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Abstract

Many methods for numerically inverting transforms require values of the transform at

complex arguments. However, in some applications, the transforms are only characterized

implicitly via functional equations. This is illustrated by the busy-period distribution in the

M/G/1 queue. In this paper we provide conditions for iterative methods to converge for complex

arguments. Moreover, we show that stochastic monotonicity properties can provide useful

bounds.
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1. Introduction and Summary

In [1], [2] and [3] we describe effective methods for calculating probability cumulative

distribution functions by numerically inverting transforms. These methods require values of the

transform at selected (complex) arguments. In many applications this requirement is easily met,

because an explicit expression for the transform is available. However, in some applications the

transform is only characterized implicitly via a functional equation. In this paper we discuss

ways to solve these functional equations to obtain the values of the transform required for the

numerical inversion. In this paper we only discuss one-dimensional transforms, but similar

methods apply to multidimensional transforms; see p. 35 of [1].

We were motivated by the busy-period distribution in the M/G/1 queue; e.g., see §6.8 of

Cooper [6] or §1.2 of Neuts [14]. The busy-period distribution in turn plays an important role in

the transient behavior of the M/G/1 queue (e.g., see Keilson and Kooharian [10], § 1.3 of Taka ́ cs

[18], Ott [15], Chapter II.4 of Cohen [5] and Abate and Whitt [4]) and the steady-state behavior of

M/G/1 models with priorities and other service disciplines (e.g., see Chapter III.3 of Cohen [5],

Chapter 5 of Cooper [6], Doshi [7] and Neuts [14]).

We begin by describing this M/G/1 example. Let V be the cumulative distribution function

(cdf) of a service time, which we assume has mean 1. Let

v̂(s) = ∫
0

∞
e − stdV(t) = ∫

0

∞
e − stv(t) dt (1.1)

be the associated Laplace-Stieltjes transform (LST) of V and Laplace transform of its density v

when V(t) = ∫
0

t
v(u) du for all t. (All LSTs here are defined for complex numbers s with

nonnegative real part Re (s).) Let the arrival rate of the Poisson arrival process (and the traffic

intensity) be ρ where 0 < ρ < 1. Let B be the cdf of a busy period and let

b̂(s) = ∫
0

∞
e − stdB(t) = ∫

0

∞
e − stb(t) dt (1.2)
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be its LST and the Laplace transform of its density b when B(t) = ∫
0

t
b(u) du for all t. The LST

b̂ is characterized by the Kendall functional equation

b̂(s) = v̂(s + ρ − ρ b̂(s) ) ; (1.3)

see (8.67) on p. 230 of Cooper [6].

First, it is well known that (1.3) has a unique solution and that an analytical inversion is

possible. In particular,

B(t) =
n = 1
Σ
∞

∫
0

t

n!
(ρu) n − 1
_ _______ e − ρudV (n) (u) , t ≥ 0 , (1.4)

where V (n) is the n-fold convolution of V with itself; see (8.76) on p. 232 of Cooper [6].

However, in general (1.4) is not especially convenient for calculating B(t), so that numerical

inversion remains a viable alternative.

It is also well known that the functional equation (1.3) is easy to analyze when the variable s

is a nonnegative real number. For any nonnegative real s, we can regard the right side as an

operator T s mapping the interval [ 0 , 1 ] into itself, i.e.,

T s (x) = v̂(s + ρ − ρx) , 0 ≤ x ≤ 1 . (1.5)

It is easy to see that T s is nondecreasing in x for all v̂, with

T s ( 0 ) = v̂(s + ρ) > 0 and T s ( 1 ) = v̂(s) ≤ 1 , (1.6)

so that T s has a unique fixed point in [ 0 , 1 ] and (1.3) has a unique solution. Moreover,

successive iterates of T s converge monotonically to b(s), i.e.,

Ts
n (x) ↑ b(s) as n → ∞ if x < b(s) (1.7)

and

Ts
n (x) ↓ b(s) as n → ∞ if x > b(s) ; (1.8)
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see p. 232 of Cooper [6].

