
NUMERICAL SOLUTION OF PIECEWISE-STATIONARY M t / G t / 1 QUEUES

by

Gagan L. Choudhury,1 David M. Lucantoni2 and Ward Whitt3

AT&T Bell Laboratories

May 21, 1993

Revision: January 27, 1995

(This paper has been submitted to Operations Research)

1 AT&T Bell Laboratories, Room 1L-238, Holmdel, NJ 07733-3030
2 IsoQuantic Technologies, LLC, 10 Oak Tree Lane, Wayside, NJ 07712
3 AT&T Bell Laboratories, Room 2C-178, Murray Hill, NJ 07974-0636

Abstract

We develop an algorithm for computing the (exact) cumulative distribution function of the time-

dependent workload in a piecewise-stationary M t / G t / 1 queue with a work-conserving service discipline

and general service-time distributions, where service times are determined at arrival instants. The t

subscripts indicate that the arrival rate and the general service-time distribution may change with time, but

we allow changes only at finitely many time points. The algorithm is based on numerical transform

inversion, using the classical Taka ́ cs double-transform of the transient workload in an M/G/1 queue

recursively over the successive stationary intervals. In particular, we apply our recently developed

Fourier-series-based inversion algorithms for two-dimensional transforms and nested one-dimensional

transforms. We also do additional work to greatly speed up the computation while tightly controlling the

error. As a consequence, the computation time grows only quadratically with the number of intervals.

The algorithm is effective for ten or fewer intervals, where the intervals may have unlimited and possibly

unequal lengths, typically running in at most a few minutes and maintaining high accuracy. We have also

demonstrated that the algorithm can solve a 21-interval example with 7-to-10 digit accuracy in about half

an hour. Models with only a few intervals are useful to study overload control strategies.

Subject classifications: queues, nonstationary: numerical solution of single-server models. queues,

algorithms: numerical transform inversion for nonstationary queues. queues, transient results: two-

dimensional numerical transform inversion.

It has long been recognized that many queueing systems are most appropriately modeled by

nonstationary queueing models, in which the arrival and service rates are functions of time; e.g., see Palm

(1943), Koopman (1972), Green, Kolesar and Svoronos (1991), and Chapter 6 of Hall (1991). In

response to this need, there is a growing literature on methods for calculating time-dependent performance

measures in nonstationary queueing models. The mainstay is clearly computer simulation, which is very

appealing because of its flexibility and, more and more, also because of its ease of use. Nonstationary

queueing models can be analyzed effectively by computer simulation by using multiple independent

replications, but many replications are required to obtain good estimates of time-dependent probability

distributions, especially if extremely small tail probabilities (e.g., 10 − 9) are required, as in applications to

high-speed communication networks. (We discuss simulation further in Section 9.)

Numerical solutions based on analytical expressions of time-dependent performance measures are an

alternative to simulation. The mainstay here has no doubt been the numerical solution of time-dependent

continuous-time Markov chains (CTMCs) by numerically solving a system of time-dependent ordinary

differential equations (ODEs). The ODE approach was successfully used by Koopman (1972), Taaffe and

Ong (1987), Ong and Taaffe (1989), Green, Kolesar and Svoronos (1991), Zhang and Coyle (1991),

Davis, Massey and Whitt (1992) and no doubt many others. The ODE approach applies naturally to the

queue-length process in Markovian M t / M t / s / r models and generalizations such as Ph t / Ph t / s / r models

involving time-dependent phase-type distributions. It is also possible to apply iterative techniques to

discrete-time Markov chains (DTMCs), either directly or for CTMCs after applying uniformization (or

randomization); e.g., see Gross and Miller (1984). New time-domain methods are also being developed;

e.g., see Logothetics (1994). An important way to treat larger and more complicated models numerically

is to exploit approximations; e.g, see Asmussen and Rolski (1994), Duda (1986), Ong and Taaffe (1989),

Taaffe and Ong (1987) and references in these sources.

We suggest a different analytical approach: numerical transform inversion. The general idea is that

we can obtain a two-dimensional transform of a desired time-dependent performance measure by taking

- 2 -

the transform with respect to time as well as the performance state variable. Familiar examples are the

two-dimensional transforms of the transient performance measures of the M/G/1 queue in Taka ́ cs (1962).

In Choudhury, Lucantoni and Whitt (1994a) we developed numerical inversion algorithms to invert such

multidimensional transforms, and showed that these algorithms are effective by applying them to compute

transient performance measures in the M/G/1 queue. In Lucantoni, Choudhury and Whitt (1994) we

derived corresponding transient performance measures for the more general BMAP/G/1 queue (with a

Batch Markovian Arrival Process) and again applied two-dimensional transform inversion to calculate the

time-dependent performance measures in examples.

Our purpose here is to go beyond our previous transform inversion work computing time-dependent

distributions of stationary models to computing time-dependent distributions of time-dependent models.

In particular, we calculate the distribution of the workload (virtual waiting time), denoted by W(t), at an

arbitrary time t in a piecewise-stationary M t /G t /1 queue. This model has a single server, unlimited

waiting room, a work-conserving service discipline (e.g., first-in first-out, last-in first-out, processor

sharing, etc.), a Poisson arrival process and i.i.d. service times with a general distribution that are

independent of the arrival process. The t subscripts indicate that the arrival rate and the service-time

distribution are allowed to depend on time, but the piecewise stationarity implies that changes can occur

only at finitely many time points. The successive intervals can have unlimited and unequal lengths, and

the traffic intensities can exceed one on some intervals. (In the context of the M t /M t /1 queue,

piecewise-stationary models have also recently been considered by van den Berg and Groenendijk (1991)

and Kuitenbrouwer (1992), but our methods are quite different.)

A customer arriving at time t has a service-time distribution that depends on t, but otherwise does not

depend on the arrival process or the service times of other customers. (The service times are determined

upon arrival.) The M t / G t / 1 model also includes the Mt
X t /G t /1 model with a time-dependent batch-

Poisson arrival process, because the workload process is the same as in an associated M t / G t / 1 model

with service times equal to the sum of all the service times in the batches.

- 3 -

The workload at time t is the remaining service time of the customer in service, if any, plus the sum of

all the remaining service times of other customers in the system at time t. In the case of the first-in first-

out (FIFO) discipline, the workload is also the virtual waiting time, the time that a hypothetical arrival at

time t would have to wait before beginning service, i.e., the time required to complete service of all the

customers in the system at time t, ignoring new arrivals after time t in non-FIFO disciplines. The sample

path of the workload process decreases at rate 1 whenever there is work in the system and has jumps up at

each arrival epoch equal to the service time of that arriving customer. In the M t /G t /1 model, the

workload process is a nonstationary Markov process on the nonnegative half line. A difficulty for some

methods is that the state space is the nonnegative real line, which is unbounded and uncountably infinite.

The M t / G t / 1 model with periodic arrival rate has received quite a bit of attention, see Lemoine

(1989), Rolski (1987, 1989), Asmussen and Rolski (1994), and references in these sources, but not much

work has been done on numerical methods. Our algorithm can be applied to periodic systems by iterating

on the initial distribution, but we do not consider that here.

An alternative ODE-based numerical algorithm for calculating a time-dependent workload distribution

in M t / Ph t / 1 (and more general Markovian) models with finite waiting room was developed by Ong and

Taaffe (1989). Their algorithm is based on computing the first passage time to the origin after time t for

the Markovian queue-length process, assuming no new arrival after the time of interest. It is important to

recognize that the Ong-Taaffe algorithm is for a different model, where the service-time distribution is

determined when service begins and is in process, and not at arrival instants. It does not seem easy to

treat our model with time-dependent service times determined upon arrival in their framework. The

Ong-Taaffe algorithm should be effective for many models when the service-time distributions either do

not change or are determined when service is in process, but it does not apply when the service-time

distribution is not phase type, and the required computation will grow as the order of the phase-type

distribution grows and the number of waiting spaces grows. In contrast, our algorithm is less sensitive to

the form of the service-time distribution and has unlimited waiting room. Also, the accuracy of our

- 4 -

algorithm is usually up to 7-10 digits, which is more than what is achievable by their fast approximation

procedure.

