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We derive formulas approximating the asymptotic variance of four estimators for the steady-
state blocking probability in a multiserver loss system, exploiting diffusion process limits,
These formulas can be used to predict simulation run lengths required to obtain desired
statistical precision before the simulation has been run, which can aid in the design of
simulation experiments. They also indicate that one estimator can be much better than
another, depending on the loading. An indirect estimator based on estimating the mean
occupancyis significantlymore (less) eflicient than a direct estimatorfor heavy (light) loads,A
major concern is the way computationaleffort scales with system size, For all the estimators,
the asymptotic variance tends to be inuerselyproportional to the system size, so that the
computationaleffort (regardedas proportionalto the product of the asymptoticvariance and
the arrival rate) does not grow as system size increases. Indeed, holding the blocking
probability fixed, the computational effort with a good estimator decreases to zero as the
system size increases. The asymptotic variance formulas aIso reveal the impact of the
arrival-process and service-time variability on the statistical precision. We validate these
formulas by comparing them to exact numerical results for the special case of the classical
Erlang Ws/O model and simulation estimates for more general G/GI/s/O models, It is
natural to delete an initial portion of the simulation run to allow the system to approach
steady state when it starts out empty. For small to moderately sized systems, the time to
approach steady state tends to be negligible compared to the time required to obtain good
estimatesin steady state. However,as the systemsize increases,the time to approachsteady
state remainsapproximatelyunchanged,or even increasesslightly, so that the computational
effort associatedwith letting the system approach steady state becomes a greater portion of
the overall computationaleffort as system size increases.
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mation, loss models, Poisson’s equation, reflected Ornstein-Uhlenbeck diffusion process,
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1, INTRODUCTION AND SUMMARY

In this article we consider the problem of estimating steady-state blocking
probabilities in a multiserver 1;ss system from simulation output or system
measurements. We develop formulas approximating the variance of four
candidate estimators. These variance formulas enable us to predict the
observation intervals required to obtain estimates with desired statistical
precision before collecting any data. Thus these formulas can help design
experiments, These formulas should also be directly of interest to system
designers because the variability of blocking, due to variability in the
arrival process and service times, is an important performance measure in
addition to the blocking probability itself.

We are interested in loss networks, as in Kelly [19911 and Ross [19951,
but here we consider only a single link. Nevertheless, the results provide
useful insights for loss networks. Here we focus on the G/GVs/O model,
which has s servers in parallel, no extra waiting space, and independent
and identically distributed (ii .d. ) service times that are independent of a
general stationary arrival process (i.e., with stationary increments). Most
of our analysis focuses on the special case of exponential (M) service-time
distributions, but we also treat general (GI) service-time distributions. The
results for general service times are more tentative, however, as explained
later.

Arrivals that find all servers busy are lost (blocked) without affecting
future arrivals. The goal is to determine the steady-state blocking probabil-
ity, that is, the long-run proportion of all arrivals that are not admitted. In
a simulation we assume that the data are collected after the system has
reached steady state. Hence there is typically an initial period where the
system is approaching steady state, over which no data are collected, and
then a second period where we assume that the system is approximately in
steady state, over which all relevant data are collected. We first consider
the problem of predicting the required observation interval assuming that
the system starts in steady state. Afterwards, we consider the initial
portion that needs to be deleted for the system to be approximately in
steady state when the system starts empty. Then we also consider alterna-
tive initial conditions to make the system approach steady state more
quickly. When the number of servers is not large, the initial conditions do
not matter much, but when the number of servers is large the initial
conditions become important; see Section 11.

Indeed, a major goal is to better understand how the (lengths of the)
data-collection interval and the initial transient interval (to be deleted)
should scale as the model size (measured by the number of servers)
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increases. We find that these intervals scale in very different ways. It may
be somewhat surprising at first, but the asymptotic variance tends to be
inversely proportional to system size, whereas the appropriate initial
transient interval tends to be approximately independent of system size, or
even increasing slowly in system size. (This property of the asymptotic
variance becomes intuitively reasonable when one realizes that the amount
of data collected over any given observation interval tends to be directly
proportional to system size, assuming that the arrival rate is approxi-
mately proportional to system size. ) This behavior implies that the steady-
state portion of the computational effort in a simulation (regarded as
proportional to the product of the asymptotic variance and the arrival rate)
is approximately independent of system size. This also implies that the
initial transient interval should become a greater portion of the overall
interval as system size increases. For small to moderately sized systems,
the initial transient interval tends to be negligible compared to the steady-
state observation interval, but when the system gets large, the initial
transient interval becomes significant and eventually even dominates.

A major feature of our model is the general stationary arrival process.
Non-Poisson arrival processes often arise in loss systems; for example,
because the input often contains overflows from other loss systems, as with
various alternative routing schemes in circuit-switched telecommunica-
tions networks. For general stationary arrival processes, there are no
analytical formulas available for the steady-state blocking probability, so
that simulation is important. The estimation questions posed are interest-
ing even for the special cases of renewal (GI) and Poisson (M) arrival
processes, for which exact formulas for the steady-state blocking probabil-
ity are available (e. g., see Section 2.1 of Takacs [19621), because results
about the efficiency of different simulation estimators for these tractable
models can provide insight into what to do with more general models.

The present paper is in the spirit of Whitt [1989], which carried out a
similar investigation for queueing systems with unlimited waiting space
(i.e., for delay systems), focusing primarily on the case of relatively few
servers. There the object was to determine the amount of data required to
estimate standard steady-state performance measures such as the mean
waiting time and the mean queue length with desired statistical precision.
The main idea was to obtain simple approximations by exploiting approxi-
mations of the queueing processes by refZected Brownian motion (RBM ).
For the multiserver loss model with exponential service times considered
here, instead of RBM, the key process is the reflected Ornstein -Uhlenbeck
(ROU j diffusion process, as we explain in Section 4. Further related work
on delay systems appears in Asmussen [1989, 19921. Whitt [19921 contrib-
uted further by providing formulas and algorithms for the asymptotic
variance of the sample means of functions of birth-and-death processes and
other Markov processes. (The substantial previous literature is reviewed
there as well. ) We draw upon the algorithms in Whitt [19921 here; they are
reviewed in Section 3.
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10 ● R. Srikant and W. Whitt

1.1 The Candidate Estimators

We now describe the four estimators that we consider. First, the natural
estimator for the steady-state blocking probability B based on observations
of the system over the time interval [0, t] is

iiN(t) = L(t)/A(t), (1)

where L(t) is the number of lost (blocked) arrivals in [O, t] and A(t) is the
total number of arrivals (admitted or blocked) in [O, t]. A closely related
alternative simple estimator, whose efficiency is easier to analyze, is

L(t) L(t)
As(t) = — —

EA(t) = At ‘
(2)

where A = EA( 1 ) is the arriual rate (or intensity). It is intuitively clear
that the estimators ~Jt ) and ~,Jt ) should behave similarly; we substan-
tiate this intuition analytically in Section 7 and via simulation experiments
in Section 10. Hence we regard results for l?~(t ) as being applicable to
fi~(t).

Aa in Law [1975], Carson and Law [19801, and Glynn and Whitt [19891,
we can exploit the conservation law L = AW (Little’s law) to obtain an
alternative indirect estimator for B. For this purpose, let p-1 be the mean
service time, a = A/p the offered load, N(t) the number of busy servers at
time t (which we assume is stationary, due to deleting an initial portion of
the run), and n = EN(t) is the steady-state mean number of busy servers.
Applying the relation L = AW, as in Example 4.3 of Whitt [1991b], we get
the relation n = A( 1 – B)/p or, equivalently,

B=l– E. (3)
CK

Assuming that we know A and ~, as would be the case with many
simulations, we can use the indirect estimator

ii(t)
fl~(t)= 1 – —,

a
(4)

where rl(t) is an estimator of n based on data over [0, t]. In particular, we
assume that ti(t)is the sample mean, that is

J
t

?i(t) =t-l N(u)du, tzzo. (5)
o

Closely related to the blocking probability B is the probability that all
servers are busy, P(N(t ) = s), which is often called the time congestion.
Indeed, for Poisson arrivals these two quantities are equal, by virtue of the
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PASTA property; see Wolff [1982], Melamed and Whitt [1990], and Baccelli
and Bremaud [1994]. However, they are not equal more generally. The
natural time congestion estimator is

/

t
AT(t)= t-’ l{~(u)=.}du, (6)

o

where 1A is the indicator random variable of the set A; that is, lA( co) = 1 if
w E A and lA(~) = O otherwise, where o is an underlying sample point.
Glynn et al. [1993] made a general study of estimators for time and
customer averages, but did not focus on loss systems.

In ~his article we consider only the four estimators BN( t), ~~( t),fJ1(t),

and IIT(t) in eqs. (1), (2), (4), and (6). We investigate other estimators
designed to reduce variance in Srikant and Whitt [19951. For example,
because BI(t ) is decreasing in ti(t),and B~( t) should tend to be increasing
in fi(t),~l(t) and 8N(t ) tend to be negatively correlated, so that it is
natural to consider a combined estimator ~C(t) = p~flt) + (1 – p)~~t) for
appropriate p, which can be estimated during the run.

Similarly, as in Lavenberg et al. [19821, Glynn and Whitt [19891, and
references cited there, it is natural to consider linear-control- uariable
estimators such as ~~(t) = ~N(t) + al(~(t) – A) – az(jl(t) – p), where
~(t) = t-1 A(t) and P(t) is an estimate of the individual service rate such
as the reciprocal of the sample mean of the service times used during the
run. We discuss these alternative estimators in the other paper.

1.2 The Asymptotic Variance

Here we concentrate on predicting the variance of the basic estimators
AN(t),fi~(t),fll(t),and ~~(t ). We address this problem by focusing on the
asymptotic variance. For any estimator l%(t),its asymptotic uariance is
defined as

U2= lim t Var G(t). (7)
t--

We use subscripts N, S, Z, and T to refer to the specific estimators defined
previously. Under regularity conditions (which include the requirement
that the asymptotic variance actually be positive and finite), for suitably
large run times t, each estimator A(t) tends to be approximately normally
distributed with mean B and variance &/t, where c? is the asymptotic
variance (which depends on the estimator); see Section 2.1 of Whitt [19891
for a review of the standard statistical theory. Hence a (1 – ~) 100%
confidence interval for B will be [~(t) – h.(p),~(t) + h (P )1 with halfwidth

~(p) . H!& (8)
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where P(–z Pt2 s IV(O, 1) s ZP12) = 1 – p with ZV(O, 1) a standard (mean
O, variance 1) normal random variable. (For example, if we use a 90%
confidence interval, then zB/2 = 1.645. ) Thus for specified halfwidth ~ and
level of precision /3,the required simulation run length is

(T2Z; 2
t(E, p) = -j-. (9)

From eq. (9) we see that the required run length is directly proportional
to the asymptotic variance ~ and inversely proportional to the square of
the specified confidence-interval halfwidth e. Clearly the specified half-
width ● is a key factor, but the asymptotic variance L-#can be important as
well. Note that the asymptotic variance is the only quantity in eq. (9) that
is not known to the experimenter.

We emphasize that our analysis presumes that the observation interval
length t is sufficiently long that the standard asymptotic theory implying
that fi(t) is approximately normally distributed with mean B and variance
#/t is appropriate. See Section 4.5 of Whitt [19891 and Asmussen [1989,
1992] for further discussion.

We aim to develop approximations for the asymptotic variances d~, &,
u;, and u?. Roughly speaking we find that cr~, ufi, and cr~ are approxi-
mately the same, but that u? can be quite different from the others. In
particular, we find that each of the estimators ~~(t) and al(t) has a region
where it is much more efficient. In particular, we tend to have cry < u:
when a > s, whereas we tend to have ~ > #s when a < s. (They tend to be
about the same when a = s.) A similar conclusion was found by Ross and
Wang [1992] for indirect estimation in the context of Monte Carlo summa-
tion.