However, many numerical inversion procedures, including the principal ones in [1], [2] and

[3], require values of the transform for complex arguments s. For example, the algorithm EULER

in [1], [3] which implements a variant of the Fourier-series method for inverting Laplace

transforms calculates a function value f (t) via its Laplace transform

f̂ (s) = ∫
0

∞
e − stf (t) dt (1.9)

by calculating weighted sum of the values of the real part of f̂ (s) for s of the form u + iv where

u ≥ 0; i.e., the numerical approximation is

f (t) ∼∼
k = 0
Σ
n

a k Re ( f̂ ) (u + ivk) (1.10)

for appropriate positive integer n, positive real numbers u and v, and real numbers a k .

Thus, with EULER, we would calculate the complementary busy-period cdf B c , where

B c (t) = 1 − B(t) for all t, by applying (1.10) with the Laplace transform

f̂ (s) = B̂
c
(s) ≡ ∫

0

∞
e − stB c (t) dt =

s
1 − b̂(s)_ _______ . (1.11)

Hence, to apply EULER to calculate B c (t), it suffices to determine b̂(s) for s = u + iv for u > 0

and v > 0. The question is how to do this.

One approach is to avoid this difficulty by restricting attention to numerical inversion

procedures that use only the transform values f̂ (s) for real numbers s. For example, the Gaver [9]

– Stehfest [16] procedure described in §8 of [1] has been used for this purpose by Gaver [9],

Nance, Bhat and Claybrook [14], and Middleton [13]. This is a satisfactory approach, but as

noted in [1], the Gaver-Stehfest procedure requires quite high precision to achieve good

numerical accuracy.
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What we would like to do to supply the transform values in (1.10) is simply iterate (1.5) for

any desired complex s. When we tried it, we found that it worked. No doubt many others have

discovered this as well; e.g., Bharat Doshi reports using this iterative scheme with complex

arguments in [7]. Our first goal is to prove that this iterative scheme for the M/G/1 busy-period

cdf does indeed always converge for all complex s. Unfortunately, however, we do not know

how to give a direct proof that iteration of (1.5) always works for complex s as well as real s. We

show that the iteration of (1.5) does in fact work for complex s by viewing the problem

probabilistically.

It turns out that the idea of using a probabilistic argument to establish convergence of the

iteration is not new. It appears in Theorem 3.1.5 of Lucantoni [11] and §1.2 and §2.2 of

Neuts [14]. They treat Markov chains of M/G/1 type, which includes the standard M/G/1 queue

as a special case. However, they consider (1.5) only for the initial condition x = 0. In this

context, our main contribution is to point out the significance of this reasoning for numerical

transform inversion. We also consider more general initial conditions. We contribute further by

showing that the monotonicity of the operator allows us to construct two-sided bounds on the

final computation from approximations based on finitely many iterations (based on initial

conditions x = 0 and x = 1). We also show how the procedure can be used more generally

(outside the M/G/1 context).

Here is how the rest of this paper is organized. In §2 we establish the results for the M/G/1

busy period. In §3 we establish conditions for the procedure to work more generally. In §4 we

give a numerical example for the M/G/1 busy period.

2. The M/G/1 Busy Period

We start by replacing (1.5) by an operator on Laplace transforms of possibly defective

probability measures; i.e., we write
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T( f̂ ) ≡ T( f̂ ) (s) = v̂(s + ρ − ρ f̂ (s) ) , (2.1)

where s is a complex number with Re (s) ≥ 0 and f̂ is the LST of a possibly defective cdf F,

defined as in (1.1). Defective means that we allow F(∞) < 1. For any fixed s, real or complex,

we are just applying (1.5) with the stipulation that x = f̂ (s) for some cdf F. For example, it

suffices to let x = 0 or 1, because f̂ (s) = 1 for all s if F( 0 ) = 1 and f̂ (s) = 0 for all s if

F(t) = 0 for all t. However, for T to be a legitimate operator in this sense we must know that

T( f̂ ) itself is a LST of a possibly defective cdf.