Our main idea is that the classical two-dimensional transform expression for the transient workload

distribution in an M/G/1 queue (see Section 3 of Chapter 1 in Taka ́ cs (1962)) can be used recursively,

coupled with numerical transform inversion, to calculate the workload distribution in the piecewise-

constant M t / G t / 1 model. However, the M t / G t / 1 model is substantially more complicated than the

stationary M/G/1 model treated in Choudhury, Lucantoni and Whitt (1994). First, computation of the

two-dimensional transform requires n recursive steps, where n is the number of previous piecewise-

constant intervals. Furthermore, each recursive step requires the one-dimensional inversion of the

transform of a complex quantity resulting in a nested set of inversions. A straightforward application of

the recursive procedure has two difficulties: First, the computational effort grows exponentially with the

number of intervals. A significant contribution of this paper is to show that an effective algorithm can be

developed where the computational effort grows only quadratically with the number of intervals. Second,

the numerical error also grows rapidly in the nested inversion procedure. To address that problem, we use

a special error-control procedure reported in Choudhury, Lucantoni and Whitt (1994a). We first

developed that error-control procedure for solving the M t / G t / 1 model considered here.

To illustrate we consider a concrete example. We consider a time period of length 70 divided into 7

intervals, each of length 10. We let the service-time distribution be gamma with mean 1 and squared

coefficient of variation (SCV, variance divided by the square of the mean) 4 in all intervals. We let the

Poisson arrival process have rates 0.6, 0.9, 1.2, 1.5, 1.1, 0.8 and 0.5, respectively, in the seven intervals.

Note that the arrival rate first increases and then decreases, achieving a maximum in the middle interval.

Also note that the queue is instantaneously unstable (the arrival rate exceeds the service rate) during the

third, fourth and fifth intervals.

In Figures 1 and 2 we plot the complementary workload distributions P(W(t) > x) for the cases

- 5 -

x = 1 and x = 10. These values are obtained by calculating the distributions at time values 2k for

k = 1 , 2 , . . . , 35. In addition to showing the transient behavior by a solid line, we also show by dotted

lines how the system would have behaved if the arrival rates were not changed at the end of any particular

interval. The dotted lines are obtained by another application of our algorithm, again using time values

2k. The dotted lines asymptotically approach the steady state behavior associated with each interval. We

also display by dashed lines in each interval the constant limiting values that would prevail if the rate in

that interval held indefinitely in the past. The dashed lines are obtained by applying the EULER

numerical inversion algorithm in Abate and Whitt (1992a) with the Pollaczek-Khintchine Laplace

transform of the steady-state workload distribution.

From Figures 1 and 2, it is evident that the actual time-dependent workload distribution is very

different from both the one-interval steady-state view and the one-interval transient view. This shows that

the time-dependent analysis provided by an algorithm such as ours can be very important in the

performance analysis of systems with time-varying arrival rates.

Of course, when the traffic intensities are less than one and the intervals are very long, the steady-state

view becomes more appropriate. Our algorithm provides a means for studying the phenomenon. To

illustrate, we re-consider the seven-interval example above with each interval being 100 instead of 10.

Then we compute the time-dependent workload distribution at times 20k for 1 ≤ k ≤ 35. This modified

example is no harder to solve by our algorithm, but it would require simulation runs ten times as long.

Figures 3 and 4 display the numerically computed time-dependent workload tail probabilities

P(W(t) > x) for x = 10 and 100 in this longer-interval example. With the longer intervals, the steady-

state view is somewhat more appropriate in the first two intervals, where the traffic intensities are less

than one, but still not very good. For example, the actual value of P(W(t) > 100) is order-of-magnitude

less than the steady-state value throughout the second interval. This is evident in Figure 4 since the tail

probability is plotted in log scale.

- 6 -

In Figure 4, the steady-state view is also far off the mark in the last two intervals, where the traffic

intensities are also less than one. The last two intervals are strongly affected by the preceding period of

length 300 where the traffic intensities are greater than one. For this longer-interval example,

considerable insight can be gained by considering the deterministic fluid approximation, in which work

arrives deterministically and continuously at a rate equal to the instantaneous traffic intensity. The fluid

model predicts workloads of 80, 60 and 10 at times 500, 600 and 700. However, Figures 3 and 4 show

that the fluid model is not very accurate either. (This conclusion still holds when the intervals are

increased to 1000, which again is no more difficult to compute, using the same number of time points,

i.e., time points at 200k for 1 ≤ k ≤ 35.)

For our numerical algorithm, major issues are precision and computation time. We obtained the five

numerical values in the last (most difficult) interval for two values of x with about (7-10)-digit precision

on a SUN workstation (SPARCSTATION 10) using FORTRAN with standard double precision in 3

minutes of running time. (Throughout the paper, when we speak of precision, we refer to absolute

precision; i.e., 7-digit precision means to 10 − 7 .) As discussed in Section 8, we calculate values in the last

interval of a 21-interval example with similar precision in 26 minutes.

As indicated in Abate and Whitt (1992a), transform inversion gets difficult with a purely deterministic

(D) service-time distribution; i.e., we get a high computational requirement to achieve reasonable

precision. However, in Choudhury and Whitt (1995b) we show that highly accurate and fast computation

is possible in this case as well through an effective approximation scheme.

From an engineering point of view, the workload probabilities have two clear applications. One

application is describing high percentiles of delays. For this purpose, we are typically interested in tail

probabilities in the range 10 − 1 to 10 − 3 . For such probabilities, we can clearly do with less than 10 − 7

precision and thus may pursue some approximation procedure. Even simulation may be appropriate.

The second application is obtaining buffer overflow probabilities in communication networks in order

- 7 -

to do proper buffer sizing, admission control, etc. For this application, the output channel typically has

constant service rate and the variability in the service time comes from the variability of the message size.

In this case, the workload gives the buffer occupancy, so that the workload tail probability approximately

gives the buffer overflow probability. (The approximation is due to the infinite buffer assumption in the

model.) For this application, workload tail probabilities are typically required in the range 10 − 6 to 10 − 10 ,

for which high precision is really needed. Fortunately, as the workload tail probabilities get smaller, the

computational errors tend to get smaller too. Hence, when we say we get (7-10)-digit precision, we mean

that we get 7-digit precision when the tail probability is near 1, and 10-digit precision when the tail

probability is less than 10 − 3 . We usually can get 11-digit precision or more for tail probabilities of order

10 − 9 and 10 − 10 . Moreover, in this case, simulation tends to be inadequate, see Section 9.

Here is how the rest of this paper is organized. In Section 1 we present the two-dimensional Laplace

transform of the time-dependent workload distribution and give an overview of our algorithm. In

Section 2 we briefly describe the two-dimensional numerical transform inversion algorithm in

Choudhury, Lucantoni and Whitt (1994a) that we use. We also describe the one-dimensional numerical

transform inversion algorithm we use in the recursive algorithm; it is a modification of the EULER

algorithm in Abate and Whitt (1992a) to cover the case in which the inverse of the transform is in general

complex-valued instead of real-valued.

As indicated above, a straightforward application of this algorithm leads to computational difficulties,

both in computation time and numerical precision. The numerical precision problem and the way to

resolve it are explained in Sections 2 and 3. The computation time problem is explained and quantified in

Section 4. In Section 5 we indicate how to speed up the computation by storing and reusing intermediate

computational results. The modifications make the computational complexity grow approximately

linearly or quadratically with the number of subintervals instead of exponentially.

In Section 6 we summarize the algorithm; those only interested in implementing the algorithm can go

- 8 -

directly to Section 6 and refer to earlier sections only as needed. In Section 7 we describe a degenerate

case that can cause numerical difficulties and indicate how to cope with it. In Section 8 we describe our

numerical experience. There we indicate how we verify that we have produced an accurate computation.

In Section 9 we make a comparison with simulation, indicating when our algorithm should be preferred.

Finally, in Section 10 we briefly discuss ways to exploit approximations to speed up the computation.

We end this introduction by pointing out that our approach can also be applied to other processes such

as queue-length processes and to more general models. We hope to discuss such extensions in future

papers. We can treat more general models by applying the transient results for the BMAP/G/1 queue in

Lucantoni, Choudhury and Whitt (1994). We can also calculate moments of the time-dependent

distributions, as in Choudhury and Lucantoni (1995). In Choudhury and Whitt (1994) we have developed

another recursive algorithm for computing and inverting transforms of performance measures arising in

polling models. That procedure also applies to time-dependent models. For overviews of our recent work

with numerical transform inversion, see Choudhury, Lucantoni and Whitt (1994b) and Choudhury and

Whitt (1995a).