1.3 Characterizing Model Variability

One of our goals is to determine how the model variability (the variability
in the arrival process and service times) affects the asymptotic variance of
the blocking estimators. One of our principal conclusions is that it is
appropriate to partially characterize the variability of the arrival process
through its normalized arrival asymptotic variance, defined by

varA (t )
c: = lim

t- At ‘
(lo)

which we assume is well defined (the limit exits and is finite). The
~arameter c: is the asymptotic variance of the arrival-rate estimator
A(t) = A(t )/t divided by the arrival rate A. The parameter c: in eq. (10) is
the limiting value of the index of dispersion for counts, for example, see
Fendick and Whitt [1989] and references cited there. For a deterministic

2 – fj; for a Poisson process> Caevenly spaced (D) process, Ca – 2 = 1. For the
special case of a renewal process, c: coincides with the squared coefficient
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of variation (SCV) of an interarrival time; that is, if U is an interarrival
time, then

c; = Var (U)/(EU)2. (11)

However, eq. (11) is only true for renewal processes. Formula (10) captures
correlations among different interarrival times in nonrenewal processes. A
large class of nonrenewal arrival processes can be represented as batch
Markovian arrival processes (BMAPs) or versatile Markovian point pro-
cesses; see Neuts [1989] and Lucantoni [1993]. The normalized arrival
asymptotic variance of a BMAP is given on p. 284 of Neuts [1989].

In applications, the general arrival process A(t) is often a superposition
of independent processes. If the component processes are independent
Poisson processes, then the superposition process is a Poisson process, and
C2 = 1. More generally, the normalized arrival asymptotic variance of the
s~perposition process (with independent component processes) is a convex
combination of the normalized arrival asymptotic variances of the compo-
nent processes; that is, if A(t) = Al(t) +. . .+ A.(t), where Al(t) has
arrival rate Ai and normalized arrival asymptotic variance c~i, then

(12)
1=1

for example, see Section HI.E of Fendick and Whitt [19891.
Because we have assumed that the service times are i.i.d. and indepen-

dent of the arrival process, their variability is easier to characterize. Our
theoretical results are primarily for the case of exponential service times,
but we also develop approximation formulas for nonexponential service
times. These are more empirical, and so should be regarded as more
tentative. We primarily characterize the service-time variability via the
service-time SCV, denoted by c:, and defined as in eq. (11).

In previous studies of G/GI/s/O loss systems it has been found that the
model variability can be usefully characterized by focusing on the associ-
ated G/GI/~ infinite-server model, with the same arrival process and
service times; see Eckberg [1983], Whitt [19841, and p. 338 of Neuts [19891.
Because the infinite-server model is much easier to analyze, it can provide
useful insight into the loss model. In particular, the G/GI/s/O model
variability can be partially characterized by the peakedness parameter z.
The peakedness is defined as the ratio of the variance to the mean number
of busy servers in the associated G/GI/w model. For example, if the arrival
process is a renewal process with interarrival time U and the service-time
distribution is exponential with ~“ 1, then the peakedness is

(13)z =[1 – @(/J)]-l– a,

where ~(s) = Ee - ‘“; see Eckberg [19831. The expressions are more
complicated for nonrenewal arrival processes. However, the peakedness for
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the MMPP/Ivl/@ model with a Markov modulated Poisson process (MMPP)
as an arrival process is given on p. 338 of Neuts [19891.

It is often convenient and appropriate to use the heavy-trafllc (large a)
approximation for the peakedness with a general stationary arrival process
and a general service-time cumulative distribution function (calf) H(t),
which is

Z=l+(c:–l)p
J

“[1 - H(t)]’dt. (14)

o

When the service time cdf If in eq. (14) is exponential, z = (c: + 1)/2;
when IZ is deterministic, z = c:; see p. 692 of Whitt [1984]. Note that z = 1
in eq. (14) for all service-time distributions when c: = 1. Also note that the
influence of the service-time distribution on z in eq. (14) is not determined
by its first two moments. A very rough approximation for eq. (14) is z = 1 +
(c: – 1)/(1 + (c; ~ l)), where x A y = min{x, y}. (Note that this approximation
is exact for M and D service times.)

In summary, we partially characterize the variability of the G/GI/s/O
model via the parameter triple (c:, c:, z). A principal conclusion of our
analysis is that this is indeed an appropriate partial characterization for
the blocking probability and the asymptotic variance of the simulation
estimators. When the model is not too far from MfMJsiO, the model
variability as partially characterized by the triple (c:, c:, z ) will usually be
of secondary importance. However, there is a growing interest in different
kinds of variability. Highly variable non-Poisson traffic is becoming more
common in communication networks, as can be seen from Erramilli et al.
[19941, Willinger [19951, and references there, so that it is even possible to
have c: = ~ or c: = CO.For the most part, this non-Poisson traffic is packet
traffic, but in some instances connection requests may also deviate signifi-
cantly from Poisson; see Paxson and Floyd [1995]. Although we do not
directly consider this phenomenon, our results provide useful insight into
its consequences. In particular, more highly variable traffic requires longer
observation intervals to estimate blocking probabilities reliably. Moreover,
more variability means that the observed blocking should be more variable.
Finally, we provide formulas that quantify these effects.

1.4 Scaling as System Size Grows

We are especially interested in the way the performance of the different
estimators scales as the system size grows. Previous experience has shown
that when s grows there are three distinct regions for loss models: light
loading, normal (or critical) loading, and heavy loading. As in Jagerman

[19741, Borovkov [1976, 19841, Halfin and Whitt [19811, Whitt [19841, Mitra
and Weiss [1989], and other studies, the region depends on the way the
traffic intensity p = ds changes as s ~ w. If (1 – p)fi or, equivalently,
(s – a)/fi approaches +W, a constant, or –w ass + CO,then the region is
light, normal, or heavy loading, respectively. The region of primary interest
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is usually normal loading, but all three regions are important. First, real
systems are often designed to be lightly loaded instead of normally loaded
to provide some safety factor, for example, to allow for forecasting uncer-
tainty. Second, performance in heavy loading arises when studying the
response to overloads, for example, due to system failures.

1.5 Approximations for the Blocking Probabilities

In order to help judge what statistical precision is appropriate, it is useful
to have rough approximations for the blocking probability and time conges-
tion themselves. Asymptotic for the GI/M/s/O model in the case of normal
loading has produced the following approximation for the blocking proba-
bility:

B=
,- @(y/ ‘2)~;zja——_L

@(–y//;)’
(15)

where y = (a – s)/l&, z = (c: + 1)/2, and a = A/p is the offered load, and

44”) and W“) are the density and cumulative distribution function of the
standard (mean O, variance 1) normal distribution; see (13) of Whitt [19841.
Formula (15) is asymptotically correct as s 4 = with (a – s )/fi ~ y; see
p. 226 of Borovkov [1976]. Table I compares eq. (15) to exact values for the
M/M/s/O model. The performance is quite good for y > – 3.

A related approximation for the time congestion is

—
- r#)(y/;z)

P(N(t) = s) = Z’1’2B = (1/+1----~.
q-y/\z)

(16)

With Poisson arrivals, the time congestion coincides with the blocking
probability, so that eq. (16) is also asymptotically correct for the M/M/s/O
model, but otherwise we have no asymptotic correctness result supporting
eq. (16). Formula (16) differs from (9) in Whitt [1984] by a factor of z - I’z.
We propose eq. (16) because it is more consistent with simulation results.
Formulas (15) and (16) indicate that B and P(N(t ) = s) should both be
0( l/~s ) as s gets large in normal loading.

Approximations (15) and (16) are most strongly supported in the case of
exponential service times, but we suggest using them as rough approxima-
tions with general service times, using the appropriate peakedness z. The
best value for z should be the exact peakedness, but eq. (14) is a convenient
approximation. Finally, we note that the reliability of the approximations
is likely to deteriorate when z becomes very large.

1.6 Workload Factors

Formula (9) shows that the required simulation time t to achieve desired
statistical precision is approximately proportional to the asymptotic vari-
ance #. However, the computational effort required to simulate for time t
is approximately proportional to At, because At is the expected number of
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Table I.

-7
=53
-5.5
–5.0
–4.5
–4.0
–3.5
–3.0
–2.5
–2.0
–1.5
–1.0
–0.5

0.0
+0.5
+1.0
+1.5
+2.0
+2.5
+3.0
+3.5
+4.0
+4.5
+5.0
+5.5
+6.0

indirect
2.00
2.00
2.00
2.00
2.00
1.98
1.94
1.83
1.59
1.25
.88
.56
.33
.19
.109
.063
.037
.023
.014
.0091
.0060
.0041
.0028 I

.0020

.0014

workloadfactors
simple
.13 x 10-7
.16 X 10-6
.18 X 10-5
.16 X 10-4
.12 x 10-+
.79 x 10-3
.0042
.0183
.063
.171
.36
.60
.86

1.09
1.28
1.41
1.51
1.57
1.62
1.65
1.66
1.67
1.67
1.67
1.67

time congestion
.11 x 10-7
.14 x 10-6
.15 x 10-5
.14 x 10-4
.11 x 10-3
,72 X 10-3

.0039

.0173

.060

.164

.34

.58

.82
1.04
1.20
1.32
1.40
1.44
1.47
1.48
1.47
1.46
1.45
1.43
1.40

exact
.182x 10-g
.214 X 10-7
.210x 10-6
.170x 10-5
.114x 10-4
.623 X 10-4
.278 X 10-3
.00100
.00295
.00712
.0144
.0251
.0389
.0550
.0728
.0917
.111
.131
.150
.170
.189
.208
.227
.245
.263

blocki] ; probabilities
approximation(15)
.35 x 10-y
.62 X 10-8
.84 X 10-7

.89 X 10-6

.74 x 10-5

.48 X 10-4

.24 X 10-3

.00094

.00290

.00720

.0147

.0258

.0399

.0563

.0744

.0934

.113

.133

.152

.172

.191

.210

.229

.247

.262

Canonical workload factors IMY)for three estimators and blocking twobabilitiesB for the,.
M/M/s/Omodel as a functionof -y= (a – s)/fi based on exact nume~i~alresults for the case
s=400andp=l.

arrivals in [0, t]. (See Glynn and Whitt [19921 for a study relating
computational effort to statistical precision in simulation experiments.
There it is explained why it suffices to look at the rate of expected
computational effort A.) Hence we give formulas for w = A>, which we call
the workload factor.

However, we recognize that At is only a rough approximation for the
expected work to produce a run of length t.Moreover, the expected work
may differ for different estimators. For example, in a Markovian simula-
tion, with estimators ~~(t) and l!3N(t) we can work with the embedded
process obtained by looking at IV(t) only at transition epochs, without
generating the times between transitions. In contrast, the estimators ~l(t)

and ~ T(t ) require the transition times too.

2. MAIN RESULTS

Our main results are approximate expressions for the wo;kload
associated with the four estimators ~pJ(t),~s(t ),~I(t),and B~(t ).
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2.1 Canonical Workload Factors

We find that the workload factors in the G/GI/s/O model primarily depend
upon the parameter five-tuple (s, y, c:, c:, z) and moreover that they can
be expressed as scaled versions of functions of a single real variable, which
we call the canonical workload factors. In particular, for the indirect
estimator, the key workload approximation formula is

(c: + c:)
W[(s, y,c:, c:, z)= “’ 4Jlf’Y/\z),

2
(17)

where O*(y) = WI( X, y, 1, 1, 1) is the canonical workload factor associated
with the M/M/s/O special case (the limit as s - x), y = (a – s )/~cY, z is the
peakedness, c: is the normalized arrival asymptotic variance in eq. (10),
and c: is the SCV of the service-time distribution, defined as in eq. ( 11 ).
Note that formula (17) has important content even in the M/M/s/O case,
indicating that WI(S, y, 1, 1, 1) = YI(y) for all s (which we discuss further in
the following). Note that the arrival-process variability enters into eq. (17)
via both c: and z, and that the service-time distribution enters in via both
c: and z. As with eqs. (15) and (16), the preferred peakedness z is the exact
value, but eq. ( 14) usually is a satisfactory approximation, (For an excep-
tion, see Example 10.6. ) In the G/M/s/O model with eq. (14) for z, c< = 1
andz = (c: + c~)/2, so that wI = z @I( y/tiz), but this is not true for other
G/GI/s/O models.