Theorem 1. If f̂ is an LST of a possibly defective cdf F, then so is T( f̂ ) for T in (2.1).

Proof. We explicitly construct the cdf of which T( f̂ ) is the LST. We use a probabilistic

characterization of (1.3) often used in its proof; e.g., p. 229 of Cooper [6]. For this purpose, let S

be a service time random variable, let {A(t) : t ≥ 0 } be a Poisson counting process with rate ρ

and let X , X 1 , X 2 , . . . be i.i.d. random variables with the busy-period cdf. Then the probabilistic

version of (1.3) is

X =
d

S +
j = 1
Σ

A(S)
X j , (2.2)

where =
d

denotes equality in distribution. Hence, we can express (2.1) equivalently as an operator

T acting on (possibly defective) cdf’s by

T(F) ≡ T(F) (t) = P(S +
j = 1
Σ

A(S)
Y j ≤ t) , t ≥ 0 , (2.3)

where S, {A(t) : t ≥ 0 } and {Y j : j ≥ 1 } are mutually independent, S has cdf V, {A(t) : t ≥ 0 }

is a Poisson process with rate ρ and {Y j , j ≥ 1 } is a sequence of i.i.d. random variables with cdf

F (having LST f̂). Indeed, a direct calculation of the LST of (2.3) yields (2.1).

We show that iterates of (1.5) converge as n → ∞ for any complex s by showing that iterates

of (2.1) converges as n → ∞.
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Theorem 2. Let s be any complex number with Re (s) > 0. If x = f̂ (s) for some possibly

defective cdf F, then Ts
n (x) → b̂(s) as n → ∞, where T s is the operator in (1.5) and b̂ is the

unique solution to (1.3).

Proof: By Theorem 1, T n ( f̂ ) is an LST of a possibly defective cdf for all n; let F n be the cdf

associated with T n ( f̂ ). For s real, the set of x such that x = f̂ (s) for some cdf is the unit interval

[ 0 , 1 ]. As observed in §1, Ts
n (x) → b̂(s) as n → ∞ for all real s and all x ∈ [ 0 , 1 ]. Hence,

T n ( f̂ ) (s) → b̂(s) for all real s, where T is the operator in (2.1). However, restricting attention

to real s suffices to imply that the cdf’s F n converge to B as n → ∞ in the sense that

F n (t) → B(t) as n → ∞ (2.4)

for all finite t that are continuity points of the limiting cdf B(t); see p. 248 and Theorem 2a on

p. 433 of Feller [8]. However, this convergence in turn implies that the transforms converge for

all complex s with Re (s) > 0. To see this, note that if u > 0, then e − ut cos vt and e − ut sin v(t)

are continuous functions that vanish at infinity. Hence, for each s = u + iv with u > 0, the real

and imaginary parts satisfy

Re f̂ n (s) = ∫
0

∞
Re e − stdF n (t) = ∫

0

∞
e − ut cos vt dF n (t)

(2.5)

→ ∫
0

∞
e − ut cos vt dB(t) = Re b̂(s) as n → ∞

and

Im f̂ n (s) = ∫
0

∞
Im e − stdF n (t) = ∫

0

∞
e − ut sin vt dF n (t)

(2.6)

→ ∫
0

∞
e − ut sin vt dB(t) = Im b̂(s) as n → ∞ ;

see Theorem 1 on p. 249 of Feller [8]. Finally, existence and uniqueness of the solution to (1.3)

for complex s are determined by the existence and uniqueness for real s.