1. An Overview of the Algorithm

Let W(t) be the workload at time t, let W(t ,x) be its cdf (cumulative distribution function), and let

W c (t ,x) be its complementary cdf, i.e.,

W(t ,x) = P(W(t) ≤ x) and W c (t ,x) = 1 − W(t ,x) .

Let ŵ(t ,s) be the Laplace-Stieltjes transform of W(t ,x) with respect to the space variable x and let

w
_ _

(ξ ,x) be the Laplace transform of W(t ,x) with respect to the time variable t, respectively; i.e.,

ŵ(t ,s) =
0
∫
∞

e − sx d x W(t ,x) (1)

and

- 9 -

w
_ _

(ξ ,x) =
0
∫
∞

e − ξtW(t ,x) dt , (2)

where s and ξ are complex variables with Re (s) > 0 and Re (ξ) > 0. Let w̃(ξ ,s) be the Laplace

transform of ŵ(t ,s), i.e.,

w̃(ξ ,s) =
0
∫
∞

e − ξtŵ(t ,s) dt , (3)

where Re (ξ) > 0.

Let ŵ
c
(t ,s) be the Laplace transform of W c (t ,x) with respect to the variable x and let w̃

c
(ξ ,s) be the

Laplace transform of ŵ
c
(t ,s) with respect to the variable t, i.e.,

ŵ
c
(t ,s) =

0
∫
∞

e − sxW c (t ,x) dx and w̃
c
(ξ ,s) =

0
∫
∞

e − ξtŵ
c
(t ,s) dt . (4)

(Note that ŵ
c
(t ,s) in (4) is the Laplace transform, whereas ŵ(t ,s) in (1) is the Laplace-Stieltjes

transform.) It can be shown that

w̃
c
(ξ ,s) =

sξ
1_ __ −

s
w̃(ξ ,s)_ ______ . (5)

The form of equation (5) suggests a possible numerical problem for very small s or ξ, but no difficulty

occurs since the inversion algorithm never has to compute the transform at very small s or ξ. As will be

shown later, the inversion summation is done along contours parallel to the imaginary axes of the

complex s and ξ planes with Re (ξ) = A 1 /2tl 1 and Re (s) = A 2 /2xl 2 , where t is the time point, x is the

state variable and A 1 , A 2 , l 1 , l 2 are positive parameters of the inversion. Thus, Re (ξ) and Re (s) may

be close to zero only if t or x are very large. However, it can be shown that, if t or x are very large, then

we can always increase A 1 or A 2 as well, thereby ensuring that Re (ξ) or Re (s) are never too close to

zero.

We intend to compute W c (t ,x) by numerically inverting the double transform w̃
c
(ξ ,s). However,

- 10 -

since w̃
c
(ξ ,s) is directly related to w̃(ξ ,s), in the rest of the paper we show how to get the latter. We

compute W c (t ,x) instead of W(t ,x) because we are often interested in small tail probabilities (say 10 − 6

to 10 − 9) and in that range it is possible to compute W c (t ,x) significantly more accurately, as explained in

Section 2.

To proceed further, we now assume that the arrival rate and the service-time cdf change at only

finitely many points. In addition, suppose that the time of interest is inside the n th stationary interval and

t represents the time since the beginning of the n th interval. Let the length of the j th stationary interval be

t j , 1 ≤ j ≤ n − 1. Hence, the time of interest is t 1 + . . . + t n − 1 + t. Let λ j be the arrival rate and let H j

be the service-time cdf in the j th interval. Let ĥ j be the Laplace-Stieltjes transform of H j , i.e.,

ĥ j (s) =
0
∫
∞

e − sxdH j (x) , 1 ≤ j ≤ n .

Moreover, let the workload cdf and its transforms have subscripts to indicate the stationary interval they

are associated with. Within each interval let time be measured from the beginning of that interval. With

this convention, we want to compute W n (t ,x), where it is understood that W j (0 ,x) = W j − 1 (t j − 1 ,x),

2 ≤ j ≤ n, and W 1 (0 ,x) is the initial workload cdf, which is specified as part of the model data.

As mentioned in the introduction, the main idea is to use the classical double transform for the

transient workload distribution in the stationary M/G/1 model recursively over the successive intervals.

For the j th interval, the double transform w̃ j (ξ ,s) can be expressed as

w̃ j (ξ ,s) =
ξ − s + λ j − λ j ĥ j (s)

ŵ j − 1 (t j − 1 ,s) − sw
_ _

j (ξ , 0)_ ______________________ , (6)

where t 0 = 0 and ŵ 0 (t 0 ,s) = ŵ 1 (0 ,s) is the Laplace-Stieltjes transform of the initial workload cdf

W(0 ,x) ≡ W 1 (0 ,x) and w
_ _

j (ξ , 0) is the Laplace transform of the emptiness function in the j th interval,

W j (t , 0). Our result in (6) is obtained from (15) on p. 53 plus (9) on p. 52 of Taka ́ cs (1962), which is (39)

of Lucantoni, Choudhury and Whitt (1994). Taka ́ cs gives greater emphasis to the single transform ŵ(t ,s)

- 11 -

in (1) in his (8) on p. 51, but it is easier to compute using the double transform in (6) since we have an

efficient double-transform inversion algorithm. (See Abate and Whitt (1994) for more references and

discussion on the transient behavior of the M/G/1 queue.)

The emptiness transform w
_ _

j (ξ , 0) in (6) can be expressed as

w
_ _

j (ξ , 0) =
ξ + λ j − λ j ĝ j (ξ)

ŵ j − 1 (t j − 1 ,ξ + λ j − λ j ĝ j (ξ))_ _________________________ , (7)

where ĝ j (s) is the Laplace-Stieltjes transform of the busy-period cdf, say G j , associated with the j th

stationary interval, i.e.,

ĝ j (s) =
0
∫
∞

e − sxdG j (x) , (8)

which satisfies the functional equation

ĝ j (s) = ĥ j (s + λ j − λ j ĝ j (s)) ; (9)

e.g., see (10) on p. 52 of Taka ́ cs (1962), Abate and Whitt (1992b) and (15) and (24) of Lucantoni,

Choudhury and Whitt (1994).

For any desired integer j and complex s with Re (s) > 0, we calculate the busy-period transform

ĝ j (s) by iterating (9). As indicated in Abate and Whitt (1992b), when ρ j < 1, where ρ j is the traffic

intensity associated with the j th interval, this iterative scheme always converges to the unique solution of

(9) for complex s with Re (s) > 0. Moreover, upper and lower bounds can be obtained by starting the

iteration with 1 and 0 for ĝ n (s) in the right side of (9). When ρ ≥ 1, the iteration still converges but it has

to start with 0 to get the correct solution. In our numerical examples, we stop the iteration when

successive iterates differ in absolute value by no more than 10 − 13 .

Thus, we obtain the desired complementary cdf value Wn
c (t ,x) by applying two-dimensional

numerical transform inversion to the double transform w̃n
c

(ξ ,s) in (5), which is obtained from w̃ j (ξ ,s) in

- 12 -

(6) by setting j = n. This requires computation of the emptiness function from (7) and the busy-period

transform from (9), in each case setting j = n. The computation requires the transform values

ŵ n − 1 (t n − 1 ,s) and ŵ n − 1 (t n − 1 ,ξ + λ n − λ n ĝ n (ξ)), which we obtain by applying one-dimensional

numerical transform inversion with respect to the time variable ξ to the double transform w̃ n − 1 (ξ ,s),

which we denote by

ŵ n − 1 (t n − 1 ,s) = Lξ
− 1 (w̃ n − 1 (ξ ,s)) . (10)

This last step requires that we go back to (6), but this time with j = n − 1, and thereby starting a recursive

procedure.

