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Abstract We consider a class of general Gt/Gt/1 single-server queues, including
the Mt/Mt/1 queue, with unlimited waiting space, service in order of arrival, and a
time-varying arrival rate, where the service rate at each time is subject to control. We
study the rate-matching control, where the service rate is made proportional to the
arrival rate. We show that the model with the rate-matching control can be regarded as
a deterministic time transformation of a stationary G/G/1 model, so that the queue
length distribution is stabilized as time evolves. However, the time-varying virtual
waiting time is not stabilized. We show that the time-varying expected virtual waiting
time with the rate-matching service-rate control becomes inversely proportional to the
arrival rate in a heavy-traffic limit. We also show that no control that stabilizes the
queue length asymptotically in heavy traffic can also stabilize the virtual waiting time.
Then we consider two square-root service-rate controls and show that one of these
stabilizes the waiting time when the arrival rate changes slowly relative to the average
service time, so that a pointwise stationary approximation is appropriate.
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1 Introduction

In this paper, we study controls to stabilize the performance of a single-server queueing
system with a time-varying arrival rate function. We assume that there is unlimited
waiting space and that service is provided in order of arrival.

It has been shown how server staffing (choosing a time-varying number of servers)
can be used to achieve this goal in multi-server systems with fixed service-time dis-
tribution for each customer when the required number of servers is not too small
and there is flexibility in its assignment; see [5,9,14,15,17,21,37]. In contrast, here
we consider a single-server queue, in which there is no flexibility in the number of
servers. To achieve stabilization, we assume that the service rate of the single server
is flexible and subject to control. In doing so, we assume that the service rate can be
specified separately from the random service requirements as a deterministic func-
tion. For example, a customer service requirement might correspond to the size of a
message to be transmitted in a communication network, while the service rate might
be the processing rate of the message. Thus a service requirement S with a constant
service rate μ would lead to a service time of S/μ. However, here the service rate can
change while the customer is in service. With this approach, all randomness appears
through the service requirements. We also assume that the service requirements are
stochastically independent of the arrival process.

Even though the stabilization problem for multi-server queues has been studied
for twenty years, the present paper evidently is the first formulation of an analogous
problem for non-stationary single-server queues.Moreover, the previous staffing algo-
rithms formulti-server queues evidently donot applydirectly. In fact, even constructing
the service times is not entirely straightforward, so that simulation experiments are
somewhat challenging. We show how to construct the service times in Sects. 3.1 and
3.2.

Having a single-server queue where the service rate is a continuous deterministic
function subject to control is an idealization ofwhat occurs inmany service operations,
such as hospital surgery rooms and airport security inspection lines. Assigning more
doctors and nurses can increase the rate of completed operations; assigning more
inspection agents at the airport security line or relaxing the inspection requirements
can increase the rate at which passengers are processed through inspection. In these
applications, the possible service rate functionsmaynot actually be continuous, or even
fully under control. Nevertheless, to better understand the possible benefits of these
practical service-rate controls, it is helpful to understand what controls are desirable
in the ideal situation when any deterministic continuous service-rate control function
is possible.

There is an important precedent in earlier work. By having the service rate function
as the control, our problem is similar to the capacity allocation problem for open
Jackson queueing networks in steady state, considered by Kleinrock [18], extended
for approximations of generalized Jackson networks in [29] and reviewed in Sect.
5.7 of [19], in Sect. 7 of [3], and elsewhere. Now, instead of allocating capacity
(which corresponds to service rate) to several queues in different locations, we allocate
capacity to a single queue at different times.
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2 Overview

2.1 The rate-matching control

In this paper, we primarily consider the simple rate-matching control, which chooses
the service rate to be proportional to the arrival rate; i.e., for a given target traffic
intensity ρ, we let the service rate be

μ(t) ≡ λ(t)

ρ
, t ≥ 0. (2.1)

In considering this rate-matching control, we assume that the arrival rate function is
deterministic and known. In future work, we intend to consider the cases in which
the rate-matching control is used with (i) an estimate of a deterministic arrival rate
function obtained from data and (ii) a stochastic arrival rate function, as in a Cox
process; see [15].

