focus on many-server
heavy-traffic scaling are Erlang (1924), Jagerman (1974),
and Halfin and Whitt (1981). Sensitivity of performance
in the G/G/1/C model was studied via derivatives of the
Brownian heavy-traffic approximation in §9 of Berger and
Whitt (1992). Sensitivity of performance to the service-
time distribution beyond its mean in the Mt/GI/s/0 loss
model with time-varying arrival rate was studied by Davis
et al. (1995). For more on the Erlang-A model and gen-
eralizations, see Brandt and Brandt (1999, 2002), Garnett
et al. (2002), Mandelbaum and Zeltyn (2004), Whitt (2004,
2005, 2006a, b), and the references therein.
The rest of this paper is organized as follows: In §2,

we start by applying the QED diffusion approximation in
Garnett et al. (2002) to investigate the sensitivity. In §3, we
apply the alternative ED fluid approximation from Whitt
(2004, 2005) to gain further insights. In §4, we conduct
numerical experiments, applying the algorithm in Whitt
(2005) to calculate the elasticities in a range of cases.
There we demonstrate that the scaling discussed in previ-
ous sections indeed provides valuable insight. In §5, we
conduct subsequent experiments to study the sensitivity of
state-dependent abandonments to the total-abandonment-
rate function for large queue lengths. We show that perfor-
mance tends to be quite insensitive to such changes as well.

2. Insights from the QED Many-Server
Heavy-Traffic Limit

In this section, we apply a diffusion approximation to inves-
tigate the sensitivity of the Erlang-A model to the model
parameters: the arrival rate �, the service rate �, the num-
ber of servers s, and the individual customer abandonment
rate �. Specifically, we apply the diffusion approxima-
tion obtained by Garnett et al. (2002) via the many-server
heavy-traffic limit in the QED limiting regime, which is
also known as the Halfin-Whitt limiting regime, because
corresponding results for the Erlang-C model (without
abandonments) were previously obtained by Halfin and
Whitt (1981).
In the QED limiting regime, the arrival rate, �, and the

number of servers, s, are allowed to increase toward infin-
ity, with the mean service time 1/� held fixed, so that the
traffic intensity � ≡ �/s� approaches 1 and

�1−�
√

s → � for −
 < � < 
 (2.1)

From a practical perspective, this means that � and s both
should be large and that � should not be too different

from s. In particular, the difference ��/�− s should be of
order O�

√
s. The limiting constant � in (2.1) is an indi-

cator of the quality of service (QOS), capturing the impact
of all parameters. The QOS improves as � increases.
As is usually the case with stochastic-process limits

(e.g., see §5.5 of Whitt 2002), the scaling leading to the
stochastic-process limit is the most important part, assum-
ing that the conditions of the limiting regime indeed prevail.
From the scaling alone, we will see that the elasticities of
all the standard performance measures with respect to �, �,
and s (regarding s as a continuous variable) are all of order
O�

√
s as s →
, whereas the elasticities with respect to

the abandonment rate � are all of order O�1. The practical
implication is that the performance in the QED regime is
substantially less sensitive to small percentage changes in �
than to small percentage changes in the other parameters.
The importance of the QED many-server limiting regime

specified by (2.1) is highlighted by the fact that the proba-
bility of delay approaches a limit strictly between 0 and 1
as s → 
 if and only if the limit in (2.1) holds; see
Theorem 4 of Garnett et al. (2002). Let W denote the
steady-state waiting time (with dependence on the parame-
ters suppressed in the notation). If (2.1) holds, then

P�W > 0 → w
(−��

√
�/�

)
� (2.2)

where

w�x� y ≡
[
1+ h�−xy

yh�x

]−1
� (2.3)

and h is the standard-normal hazard function, defined by

h�x ≡ %�x

&c�x
≡ %�x

&�−x
� (2.4)

with % being the probability density function (p.d.f.), &
the associated cumulative distribution function (c.d.f.) and
&c ≡ 1−& the associated complementary c.d.f. (c.c.d.f.) of
a standard (mean 0 and variance 1) normal random variable.
The QED approximation for the probability of delay is

obtained by replacing the limits in (2.1) and (2.2) by equal-
ity; i.e.,

P�W > 0 ≈ w
(−��

√
�/�

)
� where � = �1−�

√
s�
(2.5)

see §5.2 of Garnett et al. (2002). From a practical perspec-
tive, (2.5) provides a valuable simplification, because the
two parameters � and s have been replaced by the single
parameter �.
From §5.2 of Garnett et al. (2002), we also obtain the

following approximation for the conditional abandonment
probability:

P�Ab �W > 0 ≈ h
(
�
√

�/� + 1/√s�/�
)−h

(
�
√

�/�
)

h
(
�
√

�/� + 1/√s�/�
) �

(2.6)



Whitt: Sensitivity of Performance in the Erlang-A Queueing Model to Changes in the Model Parameters
250 Operations Research 54(2), pp. 247–260, © 2006 INFORMS

where h is again the standard-normal hazard function
in (2.4). Note that the parameters � and � appear in (2.5)
and (2.6) only via

√
�/�.

We now simplify the approximation in (2.6). For that
purpose, it is convenient to define a family of functions
associated with the normal c.c.d.f. &c. For a real-valued
function of a real variable, f , let f ′ denote its derivative.
Then, let

h0 ≡ &c�

h ≡ h1 ≡
−h′

0

h0
= %

&c
�

hk ≡
h′

k−1
hk−1

for k � 2 

(2.7)

We apply a one-term Taylor-series expansion to obtain
the following asymptotically equivalent (as s →
) version
of (2.6):

P�Ab �W > 0 ≈ h2
(
�
√

�/�
)

√
s�/�

� (2.8)

where h2 is defined in (2.7). In particular, the two approx-
imations approach a common limit as s →
 after multi-
plying by

√
s.