In summary, we perform one two-dimensional numerical inversion of w̃n
c

(ξ ,s) which requires

calculating w̃ n (ξ ,s) for various (ξ ,s) pairs. To calculate w̃ n (ξ ,s) we perform (n − 1) stages of one-

dimensional numerical inversions with respect to the time variable ξ of the form (10). For these one-

dimensional inversions, the second variable is fixed at either s or ξ + λ j − λ j ĝ j (ξ), 1 ≤ j ≤ n − 1. In

Sections 4 and 5 we show that it is important to exploit this special structure.

2. Transform Inversion Algorithms

We saw in the last section that we need to invert the double transform w̃n
c

(ξ ,s) and, in the recursive

procedure, we need to invert w̃ j (ξ ,s) for j = n − 1 ,n − 2 , . . .1 only with respect to the ξ variable. We

briefly state the inversion algorithms.

Let f (t 1 , t 2) be a real-valued function of two nonnegative real variables t 1 and t 2 with a proper

double Laplace transform

f̃ (s 1 ,s 2) =
0
∫
∞

0
∫
∞

f (t 1 , t 2) e − (s 1 t 1 + s 2 t 2) dt 1 dt 2 . (11)

Simplifying equation (2.11) in Choudhury, Lucantoni and Whitt (1994a), we get the double-transform

inversion formula

- 13 -

f (t 1 , t 2) =
2l 1 t 1

exp (A 1 /2l 1)_ ___________




f̂


 2l 1 t 1

A 1_ _____ , t 2





+ 2
j = 1
Σ
l 1

j 1 = 0
Σ
∞

(− 1) j 1 .

Re [exp



−

l 1

i jπ_ ___




f̂


 2l 1 t 1

A 1_ _____ −
l 1 t 1

i jπ_ ____ −
t 1

i j 1 π_ ____ , t 2





]







− e d , (12)

Where i = √ − 1 ,

f̂ (s 1 , t 2) =
2l 2 t 2

exp (A 2 /2l 2)_ ___________




f̃



s 1 ,

2l 2 t 2

A 2_ _____




+
k = 1
Σ
l 2

k1 = 0
Σ
∞

(− 1) k1 exp



−

l 2

ikπ_ ___




f̃



s 1 ,

2l 2 t 2

A 2_ _____ −
l 2 t 2

ikπ_ ____ −
t 2

ik 1 π_ ____




+
k = 1
Σ
l 2

k1 = 0
Σ
∞

(− 1) k1 exp


 l 2

ikπ_ ___




f̃



s 1 ,

2l 2 t 2

A 2_ _____ +
l 2 t 2

ikπ_ ____ +
t 2

ik 1 π_ ____










(13)

and e d represents the aliasing error in the inversion. Since f (t 1 , t 2) represents a probability in our case, it

can be shown that e d is bounded by

e d ≤
(1 − e − A 1) (1 − e − A 2)

(e − A 1 + e − A 2 − e − (A 1 + A 2))_ ______________________ �

� (e − A 1 + e − A 2) . (14)

The parameters A 1 , A 2 , l 1 , l 2 are for error control and will be explained in Section 3.

Next, let f (t) be a complex-valued function with a proper Laplace transform

f̂ (s) =
0
∫
∞

f (t) e − stdt . (15)

Modifying the Euler algorithm in Abate and Whitt (1992a), we get the inversion formula as

- 14 -

f (t) =
2lt

exp (A /2l)_ _________ [f̂


 2lt

A_ __




+

k = 1
Σ
l

k1 = 0
Σ
∞

(− 1) k1 exp



−

l
ikπ_ ___





f̂


 2lt

A_ __ −
lt

ikπ_ ___ −
t

ik 1 π_ ____




+
k = 1
Σ
l

k1 = 0
Σ
∞

(− 1) k1 exp


 l

ikπ_ ___




f̂


 2lt

A_ __ +
lt

ikπ_ ___ +
t

ik 1 π_ ____









− e d . (16)

The parameters A and l in (16) are for error control and will be explained in Section 3. In (16), e d is the

aliasing error, which is bounded by

e d ≤
1 − e − A

ce− A
_ ______ �

� ce− A , (17)

where c is a constant such that

f (t) ≤ c for all t . (18)

In the current context

f (t) = ŵ j (t ,s) =
0
∫
∞

e − sxd x W n − 1 (t ,x) , (19)

so that

f (t) ≤
0
∫
∞

e − sxd x W n − 1 (t ,x) ≤
0
∫
∞

d x W n − 1 (t ,x) ≡ 1 for Re (s) > 0 . (20)

Therefore, we get the error bound in (17) with c = 1.

Equations (12), (13) and (16) contain infinite sums of the form s =
k = 0
Σ
∞

(− 1) ka k where a k is real or

complex. Such a sum may be efficiently approximated by the Euler sum where

E(m 1 , n 1) ≡
k = 0
Σ
m 1 


 k
m 1





2 − m 1 S n 1 + k , (21)

where

- 15 -

S j ≡
k = 0
Σ
j

(− 1) ka k . (22)

The total number of terms considered is K ≡ m 1 + n 1 . Using (21) we can accurately estimate each of

the infinite sums appearing in (12), (13) and 16).

3. Error Control and Parameter Choice

The parameters A 1 , A 2 , l 1 , l 2 in (12), (13), A , l in (16) and m 1 , n 1 in (21) are for error control. We

briefly explain their role and prescribe their numerical values for good accuracy. See Abate and Whitt

(1992a) and Choudhury, Lucantoni and Whitt (1994a) for further explanation. First, unless the service-

time distribution has discontinuities, the choice n 1 = 39, m 1 = 11 and hence K = 50 typically

computes each infinite sum pretty accurately (with errors below 10 − 11). This would not be true with

deterministic or discrete service-time distributions and much bigger K would be needed for good

accuracy. However, in Choudhury and Whitt (1995) we describe a smoothing procedure that effectively

eliminates the discreteness problem.

Next, the aliasing error bounds given by (14) and (17) may be controlled by choosing A 1 , A 2 and A

large. However, this increases the round-off error. The round-off error may be reduced by increasing the

parameters l 1 , l 2 , l. In fact we introduced the parameters l 1 , l 2 , l for the express purpose of round-off

error control in the M t / G t / 1 model, but have reported it since then in Choudhury, Lucantoni and Whitt

(1994a). As mentioned in Remark 5.8 of Abate and Whitt (1992a), the one-dimensional Euler algorithm

with l = 1 would retain only 2/3 of the precision. Thus, after (n − 1) stages of recursion and a final

double transform inversion, roughly about (2/3) n + 1 of the precision will be retained in the final answer.

With l 1 = l 2 = l > 1, we roughly retain ρn + 1 of the precision in the final answer, where ρ may be

made pretty close to 1. Choosing suitably large l 1 , l 2 , l thereby allows accurate computation even with

large n.

There is a trade-off between error control and computation time, since whenever l 1 , l 2 or l is

- 16 -

increased the computation time increases proportionally, and increasing A 1 , A 2 or A requires a

corresponding increase in l 1 , l 2 or l. Also, tighter error control is needed as the number of intervals

increases since more intervals means more nested inversion and each inversion introduces error.

We have observed (based on a wide range of service-time distributions) what parameter values are

required to get 7–10 digit accuracy. First, as stated earlier, we need n 1 = 39 and m 1 = 11. The

remaining parameters depend on the number of intervals (starting from the beginning until the current

one. (There is no dependence on future intervals) and are given in Table 1.

Table 1 shows only one parameter value for all parameters. In fact, it can be advantageous to use

different parameter values for the different levels of the recursion. We can get by with less stringent error

control in the outer levels of the inversion procedure. Specifically, we get a speed-up by a factor of about

2 to 3 in the 7-interval and 21-interval examples without affecting accuracy, using this procedure. See

Section 8 for the actual parameter values used.

4. Initial Difficulties with the Algorithm

A straightforward implementation of the algorithm leads to serious numerical difficulties for a large

number n of stationary intervals, both in terms of the computation time and the precision of the final

answer. We first give an intuitive explanation for these difficulties and then give quantitative details.