It is instructive to see what eq. (17) says for the M/GI/s/O model. With
Poisson arrivals, there is an insensitivity property implying that the
steady-state distribution depends on the service-time distribution only
through its mean. Thus we must have z = 1, in eq. (17). However, the
service-time variability still has an influence on the workload factor wl

2 + c2)/ 2. This is not a contradiction,through the SCV c: in the factor (c.
because the time-dependent behavior of tfie M/GI/s/O model does not have
the insensitivity property; see Davis et al. [1995] and Section 6.1 here,
especially eq. (48).

The approximation we propose for the workload factor of the simple
estimator hap the same form; just replace the two I subscripts in eq. ( 17) by
S. Because B~(t ) = fl~(t ), we propose approximating w~ by ws. Numeri-
cal evidence indicates that the workload factor for the time-congestion
estimator approximately takes the form

( ‘------ )C:+(c:v l)’
WT(S, y, C:, C:, Z) = VT’(yl \’z) ,

C:+l
(18)

where x v y = max{x, y}. Note that the prefactors of $ differ in eqs. (17)
and (18), but both become 1 in the M/M/s/O special case. In general, we
regard the approximations to account for the impact of variability on the
time-congestion estimator in eqs. (16) and (18) as less reliable than the
approximations for the other estimators. As with formulas (15) and (16),
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Simple Estimator
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Fig. 1. Workloadfactors w~ = Ad: for the simple estimator~~(t) in the Ws/O loss model
with ~ = 1 as a function of the scaled arrival rate y = (a – s)/al’z for several values ofs.

approximations (17) and (18) should be regarded as less reliable when the
model variability, as measured by c:, c ~ or z, is high.

The notion of a canonical workload curve for M/M/s/O models is supported
by Figures 1–3, which display the exact w~rkload factors W(S, y, 1, 1, 1) as
functions of -y for the estimators ~~(t), BI(t), and ~~(t) in the M/M/s/O
model for different values of s, assuming that IA = 1 (computed by the
methods of Section 3). These workload factors are plotted in log scale to
emphasize significant differences. Note that the workload curves for differ-
ent s in each figure essentially fall on top of each other when the scaled
arrival rate -y = (CS– s)/fi is not too far from O (e.g., –2 S -y S 2) ors is
sufficiently large (e.g., s > 200). Hence a workload curve for one value ofs
can serve as a workload curve for all values ofs (not too small) for that
estimator. Table I provides canonical workload values for these three
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Indirect Estimator
WorkloadFactor
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Fig. 2. Workloadfactors WI= Ab; for the indirectestimator~1(t) in the M/M/a/Oloss model
with p = 1 as a functionof the scaled arrival rate y = (a – s)/al’2 for several values ofs.

estimators based on the numerical results for the MJN1/s/O model with s =
400. [To put the blocking probability approximation (15) in perspective,
Table I also compares eq. (15) to the exact blocking probabilities.] Hence
the canonical workload factors can be obtained from Figures 1–3, Table I,
or the algorithms in Section 3.

Note that $l(-Y) is small for y >0, whereas +~(y) and ~~(y) are small for
y < 0, showing that different estimators should be strongly preferred in
different regions. Figures 2 and 3 show that $~(~) and +~( y) are quite
similar, but numerical evidence indicates that oS( y) -+ 1 as y ~ CC,whereas
*T(Y) -+ O as Y ~ m.

For loss systems in normal loading, a reasonable rough approximation for
all the workload factors is 1. This implies that simulation run lengths
should be approximately inversely proportional to the arrival rate or the
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Time Congestion Estimator
WorkloadFactor
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Fig. 3. Workload factors WT= A&~for the time-congestionestimator~~t) in the Ws10
loss modelwith p = 1 as a functionof the scaled arrival rate y = (a – s)/al’z for severalvalues
Ofs.

system size. Clearly, larger s means that more arrivals have to be gener-
ated, but these additional arrivals evidently help with the statistical
precision, so that the asymptotic variance is inversely proportional to A ass
(and thus A) get large.

2.2 A Supporting Diffusion Limit

We also provide theoretical support for the workload factor approximations
in eqs. (17) and (18). In Section 4 we show for the G/M./s/O model that the
normalized process (N.(.) - s )/~ converges to the ROU diffusion process
as s ~ w with (a – s)/fi -D ~. [You could also think of N.(.) as being
indexed by a and centered at a.] Moreover, we show how this limit supports
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Table II.

light loading heavy loading

p<l p>l

simple and

()

l+C:
natural B—

l–p
c: +p–1

estimators

indirect

l+cg
(1 +p)(l +C:)3

estimator
452(JI – 1)4

Approximationformulas for the workload factor w = A# of the estimators in eqs. (1), (2),
and (4) for the G/M/s/Omodel in light and heavy loading.

the blocking approximation in eq. (15) and the workload factor approxima-
tion in eq. (17).

Our limit theorem supplements related limit theorems in Borovkov
[1976, 19841. For the case of the blocking approximation (15), Borovkov
[1976] treated the GI/M/s/O model, whereas our result applies to the more
general G/M/s/O model. Borovkov [1984] also has limit results for the
process N,(t) in the general G/M/s/O model, but with different conditions.
In that general setting, he did not treat the blocking probability.

2.3 Light-Loading and Heavy-Loading Approximations

We also develop other approximations in Sections 5–7 based on asymptotic
as s ~ x with p held fixed, with either p < 1 (light loading) or p > 1 (heavy
loading). These approximations are shown in Table II. These formulas show
that the workload factors w ~ and w ~ behave differently: w [l w~ ~ = as s ~
~ for p < 1, whereas wIlw~ --+ O as s * M for p > 1. Moreover, these
formulas also serve as simple approximations. Because we already have
reduced the G/GI/s/O case to the Ws/O case in eqs. (17) and (18), we
primarily use the formulas in Table II as convenient simple approximations
for the canonical (M/M/s/0) workload factors @ (obtained by letting c: = 1 in
Table II).

With the exception of the light-loading simple-estimator formula, the
formulas in Table II are all in terms of the three variables s, y, and c:.
(Given s, y is equivalent to p or a.) The light-loading simple-estimator
formula can be put in the same form by exploiting eq. (15), which yields

(1 + C:)3’2
W.S(S, y, c:) = --—---F-- e- ‘2’’1+;:) in light loading. (19)

–2p7y’7T

[Let w(s, y, c:) = W(S, y, c:, 1, (c: + 1)/2).1
Table II is especially important for providing theoretical support for the

simple-estimator workload factor, because the diffusion limit in Section 4
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only applies directly to the indirect estimator. Note that formula (19)
approximately satisfies the general functional form (17) with

OS(y) = 27-1+(7) = j’~e-Y2’2. (20)

Similarly, the heavy-traffic indirect-estimator workload factor approxima-
tion in Table II can be expressed approximately as

2,=
(1 + c:)’

WI(S, y, Ca
2P4Y4 ‘

(21)

which is approximately of the form (17) with

VI(7) = 47-4. (22)

To see this consistency, we need to include the term ~ in eq. (17). Recall
that z = c: + 1 here.

Turning to the heavy-loading formula for the simple estimator and the
light-loading formula for the indirect estimator, we note that these formu-
las are consistent with eq. (17) because oS( y/fi) ~ 2 as y ~ +M and
$1( -y/~) ~ 2 as y ~ –~ for the Ws/O model (corresponding to s + ~
with fixed p as in Table II); see Table I.

Approximations (19)-(22) reveal the essential form of the workload
factors in light and heavy loading, but these formulas are not very
accurate, for example, when compared to the exact Ws/O results in Table
1. The approximations tend to be conservative (on the high side) though;
see Sections 5 and 6.

2.4 Relative Statistical Precision

It is important to note that our discussion so far has been based on the tacit
assumption that we are using the criterion of absolute statistical precision.
The computational effort necessarily does grow with s in light and normal
loading if we use relative statistical precision. With relative statistical
precision, the workload factor becomes k#/B2. In light loading, dividing by
B2 causes the workload factor to explode as s j ~, because B approaches O
exponentially fast ass -+ cuunder light loading. The same phenomenon occurs,
but less dramatically, in normal loading, because then B = 0(1/~) ass ~ w,
as noted previously.

It is natural to ask how the computational effort grows with s if we fix
the blocking probability. However, for any freed (positive) blocking proba-
bility, we are eventually in heavy loading when s is large enough, because

P–1 approaches 1 – B as s increases with B fixed. (Equivalently, B
approaches 1 – p-1 ass increases with p fixed, by the law of large numbers;
see p. 90 of Borovkov [1984]. ) Then the computational effort for the simple
estimator does not grow, whereas the computational effort for the indirect
estimator actually decreases to O. So, even with relative statistical preci-
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sion, the computational effort using the best estimator ultimately decreases
to O as s ~ x if we fix the blocking probability.

2.5 Initial Conditions

Because we cannot start the simulation in steady state, the estimators
necessarily have initialization bias, that is, the expected value is not
exactly B. The bias of estimator ~(t) is E~(t) – 1?.The bias can be kept
small by choosing a good initial state and/or not collecting data over an
initial portion of the simulation to allow the system to approach steady
state.

First, we can approximate the bias at time t by using the asymptotic bias,
which is defined by

/3 = lim t(EA(t) - B). (23)
1-

We use eq. (23) to justify the approximation EB(t ) – B = P/t. Because SD
(A(t)) = ul~t, the bias tends to be negligible compared to the random
fluctuations for sufficiently large t.However, in practice it can be worth-
while to reduce the bias, as we show.

Although the required run length in steady state tends to be inversely
proportional to system size, the required run length to reduce the initial-
ization bias starting empty tends to be independent of system size (see
Section 11). Hence, when the system size grows, eventually a majority of
the run must be devoted to reducing the initialization bias.

Therefore, for large systems it can be valuable to initialize the system
closer to the steady-state mean. This is easy to do for exponential service-
time distributions, but not otherwise; see Section 11.

3. EXACT NUMERICAL RESULTS FOR MARKOV MODELS

In this section we briefly review available algorithms for numerically
computing the exact asymptotic variance. We have used these methods to
compute the workload factors for the M/M/s/O model in Figures 1–3 and
Table I.

3.1 Poisson’s Equation

First, following Whitt [19921, consider a process Y = {Y(t) : t ~ O} that is
a function of an irreducible finite-state continuous-time A4arkov chain
(C’TMC) X = {X(t) : t ~ ()}, that i5, Y(t) = f(x(t)) for a real-valued

function f. As in eq. (7), the asymptotic variance of Y is u; = lim~+x t Var
Y(t).

The asymptotic variance a; can be represented as the solution of Pois-
son’s equation involving the infinitesimal generator of X, say, Q. In
particular, by Corollary 3 to Proposition 10 of Whitt [1992],
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where x is the unique solution to

XQ = –y, (25)

with yi = ‘(fi – f)ma, xet = O, IT is the steady-state vector and ? =
m-f’. Here all vectors are taken to be row vectors, d is the transpose, and e
is the vector of all 1s. As usual, the steady-state probability vector m itself
is the unique solution of Poisson’s equation withy = O and m-et= 1. When
solving Poisson’s equation, there is one redundant equation, so that we can
initially look for a solution of fQ = –y with one component Jh fixed. Then
we can obtain the desired solution x with xe~ = O by letting

x = i – (iet)77, (26)

because all solutions x are of the form x = –yZ + (xet) m, where Z is the
fundamental matrix of the CTMC X.

As noted in Grassmann [1987] and Remark 1 of Whitt [1992], Poisson’s
equation (25) can be solved recursively for any birth-and-death process.
Given birth rates Aj, O s j s m – 1, and death rates ~jj 1 = ~ s m, the
recursion is

Xj+l = (AjXj + Sj)/Pj+l> (27)

where Sj = S{. ~ y i. We could initially set x ~ = 1, but for numerical
purposes it is convenient to initially set Xh = 1 for k = min{l.aJ, s} and
then recursively solve for other values of k using eq. (27). Again, afterwards
we use the adjustment (26).