The family of functions in (2.7) is also convenient
to express the elasticities. For example, combining (2.7)
and (2.8), we obtain an expression for the arrival-rate elas-
ticity of the conditional probability of abandonment given
that a customer is delayed, namely,

��P�Ab �W > 0� � ≈ �h3
(
�
√

�/�
)(�

(�

=−h3
(
�
√

�/�
) �

�
√

s
 (2.9)

Given results for P�W > 0 and P�Ab �W > 0, we
obtain results for related quantities through the exact
relations

P�Ab = P�W > 0P�Ab �W > 0�

EW = maP�Ab�

EQ = �EW  

(2.10)

The following elementary proposition about elasticities
explains the consequences of the relations in (2.10). It also
shows that it does not matter whether we work with the
given parameters or their reciprocals; e.g., we could work
with either the abandonment rate � or the mean time to
abandon, ma ≡ 1/�. Let �f � g�x ≡ f �g�x denote func-
tion composition.

Proposition 1 (Basic Elasticity Properties). Let f
and g be positive differentiable functions of a real vari-
able x and let c be a real number. Then,
(a) ��cf � x =��f � x and ��xcf � x =��f � x− c.
(b) If f �x = cx, then ��f � x = 1.

(c) ��fg� x =��f � x+��g� x.
(d) ��f � g� x =��f � g��g� x.
(e) If g�x = f �1/x, then ��g� x =−��f � x.
(f) ��1/f � x =−��f � x.

We now investigate how the diffusion approximations for
the elasticities behave as s →
 in the QED regime spec-
ified by (2.1). For that purpose, the key function in (2.5)
is not w, but �: The key is the way � depends on the
parameters � and s, with the understanding that �/s → �
as s →
. The performance measures are functions of �,
but because � is not necessarily positive, we cannot always
apply Proposition 1(d). Instead, we apply

��f ��� , =��f � �,�′
,� (2.11)

where , is the parameter of interest.
For a differentiable real-valued function of two real vari-

ables, g ≡ g��� -, let the partial derivative with respect
to �, (g/(�, be denoted by g′

�. Note that

�′
� =− 1

�
√

s
� �′

� = �

�2
√

s
�

�′
s =

1

2
√

s
+ �

2
√

�s3/2

(2.12)

and

��′
� =−��′

� =− �

�
√

s
�

s�′
s =

√
s

2
+ �

2
√

�
√

s
� and ��′

� = 0 
(2.13)

We say that two real-valued functions of a real variable,
f and g, are asymptotically equivalent (at +
), and write
f ∼ g as x →
, if f �x/g�x → 1 as x →
. As a con-
sequence of (2.13), in the QED limiting regime specified
by (2.1), we have

��′
� =−��′

� ∼−
√

s

�
as s →
�

s�′
s ∼

�1+ �1/
√

�

2

√
s as s →
 

(2.14)

The asymptotic relations for the function � in (2.14)
explain the asymptotic form of the elasticities of the perfor-
mance measures with respect to the parameters �, �, and s.
When we let � = 1, all three are asymptotically equivalent
except for the sign.
To be more concrete, we give additional details. We state

results for an arbitrary function with certain properties. The
assumed properties cover the diffusion approximations of
all the performance measures above: P�W > 0 in (2.5),
P�Ab �W > 0 in (2.8), P�Ab in (2.10), EW in (2.10),
and EQ in (2.10). Below we regard s as a real variable,
not restricted to integer values. We now state a general
proposition, whose proof follows from elementary calculus,
and will thus be omitted.
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Proposition 2 (General Form of Elasticities in the
QED Limiting Regime). Consider differentiable real-
valued functions of several real variables:

f ≡ f ��� - > 0�

g ≡ f /sp for p � 0�

� ≡ ���� s� � ≡
(
1− �

s�

)√
s�

- ≡ -��� ��

(2.15)

where it is understood that the function f depends on the
variables � and s only through �, while the function - does
not depend on them at all. Then, the elasticities take the
form

��g� � = C1

�√
s
∼ C1

√
s as s →
�

��g� � =−C1

�√
s
+C2 ∼−C1

√
s as s →
�

��g� s = C3

√
s +C4

�√
s
−p

∼ �C3+C4
√

s as s →
�

��g� � = C5�

(2.16)

where Ci are functions of � and �, but not � or s. In
particular,

C1 =
g′

�

g
�′

�

√
s =− g′

�

�g
� C2 =

g′
-

g
�- ′

��

C3 =
g′

�

2g
� C4 =

g′
�

2�g
� C5 =

g′
-

g
��- ′

� 

(2.17)

If � = 1, then C3+C4 =−C1, and

��g� � ∼−��g� � ∼−��g� s ∼ C1

√
s as s →
 

(2.18)

Corollary 2.1 (Consequences for Performance Mea-
sures). Assume that the QED many-server heavy-traffic
scaling in (2.1) holds with � = 1. Let g denote the diffu-
sion approximation for one of the performance measures
P�W > 0, P�Ab �W > 0, P�Ab, EW , or EQ, combining
(2.5), (2.8), and (2.10). Then,

��g� � =−��g��−1∼−��g��=��g��−1∼−��g�s

= O�
√

s as s →
� (2.19)

while

��g� � =−��g� �−1 = O�1 as s →
 (2.20)

Corollary 2.1 substantiates the claim made earlier: When
the number of servers gets large in the Erlang-A model,
operating in the QED regime, the performance measures
tend to be highly sensitive to changes in the arrival rate,
the service rate, or the number of servers, but relatively
insensitive to changes in the abandonment rate, as measured
by elasticities.
The right pictures should tell the story. However, plot-

ting is a bit subtle. For example, it is difficult to see the
effect of changing the arrival rate by simply plotting the
performance as a function of the arrival rate. That is so,
because by using the arrival rate as the independent vari-
able, we automatically fix the scale. If we instead plot the
performance as a function of the traffic intensity, then the
independent variable corresponds to the percentage change
in arrival rate. To illustrate, we plot the diffusion approx-
imation for the delay probability, P�W > 0, in (2.5) as a
function of the traffic intensity in Figure 1.
Figure 1 shows the growing sensitivity to the arrival rate

that we have previously described in other ways. For exam-
ple, the slope at � = 1 00, where P�W > 0 ≈ 0 50 in all
three cases, is 0.125, 0.400, and 1.25, respectively, when
s = 10, s = 100, and s = 1�000. The sensitivity can be
understood from the basic QED scaling in (2.1) in the fol-
lowing way: For any given s, the relevant values of � are
s +O�

√
s. Thus, � is of order s, but changes in the delay

probability, going from 0 to 1, take place over an inter-
val of length O�

√
s. Consequently, the elasticity should

be of order O�
√

s, because the derivative is roughly of
order O�1/

√
s, the performance measure itself is roughly

of order O�1, and the parameter � is of order O�s.

