Chapter 2

Stochastic-Process Limits

2.1. Introduction

Chapters 4 and 7 of the book present a panorama, of stochastic-process
limits. In this chapter we present even more material. In Section 2.2 we
present an introduction to strong approximations and the rates of conver-
gence in the setting of Donsker’s theorem that they imply using the Pro-
horov metric. In Section 2.3 we present additional Brownian limits under
weak dependence; here we focus on Markov and regenerative structure.

In Section 2.4 we briefly discuss the convergence to general Lévy pro-
cesses that holds when we have a sequence of random walks (based on a
double sequence of random walk steps). Finally, in Section 2.5 we point out
that the linear-process representation assumed with strong dependence in
Sections 4.6 and 4.7 of the book arises naturally from modelling when we
take a time-series perspective.

2.2. Strong Approximations and Rates of Convergence

In Sections 1.4 and 4.3 of the book we noted that the CLT and FCLT are
invariance principles, meaning that the same limits occur in great generality.
In the IID case we only need the summands X, to have finite variance.
However, the quality of the approximation for any given n is affected by the

distribution of X,,. Indeed, that is obvious for the CLT: If X, i N (0,0?),
then the limit can be replaced by equality in distribution. Moreover, the
closer the distribution of X, is to the normal distribution, the better the
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normal approximation for the scaled partial sum should be. More generally,
the advantage of extra structure in the distribution of X,, can be seen from
more refined results giving bounds on the rate of convergence and asymptotic
expansions. We review some of these results in this section.

2.2.1. Rates of Convergence in the CLT

A bound on the rate of convergence in the basic CLT, given a finite third
absolute moment of a summand, is provided by the Berry-Esseen theorem;

see p. 542 of Feller (1971). To state it, we use the uniform metric on cdf’s,
defined by
|F1 — Fs|| = sup |Fi(z) — Fa(z)| . (2.1)
T

As before, let ® be the standard normal cdf.

Theorem 2.2.1. (Berry-Esseen theorem) Let {X,} be a sequence of IID
random variables with EX1 = 0, E[X?] = 0? and E[|X1|3] = §3 < co. Then

| F, — ®|| < 383/03/n forall n,
where Fy(z) = P((no?)~?(X1 +--- + X,,) < ).

Theorem 2.2.1 implies that for given n and 02, the bound on the distances
decreases as the third absolute moment d3 decreases. We now describe the
Edgeworth expansion, which shows how further regularity conditions can
improve the quality of the normal approximation; see p. 535 of Feller (1971).
We also get convergence of pdf’s.

Theorem 2.2.2. (Edgeworth expansion) If, in addition to the assump-
tions of Theorem 2.2.1 above, moments E[X}] exist for 3 < k < r and
|Elexp(itX1)|” is integrable for some v > 1, then (no?) Y?(X1 4 -+ + X,)
has a pdf f, for all n and

,
fulz) =n(@)[1+ > n~*2D2P(z) + o(n=72)/2)]
k=3
as n — 0o, uniformly in x, where n is the standard normal pdf and Py(x) is
a real polynomial depending on the first kK moments of X1, with the property
that Py(x) = 0 if the first k moments of X1 agree with those of the standard
normal distribution.

Note that the rate of convergence in Theorem 2.2.2 is O(n~'/?) if E[X}] #
0, but is O(n™!) or better if E[X}] = 0. When E[X}] # 0, the refinement
provided by the second term can be useful.
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2.2.2. Rates of Convergence in the FCLT

We now turn to Donsker’s FCLT. From the Lipschitz mapping theorem,
Theorem 3.4.2 in the book, we can deduce a bound on the rate of convergence
in the CLT from a bound on a rate of convergence in the FCLT. Hence, we
can see in advance that the rate of convergence in the FCLT, given a finite
third absolute moment, can be no better than the O(n~1/2) bound provided
by the Berry-Esseen theorem. In fact, the best possible bound for the FCLT,
under an even stronger regularity condition, is somewhat worse, being larger
by a factor of logn. From a practical perspective, though, the difference is
not great.

We now give the final rate-of-convergence result, expressed in terms of
the Prohorov metric 7 from Section 3.2 of the book; see (2.2) here. For this
application, it is convenient to let the underlying function space be the set
Dg = Dg([0,1],R) of functions in D = D([0, 1], R) with discontinuities only
at rational points in the domain [0, 1], endowed with the uniform metric ||-|[;
we refer to the space as (Dg,U). The space (Dg,U) is a separable metric
space and the stochastic processes considered here all have sample paths in
this space. Thus, the Prohorov metric 7 is defined on the space P((Dg,U)),
the space of all probability measures on (Dg,U). Since

d]M1 (.Tl,:L‘Q) < dJl (.Tl,:L‘Q) < ||:E1 — :L‘QH for T1,T2 € D s

the result also holds for the spaces (D,dy,) and (D, dpy, ).
The following combines Theorems 1.16 and 1.17 in Csorgé and Horvath
(1993).

Theorem 2.2.3. (bounds on the rate of convergence in Donsker’s FCLT)
Let {X,,} be a sequence of IID random variables with EX,, = 0 and E[X?] =
o?. If, in addition, E[exp(tX1)] < oo for t in a neighborhood of the origin,
then there exist positive constants C7 and Cy such that

Cilogn/v/n < m(Sy,0B) < Cylogn/v/n (2.2)

for all n, where 7 is the Prohorov metric on the space P((Dg,U)), B is
standard Brownian motion and S,(t) = n_l/QSLntJ, 0 <t <1. If, instead,
only E[|X1|P < oo for some p > 2, then there is a constant C such that

7(Sp,0B) < Cn~(P~2/2(p+1) (2.3)

for all n. Moreover, for any sequence {a,} with a, — o0 as n — oo, there
is a random variable X1 with E[|X;|P] < oo such that

Im a,n®~ 2207, oB) = oo . (2.4)
n—o0
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The lower bound in (2.2) and the limit in (2.4) show that the upper
bounds in Theorem 2.2.3 are indeed best possible. Note that the rate
O(logn/y/n) in (2.2) exceeds the Berry-Esseen bound O(1/4/n) by a fac-
tor of logn. We regard that difference as negligible.

However, there is a big difference between the bounds in (2.3) and in
Theorem 2.2.2. When there is only a finite third absolute moment, we have
(2.3) with p = 3, which only yields the rate O(n~'/8). For finite p* moment
with p > 2, (2.3) gives a rate that can be substantially worse than O(n~1/2),
while Theorem 2.2.2 gives rates that can be much better than O(n~'/?). Tt
should be recognized that the conditions are quite different though.