We remark that it is easy to see from the proof of Theorem 2 that the operator T in (2.1) is
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continuous using the mode of convergence in (2.4). We now show that the operator T is also

monotone. As a consequence, we show that the iterates produce bounds on the busy period cdf if

we start with appropriate initial transforms. For this purpose, we use the usual stochastic

ordering. We say that one possibly defective cdf F 1 is stochastically less than or equal to

another possibly defective cdf F 2 , and write F 1 ≤ st F 2 , if F 1 (t) ≥ F 2 (t) for all t; e.g., see

Stoyan [15].

Theorem 3. If F 1 ≤ st F 2 , then T(F 1 ) ≤ st T(F 2 ), where T(F i ) is the possibly defective cdf

associated with F i (t) = P(Y j
i ≤ t) in (2.3).

Proof. From (2.3), it is immediate that S +
j = 1
Σ

A(S)
Y j is increasing in {Y j : j ≥ 1 } for each

realization of the random variables. If F 1 ≤ st F 2 , then it is possible to construct random

variables {Y j
i : j ≥ 1 } such that {Y j

i : j ≥ 1 } is i.i.d., Y1
i has cdf F i and Y j

1 ≤ Y j
2 for all j w.p.1.

Hence,

S +
j = 1
Σ

A(S)
Y j

1 ≤ S +
j = 1
Σ

A(S)
Y j

2 w. p. 1

which implies that

T(F 1 ) (t) = P(S +
j = 1
Σ

A(S)
Y j

1 ≤ t) ≥ P(S +
j = 1
Σ

A(S)
Y j

2 ≤ t) = T(F 2 ) (t)

for all t, so that indeed T(F 1 ) ≤ st T(F 2 ).

In the space of (possibly defective) cdf’s, the cdf’s F ∗ and F ∗ with F ∗ (t) = 1 for all t and

F ∗ (t) = 0 for all t are minimal and maximal elements, respectively, in the stochastic ordering;

i.e., F ∗ ≤ st F ≤ st F ∗ for all possibly defective cdf’s F. The cdf’s F ∗ and F ∗ correspond to a

unit point mass at 0 and at infinity, respectively. The associated LSTs are f̂ ∗ (s) = 1 for all s and

f̂
∗

(s) = 0 for all s. If we use these extremal LSTs as starting points then we obtain bounds on

the busy period cdf. The following is an easy consequence of Theorem 3.
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Theorem 4. The iterates Ts
n (x) for x = 1 and x = 0 are LSTs b̂ n∗ (s) and b̂n

∗
(s), respectively,

of cdf’s B n∗ (t) and Bn
∗ (t) with

1 = f ∗ (s) ≥ v̂(s) = b̂ 1∗ (s) ≥ b̂ n∗ (s) ≥ b̂ (n + 1 ) ∗ (s) ≥ b̂(s) (2.7)

≥ b̂(n + 1 )
∗

(s) ≥ b̂n
∗

(s) ≥ b̂1
∗

(s) = v̂(s + ρ) ≥ f ∗ (s) = 0

for all n and positive real s, and

1 = F ∗ (t) ≥ V(t) = B 1∗ (t) ≥ B n∗ (t) ≥ B (n + 1 ) ∗ (t) ≥ B(t)

≥ Bn + 1
∗ (t) ≥ Bn

∗ (t) ≥ B1
∗ (t) = P(S ≤ t , A(S) = 0 ) ≥ F ∗ (t) = 0 (2.8)

for all t and n.

As indicated in §1, results closely related to the theorems in this section appear in

Theorem 3.1.5 of Lucantoni [11] and Sections 1.2 and 2.2 of Neuts [14]. They obtain one-sided

bounds on the generalization of B(t), paralleling (2.8). To make the connection, note that

P(S ≤ t, A(S) = k) = A k (t) for A k (t) in (1.1.2) of [14] and v̂(s + ρ) = Ã 0 (s) in (1.2.3) of

[14]; i.e., the k th iterate starting with f ∗ (s) = 0 corresponds to making the first passage in

exactly k steps.