In this article we apply the birth-and-death recursion to the Ws/O loss
model. The estimators h(t) in eq. (5) and ~ T(t ) involve functions of the
number in system, which is a birth-and-death process. For it(t), f(k) = k
for all k; for ~T(t), f(h) = 1~~}(k). In particular, we used this method for
Figures 2 and 3. An alternative approach to the asymptotic variance ~ of
ti( t ) in eq. (5) in the M/M/s/O model would be via expressions for the
covariance function of iV(t ) in Bene~ [1961].

3.2 Interoverflow Time Moments

For the simple estimator (2), it suffices to compute the asymptotic variance
of the loss process L(t). For the GI/M/s/O model, with renewal arrival
process, the overflow process L is a renewal process. Hence it suffices to
compute the SCV c; of an interoverflow time, as in eq. (11). The first two
moments of the interoverflow time for the Ws/O model are given in
equations (20) and (21 ) on p. 89 of Riordan [1962]. We used this method for
Figure 1.

4. THE UNIFYING DIFFUSION PROCESS LIMIT

We now provide a basis for the workload factor approximation (17) in the
case of the G/M/s/O model. In particular, we establish a heavy-traflic
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functional central limit theorem (FCLT). To state the theorem, let> denote
weak convergence or convergence in distribution and let D [0, z ) be the
function space of right-continuous real-valued functions on the interval
[O, ~) with limits from the left, endowed with the usual Skorohod topology;
for example, see Billingsley [1968] and Ethier and Kurtz [1986]. The
convergence in D [0, w), in addition to convergence of the one-dimensional
marginal distributions, is useful for us to treat general stationary arrival
processes and to get convergence of the bivariate distributions, which is
needed for the covariances appearing in the asymptotic variance. To
emphasize the dependence ons, we write N.(t) for the process counting the
number of busy servers at time t. We assume that we start with a fixed
arrival process A(t) with rate 1 and scale it as we increase A by setting
A~(t) = A(At).

THEOREM 4.1. Consider the G/M/s 10 model with general stationary
arrival process A~(t ) = A( At ) having rate A and fixed exponential service-
time distribution with mean p‘ 1. Let A~=ands -=with(a–s)/~ -
y. If (NS( O) – s)l~a > y in R as s ~ ~, where y <0 is deterministic and
(A(A”) – A.)/fic~ + 2(”) in DIO, W) as A + ~, where Z is a standard
(mean O, variance 1) Brownian motion, then

M(”) -: >Yr( .~
in DIO, CO) as s +=, (28)

\ff
where Y, is a reflected Ornstein - Uhlenbeck diffusion process with infinites-
imal mean m(x) = – p(x – y), infinitesimal uariance U2(X ) = K( 1 + c;),
instantaneously reflecting barrier above at O and initial position Yr( O) = y.

Theorem 4.1 is similar to Theorem 2 on p. 177 of Borovkov [1984]; it
draws the same conclusions, but the conditions are different. The condi-
tions in Theorem 4.1 here parallel the conditions in Theorem 1 on p. 103 of
Borovkov [ 1984] for the G/GI/~ model. We prove Theorem 4.1 in Section 12,
by applying the G/M/= heavy-traffic FCLT. In addition to p. 103 of
Borovkov [1984], other infinite-server FCLTS appear in Borovkov [19671,
Whitt [1982], and Glynn and Whitt [19911.

The exponential service-time distribution assumption is important for
the conclusion in Theorem 4.1. When the service-time distribution is
nonexponential, the appropriate approximating process is non-Markov.
This is clear from the G/GI/x heavy-traffic limit; see Glynn [1982]. One
would naturally conjecture that the appropriate approximating process for
the G/GI/s/O model is a “reflected” version of the limiting Gaussian process
for the G/GI/x model, but the statement remains to be made precise, the
proof remains to be established, and the consequences remain to be
exploited; see Section 6.1 for some related discussion.

There are some interesting features in our proof of Theorem 4.1. First,
unlike the familiar heavy-traffic setting in Berger and Whitt [1992] and
references cited there, the ROU is not defined as the image of an unre-
stricted process under a continuous reflection or regulator mapping. The
state-dependent service rate makes the basic process N,$ itself be altered
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when it hits the barrier s. Moreover, the process N.(t) is not a Markov
process. The embedded process at arrival epochs is Markov in the GI
arrival case which provides a basis for Markovian approaches, as in Whitt

[19821. TO treat the G arrival case, we use a coupling comparison argument
together with the established limit for the associated G/M/m model.

We define the ROU by a limiting argument in Section 12. The time-
dependent density p( x, t) of the ROU can also be characterized by append-
ing the boundary condition

/.4(1 +C:) a

2
#% ~)lx.o= –IAyp(o, t). (29)

to the usual forward partial differential equation; for example, see p. 223 of
Cox and Miller [1965]. Alternatively the generator and its domain can be
characterized as in Chapter 8 of Ethier and Kurtz [1986]. The alternative
characterization of the ROU in Section 12 is convenient for our proof of
Theorem 4.1.

The ROU limit in eq. (28) depends on three parameters–p, y and
c: — but because of the possibility of scaling we can reduce the relevant
parameters to only one. First, without loss of generality, we can obviously
make the service rate w = 1. Then let z = (c: + 1)/2 and note that
Theorem 4.1 implies that (N~(”) – s)/~ ~ ( l/x&) Y,(.), where (1/fi)Y,
is an ROU with infinitesimal mean –( x – ~/ti) and infinitesimal
variance 2. Hence, if we let Y,(t; rrz(x ), U2) denote the ROU as a function of
its infinitesimal parameters, then

NJ Q) = s + /(a(l + c:)/2)Yr( “ ; -(x - ~J~j, 2). (30)

Thus the asymptotic variance a; of N,( t ) is approximately

(1 +C:) ~,
u~=a z r“Y,(.;-(x-y 2/(l+c,J, 2) (31)

Only the single parameter y~ 2/( 1 + c:) appears inside the ROU Y, in
eq. (30) and thus inside the asymptotic variance term a~r in eq. (31). The
asymptotic variance term cr~r(t; –(x – y), 2) remains to be calculated, but
it clearly is a function of only the one parameter.

We can apply Theorem 4.1 to treat the indirect estimator in normal
loading. Combining eq. (4) and Theorem 4.1, we obtain convergence of the
bivariate distributions for any two time points. As on p. 1353 of Whitt
[19891, this almost implies convergence of the covariances, but we also need
appropriate uniform integrability; see p. 32 of Billingsley [1968]. Assuming
that we can approximate the covariance function of the queueing process by
the covariance function of the ROU, we obtain

(1 +C:) ,
Auf(GI/M/s/0) =

2 ~Yr(.; –(x– y \&l+c:)),2) (32)

ACM Transactions on Modeling and Computer Simulation, Vol. 6, No. 1, January 1996.



Modeling and Computer Simulation . 27

It remains to establish similar results for the other estimators, but
Theorem 4.1 clearly suggests that we should look at the workload factors as
functions of y = (a – s )/~~. When we do, we find canonical curves for all
the workload factors.

Theorem 4.1 also provides a theoretical basis for the blocking formula
(15) in the GMs/O model. Borovkov [19761 previously established eq. (15)
as a limit for the GI/M/s/O model by proving a local limit theorem. We can
avoid having to resort to a local limit theorem by exploiting the represen-
tation (3). Under additional minor technical regularity conditions, Theorem
4.1 implies that (n, – s )1~ converges as s * w to the steady-state mean
of the ROU. Because the steady-state distribution of the ROU is a trun-
cated normal, eq. (15) is the resulting approximation for the blocking
probability.

5. THE SIMPLE ESTIMATOR

In this section we derive
simple estimator is lls(t)

the approximation formulas for ws in Table II. The
= L(t)/At, as in eq. (2). Paralleling eq. (10), let

Var L(t)
c; = Iim

t-m EL(t) “

Because EL(t)/t -+ All as t ~ =, the asymptotic variance of the simple
estimator Bs(t) is

(33)

so that the workload factor is

ws = Au; = Bc~. (34)

First, we observe how the blocking probability B behaves. We note that

B a max{l – p-l, 0} (35)

(see Sobel [1980], Heyman [1980] and p. 698 of Whitt [1984]), so that B is
at least 1 – p-x when p > 1. In addition, 1 – p- I tends to be a good
approximation for B when p is significantly greater than 1; see Tables I–IV
of Whitt [1984]. Indeed, B a 1 – p-l as s ~ ~ for fixed p > 1; see p. 90 of
Borovkov [1984]. On the other hand, B tends to be exponentially small
when s is very large; for fixed p < 1, for example, see Jagerman [1974].
Hence ws in eq. (34) should be small for p < 1,but not for p > 1.

Turning to c;, we develop an approximation for the cases p <1 and p >1
by considering the case of large s. In the GI/M/s/O special case (when the
arrival process is a renewal process), the overflow process (L(t) : t ~ O}
itself is a renewal process (because overflows necessarily occur at arrival
epochs). Then c; coincides with the SCV of the interval between successive
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overflows. The approximate analysis is also reasonable for the more gen-
eral G/M/s/O model, without the GI assumption. For large s, the overflow
process is determined by the behavior of the process {N(t) : t > O} in the
neighborhood ofs. For large s, we can approximate the service completion
rate P(S – k) when N(t) = s – k by the constant service rate ps.
Approximating the service rate bys p clearly should be a better approxima-
tion in heavy loading than in light loading. In light loading we significantly
overestimate the service rate, which will cause overflows to be rarer events,
so that we should overestimate c;. Thus we anticipate that our approxima-
tion here will tend to be conservative in light loading, which is confirmed
by numerical results. The important point is that c; in eq. (34) tends to be
o(l).

Thus we use an approximation for the asymptotic variance of the over-
flow process in the G/M/l/C queue, which has single server, service rates p,
and finite waiting space C. In particular, we apply results in Sections 3 and
4 of Berger and Whitt [1992]. There exact results for c; are given for the
M/M/l/C model and for RBM with reflecting barriers at O and C; also see
Williams [1992] for results on RBM.

First we rescale the G/M/l/C model to have arrival rate p = cds and
service rate 1. Note the c: is invariant under time scaling. Now we use a
diffusion approximation for the G/M/l/C model with service rate ~ = 1 and
arrival rate p. As noted in Section 4.2 of Berger and Whitt [1992], the
process representing the number of customers in the single-server queue
can be approximated by RBM with drift – (1 – p) and diffusion coefilcient
(pc~ + 1). We then apply Theorem 4.1 of Berger and Whitt [1992] to obtain

1 + pc:
c;(G/M/l/C, p= 1) =

11-pl
(36)

assuming that p # 1 and that the barrier C is large. In particular, as a
convenient approximation for large C, we use the limit of (29) in Berger
and Whitt [1992] as C ~ ~. Combining eqs. (34) and (36) we obtain

I?(1 + pc:)
Ws =

11-pl “

For p >1, we approximate B by 1 – p-1 to obtain

1 + pc:
Ws = for p> 1.

P

(37)

(38)

Formula (37) for light loading and formula (38) for heavy loading are given
in Table H.

To quickly see how formulas (37) and (38) perform for the Ws/O model,
we consider the case in Table I with s = 400. For y = –4, –3, – 2, – 1, the
approximate workload factors are, .00035, .0065, .074, and .62, respec-
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tively. For y = 1, 2, 3, 4, the approximate workload factors are 1.95, 1.90,
1.86, and 1.82. From Table I, we see that these are upper bounds that
would serve as suitable rough approximations in practice.

6. THE INDIRECT ESTIMATOR

The indirect estimator is ~l(t) = 1 – fi(t)a -1, as in eq. (4). The workload
factor is thus

/4
WI= Au?= — u:,

a’
(39)

where a: is the asymptotic variance of ti ( t) in (5).