We not only need to do a two-dimensional transform inversion, but as part of computing the double

transform we need to perform (n − 1) stages of single transform inversion of the form (10). Moreover, the

single transform inversions are nested, i.e., the j-th single transform inversion depends on the (j − 1) st

single transform inversion for j = 2 , 3 , . . . , n − 1. Therefore, at first glance, it appears that the problem

is as difficult as an (n + 1)-dimensional transform inversion problem, where the computational

requirement grows geometrically with n and precision is quickly lost. The difficulty is further

compounded by the fact that the busy-period-transform values g j (ξ) are not directly available and have to

be computed iteratively. The difficulty with precision has already been discussed in Section 3. Now we

- 17 -

quantify approximately the difficulties with computation time. For simplicity, we assume that the same

values of A 1 = A 2 = A and l 1 = l 2 = l for each inversion.

Suppose that we want to compute W n (t ,x) for t = τ 1 , τ 2 , . . . , τ N 1
and for x = x 1 , x 2 , . . . , x N 2

(for N 1
.N 2 different values) by inverting the double transform w̃ n (ξ ,s) in (6). Note that computation of

W n (t ,x) requires about 2K 2 l 2 computations of w̃ n (ξ ,s), where K is the number of terms from the

infinite series required for Euler summation, i.e., K = m 1 + n 1 in (21). Each computation of w̃ n (ξ ,s)

requires one computation of ĝ n (ξ) and two computations of ŵ n − 1 (t n − 1 ,s 1), one at s 1 = s and another

at s 1 = ξ + λ n − λ n ĝ n (ξ) (see (6) and (7)).

Each computation of the busy-period transform ĝ n (ξ) requires a number of iterations on the busy-

period functional equation (9). In general, the number of iterations for ĝ j (ξ) depends on ξ and other

system parameters for interval j. However, for the purpose of characterizing computational complexity,

we assume I to be the number of iterations required for all cases. Therefore, each computation of

w̃ n (ξ ,s) requires I iterations of ĝ n (ξ).

Each computation of ŵ n − 1 (t n − 1 ,s) using (10) requires about 2Kl computations of w̃ n − 1 (ξ ,s). For

j = n − 1 , n − 2 , . . . , 1, each computation of w̃ j (ξ ,s) requires I iterations of ĝ j (ξ) and two computations

of ŵ j − 1 (t j − 1 ,s 1) at s 1 = s and at s 1 = ξ + λ j − λ j ĝ j (ξ). For j = n − 1 , n − 2 , . . . , 2, each

computation of ŵ j − 1 (t j − 1 ,s) requires about 2Kl computations of w̃ j − 1 (ξ ,s).

From the above, we get computational requirements as depicted in Table 2. The first row of Table 2

represents the basic computational requirements for two-dimensional transform inversion given that the

double transform is directly computable. The last three rows of Table 2 represent additional

computations due to the recursive scheme for obtaining the double transform.

Note that the basic computations are independent of n and are proportional to K 2 l 2 . In contrast, the

additional computations grow geometrically with n and become orders of magnitude bigger than the basic

computations as n grows. Both the basic and the additional computations are proportional to the product

- 18 -

of N 1 and N 2 and hence, as N 1 and N 2 increase, both types of computation increase in the same

proportion.

The quantity I is typically between a few tens and a few hundreds. Therefore, we anticipate that the

most time-consuming parts of the algorithm are the iterations for ĝ j (ξ).

Table 3 depicts typical numerical values for the number of computations with the unrefined algorithm

as a function of the number n of intervals when N 1 = N 2 = 10, K = I = 50 and the values of l are

taken from Table 1. Our experience indicates that this is a representative case. From Table 3, it is evident

that the computations are already pretty high for n = 2 and are practically out of the question for n ≥ 5.

5. Speeding Up the Computation

We speed up the computation by making two basic observations. First, not all computations of

ŵ j (t j ,s) and ĝ j (s) are at distinct values of s. So, if we identify all the distinct values, compute ŵ j (t j ,s)

and ĝ j (s) only at those values, store these computations and use these stored values as needed, then a

substantial saving in overall computation results. Furthermore, storage efficiency may also be improved

by discarding quantities whenever they are no longer needed.

Second, busy periods and workloads are real valued, so that the following relations hold:

ĝ j (s
_
) = ĝ j (s)

_ ____
and ŵ j (t j ,s

_
) = ŵ j (t j ,s)

_ ______
, (23)

where s
_

represents the complex conjugate of s. Therefore, wherever ĝ j (s) and ŵ j (t j ,s) are needed at

complex conjugate values of s, only one of them need be computed and stored. We remark that these

ways to streamline the algorithm are similar to the efficiencies gained through the fast Fourier transform

even though the actual algorithms are quite different; see p. 21 of Abate and Whitt (1992a) and pp. 51 and

357 of Rabiner and Gold (1975).

We now describe the computational requirements with these changes. Our conclusions are

summarized in Table 4. Suppose, as in Section 4, that we intend to compute W n (t ,x) for

- 19 -

t = τ 1 ,τ 2 , . . . , τ N 1
, and x = x 1 ,x 2 , . . . x N 2

; i.e., N 1 N 2 values in all. Then w̃ n (ξ ,s) is needed at

ξ =
2τ p l

A_ ____ −
τ p l
iπ j_ ___ , s =

2x m l
A_ ____ −

x m l
iπk_ ___ (24)

for p = 1 , 2 , . . . N 1; j = 0 , 1 , . . . , Kl − 1; m = 1 , 2 , . . . , N 2; and k = 0 ,±1 ,±2 , . . . , ±(Kl − 1). As

before, these are about N 1
.N 2

.2K 2 l 2 distinct values. Next, ĝ n (ξ) is needed at ξ in (24) for

p = 1 , 2 , . . . N 1; and j = 0 , 1 , . . . , (Kl − 1). These are N 1
.Kl distinct values requiring N 1 KlI iterations.

Also, ŵ n − 1 (t n − 1 ,s) is needed at s in (24) for m = 1 , 2 , . . . , N 2; k = 0 , 1 , . . . , (Kl − 1); and at

s = ξ + λ n − λ n ĝ n (ξ) for ξ in (24) with p = 1 , 2 , . . . , N 1; j = 0 , 1 , . . . , (Kl − 1). Hence, there are

(N 1 + N 2) Kl distinct values.

It can be shown that for j = n − 1 ,n − 2 , . . . , 1, w̃ j (ξ ,s) is needed at

ξ =
2t j l

A_ ___ −
t j l
iπk_ ___ , s =

2x m l
A_ ____ −

x m l

iπk 1_ ____ (25)

for k = 0 , ±1 , . . . , ±(Kl − 1); m = 1 , 2 , . . . N 2; and k 1 = 0 , 1 , . . . , (Kl − 1). In addition, w̃ j (ξ ,s) is

needed at the same ξ as in (25) and at

s = ξ q + λ n − q − λ n − q ĝ n − q (ξ q) (26)

for q = 0 , 1 , . . . , (n − 1 − j), where

ξ 0 =
2τ p l

A_ ____ −
τ p l
iπ j_ ___ (27)

for p = 1 , 2 , . . . , N 1; j = 0 , 1 , . . . , (Kl − 1) and, for q > 0,

ξ q =
2t n − q l

A_ ______ −
t n − q l

iπk q_ _____ (28)

for k q = 0 , 1 , . . . , (Kl − 1). These are about 2Kl .(N 2
.Kl + N 1

.Kl + (n − 1 − j) .Kl) distinct values.

Also, for j = n − 1 , n − 2 , . . . , 1, ĝ j (ξ) is needed at ξ in (25) for k = 0 , 1 , . . . , (Kl − 1). These are

Kl distinct values corresponding to KlI distinct iterations. Finally, for j = n − 2 ,n − 3 , . . . , 1 , 0, ŵ j (t j ,s)

- 20 -

is needed at s in (25) for m = 1 , 2 , . . . , N 2; k 1 = 0 , 1 , . . . , (Kl − 1) and at s in (26) where

q = 0 , 1 , . . . , (n − 1 − j), ξ 0 in (27) for p 1 = 1 , 2 , . . . , N 1; j = 0 , 1 , . . . , (Kl − 1); and, for q > 0, ξ q

in (28) for k l = 0 , 1 , . . . , (Kl − 1). These are (N 1 + N 2 + n − j) Kl distinct values.