3. Other Transform Functional Equations

We now indicate how the methods of §2 apply more generally. We suppose that we have a

transform functional equation

f̂ = T( f̂ ) (3.1)

where f̂ is the LST of a (possibly defective) cdf F.

Theorem 5. Suppose that T in (3.1) is an operator mapping LSTs of possibly defective cdf’s into

LSTs of possibly defective cdf’s. If T n ( ĝ) (s) → f̂ (s) as n → ∞ for some LST ĝ of a possibly

defective cdf and all real s, then
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F n (t) → F(t) as n → ∞ (3.2)

for all t that are continuity points of F, where F n (t) is the possibly defective cdf with LST T n ( ĝ)

and F(t) is the possibly defective cdf with LST f̂. Moreover, if (3.2) holds, then

T n ( ĝ) (s) → f̂ (s) as n → ∞ for all complex s with Re (s) > 0.

Proof. Apply the argument used to prove Theorem 2.

We now give a sufficient condition for the convergence condition in Theorem 5.

Theorem 6. Suppose that the operator T in (3.1) can be represented by

T( f̂ ) (s) = T s ( f̂ (s) ) (3.3)

for each real number s, where T s is nondecreasing real-valued function of a real variable with

T s ( 0 ) > 0 and T s ( 1 ) ≤ 1 for each positive real s. Then Ts
n (x) → f̂ (s) as n → ∞ for each

positive real s and each x with 0 ≤ x ≤ 1.

Proof: Apply the argument in (1.5)–(1.8).

Combining Theorems 5 and 6 we also obtain Laplace transform stochastic orderings

generalizing (2.7); see p. 22 of Stoyan [17].

Theorem 7. Under the conditions of both Theorems 5 and 6,

1 = f̂ ∗ (s) ≥ T n ( f̂ ∗ ) (s) ≥ T n + 1 ( f̂ ∗ ) (s) ≥ f̂ (s)

≥ T n + 1 ( f̂
∗

) (s) ≥ T n ( f̂
∗

) (s) ≥ f̂
∗

(s) = 0 (3.4)

for all n and real positive s.

In doing a numerical inversion we may work with complex s and have convergence of

successive iterates of the operator T in (3.1) by virtue of Theorem 5. Theorem 7 tells us that in

the case of (3.3) the cdf’s associated with those iterations are ordered in the Laplace transform

ordering in (3.4) involving all positive real s. The Laplace transform ordering in turn implies that

the moments are ordered in a certain way. However, (3.4) is not so useful to check calculations,
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because for the numerical inversions using (1.10) iterations of (3.3) are only done for finitely

many complex s and the numerical inversion produces only the cdf values F n∗ (t) and Fn
∗ (t) for

finitely many t. We thus do not directly produce the transform values in (3.4). However, we

could do the iterations of (3.3) also for several real s to get an idea about the quality of the

approximations. From Theorem 7, we see that T n ( f̂ ∗ ) (s) − T n ( f ∗ ) (s) for real s is an upper

bound on the error in the calculation of f̂ (s) after n iterations.

However, under extra conditions, we get useful direct bounds on the cdf. Theorem 3 shows

that these conditions hold for the M/G/1 busy period.

Theorem 8. Suppose that T in (3.1) is an operator mapping LSTs of possibly defective cdf’s into

LSTs of possibly defective cdf’s. Moreover, suppose that T regarded as an operator mapping

possibly defective cdf’s into possibly defective cdf’s is monotone in the stochastic ordering. Then

1 = F ∗ (t) ≥ F n∗ (t) ≥ F (n + 1 ) ∗ (t) ≥ F(t)

≥ Fn + 1
∗ (t) ≥ Fn

∗ (t) ≥ F ∗ (t) = 0

for all t and n, where F n∗ and Fn
∗ are the cdf’s associated with T n ( f̂ ∗ ) and T n ( f̂

∗
), respectively.