6.1 Light Loading

First consider the case of light loading. For p < 1 and .s large, we can
approximate the asymptotic variance a: by the asymptotic variance in the
associated infinite-server model. For the Wm system, U: = 2a; see (23) of
Whitt [1992]. To treat the G/M/m model, as in Borovkov [1967] and Whitt
[1982], we approximate a scaled version of the process {IV(t) : t > O} by an
Ornstein-Uhlenbeck (OU) diffusion process, say {Y(t) : t 2 O}, (Further
discussion appears in Section 12, because this is used in the proof of
Theorem 4.1.) In particular, for K = 1,

N(t) – a
-== Y(t), t = o, (40)

&

where Y(t) has drift –x, diffusion coefficient ( 1 + c:) and covariance
function

R(t) = Cf3v(Y(0), Y(t)) = ((1 + c~)/2)e-’

Hence, as in eq. (4) and Example 5 of Whitt [1992], the asymptotic
variance of t-1 f: Y(u)ciu is

a;= lim Var t-]
1

t Y(u)du = 2
I

‘R(t)dt = (1 + c:). (41)
t+= o 0

By eq. (40),

Finally, combining eqs. (39), (41), and (42), for the case p = 1 we obtain

W1=ACT; =1+ C:, (43)
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as given in Table H. From Table I, we see that in the Ws/O case withs =
400 the approximation WI = 2.00 from eq. (43) performs excellently for y
suitably large.

For the more general G/GI/m system, again with p = 1, we can again
apply the heavy-traffic approximation, which is a Gaussian process with
covariance function

f ~
l?(t) = “H(u)m(t + U)du + c: “H’(u)F(t + U)du, t = o, (44)

o 0

where Hc(t ) = 1 – Il(t ) with H(t) the service-time calf, see p. 176 of Whitt
[1982] and Borovkov [1984]. Reasoning as in eq. (41), we then obtain an
approximation for the asymptotic variance

/
“ ~(u)~(u)du + 2C:

(

‘x
U;=2 Hc(u)ll:(u)du, (45)

Jo Jo

where H:(t) = 1 – He(t) and

(H,(t) = ‘W(u)du.

o

z – 1, eq. (45) simplifies toFor example, when c. –

“

J
.

U;=2 H:(u) = (c: +

o

1).

(46)

(47)

so that combining eqs. (39), (42), and (47) we obtain

WI = I+ C:. (48)

Formula (48) provides good theoretical support for approximation (17) for
the M/GI/s/O model. More generally, formulas (45)-(48) provide partial
support for formulas (17) and (18) when the service-time distribution is
nonexponential. Refined approximations could be based on combining eqs.
(39), (42), and (45).

6.2 Heavy Loading

In heavy loading it is natural to focus on the number of idle servers instead
of the number of busy servers, for example, see p. 138 of Borovkov [1984].
Let m be the mean number of idle servers. Then clearly m = s – n, so that,
by eq. (3),

11=1-~+~. (49)
aa
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Moreover, u; = u:, where a: is the asymptotic variance of fi (t ) in eq. (5)
and cr~ is the asymptotic variance of

rft(t) =s – ii(t), t=o. (50)

Henceforth we focus on approximating c&. Inasmuch as we are looking at
the idle servers, we approximate the process M(t) = s – N(t) counting the
idle servers in a GilWs/O model by an M/G/l queue with constant arrival
rate s p and service rate k and service-time SCV c ~. Because p > 1 in the
original system, the traffic intensity for M(t) is p-1. As before, the constant
rate s p is an approximation for the state-dependent rate (s – k )p when
M(t) = k, which is a good approximation when s is large.

We first scale time by l/A to make the service rate 1 and the arrival rate

P“1 in the M/G/l spaces model. By (28) of Whitt [1989], we see how this
scaling affects the asymptotic variance; it cancels the A term in the
workload factor. Hence we have

Au;= u~(M/G/1, p = 1)/a2. (51)

When the G is GI (a renewal arrival process in the original model) the
exact form of ~~ (M/G/l, ~ = 1) depends on the first four moments of the
service-time distribution, but as in Whitt [1989] we can give a rough
approximation, From Law [19751, the exact formula for the asymptotic
variance in the M/GI/l model is

Ofj = “--(C’+1)3+(%’(%)’’2)%%2(1 – p)4

where mk is the k th moment of the service-time distribution, m * = 1,
~2 = m ~, and the arrival rate is p < 1. For the approximation here

’31’< 1), we combine (18) and (22) of Whitt [1989] to obtain(&ith p

p-yl + p-l)(c~+ 1)3
u:(M/G/1, p=l) = 4(1 – ‘-1)4 ‘

so that

(1 + ‘)(C: + 1)’
WI = Au: == — for p> 1,

4s2(’ – 1)4

(53)

(54)

as in Table II. It is significant that eq. (53) is exact for the MIMll model,
but the role of c: in eq. (53), and thus eq. (54), is problematic, being based
on heuristic heavy-traffic analysis in (17) of Whitt [19891. However, eq. (53)
is asymptotically correct as p + 1, so that there are regions where eqs. (53)
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and (54) are appropriate. Moreover, as noted in eqs. (21) and (22), the form
of eq. (54) is consistent with eq. (17).

The discussion so far has been based on assuming that G is GI. However,
the approximation formulas (53) and (54) also apply to the general G case,
because the heavy-traffic diffusion approximations in Whitt [19891 apply to
general G service processes. With service times as well as arrival times, the
variability of general G is characterized by the asymptotic variance as
defined in eq. (10).

To see how eq. (54) performs for the M/M/s/O model with s = 400, we can
compare with Table I. For y = 1, 2, 3, 4, and 5, the approximation (54)
yields the values 0.68, 0,109, 0.028, 0.0094, and 0.0038. From Table I, we
see that these are upper bounds that get more accurate as y increases.

7. THE NATURAL ESTIMATOR

In this section we briefly relate the natural estimator ~N(t) in eq. (1) to the
simple estimator ~~(t ) in eq. (2) and theoretically justify using ~~ as an
approximation for 7N. The simulation results in Section 10 also provide
strong empirical support.

We first note that both the natural estimator and the simple estimator
are consistent; that is, by the ergodic theorem (assuming ergodicity as well
as stationarity), L(t)/t --+ AB and A(t)/t - A w.p.l as t + ~, so that, under
minor regularity conditions, ~~t) a B and ~~(t) - B w.p. 1 as t - =. (We
need to have uniform integrability to get EL(t)/t + AB from L(t)/t ~ AB. )

Moreover, given that the system starts in equilibrium, so that the process
{N(t) : t = O} is stationary, the simple estimator is unbiased, that is,

El.(t) = B
EAJt) = —

EA(t) “
(55)

In contrast, in general the natural estimator is not unbiased, because the
expectation of a ratio is not necessarily the ratio of the expectations; that
is, we typically have

HL(t) # EL(t) = ~
l?ll~(t) = E — —

A(t) EA(t) “
(56)

Nevertheless, the natural estimator may be preferred to the simple
estimator. First, in the context of system measurements the arrival rate A
is typically unknown. Moreover, even if the arrival rate is known, it can be
somewhat better to use the natural estimator than the simple estimator
because it may have a smaller asymptotic variance, as shown in the
following.

We can compare the asymptotic variances by using the theory of nonlin-
ear control variates or indirect estimation in Glynn and Whitt [1989]. Just
as in Theorem 2 of Glynn and Whitt [1989], we can characterize crfi if we
assume a joint CLT for the processes L(t) and A(t). This joint CLT
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condition holds for the GI/M/s/O model, because the overflow epochs serve
as embedded regeneration epochs. The CLT condition will also hold for
more general models for which a subsequence of the overflow epochs serve
as embedded regeneration times. For example, this regeneration structure
occurs in Markov modulated arrival processes; then overflows in a particu-
lar environment state can serve as regeneration times.

Let IV(O, C) denote a normally distributed random vector with zero
means O and covariance matrix C.

THEOREM7.1. Z~

t “z[L(t) – BAt, A(t) – At]>(X, Y) in R2as t ~CC,

then

,.
\’t(~N(t) – B)+A’l(X– By) in R US t +~.

Moreover, if (X, Y) is distributed as N(O, C), then A- I (X – BY) is
distributed as N( O, crfi), where C!ll = ABc; = Ac&, C22 = A c:,

cov (A(t), L(t))
Clz = lim–- —— , (57)

t+= t

and

PROOF. The proof here is essentially the same as for Theorem 2 of Glynn
and Whitt [1989]. Note that

(),.L(tj_B =_t 1

= ‘t A(t)
- ([L(t) - ABt] - B[A(t) - At])

A(t) <t

9A-1(X–BY) as t~m

because A(t )/t 4 A w.p. 1 and we can apply the continuous mapping
theorem. Formula (58) is an elementary consequence of the bivariate
normal distribution. D

A missing ingredient in Theorem 7.1 is the asymptotic covariance term
C12 in eq. (57). We anticipate that C’lz will usually be positive (see Srikant
and Whitt [19951 for conditions under which this is true), but we have no
expression for it. Nevertheless, from formula (58), we see that when B is
small andlor A is large, we will have & = cr~. Hence cr$ should be a good
approximation for u;. If Clz > ABc~12, then C& s w;.
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8. THE TIME-CONGESTION ESTIMATOR

In this section we briefly discuss the time-congestion estimator fl~(t) for
P(lV(t) = s) in eq. (6). We contend that ~T(t) often behaves similarly to the
simple and natural estimators. This can be substantiated in the case of
Poisson arrivals, where B = WV(t) = s).

First, by Proposition 6 of Glynn et al. [1993], in the case of Poisson
arrivals the difference AT(t) – ~N(t) has asymptotic variance

cr~= var(~~(t) – ~~(t)) = A-lB(l – B), (59)

which will be small where either B is small or A is large. This is consistent
with the simulation results in Section 10; see Tables HI and VI.

In the case of Poisson arrivals, we can also bound the asymptotic
variance & above by CT; because we can represent ~~(t) as a conditional
expectation given ~T(t ), that is,

lqfls(t)l~~t)]= fl~(t), (60)

so that we necessarily have

U$ls CT:; (61)

see Example 11.16 of Ross [1993].

9. ENSURING SMALL BLOCKING PROBABILITIES

In some applications we may wish to ensure that the blocking probability is
very small, without being concerned with estimating its actual value. For
example, we may want to verify that B s ● for some very small c. Because
B is very small, presumably we are in the region of light loading. Thus it is
appropriate to use the natural estimator ~N(t ).

The question is: how large should t be in order to be convinced by a small
value of ~N(t ) that B s e? For example, we might obtain ~N(t ) = O. For
this purpose, it is natural to use a one-sided confidence interval and choose
the run length i! to make the width of the confidence interval with level of
precision /3 be E/2; that is, let ZWV(O, 1) < z~) = 1 – ~ and

so that the required run length is

(62)

(63)

for example, see p. 1345 of Whitt [19891. Because we do not know cr~, we
2 + 1)/(1 – p) from Table I, as explained incan approximate it by a~ = B(c.
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E
s

blocking N
probability 1
estimate T

s
standard N
deviation 1
estimate T

Table III.

predicted
.0143
,0143
.0143
.0143
.00041
.00041
.00066
.00040

run 1
,0136
,0136
.0143
.0138
.00041
.00041
.00071
.00043

A comparisonof predictionswith simulation resu
A = 380, w = 1, and t = 5400 in Example 10.1.

k
.0134 .0139
.0157 .0142
.0135 .0140
.00032 .00028
.00031 .00029
.00067 .00047
.00033 .00027 ~

run 4
.0142
.0142
.0135
.0142
.00038
.00037
.00064
.00036

ts for the M/M/s/Omodel with s = 400,

Section 5. Substituting this approximation for U; into eq. (63), we obtain

4B(C: + 1)2;
~ ~ –-–——

(1 - p)c’ “
(64)

A difficulty with eq. (64) is that the bound itself depends on the blocking
probability 1? to be estimated. An obvious crude upper bound on B is 1.
However, if we are prepared to assume that B is less than some smaller
number, then we can reduce the bound.

The estimation procedure is then as follows: we use the estimator AN(t)
for the time t in the bound in eq. (64). If AN( t) = E/2, then we conclude with
confidence 1 – /3 that indeed B ~ ●.