Figure 1. The diffusion approximation for the delay
probability, P�W > 0, in (2.5) as a func-
tion of the traffic intensity � for three differ-
ent numbers of servers: s = 10, s = 100, and
s = 1�000.
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Remark 2.1 (Contrast with Scaling in Direct Asymp-
totics). It is useful to contrast the asymptotics of the elas-
ticities with the asymptotics of the performance measures
themselves. In the QED limiting regime, specified by (2.1),
the performance measures themselves have limits with dif-
ferent scaling. In particular, in the QED regime, the follow-
ing scaled performance measures converge to finite positive
limits:

P�W > 0�
√

sP�Ab�
√

sEW � and
EQ√

s
 (2.21)

The elasticities have meaning independent of this scaling.
The elasticities being of order O�

√
s implies that the sen-

sitivity of performance to the parameters is growing as
s increases, regardless of the direct scaling of the perfor-
mance measures: An x% change in the parameter produces
an increasing percentage change in the performance mea-
sure as s increases, given the QED condition (2.1).

Remark 2.2 (The Erlang B and C Models). The results
in this section also apply to the Erlang-B and C models
as special cases. We obtain the Erlang-B model from the
Erlang-A model if we let � →
; we obtain the Erlang-C
model from the Erlang-A model if we let � → 0, assuming
that � > 1 in (2.1). When we let � →
 to approach the
Erlang-B model, the abandonment becomes the blocking,
and the delay probability P�W > 0 approaches the block-
ing probability P�Bl; i.e., as � →
,
P�W >0≈w

(−��
√

�/�
)→ 21+�1/h�−�3−1≈P�Bl 

(2.22)

On the other hand, as � → 0,

P�W >0≈w
(−��

√
�/�

)→ 21+��/h�−�3−1 (2.23)

In these two cases, the two limits—on s and on �—can be
done in either order, although we do not verify that here.
Direct QED many-server heavy-traffic limits for these two
special cases are established in Erlang (1924), Jagerman
(1974), Srikant and Whitt (1996), and Halfin and Whitt
(1981). Then, the abandonment rate � ceases to be a rele-
vant parameter. We deduce, either directly or by taking lim-
its on � of quantities here, that the arrival-rate, service-rate,
and number-of-server elasticities of the basic performance
measures are again of order O�

√
s as s → 
, assuming

that (2.1) holds (with � > 0 for the Erlang-C model).

Remark 2.3 (Iterated Limits). In this section, we con-
sidered approximations generated from the heavy-traffic
limits. Then, we consider the derivatives of those approx-
imations with respect to the parameters. We thus consider
two limits, first, letting s → 
 with the associated con-
dition, (2.1), and second, we take the derivative, which is
tantamount to letting h → 0 in the difference approxima-
tion in (1.3). It remains to interchange the order of the
limits; i.e., it remains to consider the limits in the order
lims→
 limh→0 instead of the order limh→0 lims→
. That is,
it remains to establish heavy-traffic limits for the deriva-
tives and elasticities themselves. It is intuitively clear that
such heavy-traffic limits should be valid in the setting of
the M/M/s +M model, but it remains to provide proofs.

3. Insights from the ED Fluid Limit
In this section, we apply the many-server heavy-traffic
fluid limit in the ED limiting regime to obtain additional
insights into the sensitivity of performance to model param-
eters. Here we draw upon Whitt (2004). The key theo-
retical results for the Erlang-A model follow from more
general limits for state-dependent Markovian queues in
Mandelbaum and Pats (1995). The fluid approximation in
Whitt (2006a) makes it possible to perform similar analyses
for the more general G/GI/s +GI model.
In the ED many-server heavy-traffic limiting regime, we

again let � → 
 and s → 
, but now we let the traffic
intensity approach a finite limit greater than 1. Here we
will fix the traffic intensity, letting

� = �

s�
> 1 (3.1)

Because of the abandonments, a proper steady-state distri-
bution exists for all � > 1. Now � plays the role of the
QOS-parameter � in (2.1). Unlike �, the quality of service
gets worse as � increases.
In the ED regime, there is both a fluid limit and a refined

diffusion limit. Here we will focus on the elementary fluid
limit. The ED fluid approximations for the basic perfor-
mance measures are

P�W > 0 ≈ 1�
P�Ab ≈ P�Ab �W > 0 ≈ 1−�−1�

EW = P�Ab/� ≈ �1−�−1/��

EQ = �EW ≈ ��− s�/� 

(3.2)

Paralleling (2.13), from (3.1) we obtain

��′
� =−��′

� =−s�′
s = � (3.3)

Paralleling Proposition 2 and Corollary 2.1, we have

Proposition 3 (Elasticities in the ED Limiting
Regime). In the ED limiting regime specified by (3.1), the
fluid approximations in (3.2) satisfy

��P�Ab� � ∼−��P�Ab� �

∼−��P�Ab� s → 1
�− 1 as s →
 (3.4)

and ��P�Ab� � = 0;

��EQ��∼��EQ�s∼��EW ��∼��EQ�s→− 1
�−1 �

(3.5)

��EW � � =−��EW �1/� =��EQ� �

=−��EQ�1/� →−1� (3.6)

and

��EQ� � = 1+��EW � � → 1+ 1
�− 1 = �

�− 1  (3.7)
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From Proposition 3, we see again that the sensitivity of
performance is much greater for the parameters �, �, and s
than for �. However, the QED and ED stories are quite
different: In the QED regime, the arrival-rate, service-rate,
and number-of-server elasticities are all of order O�

√
s as

s → 
, whereas in the ED regime they are all of order
O�1 as s → 
. That is not hard to understand, because
the two regimes are quite different: In the QED regime,
the traffic intensity � is much closer to the critical value
� = 1. From Proposition 3, we also see that the arrival-rate,
service-rate, and number-of-server elasticities are greatest
when � is close to the critical value � = 1; the elasticities
decrease as � increases above that critical value.