By the Lipschitz mapping theorem, Theorem 3.4.2 of the book, the rate
of convergence in Theorem 2.2.3 is inherited by Lipschitz functions. For
real-valued Lipschitz functions, we then can obtain bounds on the uniform
metric for cdf’s.

Corollary 2.2.1. (bounds on the uniform metric for cdf’s of the images of
real-valued Lipschitz maps) Suppose that g : (Dg,U) — R is a Lipschitz
function and that g(B) has a bounded pdf. If the conditions of Theorem
2.2.3 hold with Eexp(tX1) < oo for t in a neighborhood of the origin, then
there is a positive constant C' such that

sup|P(g(S) < ) = P(g(0B) < 2)| < Clogn/Vn (2.5)

for allm > 1.

We can apply Corollary 2.2.1 to obtain a bound on the rate of conver-
gence in the CLT; we use the projection map m1(z) = z(1), which is easily
seen to be Lipschitz. However, the bound is not as good as provided by the
Berry-Esseen theorem, so the bound may no longer be best possible when
we consider the image measure associated with a single Lipschitz map.

We can also apply Theorem 2.2.3 to establish bounds on the rate of
convergence in heavy-traffic FCLTs for queues. We illustrate by stating a
result for the queueing model in Section 1.6. We use the fact that the two-
sided reflection map ¢x : D — D is Lipschitz; see Theorem 13.10.1. An
early result of this kind is Kennedy (1973). That served as motivation for
the Lipschitz mapping theorem in Whitt (1974).

Corollary 2.2.2. (bounds on the rate of convergence in a heavy-traffic

stochastic-process limit for queues) Consider the queueing model in Sec-

tion 2.3 of the book with IID inputs Vi, with mean m, and variance o2.
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If, in addition, K, = n'?K and p, = my, +mn "2 for all n and with
Elexp(tV1)] < oo for some t > 0, then there ezists a constant C such that

(W, ¢ (0B — me)) < Clogn/n/?

where W, is the scaled workload process in equation (2.3.6) of the book and
¢k is the two-sided reflection map.

2.2.3. Strong Approximations

Theorem 2.2.3 can be extablished by applying strong approzimations.
Like the Skorohod and Strassen representation theorems in Chapters 3 and
11 of the book, strong approximations are special constructions of random
objects on the same underlying probability space, often called couplings; see
Lindvall (1992).

We start by stating the Komlds, Major and Tusnddy (1975, 1976) strong
approximation theorems for partial sums of IID random variables; see Chap-
ter 2 of Csorgd and Révész (1981) and Chapter 1 of Csorgd and Horvith
(1993). See Philipp and Stout (1975) for extensions to the weakly depen-
dent case and Einmahl (1989) for extensions to the multivariate case. See
Csorg6 and Horvath (1993) for strong approximations of renewal processes
and random sums. For applications of strong approximations to queues, see
Zhang et al. (1990), Horvath (1990), Glynn and Whitt (1991a,b) and Chen
and Mandelbaum

Theorem 2.2.4. (strong approximation with finite moment generating func-
tion) Let {X,, : n > 1} be a sequence of IID random variables with EX; = 0,
EX? =1 and Ee™1 < oo for t in a neighborhood of the origin. Let
S, =Xi+---+X,, n>1, with S = 0. Then there exists a standard
Brownian motion B = {B(t) : t > 0} such that, for all real x and every
n>1,

P ( max |Sy — B(k)| > Cylogn + x) < Che™7 (2.6)
1<k<n

where C1, Cy and X are positive constants depending upon the distribution
Qf)(y

As a consequence of Theorem 2.2.4, we can deduce that
Sp—B(n) =0(logn) as n—oo w.p.l; (2.7)
i.e., there is a constant C' such that

P(|S, —B(n)| > Clogn infinitely often) =0 . (2.8)
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Note that (2.8) follows from (2.6) by substituting C'logn for z in (2.6) for
suitably large C’ and then applying the Borel-Cantelli theorem.

We now relax the extra condition on the tail of the ccdf P(|X1| > t), at
the expenses of obtaining a slower rate.

Theorem 2.2.5. (strong approximation with p'" moment) Let {X,, : n >
1} be a sequence of IID random wvariables with EX; = 0, EX? = 1 and
E|X1|P < oo for somep > 2. Let S, = X1+ -+ X, n > 1, with Sy = 0.
Then there exists a standard Brownian motion B such that

n~?|S, —B(n)| -0 w.p.l (2.9)

To apply Theorems 2.2.4 and 2.2.5 to establish Theorem 2.2.3, we need
to relate Brownian motion B to the associated processes

B, (t) =n~'/*B(|nt]), Bj(t) =B(lnt]/n), By(t) =n""’B(nt)

for 0 <t < 1. By the self-similarity property, B 4 B3 and B}, 4 B2 for all
n > 1. We can relate B2 to B by bounding the fluctuations of Brownian
motion. The following is Lemma 1.1.1 of Csérgé and Révész (1981).

Theorem 2.2.6. (uniform bound on the fluctuations of Brownian motion)
For any € > 0, there exists a constant C = C(e) such that

P(0<§3¥—h0ilslgh |B(t+s)—B(t)| > vVh) < (CT/h)exp(—v?/(2+¢€)) (2.10)

for all positive v, T, and h, 0 < h <T.

Theorem 2.2.6 can be applied to determine the precise modulus of con-
tinuity of Brownian sample paths (originally determined by Lévy); see The-
orem 1.1 of Csorg6 and Révész (1981).

Theorem 2.2.7. (modulus of continuity of Brownian paths) If B is Brow-
nian motion, then

B t)— B
lim  sup sup [B(s +) (s)

h—0  0<s<1 o<t<h  4/2hlogh~!

From Theorem 2.2.7, we see that the sample paths of Brownian motion
are continuous but not differentiable; the largest increment of length h is
almost surely of order O(1/2hlog h—!). We can also apply Theorem 2.2.6 to
determine the following bound on the in-probability distance p(B,B2) and
the Prohorov distance (B, B} ), where 7 is defined on the space P((C,U)).

=1 wp.l.
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Corollary 2.2.3. There exists a constant C such that

W(B,B}L) < p(B,Bi) < Ci1y/logn/n

for all n > 1.