4. A Numerical Example

We conclude by reporting a numerical example. In particular, we apply the algorithms

EULER and POST-WIDDER for inverting Laplace transforms in [1] and [3] plus iteration of

(2.1) to compute the complementary busy-period cdf B c (t) for the M/G/1 queue when the

service-time distribution has a gamma distribution with mean 1 and shape parameter 1/2 and the

arrival rate is ρ = 0. 75. Thus, the service-time LST is v̂(s) = ( 1 + 2s) − 1/2 .

Table 1 displays successive iterates of (2.1) starting with b̂ 0 (s) = f ∗ (s) = 1 and

b̂ 0 (s) = f̂
∗

(s) = 0 when s = 0. 3979167 + 0. 6544985i. We display the real part,

Re [T n (b 0 (s) ) ], the imaginary part, Im [T n (b 0 (s) ) ], and the modulus, ( Re [T n (b 0 (s) ) ]2

+ Im [T n (b 0 (s) ) ]2 )1/2 . From Table 1, we see evidence of convergence, but no monotonicity.
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Moreover, the absolute values of the increments are not monotone, so that there is not a

contraction property associated with these terms. (Recall that we have no positive results other

than convergence for the successive iterates of the transforms for complex numbers s.)

Table 2 displays the numerical estimates of the complementary cdf B c (t) for several different

values of t based on 10, 20 and 30 iterations. Using the two inversion algorithms EULER and

POST-WIDDER confirmed accuracy to 10 − 8 in the inversion, so that the reported errors are due

solely to the iteration of (2.1). The monotonicity in n from above and below is evident from the

results. Moreover, we see that more iterations are required for higher values of t. However,

satisfactory guaranteed accuracy is consistently achieved with a modest computation.
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_ ______________________________________________
starting with b̂ 0 (s) = 0_ ______________________________________________

iteration real part imaginary part modulus_ ______________________________________________
1 0.5215651 −0.0997833 0.5310244
2 0.5664467 −0.1524585 0.5866050
3 0.5652960 −0.1629180 0.5883042
4 0.5639880 −0.1638444 0.5873052
5 0.5639511 −0.1637884 0.5870621
6 0.5637337 −0.1637559 0.5870364
7 0.5637357 −0.1637506 0.5870368
8 0.5637365 −0.1637503 0.5870374
9 













0.5637366 












−0.1637504 












0.5870376_ ______________________________________________
starting with b̂ 0 (s) = 1_ ______________________________________________

iteration real part imaginary part modulus_ ______________________________________________
1 0.6378206 −0.2077858 0.6708130
2 0.5657992 −0.1768587 0.5927966
3 0.5624473 −0.1652914 0.5862322
4 0.5634320 −0.1637582 0.5867473
5 0.5637051 −0.1637165 0.5869979
6 0.5637373 −0.1637434 0.5870363
7 0.5637374 −0.1637497 0.5870382
8 0.5637367 −0.1637504 0.5870377
9 0.5637366 −0.1637504 0.5870376_ ______________________________________________ 



































































































Table 1. Successive iterates of operator (2.1) in the M/G/1 example in §4 with
s = 0. 3979167 + 0. 6544985i.



_ __________________________________________________________________
initial condition b̂ 0 (s) = 1 initial condition b̂ 0 (s) = 0_ _______________________________________________

exact number of iterations number of iterations
time values _ _______________________________________________

10 20 30 10 20 30_ __________________________________________________________________
0.5 0.518004
1 0.392419
2 0.274266
6 0.132691
12 0.074877 −1 1
24 0.037027 −x x
48 0.014822 −x x
96 0.004138 −x −14 x 26

192 0.000606 −x −60 −1 x x 2
288 0.000119 −x −x −3 x x 14_ __________________________________________________________________ 



























































































































































Table 2. Numerical estimates of the M/G/1 busy-period complementary cdf B c (t) for the
example in §4 as a function of the number of iterations of (2.1). Each displayed value is
(estimate−exact)×106 , with no number meaning less than 0.5 and ‘‘x’’ meaning greater than 100.