Remark 3.1 (Contrast with the Standard Single-
Server Queue). It is well known that the many-server
queue is quite different from the standard single-server
queue. One way to see the difference is to look at the
elasticities. Hence, we now briefly discuss the standard
M/M/1 queue. Sensitivity of the general single-server
queue, G/G/1/C, to the key parameters was studied pre-
viously via the Brownian heavy-traffic approximation in §9
of Berger and Whitt (1992).
In the M/M/1 queue, the formulas for the basic perfor-

mance measures are

P�W > 0 = �� EQ = �EW = �2

1−�
 (3.8)

Because ��′
� =−��′

� = �, we have

��EQ� � =−��EQ� � =−��EW � �

= �

1−�
∼ 1
1−�

(3.9)

and

��EW � � =��EQ� �+ 1
�
= �

1−�
+ 1

�
∼ 1
1−�

(3.10)

as � → 1. From (3.9) and (3.10), we see that the exact
M/M/1 elasticities behave much like the fluid approxima-
tions for the elasticities in the M/M/s + M model with
� > 1. However, here we have � < 1 instead of � > 1.
In both cases, the absolute values of the arrival-rate and
service-rate elasticities are of the form 1/�1−��.

4. Numerical Calculations
In this section, we show that it is also possible to calcu-
late the exact values of the derivatives and the elasticities
for the Erlang-A model by exploiting the exact numerical
algorithm in Whitt (2005). That algorithm was primarily
intended to serve as an approximation for the more general
M/GI/s/r +GI model, but it also yields an exact calcu-
lation for the M/M/s/r + M special case. (Here we let
the finite waiting room r be sufficiently large so that the
blocking is negligible.) We start with a base case, in which

� = s = 100 and � = � = 1, and then consider several vari-
ations of that base case, aiming to substantiate the main
conclusions of §§2 and 3, and show the impact of key
parameters, such as s and �. Throughout all these numeri-
cal experiments we fix the service rate at � = 1 (which is
without loss of generality, because we are free to choose
the measuring units for time).
We calculate the derivatives by using the elemen-

tary method of finite differences, as indicated in (1.3).
Given that the function f is indeed differentiable, the
finite-difference approximation is asymptotically correct as
h → 0. Given that we can calculate f �� with high accu-
racy, we should have no difficulty calculating the derivative.
We can verify accuracy by performing successive calcula-
tions with different intervals h.
We also approximate the second derivative by

f ′′�� ≈ f ��+h− 2f ��− f ��−h

h2
� (4.1)

again for small positive h. With standard double precision,
the second-derivative calculations will necessarily be less
accurate. However, it is easy to determine the accuracy after
performing the calculations by just repeating the calculation
for several values of h.
Given the estimates of the derivatives, we scale to calcu-

late the associated elasticities, as indicated in (1.2). We also
calculate scaled second derivatives. We divide the second
derivative by the performance measure itself and multiply
by the square of the parameter. That coincides with the
product of the arrival-rate elasticities of f and f ′; i.e., the
scaled second derivative with respect to the arrival rate is

� �f � � ≡ �2f ′′
�

f
=
(

�f ′′
�

f ′
�

)(
�f ′

�

f

)
=��f ′� ���f � � 

(4.2)

If instead we want the arrival-rate elasticity of f ′, then it
can easily be obtained as the ratio ��f ′� � = � �f � �/
��f � �.
We illustrate how the calculations perform by display-

ing the impact of the interval h upon the elasticities and
scaled second derivatives for one case in Table 1. Specif-
ically, in Table 1 we consider derivatives with respect to
the mean time to abandon, ma = 1/�, and thus display
the mean-time-to-abandon elasticities and associated scaled
second derivatives. (Recall that ��f � ma =−��f � �.) We
consider the standard deviation of the steady-state waiting
time, SD�W , as well as P�W > 0, P�Ab, and EW in
the base case with � = s = 100 and � = � = 1.
From Table 1, we see that we obtain three-digit precision

for all the elasticities using h = 10−3 and at least four-
digit precision using any value of h ranging from h = 10−4
to h = 10−6. For the scaled second derivatives, we also
obtain three-digit precision using h = 10−3, but we do not
do much better as h increases, losing precision when h is
very small. That should not be surprising, because there is
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Table 1. The impact of the interval h upon estimates of the mean-time-to-abandon elas-
ticities, ��f � ma = 1/�, and associated scaled second derivatives, � �f � ma, of
several performance measures in the base case with � = s = 100 and � = � = 1.

Elasticities Scaled second derivatives

h P�W > 0 P�Ab EW SD�W  P�W > 0 P�Ab EW SD�W 

10−1 0.2255 −0 2378 0.7384 0.5538 −0 1982 0.2091 −0 2248 −0 2483
10−2 0.2355 −0 2483 0.7492 0.5660 −0 2319 0.2445 −0 2472 −0 2802
10−3 0.2365 −0 2494 0.7503 0.5673 −0 2358 0.2487 −0 2497 −0 2838
10−4 0.2366 −0 2496 0.7504 0.5674 −0 2362 0.2491 −0 2500 −0 2842
10−5 0.2366 −0 2496 0.7504 0.5674 −0 2362 0.2493 −0 2500 −0 2842
10−6 0.2366 −0 2496 0.7504 0.5674 −0 2349 0.2646 −0 2496 −0 2859

Table 2. Several performance measures in the Erlang-A model, as a function of the aban-
donment rate � and the number of servers s when � = s and � = 1.