The reduced computation is accompanied by the requirement of some additional storage. We need to

store only the quantities ĝ j (ξ) and ŵ j (t j ,s). The total storage for ĝ j (ξ) for j = 1 , 2 , . . . n is about

[N 1 + (n − 1) Kl. The storage requirement for ŵ j (t j ,s) is (N 1 + N 2 + n − 1 − j) Kl. Since

ŵ j − 1 (t j − 1 , s) may be discarded after computing ŵ j (t j , s), at any time we need to store ŵ j (t j , s) for

only two successive values of j. This gives a maximum storage of about 2 (N 1 + N 2 + (n − 1) Kl. So

the total storage for ĝ j (ξ) and ŵ j (t j , s) is [3 (N 1 + n − 1) + 2N 2] Kl. The computation and storage

requirements are summarized in Table 4.

In summary, the first row of Table 4 represents the basic computation requirement for two-

dimensional transform inversion, which is no different from the unrefined algorithm in the first row of

Table 2. From Table 4, see that some of the additional computations in rows 2-5 grow linearly and others

grow quadratically with n. This is to be contrasted with the exponential growth in Table 2.

Note that basic computations are proportional to the product of N 1 and N 2 , whereas the additional

computations are proportional to the sum (N 1 + N 2) (rows 2 and 3) or just N 1 (row 4). Therefore, as N 1

and N 2 increase, the ratio of additional computations to basic computations decreases.

It is significant that the number of iterations needed for the busy-period transforms g j (ξ) is drastically

reduced compared to Table 2. Therefore, unless N 2 is small and I is too large, the computational

requirement for g j (ξ) remains small compared to the overall computation requirement. Finally, the total

storage requirement given in Table 4 is not much and increases linearly with n.

We conclude this section by giving the computational complexity of the refined algorithm for the

numerical example in Table 3. The new numerical values are given in Table 5. These numbers clearly

indicate that, with the more efficient algorithm described in this section, the amount of computation and

- 21 -

storage remains manageable even with n = 10.

6. The Algorithm

In this section we provide a step-by-step description of how to implement the algorithm. For

simplicity we assume all the inversion parameters are the same, but it is easy to make them different.

Step 1. Identify the input parameters; i.e., determine the number of intervals n; the number of time

values in the last interval at which the workload distribution is needed (t = τ 1 ,τ 2 , . . .τ N 1
); the desired

workload values x 1 ,x 2 , . . . x N 2
; the arrival rate λ j and service-time transform ĥ j (s) in each interval; and

the Laplace-Stieltjes transform of the initial workload CDF, ŵ 0 (t 0 ,s).

Step 2. Identify the parameters n 1 , m 1 , K , A 1 , A 2 , A , l 1 , l 2 , l of the inversion algorithm, as in

Section 3.

Step 3. Compute and store ĝ j (ξ) for j = 1 , 2 , . . . n using the busy-period functional equation recursion

(9) at all required distinct values of ξ. For j = n, the required ξ values are as in (24) with p = 1 , 2 , . . . N 1

and j = 0 , 1 , . . . , (Kl − 1). For j < n, the required ξ values are as in (25) with k = 0 , 1 , . . .(Kl − 1).

Step 4. Compute ŵ j (t j , s) at all required distinct values of s starting with j = 0 and proceeding as

j = 0 , 1 , . . . , n − 1, using formulas (10) and (6). The distinct s values are as in (25) for

m = 1 , 2 , . . . , N 2; k 1 = 0 , 1 , . . .(Kl − 1) and also as in (26) with q = 0 , 1 , . . .(n − 1 − j), ξ 0 in (27) with

p = 1 , 2 , . . . N 1; j = 0 , 1 , . . .(Kl − 1); and, for q > 0, ξ q in (28) for k q = 0 , 1 , . . .(Kl − 1). Some of the

distinct s values depend on the ĝ j (ξ) values which are already computed and stored. For j = 0, ŵ 0 (t 0 ,s)

is the same as the initial workload transform and is part of input specification. For j > 0, ŵ j (t j ,s) is

obtained by single transform inversion of w̃ j (ξ ,s) using equation (16). Computation of the transform

value depends on the already stored values of ĝ j (ξ) and ŵ j − 1 (t j − 1 ,s) or their complex conjugate. Once

ŵ j (t j ,s) is computed at all required s values, ŵ j − 1 (t j − 1 ,s) may be deleted, freeing up storage space.

- 22 -

Step 5. Compute the complementary CDF of the workload, Wn
c (t ,x) at all required values by

applying two-dimensional transform inversion formula w̃n
c

(ξ ,s) in (12) and (13). The transform value is

obtained using (5), (6) and (7). The computation requires the already stored values of ĝ n (ξ) and

ŵ n − 1 (t n − 1 ,s) or their complex conjugates.

7. A Degenerate Case Causing Numerical Problems

In equation (6) with n = j, suppose ξ and s are related as follows:

ξ = s − λ j + λ j ĥ j (s) . (29)

Using (9) it can be shown that the above also implies

s = ξ + λ j − λ j ĝ j (ξ) (30)

Inserting (29) and (30) into (6), we see that both the numerator and denominator are zero, causing

indeterminacy and numerical problems.

In general, it is unlikely for (29) and (30) to hold, but there is an interesting special case in which (29)

and (30) hold with certainty. Section 5 shows all the distinct argument pairs for which w̃ j (ξ ,s) needs to

be evaluated and from that it becomes clear that (29) and (30) hold if either: (a) t n − q = t j , λ n − q = λ j ,

ĥ n − q (.) = ĥ j (.) and the inversion parameters A i and l i used in intervals n − q and j are the same for

some q in the range 1 , . . . , (n − 1 − j); or (b) τ p = t j , λ n = λ j , ĥ n (.) = ĥ j (.) for some p and j and the

inversion parameters A i and l i used in intervals n and j are the same. Roughly speaking, the degeneracy

occurs if two separate intervals become indistinguishable from each other.

While it is important to be aware of the degeneracy condition, it is very easy to avoid it. First, making

the inversion parameters A i or l i slightly different in different intervals will most likely avoid it; e.g.,

instead of setting A = 24 for all intervals i, set it to 23. 5 + (i / n) on interval i, where n is the total number

of intervals. Second, we can simply check to see if there is degeneracy. All the required ξ and s values

are computed in the initial part of the algorithm. At this stage it is possible to check explicitly to see if

- 23 -

the condition (29) is satisfied or almost satisfied. Since all computations are done in double precision,

(29) has to be satisfied very closely to cause any problem. We need to check only on a small subset of all

possible (ξ ,s) pair since inversion formula only considers values of s and ξ with constant real parts.) If

the outcome of checking is positive, then one of the inversion parameters can be slightly changed and the

computation can be redone. Since this checking can be done in a very small fraction of the overall

computation time, there is not any significant impact on the overall computation time.

8. Numerical Experience

We have checked the algorithm using several numerical examples with several values of the number

of intervals, n, and several variations of arrival rates and service time distributions. One concern we had

was to make sure that the workload distributions being computed are correct. A simple sanity check is to

compare with the steady-state workload distribution, computed by a separate algorithm, when the last

stationary interval is quite long. Our algorithm passed this test. For the steady-state distributions, we

applied the algorithms in Abate and Whitt (1992a).

The one-dimensional and two-dimensional inversion algorithms also have a built-in accuracy check in

that the same computation may be done with many different values of A i and l i parameters. If the

computations are inaccurate, then it is extremely unlikely that the results will match. We verified that the

results did match up to 7-to-10 decimal places. Also, by dividing any piecewise stationary interval into

more than one intervals would produce a new equivalent model with different inversion calculations but

the same workload distributions. We verified accuracy by this method as well.

One set of examples we considered had up to n = 10 intervals and K = 50. In each interval, the

arrival process was Poisson, the service-time distribution was gamma with SCV (squared coefficient of

variation) in the range 1/16 to 16, and the server utilization was in the range 0.1 to 0.9. We always

obtained (7–10)-digit accuracy using the values of l in Table 1.

- 24 -

In the introduction we gave some numerical results for a concrete example with seven stationary

intervals. There are 8 layers of inversion (the 6 recursive one-dimensional inversions and one final two-

dimensional inversion). We used {l i } = (2 , 3 , 3 , 3 , 4 , 4 , 4 , 4) and {A i } = (22 , 24 , 24 , 24 , 26 , 26 , 26 , 26)

going from outermost to innermost layers to obtain (7–10) digit precision. The run-time was 3 minutes to

compute 5 points in the last interval for two values of x.