10. SIMULATION EVIDENCE

A key point underlying all our work is the fact that the actual variance of
each estimate ~(t) is reasonably well described by #/t, where ~ is the
asymptotic variance when t is suitably large. This large sample behavior is
well established in statistical experience, but we also present confirmation
here. In each example below, we estimate the standard deviation of the
estimator by dividing each run into 20 equally spaced portions or batches
and treat them as independent.

Example 10.1 The Erlang Model. To illustrate how the formulas based
on the asymptotic variance perform for M/Mls/O models, we consider a
simulation experiment with 4 independent runs each of length 5,400 for the
case s = 400, A = 380, and ~ = 1. We delete an initial portion of length 5 to
allow the system to reach steady state (for discussion, see Section 11). For
this model, the scaled arrival rate is y = – 1.0. We thus estimate the
variance of each estimator B(t) by #/t = I/J– 1)/2.052 X 106. From Table I,
VI(–l) = 0.89, 4s(–1) = 0.35, and YT(–l) = 0.33.

Table HI displays the simulation results and the predictions based on
eqs. ( 15)–( 18) and Table I. Table 111 shows that the predictions are good
and also shows that the estimators fi~(t ) and ~N(t ) are almost identical;
their difference is negligible compared to the statistical precision. Also
@T(t) is strongly positively correlated with ~~(t), whereas ~I(t) tends to be
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negatively correlated with As(t); flr(t ) tends to have high (low) values
when As(t) has low (high) values, Thus the combined estimator mentioned
in Section 1 should (and does) have lower variance than either ~~(t ) or
~I(t), but we do not give details here. These observations hold for more
general models, as can be seen from the following examples. The results for
the M/M/s/O model in Table 111 help to judge the quality of the approxima-
tions for the more general models.

Example 10.2 More Variable Arrival Processes. To see how the approx-
imations perform for G/M./s/O models with arrival processes more variable
than Poisson, we conduct a simulation experiment for the GIIM/s/O model,
where the interarrival time has a hyperexponential (Hz) distribution with
balanced means and c: = 9.0. This Hz distribution has density

f(x) = p~le -Alx + (1 –p)&-AX, X=o, (65)

where

p = [1 + J(c:– 1)/(c:+ 1)]/2, (66)

Al = 2pA and Az= 2(1 –p)~ (67)

with A– 1 being the mean. Because the service-time distribution is exponen-
tial, the approximate peakedness by eq. (14) is z = (c: + 1)/2 = 5. (The
exact peakedness by eq. (13) is 4.95, so eq. (14) is an excellent approxima-
tion.)

We considers = 400, p = 1, and three values of A : A = 360, A = 400, and
A = 440. The experiment consists of 4 independent runs of length 2,700 for
each A, deleting a portion of length 5 to allow the system to approach
steady state in each case. (The run length 2,700 makes the expected total
number of arrivals about 106 in each case.) The simulation results are
displayed in Table IV, where estimated blocking probabilities and sample
standard deviations for the estimators are: simple (S), natural (IV), indirect
U), and time-congestion (T’). The predictions in Table IV based on eqs.
( 15)–(18) and Table I seem very good. As in Example 1.1, fi~(t) essentially
coincides with as(t), whereas ~~(t ) and fiI( t) are negatively correlated.

Example 10.3 Less Variable Arrival Processes. To show how the approx-
imations perform for G/M/s/O models with arrival processes less variable
than Poisson, we consider a simulation experiment for the GIfM/s/O model,
where an interarrival time has the Erlang (2?4) distribution with c: = 0.25.
An Ed distribution is the convolution of four exponential distributions. By
eq. (14), z = (c; + 1)/2 = 0.625. As in Example 1.2, we consider s = 400,
~ = 1, and three values of A. Here we consider A = 380, A = 400, and A =
420. The experiment consists of 2 independent runs of length 2,700 for each
A, deleting an initial portion of length 5 to allow the system to approach
steady state. The simulation results and the predictions based on Table I
and eqs. (15)–( 18) are displayed in Table V. Again the predictions are good.
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A= 360
s

blocking N
probability Z
estimate T

s
standard N
deviation 1
estimate T
A= 400

s
blocking N
probability 1
estimate T

s
standard N
deviation 1
estimate T
A = 440

s
blocking N
probability I
estimate T

s
standard N
deviation Z
estimate T

predicted
.036
.036
.036
.0163
,0014
.0014
.0020
.00059
predicted
.089
.089
.089
.040
.0020
.0020
.0012
.00087
predicted
.150
.150
.150
.067
.0023
.0023
.00075
.00101

Table IV.

run 1
.0309
.0308
.0303
.0185
.0011
.0011
.0020
.00071
run 1
.0811
.0813
.0833
.0489
.0014
.0013
.0015
.00084
run 1
.1397
.1400
.1431
.0845
.0027
.0023
.00082
.00158

run 2
.0306
.0306
.0334
.0181
.0012
.0011
.0017
.00063
run2
.0854
.0849
.0804
.0515
.0015
.0013
0011
,00089
run2
.1430
.1428
.1417
,0861
.0020
,0017
00075
00124

run 3
.0324
.0322
.0288
.0194
.0014
.0013
.0028
.00079
run 3
.0838
.0835
.0819
.0502
.0022
.0020
.0013
.0013
run 3
.1449
.1443
.1411
.0874
,0019
.0016
.00060
.00109

run 4
.0307
.0308
.0340
.0184
.0013
.0012
.0027
.00075
run4
.0815
.0815
.0824
.0490
.0018
.0016
.0010
.0011
run4
.1415
,1415
.1426
.0854
.0022
0018
.00099
.00126

A comparisonof predictionswith simulationresults for the GI/M/s/Omodel with s = 400,
hyperexponential(H!j) interarrival times with balanced means having c: = 9.0, and service
rate p = 1 in Example 10.2.

Exampie 10.4 Sensitivity in the M/G/s/0 Model. For the M/G/s/O
model, it is well known that the blocking probability depends on the
service-time distribution only through its mean. This insensitivity property
is reflected by formulas (13)-(16), because then c: = z = 1. However, the
asymptotic variance and workload factors do not have this insensitivity
property, as is clear from the influence of c: in formulas (17) and (18).

TO illustrate how the approximations (17) and (18) apply to hVG/S/O
systems, we consider an M/G/s/O system with s = 400, p = 1, and an H;
service-time distribution with c: = 9.0, as in Example 1,2. Simulation
results for 2 independent runs of length 2,700 are displayed in Table VI.
The analysis in Section 11 shows that the bias changes when we change the
service-time distribution. For this H: distribution, we should delete more
in order to reduce the bias, about 50 instead of 5. Note that the blocking
probabilities are well predicted by formulas (15) and (16) with z = 1. The
standard deviation estimates are also reasonably well predicted by eqs. (17)

2 + c’$)/2 = 5 in eq. (17) playsand (18) as well. Notice that the prefactor (c=
an important role here, as predicted by eq. (48).
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A= 380

blocking N
probability 1
estimate T

s
sample N
standard I
deviation T
x = 400

s
blocking N
probability 1
estimate T

s
sample N
standard I
deviation T
A= 420

s
blocking N
probability I
estimate T

s
sample N
standard I
deviation T

Table V.

?redicted
0077
0077
0077
0098
00038
00038
00082
,00047
predicted
,032
.032
.032
.040
.00071
.00071
.00044
.00087
predicted
.066
.066
.066
.084
.00085
.00085
.00021
.00105

run1
.0080
0080
.0055
.0116
.00041
.00041
.00086
.00058
run 1
.0387
.0387
.0392
.0384
.00075
.00073
.00041
.00073
run 1
.0644
.0644
.0652
.0913
.00060
.00060
.00017
.00078

“un2
0079
0079
0071
0117
00035
00035
00074
,00052
run2
,0385
,0385
,0389
,0385
,00087
.00084
.00065
.00087
run 2
.0656
.0656
.0653
.0924
.00085
.00083
.00023
.00115

A comparisonof predictionswith simulationresults for the GI/M/e/Omodel with s = 400,
z – 0.25, and se~ice rate p = 1 in Example 10.3.Erlang (lIA) interarrivaltimes with c. –

Example 10.5 General Distributions. We now consider GI/GIls/O models
where neither the interarrival-time distribution nor the service-time distri-
bution is exponential. We consider all combinations of 11~ distributions
with C2 = 9.0 and EA distributions with C2 = 0.25. As before, we lets = 400
and p = 1. Each run is 2700 in length. Table VII displays results for A =
380, and Table VIII displays results for A = 440. The approximate peaked-
ness values used are displayed there. These results provide strong empiri-
cal support for approximations (15)-( 18). We rely heavily on such empirical
support because we have provided little theoretical support for cases in
which neither the arrival process nor the service times are M.

Example 10.6 Nonrenewal Arrival Processes. Our final simulation ex-
ample is a G/GI/s/O model with a nonrenewal arrival process. To have a
relatively simple example, we let the arrival process be a two-state MMPP.
There are alternating high-rate and low-rate environment states with
exponential holding times having means mh and me. In state h (0, arrivals
are submitted according to a Poisson process with rate Ah (Ae), where Ah >
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blocking N
probability Z
estimate T

standard N
deviation 1
estimate T
A = 400

~

blocking N
probability J
estimate T

s
standard N
deviation Z
estimate T
~ = 420

s
blocking N
probability I
estimate T

s
standard N
deviation Z
estimate T

Table VI.

predicted
.0143
.0143
.0143
.0143
,0013
.0013
.0021
.0013
predicted
.0399
.0399
.0399
.0385
.0020
.0020
.0012
.0020
predicted
.073
.073
.073
.073
.0022
.0022
.00072
.0023

run 1
.0151
.0151
.0137
.0150
,00146
.00146
.00221
.00145
run 1
.0389
.0390
.0393
,0389
.00144
.00143
.00151
.00148
run 1
.0729
.0729
.0722
.0729
.00193
.00191
.00084
.00192

run2
.0135
.0135
0165
0136
00128
,00128
,00221
.00130
run2
036
036
.040
,037
.00177
,00176
.00143
.00176
run2
.0727
.0726
,0724
.0725
.00143
.00144
.00074
.00149

A comparisonof predictionswith simulationresults for the IWGWOmodel with s = 400,
hyperexponentialservicetimeswithbalancedmeanshavingc,: = 9, and p = 1 in Example10.4.

A(. It is known that the “on-off’ special case in which At = O is actually a
renewal process, but more generally the MMPP is not renewal. The overall
arrival rate of the MMPP ii -

mhAh + m~~~A=–
mh+m~ “

and the normalized asymptotic variance [defined

(68)

in eq. (10)1 is

(69)

(see p. 288 of Neuts
serviced times is

[1989]), and the (exact) peakedness with exponential

(A~nzl-l+ A~mhl

i
z = 1 + -–--— --ni- A (P+~~l+m,-l)-l (70)

Ahrn~’ + Alml
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Table VII.

< = .25, C: = .25, Z = .43 < = .25, C: = 9.0, Z = .74
predicted run 1 run 2 predicted run 1 run 2

s .0042 .0051 .0055 .0098 .0073 .0090
blocking N .0042 .0052 .0055 .0098 .0073 .0090
probability Z .0042 .0064 .0053 .0098 .0150 .0099
estimate T .0063 .0076 .0081 .0138 .0106 .0129

s .00019 .00020 .00028 .00112 .00096 .00071
standard N .00019 .00020 .00028 .00112 .00096 .00071
deviation I .0(K)57 .00061 .00040 .0022 .0028 .0014
estimate T .00038 .00030 .00037 .0011 .0014 .00097

< = 9.0, C; = .25, z = 7.0 c: = 9.0, c: = 9.0,z = 3.8
s .077 .062 .064 .050 .048

blocklng
.048

N .077 .062 .064 .050 .048 .047
probability 1 .077 .065 .063 .050 ,048 .047
estimate T .029 .038 .039 .025 .029 .028

s .0017 .0015 .0014 .0022 .0019 .0020
standard N .0017 .0014 .0013 .0022 .0019 .0019
deviation I .0015 .0019 .0016 .0022 .0020 .0018
estimate T .00077 .00090 .00087 .00098 ,00115 .00118

A comparisonof predictionswith simulationestimatesfor the GI/GI/s/Omodelwiths = 400,
A = 380,-and p = i in Example 10.5.