Proof. The first inequality holds because B, < B2 and 7 < p. For the
second inequality, let v = /clogn for ¢ > 4 in (2.10). Then the right hand
side of (2.10) for T' = 1 becomes C'n~(11%) for § > 0 and constant C’. =

Partial proof of Theorem 2.2.3. For the upper bound in (2.1), let
x = C3logn in (2.6) to obtain

m(Sn, By) < p(Sn, By) < Clogn/vn .

Then use the triangle inequality with Corollary 2.2.3. =

Theorem 2.2.4 can be applied to obtain a strong approximation for a
Lévy process, i.e., a random element of D with stationary and independent
increments; see Corollary 5.5 on p. 359 of Ethier and Kurtz (1986).

Theorem 2.2.8. (strong approximation for a Lévy process) Let {L(t) : t >
0} be a real-valued Lévy process. Assume that

EetM < o (2.11)

for all o with |a| < «ag for some ay > 0. Then there ezist versions of the
Lévy process L and a standard Brownian motion B on a common probability
space such that

|L(t) — mt — oB(t)| = O(logt) as t— o0 w.p.1, (2.12)
where m = EL(1) and 0? = Var L(1).

A precursor to the strong approximation theorems, of interest in its own
right, is the Skorohod (1961) embedding theorem; see p. 88 of Csérgd and
Révész (1981).

Theorem 2.2.9. (Skorohod embedding theorem) Let {X,, : n > 1} be a
sequence of IID real-valued random variables with EX; = 0 and EX? = 1.
Let S, = X1+---+X,, n>1, with So = 0. There exists a probability space
supporting a standard Brownian motion B and a sequence {T}, : n > 1} of
nonnegative IID random variables such that
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(i) BTy +---T):n>1} 2 {S,:n>1} in R®;

(i) {Th +---+ T, : n > 1} is a sequence of stopping times, i.e., the
event {T1 + --- + T, < t} is contained in the o-field generated by
{B(s):0< s <t} forallt>0;

(iii) BT, = 1;
(iv) ETF < oo if, in addition, EX?** < oo for positive integer k.

As a consequence of Theorem 2.2.9,

(V28 >0} S {n"V2B(T) + -+ + Typyy) £ > 0}
L (BT 4+ Tyyy) : >0} .
By the FSLLN,

sup [n" NIy +---+ Tipy)) —t[ =0 w.p.l,
0<t<u
so that Donsker’s theorem again is a consequence. Rate of convergence
results follow too.

2.3. Weak Dependence from Regenerative Structure

This section is a sequel to Section 4.4 in the book, in which we showed
that many Brownian limits still hold for random walks {S,, : n > 0} when
the IID condition on the sequence of steps {X, : n > 1} is relaxed, with
the finite-second-moment condition EX?2 < oo remaining in place. We now
obtain results for stochastic-processes with regenerative structure.

This new setting allows us to abandon the assumption of stationarity
and obtain explicit expressions for the asymptotic variance o2, defined by

o2 = lim VL(S") .
n—oo n

(3.1)

For a stationary sequence {X,}, the asymptotic variance has the represen-
tation

o

2 _
o =Var X, +2ZCOU(X1,X1+k) . (3.2)

k=1
We now obtain more explicit representations for the asymptotic variance in
terms of basic model elements.
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2.3.1. Discrete-Time Markov Chains

We start by stating results for finite-state Markov chains. We first con-
sider discrete-time chains and then we consider continuous-time chains. Af-
terwards, we state results for general regenerative processes, which cover
more general Markov processes and non-Markov processes. The first result
for DTMC’s extends Theorem 4.4.2 in the book. An important point is
that an explicit expression can be given for the asymptotic variance o2. It
is expressible as a function of the fundamental matrix of the DTMC. The
most effective way to calculate the asymptotic variance is usually to solve a
system of equations, collectively known as the Poisson equation.

Let P be the transition matrix of an irreducible k-state DTMC and let
IT be a matrix with each row being the steady-state vector w. (We will work
with row vectors; let A’ be the transpose of a matrix A, so that the column
vector associated with a row vector z is z'.) Then the fundamental matriz
of the DTMC is

Z=(I-P+1I)7t; (3.3)

see pp. 75, 100 of Kemeny and Snell (1960). (The matrix I — P + II is
nonsingular.)

Theorem 2.3.1. (FCLT for a DTMC with explicit asymptotic variance)
Let {Y,, : n > 1} be an irreducible k-state DTMC and let X,, = f(Y,) for a
real-valued function f. Then the FCLT
S,=0¢B in (D,J1), (3.4)
where B is standard Brownian motion and
Sn(t) = n"'2(S|py — mnt), t>0, (3.5)
holds with

k
m= Z 7'('Zf('l) )
=1

k k
o’ =230 (F) —m)miZi;(f() —m) = D_mi(f (@) —m)”,  (3.6)

=1

7 the steady-state vector and Z = (Z; ;) the fundamental matriz in (3.3).
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As a quick sanity check on (3.6), note that in the IID case we have
P=A, Z =1 and, from (3.6),

k
o =) m(f(i) —m)?,
=1

as we should.

It is significant that we can calculate m, m, Z and o2 in Theorem 2.3.1
by solving the Poisson equation(s). We state both row-vector and column-
vector versions. Let 1 = (1,...,1) be a vector of 1’s and 0 = (0,...,0) be a
vector of 0’s.

Theorem 2.3.2. (Poisson equations for a DTMC) Consider an irreducible
finite-state DTMC with transition matriz P. The row-vector version of the

Poisson equation
z(I-P)=y (3.7

has a solution z for given y if and only if y1* = 0. All solutions to (3.7) are
of the form
r=yZ+ (217 .

The column-vector version of the Poisson equation
(I —P)zt =4 (3.8)

has a solution x' for given y' if and only if my' = 0. All solutions to (3.8)
are of the form
ot = Zyt + (rxh)1 .

Proof. We consider only the row-vector form. Clearly y1¢ = 0 is necessary,
because (I — P)1! = 0'. Given (3.7),

(I —-P+1)=y+ (217,
but I — P + II is nonsingular with inverse Z, so that
t=yZ+ (217 Z = yZ + (z1Y)7
sincenZ =2. =

Theorem 2.3.3. (Poisson equations for the steady-state vector and the
asymptotic variance of a DTMC) For an irreducible finite-state DTMC, the
steady-state vector m is the unique solution x to the Poisson equation (3.7)
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with y = (0,...,0) and z1' = 1. The asymptotic variance can be expressed
as

k
o =2 wi(f(i) —m)
i=1
where m 1is the mean and x solves the Poisson equation (3.7) with

yi = (f(1) —m)m, 1<i<k.