Next, to really stress the algorithm, we also considered a 21-interval example, obtained by dividing

each of the seven subintervals into three subintervals. We let the lengths of these subintervals be 2, 3 and

5 in each case to avoid the degeneracy discussed in Section 7. The arrival rate and service time

distribution in each subinterval is the same as before, so that the time-dependent workload distribution is

unchanged. We used

{ l i } = (4 , 5 , 5 , 5 , 5 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7)

and A i = 26 for all i.

In Table 6 we display the workload tail probabilities P(W(t) > x) for x = 1 and 10 for two time

points in the last interval t = 66 and t = 70. (Here t is the time since the origin.) At x = 1, we obtain

agreement to 7 digits, while at x = 10 we obtain agreement to 9 and 10 digits. The run time was

26 minutes. Notice that three times as many intervals required approximately nine times as much

computation time, so that the computation indeed grows approximately as the square of the number of

intervals.

Even though we were successful in this pretty large example, we believe that our algorithm should

primarily be regarded as being for 10 or fewer intervals. Then the algorithm runs in at most a few

minutes and the errors are tightly controlled. Many practical situations satisfy this requirement of 10 or

fewer intervals; e.g., overload controls.

- 25 -

9. Comparison with Simulation

It is appropriate to compare our numerical inversion algorithm to simulation, because simulation is a

readily available alternative algorithm for calculating the tail probabilities P(W(t) > x). With

simulation, we would perform n independent replications of the workload process over the time interval

[0 ,t] and estimate the tail probability P(W(t) > x) by the proportion of the n sample paths for which

W(t) > x; i.e., if i indexes the replication and 1 {W i (t) > x} = 1 if W i (t) > x and 0 otherwise, then

our estimate is

P(W(t) > x) ∼∼ n − 1

i = 1
Σ
n

1 {W i (t) > x} . (31)

In some sense, simulation and the inversion algorithm are not directly comparable, because the

required computations depend on different features of the model. The simulation run time tends to be

linear in the number of events, and thus in model time t, but is independent of the number of subintervals

in a piecewise-constant representation. Indeed, simulation does not require the piecewise-constant

structure. In contrast, the inversion algorithm is essentially independent of model time, but quadratic in

the number of intervals. Thus, the two algorithms tend to be complementary, with the inversion being

superior for a model with only few intervals.

The performance of simulation also depends critically on the size of the probability we want to

estimate and the statistical precision we want to achieve. It is easy to analyze the performance of the

simulation estimator, because for any fixed t and x the estimator is just the sample mean estimator for the

probability p ≡ P(W(t) > x) in n Bernoulli trials. The expected value of this estimator is p and the

standard deviation is √ p(1 − p)/ n . Since we typically are interested in relatively small tail probabilities,

it seems natural to use a criterion of relative standard error (RSE), which we define as the ratio of the

standard deviation to the mean. Clearly, the relative standard error is

RSE = √ (1 − p)/ pn ∼∼ 1/√ pn , (32)

- 26 -

with the approximation holding for p suitably small. Hence, if we desire an RSE of ε, the required

number of replications in the simulation is approximately

n = 1/ pε2 . (33)

If the desired probability p and the target RSE ε are not small and the run time for one replication is

not long, then simulation will be effective. For example, if p = ε = 0. 1, then only n = 1000

replications are required, which is often feasible. The 1000 replications can well be competitive with the

inversion for a problem that is difficult for the inversion, but for a piecewise-constant model with only a

few intervals (e.g., 1–3), the inversion will require only seconds and thus tend to dominate even with this

low precision requirement. Simulation is clearly prohibitive at the high accuracies of 10 − 10 easily

achievable by the inversion algorithm when there are only a few intervals. For instance, for p = 10 − 4

and ε = 10 − 8 , n = 1020 . Practical examples might well have p = ε = 10 − 2 , for which n = 106 . As

the target probability and RSE get smaller, the inversion algorithm begins to dominate simulation.

Moreover, it is often possible to greatly speed up the inversion algorithm when there are many

subintervals and we require only moderate accuracy by judiciously introducing approximations, as we

now indicate.

10. Exploiting Approximations to Speed Up the Computation

Since the inversion computation becomes difficult when there are many intervals, it is natural to

consider ways to effectively reduce the number of intervals by making various approximations. The idea

is quite simple: If we want to calculate a tail probability P(W(t) > x) at time t, then we might

approximately determine the distribution at some time t 0 with 0 < t 0 < t and consider a new problem

on the time interval [t 0 , t] using the transform of the approximating distribution at time t 0 as the initial

distribution. If t 0 is not too close to t, then we should still attain good accuracy at time t based on less

accuracy at t 0 .

- 27 -

One way to do this is to use the inversion algorithm over [0 ,t 0] to calculate the cdf P(W(t 0) ≤ x) for

several values of x at time t 0 . (A similar procedure might also be used at other time points before time t 0;

i.e., we need not use only one internal point.) We use these calculated values P(W(t 0) ≤ x i) to

determine an approximate distribution and transform at t 0 .

Another general way to accomplish this goal is to exploit simulation. As discussed in the last section,

simulation can be quite effective in obtaining a rough estimate of the distribution at t 0 . We can use the

empirical transform, i.e., the transform of the empirical distribution at time t 0 . We can then use the

inversion algorithm to obtain a more precise estimate of the probability distribution at the later time t.

In addition to the two methods just described, there may occur natural decoupling points where we

know the distribution at least approximately. Two kinds of decoupling points come to mind: (1) steady-

state and (2) light traffic. First, if there is a very long interval for which the model in that interval is

stable, then we can approximate the distribution at the end of the interval by the steady-state distribution

associated with that interval. Second, if there is a long period of very light traffic, then we can

approximate the distribution at the end of that interval by a unit point mass at 0.

References

ABATE, J. and W. WHITT. 1992a. The Fourier-Series Method for Inverting Transforms of Probability

Distributions. Queueing Systems 10, 5-88.

ABATE, J. and W. WHITT. 1992b. Solving Probability Transform Functional Equations for Numerical

Inversion. OR Letters 12, 275-281.

ABATE, J. and W. WHITT. 1994. Transient Behavior of the M/G/1 Workload Process. Opns. Res. 42,

750-764.

ASMUSSEN, S. and T. ROLSKI. 1994. Risk Theory in a Periodic Environment: the Crame ́ r-Lundberg

Approximation and Lundberg’s Inequality. Math. Opns. Res. 19, 410-433.

CHOUDHURY, G. L. and D. M. LUCANTONI. 1995. Numerical Computation of the Moments of a

Probability Distribution from its Transforms. Opns. Res., to appear.

CHOUDHURY, G. L., D. M. LUCANTONI and W. WHITT. 1994a. Multi-Dimensional Transform

Inversion with Applications to the Transient M/G/1 Queue. Ann. Appl. Prob. 4, 719-740.

CHOUDHURY, G. L., D. M. LUCANTONI and W. WHITT. 1994b. Numerical Transform Inversion to

Analyze Teletraffic Models. The Fundamental Role of Teletraffic in the Evolution of

Telecommunications Networks, Proceedings of the 14th Int. Teletraffic Congress, J. Labetoulle and J.

W. Roberts (eds.), Elsevier, Amsterdam, 1b, 1043-1052.

CHOUDHURY, G. L. and W. WHITT. 1994. Computing Transient and Steady-State Distributions in

Polling Models by Numerical Transform Inversion. submitted.

CHOUDHURY, G. L. and W. WHITT. 1995a. Q 2: A New Performance Analysis Tool Exploiting

Numerical Transform Inversion. Proc. IEEE MASCOTS ‘95, Durham, NC, January 1995.

CHOUDHURY, G. L. and W. WHITT. 1995b. Non-Probability Approximations for Probability

Distributions to Aid Numerical Transform Inversion. in preparation.

DAVIS, J., W. A. MASSEY and W. WHITT. 1995. Sensitivity to the Service-Time Distribution in the

Nonstationary Erlang Loss Model. Management Sci., to appear.

-R-2 -

DUDA, A. 1986. Diffusion Approximation for the Time-Dependent Queueing Systems. IEEE J. Sel.

Areas Commun. SAC-4, 905-918.