Parameters Performance measures

� � = s P�W > 0 P�Ab EN SD�Q SD�N  SD�W 

10.0 10 0.320 0 186 8 33 0 53 2 08 0 041
100 0.262 0 0605 94 6 1 50 6 8 0 014

1�000 0.247 0 0192 982 8 4 58 21 9 0 0045

1.0 10 0.542 0 125 10 0 1 96 3 16 0 183
100 0.513 0 0399 100 0 5 95 10 0 0 058

1�000 0.504 0 0126 1,000 18 6 31 6 0 0185

0.1 10 0.779 0 0605 15 4 6 4 7 1 0 63
100 0.766 0 0192 117 2 20 0 22 2 0 198

1�000 0.762 0 00605 1,055 62 8 69 9 0 063

division by h2 in (4.1), and we have used standard dou-
ble precision in MATLAB. Overall, we regard the simple
finite-difference approach as providing ample precision for
engineering purposes.
Our first set of experiments consists of nine cases, with

three values of s and three values of �. We consider s = 10,
s = 100, and s = 1�000; and we consider � = 10, � = 1,
and � = 0 1. Otherwise, we let � = s, so that we are in
the center of the QED limiting regime in (2.1) with � = 0,
where P�W > 0 → 1/2 as s →
. The values of several
basic performance measures in these nine cases are given
in Table 2. As noted in (2.10), the mean waiting time, EW ,
and the mean queue length, EQ, are constant multiples of

Table 3. Scaled versions of the performance measures in Table 2.

Parameters Scaled performance measures

� � = s P�W > 0
√

sP�Ab �EN − s/
√

s SD�Q/
√

s SD�N /
√

s
√

sSD�W 

10.0 10 0.320 0.59 −0 53 0 168 0 66 0 13
100 0.262 0.61 −0 54 0 150 0 68 0 14

1�000 0.247 0.61 −0 54 0 145 0 69 0 14

1.0 10 0.542 0.40 0 00 0 62 1 00 0 58
100 0.513 0.40 0 00 0 60 1 00 0 58

1�000 0.504 0.40 0 00 0 59 1 00 0 59

0.1 10 0.779 0.19 1 71 0 20 2 2 2 0
100 0.766 0.19 1 72 0 20 2 2 2 0

1�000 0.762 0.19 1 74 0 20 2 1 2 0

the abandonment probability, P�Ab, so they are omitted
from Table 2. We include the expected steady-state number
of customers in the system (waiting or in service), EN , as
well as the standard deviations of the steady-state queue
length, QD�Q, number in system, SD�N , and the waiting
time, SD�W , as well as previously discussed performance
measures.
From the QED many-server heavy-traffic limits, we

know how these performance measures should be scaled
by s in order for the scaled performance measures to
be nearly independent of s. We present the correspond-
ing scaled performance measures in Table 3. After scaling
by s in the indicated manner, the performance measures
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Table 4. The abandonment-rate elasticities, ��f � �, of several performance measures
(the f ) in the setting of Table 2.

Parameters Performance measures

� � = s P�W > 0 P�Ab EQ & EW EN SD�Q SD�N  SD�W 

10.0 10 −0 22 0 103 −0 90 −0 04 −0 57 −0 103 −0 74
100 −0 33 0 119 −0 88 −0 013 −0 63 −0 089 −0 66

1�000 −0 37 0 120 −0 88 −0 004 −0 65 −0 084 −0 66
1.0 10 −0 21 0 25 −0 75 −0 125 −0 54 −0 27 −0 58

100 −0 24 0 25 −0 75 −0 04 −0 56 −0 26 −0 57
1�000 −0 23 0 37 −0 64 −0 011 −0 42 −0 18 −0 43

0.1 10 −0 108 0 38 −0 62 −0 26 −0 49 −0 42 −0 51
100 −0 116 0 41 −0 62 −0 11 −0 50 −0 42 −0 50

1�000 −0 119 0 38 −0 62 −0 04 −0 50 −0 42 −0 50

Table 5. The scaled second derivative of several performance measures with respect
to the mean time to abandon, ma = 1/�, in the Erlang-A model, as a function
of the mean time to abandon and number of servers.

Parameters Performance measures

ma � = s P�W > 0 P�Ab EQ & EW EN SD�Q SD�N  SD�W 

0.1 10 −0 13 0 059 −0 15 −0 016 −0 24 −0 035 −0 30
100 −0 24 0 086 −0 15 −0 0065 −0 25 −0 032 −0 26

1�000 −0 27 0 089 −0 15 −0 0020 −0 26 −0 030 −0 26
1.0 10 −0 20 0 24 −0 25 −0 061 −0 27 −0 12 −0 29

100 −0 24 0 25 −0 25 −0 020 −0 28 −0 10 −0 28
1�000 −0 28 0 19 −0 54 −0 006 −0 28 −0 20 −0 28

10.0 10 −0 14 0 48 −0 28 −0 13 −0 26 −0 20 −0 27
100 −0 15 0 48 −0 28 −0 054 −0 26 −0 20 −0 27

1�000 −0 15 0 48 −0 28 −0 019 −0 26 −0 20 −0 27
Note. The scaling is as in (4.2).

in Table 3 are approximately independent of s. From
Table 3, we see that the scaling by s is the dominant effect,
substantiating conclusions of Garnett et al. (2002). Table 3
also shows the remaining impact of the parameter �.
Next, in Table 4 we present the abandonment-rate elas-

ticities of the performance measures in Table 2 (without
any additional scaling). Consistent with the conclusions in
previous sections, these abandonment-rate elasticities are
not large. Indeed, all are less than 1, so that an x per-
cent change in the abandonment rate produces less than an
x percent change in any of these performance measures.
Consistent with §§2 and 3, the abandonment-rate elas-

ticities in Table 4 tend to be independent of s. The one
exception is the mean number in system EN . As indicated
in Table 3, the appropriate scaling for N is �N − s/

√
s.