2.3.2. Continuous-Time Markov Chains

We now turn to the continuous-time processes. There are analogs of the
DTMC results in Theorems 2.3.1-2.3.3 for CTMC’s. Let {(Y(¢) : ¢ > 0} be
an irreducible k-state CTMC. Then the limit is for the integral

S(t) = /Otf(Y(s))ds, £>0.
The associated normalized processes in D are
Sn(t) =n~Y%(S(nt) —mnt), t>0. (3.9)
Given transition matrices P(t) = (P;;(t)), where
Pi(t) = P(Y(t) = j|Y(0) =) ,
the infinitesimal generator matriz of the CTMC is Q = (Q;,;) where

Q=lim(P(t) - 1)

and the fundamental matriz is Z = (Z; j) where

[e]
Zi,j = / (]Di,j(t) — ﬂj)dt
0

and
Z=M-Q)~' -1 (3.10)

see Kemeny and Snell (1961) and Whitt (1992). A CTMC model is usually
specified by giving the infinitesimal generator matrix ). For an irreducible
finite-state CTMC, the steady-state vector 7 is the unique vector with sum
1 that satisfies

7@ =0.
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Paralleling (3.1) and (3.2) above, the asymptotic variance in this continuous-

time framework is
o0
oﬂzthﬂgﬁD:2/ r(t)dt ,
0

t—00

where 7(t) is the (auto) covariance function, i.e.,

r(t) = E[X(0)X (1)] — (B[X(0)])*

for X(t) = f(Y(t)), t > 0.
The following is the continuous-time analog of Theorem 2.3.1.

Theorem 2.3.4. (FCLT for a CTMC with explicit asymptotic variance)
Let {Y(t) : t > 0} be an irreducible k-state CTMC, and let X (t) = f(Y (¢))
for a real-valued function f. Then the FCLT (3.4) holds for S, in (3.9)
with m the steady-state mean and o the asymptotic variance, which can be
expressed as

k k
=2 Z Z f@)miZiif(4)

where Z is the fundamental matriz in (3.10).

We can calculate m, m, Z and o? by solving Poisson equations for
CTMC’s; see Whitt (1992). The following is the continuous-time analog
of Theorem 2.3.2.

Theorem 2.3.5. (Poisson equations for a CTMC) Consider an irreducible
finite-state CTMC with infinitesimal generator matriz Q). The row-vector
version of the Poisson equation

Q =y (3.11)

has a solution z for given y if and only if y1' = 0. All solutions to (3.11)
are of the form
r=—yZ+ (z1%)7

The column-vector version of the Poisson equation
Qz' =y’

has a solution z' for given y' if and only if my* = 0. All solutions are of the
form
ot = - Zy" + (rzh)1t .
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The following is the continuous-time analog of Theorem 2.3.3.

Theorem 2.3.6. (Poisson equations for the steady-state vector and the
asymptotic variance of a CTMC) For an irreducible finite-state CTMC, the
steady-state vector 7 is the unique solution = to the Poisson equation (3.11)
with y = (0,...,0) and z1' = 1. The asymptotic variance can be expressed

as
k
2
g :2§ xifia
=1

where x is the unique solution to the Poisson equation (3.11) with

k
yi = (fi —m)m;  and sz =0.
im1

and m s the mean.

We can also obtain even more explicit expressions for the asymptotic
variance in Markov chains with additional structure. For example, suppose
that the CTMC {Y'(¢) : ¢ > 0} is a birth-and-death processes on the inte-
gers {0,1,...,n} with positive birth rates A;, death rates p; and stationary

probabilities
T = ToAoAL * "+ Aimt ) (3.12)
Hipeg -
If the process is irreducible, then the process must be reflecting at 0 and
n; ie., A\, = po = 0.) The following is Proposition 1 of Whitt (1992).
Corresponding results for diffusion processes are also stated there.

Theorem 2.3.7. (asymptotic variance of a birth-and-death process) Sup-
pose that X(t) = f(Y(t)), where f is a real-valued function and {Y(t) :
t > 0} is an irreducible birth-and-death process on the integers {0,1,...,n}
with birth rates \; and death rates u;. Then the asymptotic variance can be
expressed as

Il
~
Il
)

n—1 7
o? =2 (Am)~! [Z(f(i) - m)m]
Jj=0 ]

for m the mean and 7 in (3.12) above.

We now state a corollary of Theorem 2.3.7 for an elementary queueing
model — the M/M/1 queue. The queue-length process in an M/M/1 queue
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is a birth-and-death process with A\; = A and p; = p when positive. The
following would properly be a corollary to Theorem 2.3.7 except for the fact
that the state space is infinite. Extensions to countably infinite and more
general state spaces are covered by the results for regenerative processes
below.

Corollary 2.3.1. (asymptotic variance for the queue-length process in the
M/M/1 queue) For the queue-length (number in system) process in the
M/M/1 queue with traffic intensity p = A\/p < 1, the asymptotic variance is

o2 — 2p(1 + p)
(1-p)*

The (1 — p)* term in the denominator of (3.13) shows that very long
simulation runs are required to directly estimate the steady-state mean of the
queue-length process by the sample mean when p is close to its upper limit
1. That insight is important for related models for which we do not already
know the steady-state distribution, so that simulation is actually needed.
We discuss applications of stochastic-process limits to obtain insights about
simulation in Section 5.9 of the book.

For a birth-and-death process it is also possible, and usually preferable,
to recursively solve the Poisson equation, see Remarks 1, 2 and 5 of Whitt
(1992). For more on Poisson equations, see Glynn (1994) and Glynn and
Meyn (1996).

(3.13)

2.3.3. Regenerative FCLT

Donsker’s theorem itself applies quite directly when we have regenera-
tive structure, as in the case of DTMC’s and CTMC’s in Theorem 2.3.1 and
2.3.4 above. For this discussion, we use the classical definition of regenera-
tive process, meaning that the process splits into IID cycles; see p. 125 of
Asmussen (1987). We will present the result in continuous time, following
Glynn and Whitt (1993), but corresponding results hold in discrete time, as
in Glynn and Whitt (1987). An earlier related Markov chain FCLT is due
to Maigret (1978).