By definition, the rate-matching control stabilizes the time-varying instantaneous
traffic intensity ρ(t) ≡ λ(t)/μ(t) for all t ≥ 0. We will show that the rate-matching
control in (2.1) stabilizes the mean queue length (number in system) as t → ∞
(to allow the effect of the initial condition to dissipate), but not the mean waiting
time (before starting service). This is illustrated by Fig. 1, which shows simulation
estimates of the time-varying mean number in the system, E[Q(t)] (left), and the
mean waiting time, E[W (t)] (right), for the Mt/Mt/1 model with mean-1 service
requirements and sinusoidal arrival rate function λ(t) ≡ 1+ β sin γ t for β = 0.2 and
γ = 0.001 (long cycles); see Sect. 8. We let the target traffic intensity be ρ = 0.8. As
for the stationary M/M/1 queue, the mean steady-state number in the system should
be ρ/(1 − ρ) = 4.0. The plot on the left in Fig. 1 shows that the mean queue length
is indeed stabilized at 4.0, but the plot on the right shows that the time-varying mean
virtual waiting time E[W (t)] is periodic. The mean waiting time is stabilized to some
extent by the rate-matching control in (2.1), but not nearly as well as the number in
system. The 95% confidence intervals are also displayed along with the estimates in
both plots. The dashed blue line shows the arrival rate with values on the right vertical
axis.

The key idea supporting the positive result for E[Q(t)] in Fig. 1 is that, under
the rate-matching service-rate control in (2.1), the queue-length process can be repre-
sented as a deterministic time transformation of a corresponding queue length process
in a stationary model, as shown in Sect. 4. That construction directly implies the sta-
bilization. However, the story for the waiting times is more complicated. Theorem 5.2
shows that, with the rate-matching service-rate control, the time-varying expected vir-
tual waiting time is asymptotically inversely proportional to the time-varying arrival
rate in a heavy-traffic limit. (This phenomenon can be seen in Fig. 1.) Paralleling The-
orem 2 and Corollary 1 of [21] for staffing multi-server queues, Theorem 5.3 shows
that no control that asymptotically stabilizes the queue length in this heavy-traffic
regime can simultaneously stabilize the virtual waiting time. Nevertheless, for models
with a periodic arrival rate function, Theorem 6.2 establishes that the waiting times
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Fig. 1 Simulation estimates of the time-varying mean number in the system, E[Q(t)] (left), and the
mean waiting time, E[W (t)] (right), for the Mt/Mt/1 model with sinusoidal arrival rate function λ(t) ≡
1 + β sin γ t with β = 0.2 and γ = 0.001 with the rate-matching control in (2.1)

of successive arrivals does have a proper limit. That occurs because the arrival time
eventually occurs randomly over the periodic cycle.

2.2 Non-Markov non-stationary Gt/Gt/1 models

This paper makes significant contributions for the non-stationary Markov Mt/Mt/1
model, but the results are established in greater generality. In particular, they are
established for a large class of Gt/Gt/1 models, defined in Sect. 3. In particular, we
assume that the arrival counting process A can be represented as the composition of
a general counting process Na and a deterministic cumulative arrival rate function �

by the composition

A(t) ≡ Na(�(t)) = Na

(∫ t

0
λ(s) ds

)
, t ≥ 0, (2.2)

where Na is a rate-1 stochastic counting process with unit jumps (so that arrivals
occur one at a time) satisfying a functional strong law of large numbers (FSLLN) and
a functional central limit theorem (FCLT). For the rate-matching control, the service
times can be defined analogously. This construction is discussed in Sect. 7 of [23]
and [12]. It has been used in stabilizing performance of many-server queues with
non-Poisson arrivals in [15,22].