Because we have not used that scaling in Table 4, it should
not be surprising that we do not see elasticities of EN inde-
pendent of s. Otherwise, the abandonment-rate elasticities
are both small and largely independent of s. A similar con-
clusion holds for the scaled second derivatives, as shown
in Table 5. (There the parameter has been taken to be the
mean time to abandon, ma = 1/�.)
The arrival-rate and service-rate elasticities of the same

performance measures are shown in Tables 6 and 7. These

elasticities have been divided by
√

s. From Tables 6 and 7,
we see that the arrival-rate and service-rate elasticities
indeed become of order O�1 after the additional scal-
ing by

√
s. In fact, the absolute values of the arrival-rate

and service-rate elasticities mostly fall between 0 25
√

s
and 2 5

√
s. A rough approximation for any one of these

elasticities is simply
√

s.
Paralleling Table 5, we present the scaled second deriva-

tives of the performance measures with respect to the ser-
vice rate in Table 8. The scaled second derivatives have
been further scaled by dividing by s. Thus, again, through
the second derivatives, we see the strong sensitivity of per-
formance to the service rate as s increases. A similar story
holds for the arrival rate.
The initial experiment had � = s in all cases. We now

want to modify the base case in another way. We now fix
the number of servers at s = 100 and the abandonment rate
at � = 1, and vary the arrival rate. We consider three possi-
ble arrival rates: � = 90, � = 100, and � = 110. These cases
correspond to � = 1, � = 0, and � =−1 in the QED regime
specified by (2.1). For these examples, we also consider the
steady-state waiting-time distribution (for all customers).
We display elasticities and scaled second derivatives with

respect to the mean time to abandon (reciprocal of the
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Table 6. The arrival-rate elasticities, ��f � �, of sev-
eral performance measures in the setting of
Table 2.

Parameters Performance measures

� � = s P�W > 0 P�Ab EQ SD�Q EW SD�W 

10.0 10 0.73 0.76 1.08 0.54 0.76 0.32
100 0.77 0.88 0.98 0.48 0.88 0.40

1�000 0.80 0.92 0.95 0.46 0.92 0.44

1.0 10 0.73 1.04 1.36 0.70 1.04 0.44
100 0.78 1.19 1.29 0.62 1.19 0.54

1�000 0.80 1.23 1.27 0.60 1.23 0.57

0.1 10 0.73 2.02 2.34 1.23 2.02 1.01
100 0.78 2.17 2.27 1.15 2.17 1.09

1�000 0.80 2.22 2.25 1.13 2.24 1.11

Note. The arrival-rate elasticities have been scaled by dividing
by

√
s.

abandonment rate), the arrival rate, and the service rate,
respectively, in Tables 9, 10, and 11. We have not scaled any
of these elasticities. As before, the mean-time-to-abandon
elasticities of the performance measures considered previ-
ously are of order O�1, in fact less than 1, while the arrival-
rate and service-rate elasticities of these performance mea-
sures are of order O�

√
s = 10. In Tables 9–11 we also con-

sider the steady-state waiting-time distribution. The deriva-
tive is consistently small for larger arguments, when the
probability is already close to 1.
Finally, we consider a numerical example to evaluate the

fluid approximation in §3. We fix the traffic intensity at
� = 1 1 and consider three different values of s: s = 100,
s = 400, and s = 1�600, with � = � = 1. The performance
measures and arrival-rate elasticities are compared to the
fluid approximations in Table 12. We consider the per-
formance measures discussed in §3, namely, P�W > 0,
P�Ab = EW , and EQ/s�. In these cases, with ED scaling,
we see that the fluid approximations in §3 do indeed tell
the main story. We also consider scaled standard deviations,
SD�Q/

√
s� and

√
s/�SD�W . The fluid approximation

for the queue length is deterministic, so the fluid approx-

Table 8. The scaled second derivative of several performance measures with respect
to the service rate in the Erlang-A model, as a function of the mean time to
abandon and the number of servers.

Parameters Performance measures

ma � = s P�W > 0 P�Ab EN SD�Q SD�N  SD�W 

0.1 10 0 25 0.47 −0 011 0 034 −0 106 0 062
100 0 20 0.45 −0 175 −0 023 −0 019 −0 0052

1�000 0 19 0.45 −0 007 −0 042 0 015 −0 036
1.0 10 0 110 1.05 0 085 0 025 −0 089 −0 16

100 0 039 1.01 0 0095 −0 041 −0 036 0 0013
1�000 0 015 1.01 0 001 −0 063 −0 012 −0 05

10.0 10 −0 37 4.52 1 66 0 37 0 31 0 79
100 −0 51 4.46 0 67 0 30 0 32 0 43

1�000 −0 56 4.43 0 23 0 29 0 33 0 33

Notes. There is extra scaling: The scaled second derivatives have been divided by s.

Table 7. The service-rate elasticities, ��f � �, of sev-
eral performance measures in the setting of
Table 2.

Parameters Performance measures

� � = s P�W > 0 P�Ab SD�Q SD�N  SD�W 

10.0 10 −0 63 −0 79 −0 37 −0 15 −0 41
100 −0 74 −0 89 −0 42 −0 22 −0 44

1�000 −0 78 −0 92 −0 44 −0 24 −0 45
1.0 10 −0 66 −1 14 −0 52 −0 073 −0 60

100 −0 75 −1 21 −0 56 −0 024 −0 59
1�000 −0 78 −1 24 −0 58 −0 008 −0 59

0.1 10 −0 70 −2 15 −1 08 −0 79 −1 17
100 −0 77 −2 21 −1 10 −0 79 −1 13

1�000 −0 79 −2 22 −1 11 −0 79 −1 12
Notes. The service-rate elasticities of EQ and EW coincide with the
displayed service-rate elasticity of P�Ab	. The service-rate elastici-
ties have been scaled by dividing by

√
s.

imation for the standard deviation of the queue length is
simply 0. (That is not true for the waiting time because of
the random delay experienced by abandoning customers.)
The observed regular behavior after scaling by

√
s reflects

refined diffusion approximations stemming from stochastic-
process limits in the ED regime, as in Whitt (2004). We do
not elaborate here.