Consider a stochastic process {Y'(t) : ¢ > 0} with general state space
and a measurable real-valued function f on that state space. We assume
that the stochastic process {Y (¢) : ¢ > 0} is regenerative with respect to
regeneration times 7; satisfying

OST()<T1<"'
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with T_1 = 0. We focus on the associated cumulative process

t
Ct) = / F(V(s))ds, t>0, (3.14)
0
and consider the associated normalized processes
Cn(t) = n V2(C(nt) — mnt), t>0 (3.15)

where m is a real number yet to be specified. The key random variables
associated with the regenerative cycles are

T = Ti—Ti1,
Xo= Xim) = [ () -mldu,
Zi = Zi(m) = 0212' /Os[f(Y(Ti_l—i—u))—m]du . (3.16)

By regenerative structure we mean that the three-tuples (7;, X;, Z;) are
IID for ¢ > 1. We also assume that E1; < oo and

t
/ |f(Y(s))|ds < oo w.p.1 foreach ¢,
0

which implies that the cumulative process has continuous sample paths

w.p.1.
The general idea is that the cumulative process C in (3.14) is approxi-
mately equal to a random sum. In particular,

C(t) = Sy + Ra(t) + Re(t), t>0,

where
Spn=X1+---Xn, n2>1,

for X; in (3.16) with Sy =0, N = {N(¢) : t > 0} is the (possibly delayed)
renewal counting process associated with the regeneration times, i.e.,

N(t)=max{i:T; <t}, t>0,

and R; = {R;(t) : t > 0} are remainder processes, defined by

min{¢,Tp}
Ri(t) = /0 F(Y(s))ds (3.17)
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and ]
Ro(t) = / FY(8))ds, > 0. (3.18)
Ty
Since ET; < o0, we have

t IN(t) > A=1/Er, as t— oo w.p.l. (3.19)

Under (3.19), FCLTs for partial sums tend to extend to random sums, as
we see in Chapter 13 of the book. The major difficulty here is treating the
two remainder terms in (3.17). Since |R;(t)| < Zy, the first remainder term
in (3.17) is easily dispensed with in limit theorems. The second remainder
term is more complicated; the key bound is

|Ra(t)| < Zny41, t20.

Then we observe that {Ra(t) : t > 0} is tight without space scaling. Thus,
after space scaling, it is asymptotically neglible.

Theorem 2.3.8. (FCLT for regenerative processes) With the regenerative
structure above, there is convergence in distribution

C.=0B in (D,J;)

for C,, in (3.15) and B standard BM if and only if there is a constant m
such that
EXi(m)=0, EX;(m)?<oo
and
t?P(Z1(m) >t) -0 as t— oo. (3.20)

for X1(m) and Z1(m) in (3.16). Then the asymptotic variance is
o2 = EX(m)? .

A sufficient condition for the regularity condition (3.20) is EZ;(m)?*t¢ <
oo for some € > 0. (A finite second moment is not enough. We remark that
condition (3.20) does not appear in the ordinary CLT; see Glynn and Whitt
(1993, 2000).) The role of the regularity condition (3.20) can be understood
from the following lemma.

Lemma 2.3.1. (condition for the scaled maximum to be asymptotically
negligible) Let {Z; : i > 1} be a sequence of IID real-valued random variables
and let ¥ : Ry — R4 be a function such that 1¥(t) — oo as t — oco. Then

1 )
p(n) lrg%xnﬂzz\} =0 as n—oo
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if and only if
tP(|Z1| > ep(t)) -0 as t—o0o0 forall e>0. (3.21)

Proof. Let M, = max{|Z;| : 1 <i < n} and F(t) = P(|Z1| <t),t>0.
Note that 1(n) 1M, = 0 if and only if, for all € > 0, P(1)(n) "1 M,, > €) — 0
as n — oo. However,
P(M, > ep(n)) <6
if and only if
P(M,) < e(n) > 14,

where
P(Mp <ep(n)) = F(ep(n))"

= (1-n"'n(l-F(ep(n)"

= (1—n"'nF(ep(n))"

- 1 as n—o o (3.22)
if and only if

nF(ep(n)) -0 as n— oo

or, equivalently, (3.21). =

Corollary 2.3.2. If the conditions of Lemma 2.3.1 hold with 1 (t) = t* for
a > 0, then condition (3.21) is equivalent to

tYeP(|Z >t) =0 as t— occ.

Proof. Under the assumption, condition (3.21) becomes
tP(|Z1| > €t*) -0 as t—o0o0 forall e€>0,
which first is equivalent to
e*(e “t)P(|Z1] > (e )%
and then is equivalent to
€*tP(|Z1|) >t*) -0 as t— oo forall €>0,

which in turn is equivalent to the stated result. =

A general application of Theorem 2.3.8 is to obtain a FCLT for the count-
ing processes associated with a batch Markovian arrival process (BMAP) as
in Lucantoni (1993) or, equivalently, the virtual Markovian point process
in Neuts (1989). An explicit formula for the variance of the number of ar-
rivals in [0,t] in a BMAP, from which the asymptotic variance easily can be
obtained, is given on p. 284 of Neuts (1989).
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2.3.4. Martingale FCLT

Martingale FCLTs are versatile tools for many applications. We have
stated one martingale FCLT in Theorem 4.4.4 of the book, but there are
others. We conclude this section by stating another. It is Theorem 18.1 of
Billingsley (1999).

We start with the double sequence {X,,; : n > 1,7 > 1} and an associated
double sequence of o-fields {F, ) : n > 1,k > 1}. We assume that X,
is a martingale difference with respect to these o-fields, i.e., X, 1 is F, k-
measurable and

E[Xp k| Frk-1]=0 forall n and k.
Suppose that EXfl,k < 00 and put
Vik = E[X7 (| Frk-1] - (3.23)

Note that V;, ;, being a conditional expectation, is a random variable. If
the martingale is originally defined only for 1 < k < ky, let X, ; = 0 and
Foj = Fnp, for k> n. Assume that > 22, X, and Y 72, V;, x converge
w.p.1 for each n.

Theorem 2.3.9. (martingale FCLT) If, in addition to the assumptions
above,
[nt]
Z Vo = 0’t as n—o00 forevery t>0 (3.24)
k=1
with Vi, in (3.23) and the Lindeberg condition

[nt)
ZE[Xi,kI{\Xn,HZf}] -0 as n— o
k=1
holds for everyt >0 and € > 0, then
S, =dB in D,
where o is determined by (3.24),
[nt)
Sn(t) = ZXn,ka t>0,
k=1
and B is standard Brownian motion.