It is important to recognize that this is a special construction, treating only a subclass
of all non-Poisson non-stationary arrival processes, but we think that it is a useful way
to draw conclusions about such complicated models. First, the construction is without
loss of generality for the Mt/Mt/1 model. Second, the construction applies directly
to the service times when the service requirements are i.i.d. random variables with a
general distribution, so that the Mt/Gt/1 model is natural and also without loss of
generality as well. This is important because in service systems it has been found that
the service distribution is often non-exponential [4].
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To understand the restriction on theGt arrival processmore generally, it is helpful to
consider the special case inwhich the process Na is a rate-1Markov-modulatedPoisson
process (MMPP) with a finite-state continuous-time Markov environment process,
yielding an arrival rate of γk in state k [10,15]. The composition construction in (2.2)
implies that the arrival rate of A at time t when the environment process is in state k is
simply the product λ(t)γk . More generally, a non-stationary MMPP with a finite-state
Markov environment process could have arrival rate γk(t), which is a general function
of the two variables k and t . Clearly, the construction here yields only a subset of all
possible cases, but nevertheless we believe that it usefully goes beyond the Mt/Mt/1
model. It allows some characterization of the stochastic variability of the arrival and
service processes instead of none at all. It remains to determine how useful is the “one-
dimensional” characterization of non-Poisson stochastic variability in the non-Mt Gt

arrival process. Since non-Mt properties often arise through structural features such
as having arrivals be departures or overflows from another queue, there is good reason
to expect that the present approach will prove useful. Moreover, the heavy-traffic limit
identifies parsimonious characterizations of the stochastic variability in the arrival and
service processes.

We have verified that the rate-matching control actually works in this more general
Gt setting by conducting simulation experiments for Gt/Gt/1 models with mean-
1 service requirements where both the service requirements and the non-stationary
arrival process are constructed from renewal counting processes, where the times
between renewals are i.i.d. random variables having non-exponential distributions,
including Erlang E2 and hyperexponential H2 distributions. The plots (given in Figs. 9
and 10 in Section 8 and in an online appendix) look just like the plots for the Mt/Mt/1
models displayed in this introduction.

2.3 Two square-root service-rate controls

As an analog of Kleinrock’s [18] square-root capacity allocation formula (appearing
in (7.6) here), we also consider the (first) square-root service-rate control

μ(t) ≡ λ(t) + ξ
√

λ(t), t ≥ 0, (2.3)

where ξ is a positive parameter, and a second square-root service-rate control

μ(t) ≡ λ(t) + λ(t)

2

(√
1 + ζ

λ(t)
− 1

)
, t ≥ 0, (2.4)

where ζ is a positive parameter.
The first square-root service-rate control in (2.3) is interesting because it is a natural

analog of the square-root staffing formula used for many-server queues. Nevertheless,
Fig. 2 shows that (2.3) is not effective in stabilizing either E[Q(t)] or E[W (t)] for the
same arrival process as in Fig. 1, again with 95% confidence intervals, even though
there are very long cycles. We use ξ = 2, which would make ρ = 0.8333 and the
steady state mean waiting time EW = ρ/μ(1 − ρ) = 3.333 for the constant arrival
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Fig. 2 Simulation estimates of the time-varying mean number in the system, E[Q(t)] (left) and the mean
waiting time, E[W (t)] (right) for the Mt/Mt/1 model, having the same sinusoidal arrival rate with long
cycles (γ = 0.001), with the first square-root service-rate control in (2.3)

rate occurring when β = 0. Even though this service-rate control does stabilize both
E[Q(t)] or E[W (t)] to some extent, Fig. 2 shows that they are both periodic. That
is expected because the control (2.3) is reasonable, but based on a different objective
function (following [3,18,19,29]). See Sect. 8 for more discussion.