Table VIII.

predicted
s .100

blocking N .100
probability 1 .100
estimate T .152

s .00056
standard N .00056
deviation 1 .00014
estimate T .00108

c: = 9.0,
s .164

+

blocking N .164
probability 1 .164
estimate T .062

S .0024
standard N .0024
deviation 1 .00078
estimate T .0010

run 1
.101
.101
.102
.141
.00075
.00070
.000096

2 = .25, z = .43 C: = .25,~s
run 2 predicted
.103 .105

+

.102 .105

.102 .105

.144 .122

.00058 .0022

.00055 .0022

.000081 .00039

ii

.147 .150 .140

.147 .146 .140

.089 .091 .072

.0022 .0025 .0032

.0022 .0021 .0032

.00087 .00089 .00094

.0013 .0014 .0014

= 9.0, z = .74

T

run 1 run 2
.100 .102
.100 .102
.103 .103
.140 .142
.0020 .0015
.0020 .0015
.00047 .00043
.0027 .0020
; = 9.0, Z = 3.8

3

.135 .138

.136 .138

.140 .139

.081 .083

.0020 .0035

.0018 .0032

.00071 .00098

.0012 .0021

A comparisonof wedictions with simulationestimatesfor the GI/GI/s/Omodelwiths = 400,
A = 440,”andp = i in Example 10.5.

(see P. 338 of Neuts [19891). The peakedness z in eq. (13) tends tO be well
approximated by the heavy-traffic value (c: + 1)/2 in eq. (14) when the
rates & m;l, and mz–l are large compared to p, but not otherwise.
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Table IX,

mh = .03125, Ah= 720, z = 4.93 mh = 0.1, Ah= 578.9, z = 4.81
predicted run 1 run 2 predicted run 1 run 2

s .089 .083 .080 .087 .079 .077
blocking N .089 .083 .080 .087 .079 .077
probability i ,089 .082 .084 .087 .076 .079
estimate T .040 .050 .048 .040 .057 .055

s .0020 .0023 .0018 .0020 .0014 .0018
standard N .0020 .0025 .0016 .0020 .0016 .0016
deviation 1 .0012 .0014 .0013 .0012 .0014 .0012
estimate T .00087 .0014 .0010 .00087 .00119 .0013

~h = 1.0, Ah = 456.6, Z = 3.67 mh = 10.0, Ah= 417.9, z = 1.67
predicted run 1 run 2 predicted run 1 run 2

s .076 .063 .059 .052 .043 .043
blocking N .076 .063 .059 .052 .043 ‘ .043
probability 1 .076 .060 .062 .052 .043 .044
estimate T ,040 ,056 .052 .040 .041 .042

s .0020 .0019 .0018 .0020 .0018 .0018
blocking N .0020 .0017 .0016 .0020 .0017 .0017
probability I .0012 .0014 .0010 .0012 .0012 .0012
estimate T .00087 .0016 .0015 .00087 .0017 .0017

A comparison of predictions with simulation estimates for the MMPP/M/s/Omodel withs =
400, p = 1, t = 2700, two environment states, mfi = m,, C: = 9.0, and A = 400 in Example
10.6.

We focus on the special case in which m~ = ml = m. Then

A~=A+y and Al= A–y, (71)

where

Y = I;A(c~– I)lm. (72)

As a first concrete example, let s = 400, K = 1, A = 400, and c~ = 9.0 as
in the second case of Example 2.2 (Table IV). We consider four values of the
common mean environment state holding time m: m = .O3125, m = O. 1,
m = 1.0, and m = 10.0. The exact peakedness values in these four cases are
z = 4.93, z = 4.81, z = 3.67, and z = 1.67. The heavy-trafic approximation
z = 5 from eq. (14) is fine in the first two cases, but not in the last two, In the
heavy-trafic limit, A + x and m -0 ass -+ X, whereas p remains fixed. {We
have m --+ O, because the rate-1 arrival process is scaled by A e ~, which
means the environment state change rates go to infinity. ) Hence eventually
m << p-l as the limit is approached. The fact that m = ~– 1 in the last two
cases indicates that the case is not near to the limit even though A is quite
large.

Table IX compares the predictions in eqs. ( 15)-( 18) with simulation
estimates for these four cases. Because y = O, the predicted standard
deviations are independent of z and thus of m, which is consistent with the
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Table X.

mh = .03125, Ah= 648, z = 4.54 mh = 0.1, Ah= 521.0, z = 4.42
predicted run 1 run 2 predicted run 1 run 2

s .033 .031 ,028 .032 .027 .028
blocking N .033 ,030 .028 .032 .027 .028
probability 1 .033 .030 .031 .032 .022 .025
estimate T .015 .018 ,017 .015 .020 .020

s .0013 .0013 .0011 .0013 .0013 .0012
standard N .0013 ,0012 .0011 .0013 .0012 .0012
deviation 1 .0020 .0018 .0021 .0021 .0023 .0020
estimate T .00058 .00078 .00069 .00058 .00098 .00091

mh = 1.0, Ah= 410.9, Z = 3.40 mh = loo , Ah= 376.1, Z = 1.60
predicted run 1 run 2 predicted run 1 run 2

s .023 .0148 .0163 .0069 .0047 .0060
blocking N .023 .0148 .0162 .0069 .0047 .0060
probability 1 .023 .0150 .0105 .0069 .0066 .0047
estimate T .0125 .0130 .0144 .0055 .0045 .0058

s .0012 .00084 .00070 .00076 .00042 .00067
standard N .0012 .00080 .00068 .00076 .00041 .00065
deviation 1 .0021 .0023 .0022 .0025 .0024 .CH328
estimate T .00053 .00070 .00057 .00035 .00039 .00063

A comparison of predictions with simulation estimates for the MMPP/M/a/O model with s =
400, A = 360, v = 1, t = 2700, two environment etates, mh = ml andc: = 8.2 in Example10.6.

simulation results. On the other hand, the blocking approximation (15)
depends on z and thus on m. The blocking approximation .089 from eq. (15)
based on z = 5.0 from eq. (14) evidently is accurate to within about 10% in
the first two cases, but not in the last two cases. The displayed blocking
predictions using the exact peakedness from eq. (13) provide a significant
improvement. It plays no role in eqs. (16)-(18) because -y = O.

As a second concrete example, we reduce the arrival rate by multiplying
the rates AA and Al by 0.9, but leave m unchanged. This makes the new
arrival rate A = 360 and the new asymptotic variance c: = 8.2. Simulation
results for this case are given in Table X. In this case, because y # O, the
peakedness z appears in all four approximation formulas (15)-(18). As
before, we use the exact peakedness eq. (13) in the predictions, which helps
greatly in the last two cases with large m.

11. THE INITIAL CONDITIONS

Just as with the asymptotic variance, for functions of Markov chains the
asymptotic bias for any initial distribution can be calculated by solving
Poisson’s equation; see (32) and Corollary 4 to Proposition 10 of Whitt

[19921. Hence we can numerically investigate the M/M/s/O model and more
complicated Markov loss models. For example, Table XI displays the
asymptotic bias for the indirect and time-congestion estimators in the
Ws/O model withs = 400, IL = 1, and several values of p, starting empty
or full, computed in this manner. For A = 380 and simulation run of length
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Table XI.

traffic
intensity

0.7P
0.8
0.9
1.0
1.1
1.2

indirect

N(o)= o
1.00
1.00
0.99
0.85
0.66
0.52

:timator

N(O)= s
–0.42
–0.24
–0.086
–0.0123
–0.0019
–0.0005

time-congestionestimator I

N(0) = O
–0.15 x 10-10
–0.94 x 10-5
–0.010
–0.0115
–0.23
–0.30 I

The asymptoticbias for the indirect and time-corwestionestimators in the M/M/s/O model
1N(o)==s
0.0085
0.013
0.028
0.027
0.015
0.0087

. .
with s = 400, startingempty or full, discussedin Section 11.

5,400 as in Example 2.1, the approximate bias of the time-congestion
estimator starting empty is ,01/5400 = 0.19 X 10’7, whereas the approxi-
mate bias of the indirect estimator starting empty is 0.94/5400 = 0.00017.
The time-congestion-estimator bias is negligible, but the indirect-estimator
bias is of the same order as the approximate standard deviation 0.00066 in
Table III. Thus some effort to reduce the bias evidently can be worthwhile.

Insight into appropriate procedures for addressing the initialization bias
can be gained by considering the associated infinite-server models. In the
G/GI/x model starting empty, the bias of the estimator fi (t ) is exactly

EtI(t) – n = -nH(t), (73)

where I-I,(t) is the service-time stationary-excess cdf in eq. (46); see (20) of
Eick et al. [1993], (The M/GI/cc result there remains true for G arrival
processes; see Remark 2.3 of Massey and Whitt [1993 ].) Hence the asymp-
totic bias is

see (2) of Eick et al.
approximate bias of the

P. = -n(4 + l)jzw; (74)

[1993]. As a consequence, in light loading the
indirect estimator is

-p. (c:+ 1)
PI= ‘-’ = –~;”- . (75)

a

In the case of M service with w = 1, formula (75) implies that ~[ = 1,
which is substantiated by Table XI.

Recall that the asymptotic variance ~ tends to be inversely proportional
to A. In contrast, formula (75) implies that the asymptotic bias tends to be
independent of A. Hence the bias becomes relatively more important as
system size grows.

Formulas (73) and (75) can be used to estimate the remaining bias if we
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eliminate an initial portion of the run of length to. Let ~I(to) be this
remaining bias, Then

For example, with M service with 1A= 1,

~
PA~o) = x~-.du = ~-to. (77)

to

Because e-z = 0.135 and e-6 = .0067, the time-dependent mean reaches
86% and 99.3% of its steady-state value by 2 and 5 mean service times,
respectively, and a corresponding part of the bias is reduced by eliminating
the initial portion.

The infinite-server analysis is roughly consistent with asymptotical
results ass ~ co for the transient blocking probability in the M/M/s/O model
by Mitra and Weiss [1989]. Roughly speaking, these results imply that the
blocking probability at time t has reached about 90% of its steady-state
value approximately at time

[

2 + log(s(l – p)) p<l

t = 2 + l/210g(s/2) p=l. (78)

log(p/(p - 1)) p>l

Fors = 103 and p = 1, the time is t -5.1, which is about the same as the
infinite-server result. This analysis suggests that the initial portion to
delete is a period lasting about 5 mean service times, with the amount
perhaps increasing very slowly with s. Hence for the experiments in
Section 2 we deleted an initial portion of length 5 from each run. Table XI
gives an idea of the bias reduction.

For example, this phenomenon occurs when .s = 104. The required run
length in steady state can be about 1, whereas the required run length to
reduce bias starting empty can be about 5. For such large systems, it
clearly can be much better to initialize the system closer to the steady-state
mean.

Example 11.1 To illustrate this phenomenon, we simulate several GI/
M/s/O systems with s = 104 and p = 1. We let the total run length be 1. Of
course, when we start the system empty, no blocking at all is observed.
Hence we start the system with 9,980 customers and do not delete an
initial portion. Estimation results for the indirect estimator in seven cases
are shown in Table XII. The statistical precision seems adequate. The
asymptotic bias can be shown to be negligible in the M arrival case by the
exact numerical algorithm. Other runs with other initial conditions confirm
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Table XII,

12,000 1 1
20,000 1 1
20,000 1 1
20,000 1 1
20,000 9 1

I 10,000 I 9 I 1

~
.0084
.1681
.50063
.50099
.50093
.5011
.0110

Estimation for the GI/M/s/Omodel with s = 10

est. std. dev,
.00079
.00060
.00011
.00029
.00024
.0012
.0015
and M = 1 with total run Iength 1 and

N(O) = 9980 but no initial portion deleted in Example 11.1.

that there is negligible bias for these runs. Moreover, the results are
relatively insensitive to IV(O) provided that it is not far from s.