Generalizations and other variations of Theorem 2.3.9 are contained on
p. 339 of Ethier and Kurtz (1986) and Jacod and Shiryaev (1987).
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2.4. Double Sequences and Lévy Limits

We have seen that there are only a few possible limits for normalized
partial-sum processes with weak dependence when we work in the framework
of a single sequence {X,, : n > 1}. In addition to the Brownian motion
limits discussed in Sections 4.3 and 4.4 of the book, there are the stable
Lévy motion limits discussed in Sections 4.5 and 4.7 of the book. However,
there are many more possible limits for normalized partial-sum processes
with weak dependence when we work in the framework of a double sequence
{Xpnr:n>1k>1}. We give a brief account in this section.

Throughout this section we assume that the sequence {X,; : £ > 1}
is IID for each n, so that we are in a classic well-studied setting; e.g., see
Gnedenko and Kolmogorov (1968) and Feller (1971). Since there is a dif-
ferent sequence for each n, we can incorporate multiplicative and additive
normalization constants directly in the variables X, ;. Hence we focus on
the partial sums

Sun = Xnit 4+ + Xnn (4.1)

without further normalization and the associated random functions in D
defined by

Sn(t) = Snnt], t=>0. (4.2)

The class of limits processes in FCLTs for S,, now are all Lévy processes.
As indicated in Section 4.5 of the book, a Lévy process L = {L(t) : t > 0} is
a stochastic process with sample paths in D = D([0, c0),R), L(0) = 0 and
stationary and independent increments. Brownian motion and stable Lévy
motion are important examples of Lévy processes, but there are many more;
see Bertoin (1996) and Jacod and Shiryaev (1987).

The distribution of L(¢) for any ¢ is an infinitely divisible distribution.
A probability distribution is infinitely divisible if for each n it is the n-fold
convolution of another probability distribution; i.e., a random variable X
has an infinitely divisible distribution if, for all n, there are IID random
variables X1,..., X, (depending upon X and n) such that

X<X ++X,.

Lévy processes and infinitely divisible distributions are characterized by
their characteristic functions. In particular, the one-dimensional marginal
distribution of every Lévy process has characteristic function

Eeilt) = ((0)
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where the Lévy ezponent 1(6) can be expressed as

0.2 2 o0
$(0) = bl — Tg + / (exp(ifz) — 1 — i0h(z))p(dz) . (4.3)

—0oQ

with b being the centering coefficient, 0? > 0 is the Gaussian coefficient,
u the Lévy measure and h a truncation function. There is quite a lot of
freedom in the choice of the truncation function h. Following Jacod and
Shiryaev (1987, pp. 75) we assume that the truncation function has compact
support, is bounded and coincides with z in a neighborhood of the origin.
To characterize convergence, we also want h to be continuous. A truncation
function with all these properties is

x, 0<z<1
22—z, 1<zx<2

h(z) = —z, —-1<z<0 (4.4)
24z, -2<z<0
0, |z|>2.

Other truncation functions are considered in the literature. Changing the
truncation function h typically changes the centering coefficient b, but does
not change the Gaussian coefficient 02 or the Lévy measure p. The Lévy
measure has support on R — {0}; it is a bonafide measure with

/_00 min{1, 2%} p(dz) < oo . (4.5)

Given a specific truncation function, such as h in (4.4), there is a one-to-
one correspondence between Lévy processes, infinitely distributions and the
triple of characteristics (b, 02, u) appearing in (4.3), with 02 > 0 and y being
a measure on R — {0} satisfying (4.5).

Brownian motion is the special Lévy process with null Lévy measure, i.e.,
p(A) = 0 for all measurable subsets A. Non-Gaussian stable Lévy motions
with index « are the special cases with ¢? = 0 and

cte 0t >0,
p(dz) = (4.6)
{ ¢ lz[~0H), z <0,

for nonnegative constants ¢ and ¢, where ¢t + ¢~ > 0. From (4.6), we
see that the power-tail structure of a stable law is manifested very strongly
in the Lévy measure. While the stable law S, (o, 8, 1) has the power-tail
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asymptotics in equations 4.5.12 and 4.5.13 in the book, the corresponding
Lévy measure has simple power densities on (0,00) and (—o0,0). A stable
Lévy motion is totally skewed to the right, so that § = 1, (left, so that
B = —1) if and only if ¢~ =0 (¢* = 0).

The Lévy measure u characterizes the possible jumps of the Lévy process.
Indeed, the jump process of the Lévy process is a Poisson random measure
on R x R with intensity u(dz)dt; i.e., the number of jumps in the Lévy
process falling in any spatial subinterval [a, b] during time subinterval [c, d]
for a < band 0 < ¢ < d has a Poisson distribution with mean p([a, b])|d — c|.
As a simple consequence, if the Lévy measure p has support in R*, then the
Lévy process has no negative jumps. Thus we know that the totally skewed
stable Lévy motion with =1 (and thus ¢~ = 0 in (4.6)) has sample paths
without negative jumps.

A complication with Lévy processes is the large (in general, infinite)
number of very small jumps. For any ¢ > 0, a Lévy process has only finitely
many jumps of at least size ¢ in any finite interval w.p.1. However, for any
¢ > 0, it can have infinitely many jumps of absolute size less than or equal
to ¢ in any finite interval. This large number of small jumps is compensated
for by deterministic drift built into the final integral in (4.3), in particular,
this drift occurs in the region that the truncation function h is positive.
Thus the true process drift is the sum of the drift b and the drift associated
with A. In general, the total drift may be infinite, which explains why the
representation (4.3) does not separate out all the drift.

It is possible to decompose a Lévy process into the independent sum of
component Lévy processes by decomposing the exponent 1(0) in (4.3) into
separate pieces; see Theorem 1 of p. 13 of Bertoin (1996) and its proof. The
first component Lévy process Li has Lévy exponent

202
1 (0) = ibo — Z0
2
and is Brownian motion with drift coefficient b and diffusion coefficient o2.
The second component Lévy process Lo has exponent

$2(6) = /| e (i02) ()

and is a compound Poisson process, with jumps of absolute size at least 2,
having Poisson intensity A2 = p((—o00, —2]) + ((2,00)) < 0o and jump size
probability distribution u(dz)/A2 on (—o0,—2) U (2,00). The complicated
component is the third one. The third component Lévy process L3 has
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exponent
2
va(6) = | (exp(ib) ~ 1~ ibh(o)u(do)
-2
It can be shown to be a pure jump martingale with jumps of absolute size
at most 2. It includes some deterministic drift to compensate for the jumps.
In summary, we can write

P(0) = 1(0) + 2(0) + 3(0)

and .
L:L1+L2+L3a

where Ly, Lo and L3 are the independent Lévy processes with exponents
11, P9 and 13 defined above.