Figure 2 has more implications because the first square-root service-rate control in
(2.3) not only relates to the capacity allocation literature [3,18,19,29], but it also relates
to the offered-load approach to staffing multi-server queues in [17]. Since the arrival
rate changes very slowly in this example, the pointwise stationary approximation
(PSA) [13,33] coincides approximately with the offered-load approach to staffing in
[17], which leads to (2.3) with λ(t) replaced by the mean number of busy servers
in an associated infinite-server queue with arrival rate λ(t) and exponential service
times having mean 1 (our service requirements). Hence, Fig. 2 also shows that a direct
applicationof theoffered-load approach is alsonot effective in stabilizingperformance.

On the other hand, the second square-root control in (2.4) is constructed in Sect.
7.3 by assuming that the pointwise stationary approximation (PSA) is effective. That
assumption leads to a quadratic equation in the service rate μ(t), whose solution is
(2.4). Figure 3 shows that (2.4) is effective in stabilizing the mean waiting time. Figure
3 shows the corresponding performance estimates for the second square-root service-
rate control in (2.4) with parameter ζ = 1.0, again with the same arrival process as
before.

Here is how the rest of this paper is organized: We start in Sect. 3 by defining the
specific Gt/Gt/1 model, showing how to construct the service times, and showing
that the queue-length process in this model is a deterministic time transformation
of the queue-length process in an associated stationary G/G/1 model. In Sect. 4
we establish positive stabilization properties of the rate-matching control. In Sect. 5
we give an explicit representation of the time-varying waiting time in terms of the
waiting time in the corresponding stationary G/G/1 model and establish the heavy-
traffic limit theorems. In Sect. 6 we consider the special case of a periodic arrival
rate function in more detail. After Theorem 6.1 formalizes the notion of a periodic
steady state, Theorem 6.2 establishes a periodic heavy-traffic limit for the waiting
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Fig. 3 Simulation estimates of the time-varying mean number in the system, E[Q(t)] (left) and the mean
waiting time, E[W (t)] (right) for the Mt/Mt/1 model, having the same sinusoidal arrival rate with long
cycles (γ = 0.001), with the second square-root service-rate control in (2.4)

times of successive arrivals. As in [20] for multi-server queues, this illustrates a nearly
periodic situation in which the limit depends on the order of the two iterated limits as
n → ∞ and t → ∞. In Sect. 7 we consider the square-root service-rate controls in
(2.3) and (2.4). We show that they are optimal with appropriate objective functions
when a pointwise stationary approximation is appropriate, as in [33]. We discuss the
simulation experiments further in Sect. 8.

3 The model

As indicated in Sect. 2.2, we exploit a special composition construction of the arrival
and service processes in order to obtain a general Gt/Gt/1 model. In particular, we
assume that the arrival process is defined by the composition in (2.2), where Na is a
rate-1 stochastic counting process with unit jumps (so that arrivals occur one at a time)
satisfying a functional strong law of large numbers (FSLLN) and a functional central
limit theorem (FCLT), i.e.,

N̄a,n → e and N̂a,n ⇒ ca Ba in D as n → ∞, (3.1)

with

N̄a,n(t) ≡ n−1Na(nt) and N̂a,n(t) ≡ n−1/2[Na(nt) − nt], t ≥ 0, (3.2)

e the identity function, e(t) = t , t ≥ 0, Ba a standard (drift 0, variance 1) Brownian
motion (BM), ⇒ denoting convergence in distribution and D denoting the function
space of right-continuous real-valued functions on the interval [0,∞) with left limits,
as in [34], while � is a deterministic cumulative arrival rate function, satisfying

�(t) ≡
∫ t

0
λ(s) ds, t ≥ 0, (3.3)
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with λ being the arrival rate function, which is assumed to be strictly positive and
continuous with finite long-run average

λ̄ ≡ lim
t→∞ t−1�(t). (3.4)

Without loss of generality, we assume that λ̄ = 1. In addition, we assume that λ(t) is
uniformly bounded above and below, i.e., 0 < λL ≤ λ(t) ≤ λU < ∞ for all t . (These
bounds are used in the proof of Theorem 7.1.)