5. Sensitivity to Abandonment Rates at
Large Queue Lengths

In Pierson and Whitt (2006), M/GI/s + GI models
are approximated by purely Markovian M/M/s + M�n
models, having state-dependent arrival rates, by using the
known mean arrival rate and service rate, and by sta-
tistically fitting the total state-dependent arrival rate to
observed abandonment rates. An initial estimate for the
total arrival rate when there are k customers waiting in
queue is the observed number of abandonments when there
are k customers waiting in queue, divided by the total
time during which there are k customers waiting in queue.
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Table 9. The mean-time-to-abandon elasticities, ��f � ma = 1/�, and scaled second
derivatives, � �f � ma, of steady-state performance measures as a function
of the arrival rate.

Elasticities Scaled second derivatives

Performance measures � = 90 � = 100 � = 110 � = 90 � = 100 � = 110
P�W > 0 0 18 0 24 0 17 −0 219 −0 24 −0 23
P�Ab −0 50 −0 25 −0 08 0 59 0 25 0 10

E2Q3 0 50 0 75 0 92 −0 40 −0 25 −0 05
SD�Q 0 41 0 56 0 60 −0 35 −0 28 −0 26
E2N 3 0 0083 0 04 0 10 −0 008 −0 02 −0 015
SD2N 3 0 079 0 26 0 42 −0 067 −0 10 −0 12
E2W 3 0 50 0 75 0 92 −0 40 −0 25 −0 05
SD�W  0 42 0 57 0 62 −0 35 −0 28 −0 24
P�W � 0 05 −0 034 −0 24 −0 87 0 037 0 228 1 09
P�W � 0 1 −0 022 −0 19 −0 74 0 017 0 110 0 67
P�W � 0 2 −0 004 −0 06 −0 36 −0 002 −0 046 −0 18
P�W � 0 4 −0 000 −0 0005 −0 010 0 000 −0 0026 −0 06
Note. The number of servers is s= 100 and the abandonment rate is 
= 1.

Table 10. Arrival-rate elasticities and scaled second derivatives as a function of the
arrival rate.

Elasticities Scaled second derivatives

Performance measures � = 90 � = 100 � = 110 � = 90 � = 100 � = 110
P�W > 0 14 7 7 8 2 96 132 −7 8 −32 6
P�Ab 18 0 11 9 7 5 243 76 8 3

E2Q3 19 0 12 9 8 5 280 244 25 1
SD�Q 10 3 −7 6 2 86 59 −7 1 −19 0
E2N 3 1 00 1 00 1 00 0.0004 0.0002 −0 0023
SD2N 3 0 50 0 50 0 50 −0 23 −0 15 −0 030
E2W 3 18 0 11 9 7 5 243 76 10 2
SD�W  9 5 5 4 2 4 43 7 13 9 18 7

P�W � 0 05 −1 3 −4 8 −9 9 −17 2 −18 8 55 6
P�W � 0 1 −0 51 −2 6 −6 5 −9 0 −22 4 3 2
P�W � 0 2 −0 048 −0 51 −2 2 −1 2 −8 5 −19 8
P�W � 0 4 −0 0001 −0 0024 −0 04 −0 18 −0 03 −0 84
Note. The number of servers is s= 100 and the abandonment rate is 
= 1.

Table 11. Service-rate elasticities and scaled second derivatives as a function of the
arrival rate.

Elasticities Scaled second derivatives

Performance measures � = 90 � = 100 � = 110 � = 90 � = 100 � = 110
P�W > 0 −14 5 −7 6 −2 79 155 3 9 −25 5
P�Ab −18 5 −12 1 −7 6 294 102 24 0

E2Q3 −18 5 −12 1 −7 6 294 102 24 0
SD�Q −9 9 −7 6 −2 26 67 9 −4 1 −20 6
E2N 3 −1 00 −0 90 −0 09 1 7 −0 95 0 30
SD2N 3 −0 42 −0 24 −0 08 −1 7 −3 6 −2 29
E2W 3 −18 5 −12 1 −7 6 294 102 24 0
SD�W  −10 1 −5 9 −2 8 71 7 0 13 −11 7
P�W � 0 05 1 3 4 9 9 6 −20 4 −25 8 41 3
P�W � 0 1 0 55 2 7 6 5 −11 1 −27 7 −4 0
P�W � 0 2 0 054 0 56 2 3 −1 6 −11 2 −24 5
P�W � 0 4 0.0001 0.0028 0 05 −0 003 −0 11 −1 4
Note. The number of servers is s= 100 and the abandonment rate is 
= 1.
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Table 12. Performance measures and arrival-rate elasticities as a function of the number of
servers, s, when the traffic intensity is fixed at � = 1 1.

Performance Elasticities

Performance measures s = 100 s = 400 s = 1�600 Fluid s = 100 s = 400 s = 1�600 Fluid

P�W > 0 0 842 0 975 1 0000 1 0000 2.96 1 25 0 0088 0 0000
P�Ab = EW 0 0992 0 0914 0 0909 0 0909 7.49 9 67 9 9994 10 0000

E2Q3/s� 0 109 0 101 0 1000 0 1000 8.49 10 67 10 9994 11 0000
SD�Q/

√
s� 0 9091 1 025 1 049 0 0000 2.85 1 57 0 5083 0 0000√

s�SD�W  0 84 0 98 1 06 — 2.43 2 17 4 48 —

Notes. The other parameters are 
=�= 1. For comparison, the fluid approximation from §3 is also given.

Table 13. Lower and upper bounds on the exact steady-state performance in the M/M/100+M
model when the arrival rate is � = 102 and the mean time to abandon is mA = 1/8 = 1.