If an infinitely divisible distribution has finite moments, these moments
can be derived by differentiating the characteristic function. For example,
if E|L(1)| < oo, then

/ o0
BL) =2 Z@ y. / o — h(z)]u(dz) | (@7)

— 00

where, because of the definition of the truncation function h, the integrand
is non-zero only in (—oo, —1] U [1, 00).

An important point is that the class of infinitely divisible distributions
is remarkably large. An indication is the fact that infinitely divisible distri-
butions are characterized by the triples (b, 02, 11), where u is a measure on
R — {0} satisfying (4.5). Two Lévy processes with triples (b1,0%, 1) and
(b2, 03, 12) reduce to the same process if and only if by = be, 02 = 02 and
p1(A) = po(A) for all measurable sets A C R. Nevertheless, infinitely di-
visible distributions may seem very special. However, over the years, many
common distributions have been shown to be infinitely divisible. For ex-
ample, lognormal distributions, Weibull distributions with ccdf’s e~ (*/4)°
for ¢ < 1, Pareto distributions, and all mixtures of exponential distribu-
tions are infinitely divisible; see Thorin (1977a,b), p. 452 of Feller (1971),
Bondesson (1992) and Abate and Whitt (1996). (The Weibull and Pareto
distributions actually are mixtures of exponential distributions so infinite
divisibility follows from that structure.) Moreover, the class of infinitely
divisible distributions is easily seen to be closed under convolutions.

We now consider convergence in distribution of partial sums to infinitely
divisible distributions and Lévy processes. First note that each infinitely
divisible distribution can serve as a limit, because if X is infinitely divisible
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then there is a sequence of sequences { Xy, j, : & > 1} of IID random variables

such that X £ Sy, for all n by the definition of infinite divisibility.
The following characterization of all possible limits is a consequence of
Theorem 2, p. 303, of Feller (1971) and Theorem 2.7 of Skorohod (1957).

Theorem 2.4.1. (Lévy process FCLT for double sequences) Let {X,; :
k > 1} be a sequence of IID random wvariables for each n and let Sy, and
Sn be defined as in (4.1) and (4.2). If

Spn=>72 1 R,
then Z has an infinitely divisible distribution and
S, =L in D([0,00),J1) ,
where L is the Lévy process with L(1) 4z

Necessary and sufficient conditions for the FCLT with convergence to a
specific Lévy process are consequences of Theorems 2.35, 2.52 and 3.4 of pp.
362, 368 and 373 of Jacod and Shiryaev (1987). (The partial sum process
is both a semimartingale and a process with independent increments (PII)
but not a process with stationary independent increments (PIIS).)

Theorem 2.4.2. (criteria for the Lévy-process FCLT) Let {X, ; : k > 1}
be a sequence of IID random variables for each n, with {X, 1 : n > 1} being
infinitesimal, i.e.,

lim P(| X, 1| >¢€) =0 forall €e>0. (4.8)
n—oQ
Then
S,=L in D([0,00),R,J1) (4.9)

for Sy, in (4.2), where L is a Lévy process with characteristics (b,o?, ), if
and only if

() lim nBh(Xn1]=b, (4.10)
(i) lim nVar[h(Xn)] = o?, (4.11)
(i) Jim nElg(tn)) = [ glohuldo) (4.12)

for the truncation function h and all continuous bounded real-valued func-
tions g on R with g(x) = 0 in a neighborhood of 0 and g(x) — y, —o0 <
y < 00, as T — *oo.
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Note that h(z) = z for |z| < 1, so that conditions (i) and (i7) above
correspond closely to convergence of the scaled means and variances.

Theorem 2.4.2 provides a large class of initial FCLT’s to use with the
continuous-mapping approach. We have only stated the classical results.
Jacod and Shiryaev (1987) go much further, generalizing the characteristics
of a Lévy process to define characteristics for semimartingales, allowing for
nonstationarity. They also establish conditions for FCLT's in which processes
with independent increments converge to other processes with independent
increments (Chapter VII), semimartingales converge to processes with inde-
pendent increments (Chapter VIII) and semimartingales converge to other
semimartingales (Chapter IX), all expressed via the process characteristics.
Actually verifying these conditions may not be straightforward, however.

2.5. Linear Models

In this section we discuss the linear-process representation in equation
4.6.6 of the book that was critical for obtaining the FCLT with strong de-
pendence. The linear-process representation expresses the basic summands
X, as

o
Xn =) 0¥, n>1, (5.1)
j=0

where {Y;, : —00 < n < oo} is a two-sided sequence of IID random variables
with EY;, = 0 and EY,? = 1, and {a; : j > 0} is a sequence of (deterministic,
finite) constants with

o
Z a? < 00. (5.2)
=0

We now show that the linear-process representation can arise naturally
from modeling. First, however, it is important to repeat our earlier dis-
claimer. It is important to realize that the stochastic-process limits with
strong dependence characterized by (5.1) are less universal. Many other
forms of strong dependence are possible. And, if the dependence does not
approximately correspond to a linear process, then there may appear a very
different limit process or there may even be no stochastic-process limit at
all.

Nevertheless, the linear-process representation is very natural. It pro-
vides a useful concrete model of strong dependence with an associated FCLT.
To explain how linear models can arise, we describe some time-series models.
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In particular, we show how the Gaussian linear process arises from a funda-
mental time-series model. We especially want to show how the Gaussian lin-
ear process with strong dependence arises from the fractional autoregressive
integrated moving average (FARIMA) model; e.g., see Section 2.5 of Beran
(1994) and Sections 7.12 and 7.13 of Samorodnitsky and Taqqu (1994).

The starting point is the autoregressive moving average (ARMA (p,q))
process, where p and ¢ are nonnegative integers. To define the ARMA (p, q)
process, let B be the backshift operator, defined by BX,, = X,,_1, so that
differences can be expressed as X, — X, 1 = (1— B)X,, and (X, — X,,—1) —
(Xpn_1— Xn_2) = (1—B)?X,. Let ¢ and 3 be polynomials of degree p and
q, respectively, of the form

p
P(z) =1- 7
j=1

and .
P(2) =1+ 92,
j=1
where 2 is a complex variable and ¢1, ..., ¢y, 91, ...,1)4 are real coeflicients.