The composition construction in (2.2) is a standard way to construct a nonhomo-
geneous Poisson process (NHPP, Mt ), which is an important special case; then Na

above is a rate-1 Poisson process. This composition model has all unpredictable sto-
chastic variability in the arrival process associated with the processes Na and its FCLT
behavior characterized by the single variability parameter c2a , while all the predictable
deterministic variability is associated with the deterministic arrival rate function λ(t)
and the associated cumulative rate function �. If the process Na is a renewal counting
process, then c2a is the scv of a time between renewals (which requires a finite second
moment), but Na can be more general; for example, see Sect. 4.4 of [34].

We specify the random service requirements of successive customers separately
from the service rate, which is deterministic and subject to control. For the first six
sections of the paper, we assume that, for each ρ, 0 < ρ < 1, μρ is defined by
the rate-matching policy, as specified in (2.1). We assume that the successive service
requirements are generated (in a way to be explained in the next paragraph) from a
rate-1 stochastic counting process Ns with unit jumps, independent of Na , satisfying
an FSLLN and an FCLT, i.e.,

N̄s,n → e and N̂s,n ⇒ cs Bs in D as n → ∞, (3.5)

where

N̄s,n(t) ≡ n−1Ns(nt) and N̂s,n(t) ≡ n−1/2[Ns(nt) − nt], t ≥ 0, (3.6)

with Bs being a standard BM, necessarily independent of Ba . The case of i.i.d. service
requirements with a general distribution having a finite second moment is a natural
special case.

As usual, the queue-length process can be defined as

Q(t) ≡ A(t) − D(t), t ≥ 0, (3.7)

where D(t) is the total number of departures in the interval [0, t]. We assume that the
system starts empty at time 0. We understand D(t) to satisfy

D(t) ≡ Ns

(∫ t

0
μ(s)1{Q(s)>0} ds

)
= Ns

(∫ t

0
(λ(s)/ρ)1{Q(s)>0} ds

)
, t ≥ 0,

(3.8)
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where 1A is the indicator function, equal to 1 on A and 0 otherwise. Note that Q and
D in (3.7) and (3.8) are defined in terms of each other. However, as in Lemma 2.1
of [26], there is a unique solution, as can be proved by induction on the successive
events in the processes A and S, which necessarily occur one at a time because of the
unit-jump assumptions for Na and Ns .

3.1 Direct construction of the service times

The present paper differs from the majority of the literature on single-server queues
by not introducing the sequence of successive service times, which we denote as
{Vk : k ≥ 1}, as a model primitive. Instead, here we have the sequence of successive
service requirements {Sk : k ≥ 1} specified as the times between events in the counting
process Ns , while the service rate μ(t) is time-dependent and subject to control. For
the rate-matching control in (2.1) and the square-root service-rate controls in (2.3)
and (2.4), the service rate becomes a fully specified function that is continuous and
positive.

We now show how to construct the sequence of successive service times, assuming
that the sequence {Sk : k ≥ 1} of service requirements is given and the service rate
μ(t) is a fully specified continuous function, uniformly bounded above and below,
just like λ. That condition on μ follows from the assumption about λ with (2.1) or
(2.3). This construction is important for computer simulations.