GREEN, L., P. KOLESAR and A. SVORONOS. 1991. Some Effects of Nonstationarity on Multiserver

Markovian Queueing Systems. Opns. Res. 39, 502-511.

GROSS, D. and D. MILLER. 1984. The Randomization Technique as a Modeling Tool and Solution

Procedure for Transient Markov Processes. Opns. Res. 32, 362-379.

KOOPMAN, B. O. 1972. Air Terminal Queues Under Time-Dependent Conditions. Opns. Res. 20,

1089-1114.

KUITENBROUWER, G. J. 1992. An M/M/1 Queue with Piecewise Constant Intensities and the

M(t)/M(t)/1 Queue. University of Twente, The Netherlands.

LEMOINE, A. J. 1989. Waiting Time and Workload in Queues with Periodic Poisson Input. J. Appl.

Prob. 26, 390-397.

LOGOTHETIS, D. 1994. Transient Analysis of Communication Networks, Ph.D. thesis, Department of

Electrical Engineering, Duke University.

LUCANTONI, D. M., G. L. CHOUDHURY and W. WHITT. 1994. The Transient BMAP/G/1 Queue.

Stochastic Models 10, 145-182.

ONG, K. L. and M. R. TAAFFE. 1989. Nonstationary Queues with Interrupted Poisson Arrivals and

Unreliable/Repairable Servers. Queueing Systems 4, 27-46.

PALM, C. 1943. Intensity Variations in Telephone Traffic. Ericsson Technics 44, 1-189. (English

translation by North-Holland, Amsterdam, 1988).

RABINER, L. R. and B. GOLD. 1975. Theory and Application of Digital Signal Processing, Prentice

Hall, Englewood Cliffs, NJ.

ROLSKI, T. 1987. Approximation of Periodic Queues. Adv. Appl. Prob. 19, 691-707.

ROLSKI, T. 1989. Queues with Nonstationary Inputs. Queueing Systems 5, 113-130.

TAAFFE, M. R. and K. L. ONG. 1987. Approximating Ph(t)/M(t)/S/C Queueing systems. Ann. Opns.

-R-3 -

Res. 8, 103-116.

TAKA ´ CS, L. 1962. Introduction to the Theory of Queues, Oxford University Press, New York.

VAN DEN BERG, J. L. and W. GROENENDIJK. 1991. Transient Analysis of an M/M/1 Queue with

Regularly Changing Arrival and Service Intensities. pp. 677-681 in Teletraffic and Datatraffic in a

Period of Change, Proceedings of ITC 13, A. Jensen and V. B. Iversen, eds., North-Holland,

Amsterdam.

ZHANG, J. and E. J. COYLE. 1991. The Transient Solution of the Time-Dependent M/M/1 Queue.

IEEE Trans. Inf. Theory 37, 1690-1696.

_ _____________________________________
number parameter values

of _ _________________________

intervals A 1 = A 2 = A l 1 = l 2 = l_ _____________________________________
1–2 22 2
3–5 24 3
6–8 26 4
9–12 26 5
13–16 26 6
17–21 26 7_ _____________________________________ 


















































Table 1. Parameter values required as a function of the number of intervals in order to achieve
(7–10)-digit accuracy.

_ ___
computations estimated number_ ___

w̃ n (ξ ,s) N 1
.N 2

.2K 2 l 2
_ ___

w̃ j (ξ ,s) , j ≠ n
8

N 1 N 2_ _____ .(4Kl) n + 1

_ ___

ŵ j (t j ,s) , j ≠ n
4

N 1 N 2_ _____ .(4Kl) n + 1

_ ___

iterations for ĝ j (ξ) , 1 ≤ j ≤ n
8

N 1 N 2_ _____ (4Kl) n + 1 I
_ ___ 






































Table 2. Estimated computational complexity of the direct inversion algorithm without
enhancements.

_ __
number of stationary intervals_ _____________________________

computation n = 2 n = 5 n = 10_ __
w̃ n (ξ ,s) 2. 0×106 4. 5×106 1. 3×106

w̃ j (ξ ,s) , j ≠ n 8. 0×108 5. 8×1017 1. 3×1034

ŵ j (t j ,s) , j ≠ n 1. 6×109 1. 2×1018 2. 5×1034

iterations for ĝ j (ξ),
1 ≤ j ≤ n 4. 0×1010 2. 9×1019 6. 4×1035

_ __ 

























































Table 3. Estimated numerical values for the number of computations as a function of the number n
of stationary intervals in the unrefined algorithm when N 1 = N 2 = 10 and K = I = 50.

_ __
computation estimated number_ __

w̃ n (ξ ,s) (N 1 N 2) 2K 2 l 2
_ __

w̃ j (ξ ,s) , j ≠ n [(N 1 + N 2) (n − 1) +
2

(n − 2) (n − 1)_ ___________] 2K 2 l 2

_ __

ŵ j (t j ,s) , j ≠ n [(N 1 + N 2) n +
2

(n − 1) n_ _______] Kl
_ __
ĝ j (ξ) , 1 ≤ j ≤ n (N 1 + n − 1) Kl_ __
iterations for
ĝ j (ξ) , 1 ≤ j ≤ n (N 1 + n − 1) KlI_ __
total storage requirement (3N 1 + 2N 2 + 3 (n − 1)) Kl_ __ 



















































Table 4. Estimated computational requirements for the more efficient implementation of the
inversion algorithm.

_ __
number of stationary intervals

computation _ ___________________________

n = 2 n = 5 n = 10_ __
w̃ n (ξ ,s) 2. 0×106 4. 5×106 1. 3×106

_ __
w̃ j (ξ ,s) , j ≠ n 4. 0×105 3. 9×106 2. 8×107

_ __
ŵ j (t j ,s) , j ≠ n 4. 2×103 1. 7×104 6. 0×104

_ __
iterations for
ĝ j (ξ) , 1 ≤ j ≤ n 5. 6×104 1. 1×105 2. 4×105

_ __
total storage requirement 5300 9300 19,250_ __ 












































































Table 5. Estimated numerical values for the number of computations and the storage requirement as
a function of the number n of stationary intervals in the refined algorithm when
N 1 = N 2 = 10 and K = I = 50.

_ ___
tail probability
P(W(t) > x)_ ____________________________

time t workload
since the origin x 7 intervals 21 intervals_ ___

66 1 0.769456620 0.769456602
70 1 0.727309000 0.727309017
66 10 0.47234728205 0.47234728210
70 10 0.42607030889 0.42607030883_ ___ 





















































Table 6. A comparison of numerical results for the 7-interval and 21-interval cases.

Figure 1. The time-dependent complementary workload distribution P(W(t) > 1) for the first
seven-interval example with gamma service times having mean 1 and SCV 4, arrival rates
0.6, 0.9, 1.2, 1.5, 1.1, 0.8, 0.5 and initial workload W(0) = 1. Here each interval has
length 10. The dotted lines represent the probabilities if the arrival rates did not change at
the end of each interval. The dashed lines represent the steady-state values associated with
that interval.

Figure 2. The time-dependent complementary workload distribution P(W(t) > 10) for the first
seven-interval example with gamma service times having mean 1 and SCV 4, arrival rates
0.6, 0.9, 1.2, 1.5, 1.1, 0.8, 0.5 and initial workload W(0) = 1. Here each interval has
length 10. The dotted lines represent the probabilities if the arrival rates did not change at
the end of each interval. The dashed lines represent the steady-state values associated with
that interval.

Figure 3. The time-dependent complementary workload distribution P(W(t) > 10) for the second
seven-interval example with gamma service times having mean 1 and SCV 4, arrival rates
0.6, 0.9, 1.2, 1.5, 1,1, 0.8, 0.5 and initial workload W(0) = 1. Here each interval has
length 100. The dotted lines represent the probabilities if the arrival rates did not change at
the end of each interval. The dashed lines represent the steady-state values associated with
that interval.

Figure 4. The time-dependent complementary workload distribution P(W(t) > 100) in log scale for
the second seven-interval example with gamma service times having mean 1 and SCV 4,
arrival rates 0.6, 0.9, 1.2, 1.5, 1.1, 0.8, 0.5 and initial workload W(0) = 1. Here each
interval has length 100. The dotted lines represent the probabilities if the arrival rates did
not change at the end of each interval. The dashed lines represent the steady-state values
associated with that interval.