As regularity conditions, assume that the equations ¢(z) = 0 and ¥ (z) =0
have no common roots and that all solutions of the equation ¢(z) = 0 fall
outside the unit disk {z : [z2| < 1}. An ARMA (p, q) process is defined to be
the stationary solution to the equation

P(B)Xn = (B)Y, (5-3)

where {Y,, : n > 1} is a sequence of IID N (0, 1) random variables; e.g., see
Chapter 3 of Box, Jenkins and Reinsel (1994). In this setting, the sequence
{Y,.} is called the innovation process. Note that the exponential smoothing
in Example 1.4.2 in the book is an ARMA(1,0) process.

Theorem 2.5.1. (the ARMA process) Under the regularity conditions above,
the system of ARMA (p,q) equations (5.3) has a unique solution of the form

o
X, = ijYn_]-, n>1, (5.4)
j=0

with real constant coefficients w; satisfying |w;| < 87 for all sufficiently large
g, for some §, 0 < § < 1. The coefficients w; in (5.4) are the coefficients of

the power series 1¥(z)/$(z).
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Note that the coefficients w; in the linear-process representation are
available via their generating function 9 (z)/¢(z). Given the polynomials 1
and ¢, we can thus calculate the coefficients w; by numerically inverting the
generating function; see Abate and Whitt (1992b).

Also note that the coefficients w; in (5.4) decay exponentially fast, so
that an ARMA process only exhibits weak dependence. To obtain strong
dependence, we need the coefficients w; in (5.4) to decay more slowly. We
achieve that by considering fractional differencing. We do so by introducing
a generalization of the ARIMA model. If instead {X,,} is the solution of the
equation

¢(B)(1 — B)*X,, = 4(B)Yn , (5.5)

where d is a nonnegative integer and {Y,,} is again a sequence of IID N(0,1)
random variables, then { X} is said to be an ARIMA (p, d, q) process, which
was introduced by Box and Jenkins (1970); see Chapter 4 of Box, Jenkins
and Reinsel (1994).

The FARIMA process is a generalization of the ARIMA process to frac-
tional differencing. The FARIMA generalization of ARIMA was introduced
by Granger and Joyeux (1980) and Hosking (1981). The FARIMA model
with strong dependence depends on a parameter triple (p, ¢, d), where p and
q are nonnegative integers and 0 < d < 1/2. (There also are FARIMA mod-
els with —1/2 < d < 0, but we will not consider them.) Given (p, q), there
are p + q further parameters.

For any real number d, we define the fractional difference operator

1-Br=Y (1) s

k=0

where

d\ _ d! _ I'(d+1)
(k) ~ kld—k)! T(k+1)I'(d-k+1)
with I'(z) the gamma function. A stationary process {X,} that satisfies
(5.5) for positive integers p and ¢ and for 0 < d < 1/2 is a FARIMA (p, d, q)
process. (Values of d with —1/2 < d < 0 are also possible, but we are
primarily interested in the range 0 < d < 1/2.)

Theorem 2.5.2. (the FARIMA process) Under the regularity conditions
above, including 0 < d < 1/2, the system of FARIMA (p,d,q) equations
(5.5) has a unique solution of the form

o
Xn = Zann_j, n>1,
j=0
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which converges almost surely, where

J
a; = Z wibj_i(—d)
=0

with {w;} being the sequence of constant coefficients in (5.4) and

L'(j+d) L
TG +1) T’

bj(—d) = as j — 00.

As a consequence,

.d—1 .
aj ~ aj as jJ — oo,

where

J
a=> wi/T(d)

=0
for w; in (5.4), and

rj = Cov(X1, X14j) ~ ri?d 1t as j— o0,

g(m) — $2(d—1) + (1 + $)2(d—1) . (md—l _ (1 + m)d71)2 .

where

for

The point of this discussion has been to show that a linear process of
the form (5.1) and (5.2), with

Var(S,) =n*"L(n) as n— oo, (5.6)

where L(t) is a slowly varying function and H > 1/2, arises naturally from
the FARIMA (p,d,q) model with 0 < d < 1/2. In the FARIMA case the
linear process is also a Gaussian process, but the key relations in Theo-
rems 2.5.1 and 2.5.2 here hold for stationary sequences with finite second
moments. We also remark that the parameters H and d are related by
1
d=H— -.
2
It is also significant that the FARIMA model provides a natural frame-
work to exploit the strong dependence in order to make predictions; see
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Beran (1994) for a full account of statistics for strongly dependent, light-
tailed processes. We only make a few remarks.

In applications, we may have a stochastic sequence {X,} that we are
willing to regard as a zero-mean stationary sequence with Var(X,) < oo.
We can examine the variance Var(Sy). If we find that

Var(Sy) ~en®? as n— oo

for 1/2 < H < 1, then we have the Joseph effect. That can be checked by
looking for a linear relationship after taking logarithms; i. e.,

log(Var(Sy)) ~ log(c) + 2H log(n) .

We then can invoke Theorem 4.6.1 in the book, without directly verifying
the linear-process representation in (5.1) and without identifying the weights
a; in (5.1), to support the approximation (in distribution)

{(en®)71/28 0y 1t > 0} = {Zp(t) : t > 0}, (5.7)

where Zy is standard FBM. Note that we obtain a parsimonious approxima-
tion, depending only on the two parameters ¢ and H. Attention naturally
focuses on ways to estimate the parameters ¢ and H. That can be done
simply from a plot of log Var(S,) as a function of logn; see Beran (1994).

It is important to remember that the justification of approximation (5.7)
from Theorem 4.6.1 in the book actually depends on the linear-process rep-
resentation. However, we can directly justify the approximation equation
4.6.13 in the book. by checking that the finite-dimensional distributions are
approximately Gaussian and that the covariance function is approximately
the covariance function of FBM in equation 4.6.13 in the book. The limit
theorem explains why the FBM approximation may be appropriate.

We conclude by remarking that there is again a time-series motivation
for considering the linear-process representation in the case of heavy tails
plus dependence, discussed in Section 4.7 of the book. Specifically, there
is a time-series motivation for the linear-process representation in equation
4.7.1 of the book, where the innovation variables Y,, have heavy tails, just
as there was for the light-tailed case in Section 4.6 of the book, because
there are analogs of the ARMA, ARIMA and FARIMA processes with stable
innovations; i.e., there are analogs of Theorems 2.5.1 and 2.5.2 here for the
case in which the innovation process {Y,} is a sequence of IID random
variables with a stable law Sy (o, 3, ) for 0 < a < 2; see Sections 7.12 and
7.13 of Samorodnitsky and Taqqu (1994).