We assume that the system starts empty. Let Ak , Bk , Dk , be the times at which
customer k arrives, begins service, and departs, respectively. Let Vk and Wk be the
durations (length of the time intervals) that customer k spends in service and spends
waiting in queue before starting service, respectively. Since the system starts empty,
D0 = 0, B1 = A1 ≥ 0. As usual, we have the basic recursions

Bk = Dk−1 ∨ Ak, Dk = Bk + Vk, and Wk = Bk − Ak, k ≥ 1, (3.9)

where a ∨ b ≡ max {a, b}. The complication is that Vk is not specified exogenously.
To construct Vk , we need to properly relate rates to requirements and time. When

we do so, we see that Vk is specified implicitly via the equation

Sk =
∫ Bk+Vk

Bk
μ(s) ds, k ≥ 1. (3.10)

If we let

M(t) ≡
∫ t

0
μ(s) ds, t ≥ 0, (3.11)

then we see that M(t) is the total amount of service completed in the interval [0, t],
assuming that the server is busy continuously. Since M is strictly increasing and
continuous, it has an inverse M−1. With that inverse, we obtain an explicit formula
for the service times, in particular,
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Vk = M−1(Sk + M(Bk)) − Bk, k ≥ 1. (3.12)

For example, if μ(t) = μ, t ≥ 0, then M(t) = μt and M−1(t) = t/μ, t ≥ 0. Hence,
M(Bk) = μBk , M−1(Sk + M(Bk)) = (Bk + Sk/μ), and Vk = Sk/μ for all k, as it
should.

3.2 Alternative service-time models

Since the service-time formula (3.12) is somewhat complicated, it is helpful to have a
useful practical approximation. In fact, there are alternative service-time models that
might be of interest as models in their own right. The first alternative model assigns
each customer a constant service rate determined when the customer begins service.
Then the service time of customer k is simply

Vk = Sk
μ(Bk)

. (3.13)

The second alternative assigns each customer a constant service rate determined when
the customer arrives. Then the service time of customer k is simply

Vk = Sk
μ(Ak)

. (3.14)

The model with service times in (3.13) is a natural approximation for our main model
of time-dependent service rate μ(t) applying at time t if the customer is in service at
that time. Indeed, the model with service times in (3.13) can be achieved by employing
local linear Taylor approximations

M(t + s) ≈ M(t) + μ(t)s and M−1(t + s) = M−1(t) + s

μ(M−1(t))
, (3.15)

assuming that s is relatively small. We obtain the second from the inverse function
theorem from calculus. In particular, with an abuse of notation, let μ−1(t) be the
derivative of M−1(t). By the inverse function theorem,μ−1(t) = 1/μ(M−1(t)). Thus
the corresponding Taylor approximation for M−1(t + s) is given in (3.15). When we
apply the Taylor approximation in (3.12), regarding Sk as a small perturbation about
M(Bk), we get

Vk = M−1(M(Bk)) + Sk
μ(M−1(M(Bk)))

− Bk ≈ Sk
μ(Bk)

. (3.16)

In the actual model, the service rate may keep changing, but this seems to be a reason-
able approximation. Under heavy-traffic conditions, the difference will be negligible.

123

Author's personal copy



Queueing Syst (2015) 81:341–378 351

3.3 Time transformation of stationary model

We now show that, with the rate-matching service-rate control in (2.1), we can circum-
vent the construction of the service times in (3.12) in order to deduce some important
structure. (With this approach, we do not use the approximation in (3.16).) An impor-
tant consequence of the composition construction in (2.2)–(3.8) above is that the
queue-length process Q(t) depending on the arrival rate function λ(t) can be related
to the associated queue-length process Q1(t) with constant arrival rate 1 and constant
service rate 1/ρ by a simple time transformation. In particular, let the arrival process
of Q1 be A1 ≡ Na and let the queue length and departure process be defined as

Q1(t) ≡ A1(t) − D1(t), t ≥ 0, (3.17)

where A1 ≡ Na and D1(t) is the total number of departures in the interval [0, t]. We
understand D1(t) to satisfy

D1(t) ≡ Ns

(∫ t

0
μ1(s)1{Q1(s)>0} ds

)
= Ns

(∫ t

0
ρ−11{Q1(s)>0} ds

)
, t ≥ 0.