M/M/100+M model, with � = 102 and mA = 1/� = 1 0
Lower bound:

reduce waiting spaces Upper bound: fixed rate after c
Number of waiting spaces, r Cutoff level, c

Both
Performance measures 20 25 30 40 30 25 20 15

P (Loss) 0 0084 0 0032 0 0010 <10−4
P�W = 0 0 424 0 413 0 410 0 408 0 408 0 407 0 404 0 393
P (Aban) 0 043 0 047 0 049 0 050 0 050 0 050 0 050 0 049

E2Q3 4 35 4 80 5 00 5 09 5 11 5 16 5 36 6 09
SD�Q 5 5 6 2 6 5 6 7 6 7 6 8 7 2 8 5
E2N 3 101 102 102 102 102 102 102 103
SD2N 3 9 2 9 7 10 0 10 1 10 1 10 2 10 5 11 6

E2W �S3 0 042 0 047 0 048 0 049 0 049 0 050 0 052 0 060
SD�W �S 0 056 0 061 0 063 0 065 0 065 0 067 0 071 0 085
E2W �A3 0 057 0 062 0 065 0 067 0 066 0 066 0 063 0 058
SD�W �A 0 046 0 051 0 054 0 056 0 055 0 054 0 050 0 044

P�W � 0 1 �S 0 830 0 809 0 801 0 799 0 798 0 797 0 791 0 768
P�W � 0 1 �A 0 829 0 793 0 776 0 768 0 768 0 771 0 783 0 825
P�W � 0 2 �S 0 987 0 975 0 968 0 965 0 964 0 962 0 954 0 928
P�W � 0 2 �A 0 993 0 983 0 976 0 971 0 972 0 976 0 986 0 996

Notes. The lower bounds reduce the number of waiting spaces, r , while the upper bounds make the total
abandonment rate constant after a cutoff level, c.

Subsequently, refined estimates for the total abandonment-
rate function can be obtained by fitting functions of k to
the data, e.g., quadratic functions.
In that work, we observed that the performance is rela-

tively insensitive to the state-dependent total-abandonment
rates for large queue sizes, especially for large queue sizes
that rarely occur (and for which the statistical estimates are
unreliable). Similar insights are contained in Mandelbaum
and Zeltyn (2004). In support of that conclusion, in this
section we investigate the sensitivity to total-abandonment
rates at large queue lengths in the M/M/s +M model.
In the M/M/s + M model, the total abandonment rate

when there are k customers waiting in queue is exactly
k� for all k � 0. We investigate the sensitivity to the total
abandonment rate for large queue lengths by constructing
loose lower and upper bounds. (Thus, we are considering
big changes in the total arrival-rate function in a certain
part of its domain.) A lower bound for the steady-state

queue-length distribution is obtained by choosing an upper
bound on the total abandonment-rate function; we consider
the associated M/M/s/r +M model with a finite waiting
room of size r . The finite waiting room of size r is equiv-
alent to having an infinite total abandonment rate when the
number in queue exceeds r . An upper bound for the steady-
state queue-length distribution is obtained by choosing a
lower bound on the total abandonment-rate function; we
consider the case in which the total abandonment rate is
held constant at c� after reaching the level k = c; i.e., the
total abandonment-rate function is �k = �k∧ c�. The per-
formance of the M/M/s +M system is bounded between
these two bounding systems. The ordering of performance
can be formalized by stochastic-comparison concepts;
e.g., see Whitt (1981), Müller and Stoyan (2002, p. 196),
and the references therein.
In Tables 13 and 14 we see how these bounding systems

behave as functions of the waiting-room size r and the cut-
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Table 14. Lower and upper bounds on the exact steady-state performance in the M/M/100+M
model when the arrival rate is � = 110 and the mean time to abandon is mA = 1/8 = 1.

M/M/100+M model, with � = 110 and mA = 1/� = 1 0
Lower bound:

reduce waiting spaces Upper bound: fixed rate after c
Number of waiting spaces, r Cutoff level, c

Both
Performance measures 25 30 40 50 40 30 25 20

P (Loss) 0 0144 0 0065 0 00078 <10−4
P�W = 0 0 171 0 163 0 159 0 158 0 158 0 157 0 154 0 144
P (Aban) 0 085 0 093 0 098 0 099 0 099 0 099 0 099 0 098

E2Q3 9 4 10 2 10 8 10 9 10 9 11 1 11 7 13 6
SD�Q 7 5 8 2 8 9 9 1 9 1 9 3 10 3 12 8
E2N 3 108 109 110 110 110 110 111 113
SD2N 3 9 1 9 7 10 1 10 5 10 5 10 8 11 6 13 9

E2W �S3 0 088 0 095 0 100 0 101 0 101 0 103 0 109 0 129
SD�W �S 0 073 0 079 0 084 0 085 0 086 0 090 0 099 0 126
E2W �A3 0 073 0 079 0 084 0 085 0 085 0 084 0 081 0 076
SD�W �A 0 056 0 063 0 066 0 068 0 067 0 065 0 062 0 056

P�W � 0 1 �S 0 584 0 557 0 542 0 541 0 541 0 537 0 527 0 492
P�W � 0 1 �A 0 719 0 684 0 660 0 656 0 656 0 659 0 665 0 689
P�W � 0 2 �S 0 920 0 887 0 865 0 862 0 862 0 857 0 839 0 781
P�W � 0 2 �A 0 971 0 953 0 934 0 930 0 931 0 937 0 950 0 974

Notes. The lower bounds reduce the number of waiting spaces, r , while the upper bounds make the total
abandonment rate constant after a cutoff level, c.

off level c. In these tables, we let s = 100 and � = � = 1.
In Table 13, we let � = 102, while in Table 14, we let
� = 110. In Tables 13 and 14, we consider the conditional
expected waiting time, given that the customer is eventu-
ally served, E2W �S3, or given that the customer eventually
abandons, E2W �A3. We also consider the associated con-
ditional standard deviations.
For the smaller arrival rate, � = 102 in Table 13, we see

that the two bounds are essentially equal when r = c = 40.
For the larger arrival rate, � = 110 in Table 14, we see that
the two bounds are essentially equal when r = c = 50. The
performance is not affected much if the parameters r and c
are much smaller. Thus, we see that the performance is
indeed primarily determined by the total abandonment-rate
function only for relatively small queue lengths.
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