Unfortunately, the good results in Table X11 fail to hold if we change the
service-time distribution. The difficulty is that all customers in service at
time O would actually not be starting their service times at that time. For a
simple example, consider the G/D/s/O model with v = 1 and total run length
t = 1. None of the customers initially in the system would leave prior to
time 1 if they all began service at time O. There is no difficulty with
exponential service times, because the remaining service time is again
exponential.

The infinite-server model can give an idea about what is an appropriate
residual service-time distribution at time O in the G/GUs/O model. In the
infinite-server model, the expected number of customers with service times
greater than x in the system at any time is aH~( x ), by the argument of
Theorem 1 in Eick et al. [1993]. Hence it is natural to let the customers in
the system have i.i.d. service times distributed according to He. Although
this initialization should yield a good approximation for G/GI/eJO models, it
is only an approximation, whose error is yet to be determined. Thus with
nonexponential service times in practice, it might well prove to be more
convenient to initialize the system by starting empty and deleting an
appropriate initial portion based on eq. (79). This is an area where more
work needs to be done.

12. PROOF OF THEOREM 4.1

In this section we construct the ROU diffusion process and prove that the
normalized G/M/s/O number-in-system process (N.(”) – s )/l.& converges to
it as s + z with (a – s )1~~ + y. For this purpose, we construct coupled
bounding processes for each s and show that these converge appropriately
as s + x to bounding limit processes, which in turn converge to a unique
limit as the bounds are tightened. The key idea is to exploit previous
results for the associated G/M/~ model.

For any ● > 0 and positive integer s, let N: “(t) be the upper bound
process and N:”( t) the lower bound process to be defined. Let these
processes have the same arrival process as N,.(t), that is, the same

ACM Transactions on Modeling and Computer Simulation, Vol. 6, No. 1, January 1996.



46 . R. Srikant and W. Whitt

arrival-process sample paths. Let each process have jumps down with
intensity @ when the process is in state k. We modify each process
whenever it hits an upper barrier. As usual, jumps up in N. are ignored
when N.(t) = s. Let N~” have an instantaneous jump down of refil
whenever N:” would reach s + r c~l, where rxl is the least integer
greater than or equal to x. Similarly, let N~” have an instantaneous jump
down of LetiJ whenever N:” would hit s, where LxJ is the greatest integer
less than or equal to x. Thus the processes N., N$”, and N:” have state
spaces equal to the set of nonnegative integers less than or equal s, s – 1 +
[efil, ands -1, respectively.

These processes can be constructed so that,

N“(t) – 2r~~~lSN$’’(t)sN,( t)sW’’(t) for all t and ~ w.p.1, (79)

provided that eq. (79) holds w.p. 1 at t = O. To establish eq. (79) we construct
all the downward jumps on the same space. Suppose that N:’’(t) s N~(t ) s
N~’’(t). Then the downward jump intensities at t are ordered as well.
Hence we can make the downward jumps of N:” a subset of the downward
jumps of N., and in turn make that a subset of the downward jumps of
N~”; see Whitt [19811 for background; Theorem 10 there covers the essence
of eq. (79). In particular, when N#’’(t) = k z N,(t) = j, then a downward
jump in N~’C is also a downward jump in N. with probability j/k; otherwise
N. does not change. Similarly, if N.(t) = k 2 N~>c(t) = j, then a downward
jump in N. is also a downward jump in N$T’ with probability j/k, otherwise
l@” does not change. This construction gives each process separately its
p~oper distribution on DIO, cc) and provides the orderings in eq. (79); apply
mathematical induction on the transition epochs to verify the orderings for
all t. We note that eq. (79) does not depend on any structure in the arrival
process.

Now we establish limits as s ~ IX for the bounding processes N$” and
N: ‘c using the established limit for the associated Glhf.k model, drawing on
Borovkov [19671 and Theorem 1 on p. 103 of Borovkov [1984]. Somewhat
more transparent proofs of the infinite-server FCLT are available in special
cases: the case of GI arrivals is treated in Whitt [19821, and the case of G
arrivals and service-time distributions with finite support is treated in
Glynn and Whitt [19911.

Let N.(t) be the number of busy servers in the G/M/m system with
individual service rate p and offered load a. Then the previous infinite-
server result states that

‘J;; a>F(”) in DIO, ~) as a~rn, (80)

where ~ is the OU process with drift coefficient m(x) = – p.x, diffusion
coefficient U2(X ) = P( 1 + c:) with c: in eq. (10), and initial position y – y.
The limit (80) deserves some further explanation because Borovkov’s theo-
rems apply directly only to the case of the system starting empty. (An
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exception is on p. 113 of Borovkov [1984], but that does not apply here. )
However, with M service other initial conditions can be treated easily as
well. In particular, the evolution of the customers initially in the system
can be treated separately from the new arrivals. Note that ~.(t) = ~.n(t) +
~.o(t ), where fia.(t) is the number of new arrivals still in the system
at time t, whereas ~ao( t) is the number of original customers that were in
the system at time O that are still there at time t. Let ~ao( O) = ZV.(O) for
(s - a )/fi = – y with p fixed. By Theorem 4.4 of Billingsley [1968], our
conditions imply that

(AA(”)–A” Iiao(0)-a
r—,

)
+(2,y – y) in DIO, ~) X R (81)

JA i;

as A -+ x (and thus a -+ ~). This in turn implies that

(

N..(”) – a(l – e ‘4”) fimo(”) – ae’k
, 1-

1
>(Y”, Y,)

\~ i;a

in DIO, ~)z as a ~=, (82)

where YO and ~. are independent, from which eq. (80) follows by adding
the components. The limit process ~ = YO + Y. in eq. (80) can be
characterized as an OU by its covariance function because it is a Gaussian
process.

Inasmuch as ( a – s )/fi -+ y as s -+ ~, eq. (80) implies that

N.(”) – s
,— +Y(”) in DIO, ~) as s-=,

$~

where Y is the OU process with drift coefficient m(x) = – I-L(x – y)
diffusion coefficient 02( x) = P( 1 + c:), because

83)

and

N.(”) – s f(w) - 4] L1 -s ,
r =,. ~ l+ ---- (84)

$ff L J \’CY$~
In other words, Y is the OU process ~ centered at y instead of at O.
Next we apply the continuous mapping theorem with the first passage-

time function to deduce that

and
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with (a – s )/~ + y for each c > 0, where Y“” and Ye” are modifications
of the OU process Y specified in the following, provided that lVf”(O ) =
lV~’(0) = lV~(0). The process Y“” has a jump down of ● whenever it hits ●,
and Yt>’ has a jump down of ● whenever it hits O. In proving eqs. (85) and
(86) we can consider successive intervals between downward jumps in Y“”
and Ye” separately and recursively. In particular, we can let the process
Y’” have an instantaneous jump from ● to O and then be absorbed at O
when it hits ● and we can let the process N:” jump down and be absorbed
at s when it hits s + rEdil.Note that the first passage time constitutes a
measurable function that is continuous almost surely with respect to the
limit process; that is, when an OU first hits c it goes above e with
probability one. In this way, we obtain convergence in ~[0, m) of the forms
(85) and (861 for a single barrier hitting.

We next obtain convergence in the product space ~[0, m)= for the
sequence of processes associated with successive barrier hittings, each
starting at O, based on the remaining portion of the arrival process and
being absorbed in O after the barrier hitting. The arrival process after each
successive barrier hitting time has a FCLT with a Brownian motion limit
that is independent of the history prior to that barrier hitting time by
virtue of the original assumed FCLT for the arrival process. Also, the
exponential service times can be regarded as starting over at each barrier
hitting time.

We then obtain eqs. (85) and (86) as stated by piecing together separate
versions, with each starting at the end of the last interval. The process of
putting together the pieces into one single process on 11[O, cc) is easily seen
to be a continuous mapping from l) [0, m)” to ~[ O, m). For this continuity,
it is important to use the Skorohod topology as opposed to the topology of
uniform convergence on bounded intervals, because the jumps will not
occur at precisely the same times. We treat Y@” and N:” similarly.

We now obtain our desired result by letting e J O. By the ordering (79)
and the limits (85) and (86),

y“,’(.) – 2E s .,Ye’’(.) s ,,YU’6(”), (87)

where <St denotes stochastic order on the function space 11[0, CO);that is

{Yl(t) : t ~ 0} ~st {YZ(t) : t ~ O}if EflY1(”))s JY/IY2(”))for all nondecreasing
real-valued functions ~ on 11[0, CO),with YI s Y2 in 11[0, m) ifyl(t) s Y2(t) for all
t. We now want to deduce that P)’(s) converges as c e O. Unfortunately, this is
not immediate from eq. (87). To establish the desired convergence as ● ~ O,
note that by eq. (79),

N:”’-”(t)s N.(t) + 2((62-2) @sN:’’(t) + 2[(~2-n) @sIV.(t)

for all t, s, and ●. Hence

Y@”(”) = .,Y”’’(”) E= .,Y”’’z-n(”) + 36 (89)
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for all n, so that

Hence {Y’’’’2-n (.): n 2 1} is a tight sequence in 11[0, W) and any weak
convergence limit Y,(”) of a subsequence satisfies

Y“’’(”) – 2E s ,tYr(”) s ,,Y”’’(.) + E (91)

for all ~ by eq. (90). Hence indeed Y“’=(. ) > Y,(. ) as c j O. Combining eqs.
(87) and (91) yields Y“’(.) + Y,(”) as ~ J O as well. We define the reflected
OU (ROU)process to be this common limit process Yr.

Finally, by eq. (79),

N“’(t) – s N.(t) – s iv’’’’(t) – s
~ —=––– < —- (92)

\~ \~ \~

w.p.l for all s, t, and e, so that

N.(.) – S
-+’ Y,(”) in 11[0, ~) as s -+ ~

\a
(93)

as well.

13. SUMMARY

Our main results are workload factor approximations for the four estima-
tors Z3~(t), ~~(t), ~,(t), and ~~(t) in eqs. (l), (2), (4), and (6). (The
workload factor is the product of the arrival rate and the asymptotic
variance; see Section 1,6. ) The approximation formulas for workload factors
WI and w ~ are given in eqs, (17) and (18). The approximation formula for
ws has the same form as eq. (17). Theoretical analysis in Section 7 and
numerical evidence show that fi~( t ) and ~~( t ) are very similar, so that
results for one apply to the other. Thus u’s serves as the approximation for
wN. The canonical workload factors @ appearing in eqs. (17) and ( 18) can be
calculated exactIy by the methods of Section 3; approximations are given in
Table 11, The approximations show that ~1( t ) tends to be more efficient
than the other estimators in heavy loading, but less efficient in light
loading.

The behavior of the workload factors w = w (s, y, c:, c:, z) as a function
of the parameters s and y = ( a – s )/v’& is strongly supported by the exact
numerical results for w~, WI, and wT in the MIM/s/O model, using the
algorithms in Section 3. Figures 1–3 dramatically show that these work-
load factors_depend on s and a primarily through the single parameter -y =
(a – s )l~a. For the GIM/s10 model, the convergence of the blocking
probability B and the workload factor WI to proper limits consistent with
eqs. (15) and (17) as s -+ x is established by the FCLT in Section 4.
Although corresponding limits for the other estimators remain to be
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established, the ROU diffusion approximation lends support to the other
heuristic approximations (when s is not too small and I-yI is not too large).
The fact that the workload factors are approximately independent of s
implies that, for given statistical precision, the observation interval should
be approximately inversely proportional to the arrival rate or system size.

For models not too different from Ws/0, the effects of arrival-process
and service-time variability on the workload factors should be regarded as
second order compared to the effects ofs and y. For the G/Mfs/O model, the
role of c: in eq. (10) for characterizing the variability of a non-Poisson
arrival process is supported by the FCLT in Section 4 and the asymptotic
approximations in Sections 5 and 6. The approximations for G/GIfs/O
models with nonexponential service times are primarily empirical, and
thus much more tentative. Formulas (45) and (48) in Section 6.1 lend some
theoretical support, especially for light loading. This is a good direction for
future research.
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