(3.18)

Let �−1 be the inverse of the continuous strictly increasing function �, so that
�(�−1(t)) = �−1(�(t)) = t , t ≥ 0.

Theorem 3.1 (time transformation of a stationarymodel)For (A, D, Q)with the rate-
matching service-rate control and the stationary single-server model (A1, D1, Q1)

defined above,

(A(t), D(t), Q(t)) = (A1(�(t)), D1(�(t)), Q1(�(t))), t ≥ 0. (3.19)

Proof The relation between A and A1 holds by definition.Wewill establish the relation
between the pair (Q, D) and the pair (Q1, D1) together, paralleling their definitions via
(3.7) and (3.8) ((3.17) and (3.18)).Wewill exploit the change of variables s = �−1(u)

or u = �(s) and the associated differential relation du = λ(s)ds. Starting with (3.8),
we express D as

D(t) = Ns

(∫ t

0
ρ−1λ(s)1{Q(s)>0} ds

)
, t ≥ 0,

= Ns

(∫ �(t)

0
ρ−11{Q(�−1(u))>0} du

)
, t ≥ 0,

= Ns

(∫ �(t)

0
ρ−11{Q1(u)>0} du

)
= D1(�(t)), t ≥ 0, (3.20)

as claimed, where we have used Q = Q1 ◦ � in the third step. As in the definitions
(3.7) and (3.8), we can use induction on the transition epochs of the processes Na and

123

Author's personal copy



352 Queueing Syst (2015) 81:341–378

Ns to verify that there is a unique solution for (D, Q) and for (D1, Q1) that must be
related by (3.20). ��

4 Basic stabilization of the rate-matching service-rate control

We first show that the rate-matching service-rate control always stabilizes (as time
evolves) the proportion of arrivals that are delayed, which we define (as a function of
the traffic intensity ρ) by

d̄ρ(t) ≡
∫ t
0 λ(s)1{Q(s)>0} ds

�(t)
. (4.1)

In (4.1) we weight the server busy event at s, which is 1{Q(s)>0}, by the relative
likelihood of an arrival at time s during the interval [0, t], which is λ(s)/�(t). In the
case of constant arrival rate, d̄ρ(t) reduces to the utilization over [0, t], defined by

Ū1,ρ(t) ≡ t−1
∫ t

0
1{W1(s)>0} ds ≡ t−1

∫ t

0
1{Q1(s)>0} ds. (4.2)

Theorem 4.1 (stabilizing the average delay probability)Under the conditions above,

Ū1,ρ(t) → ρ and d̄ρ(t) → ρ in R as t → ∞ (4.3)

for Ū1,ρ(t) in (4.2) and d̄ρ(t) in (4.1).

To prove Theorem 4.1, we use FSLLNs and SLLNs for the arrival and service
processes. Let S1(t) ≡ Ns(t/ρ) be the counting process associated with the successive
partial sums of the service times in the systemwith constant rates, paralleling A1 = Na

for the arrival process. By direct assumption, A1 satisfies an FSLLN and thus also an
ordinary SLLN. We now show that is also true of A and S1. Let Ān(t) ≡ n−1A(nt)
and S̄1,n(t) ≡ n−1S1(nt), t ≥ 0.

Lemma 4.1 (preliminary FSLLNs) Under the conditions above, the processes A and
S1 satisfy the FSLLNs

Ān → e and S̄1,n → ρ−1e in D as n → ∞ w.p.1 (4.4)

and the associated SLLNs

t−1A(t) → 1 and t−1S1(t) → ρ−1 in R as t → ∞ w.p.1. (4.5)

Proof First the FSLLNs and SLLNs are actually equivalent in this setting of a single
process; see Ch. 1 of the internet supplement to [34]. Thus, the limit in (3.4) is equiv-
alent to the stronger limit �̄n → e in D as n → ∞, where �̄n(t) = �(nt)/n, t ≥ 0.
We can obtain the FSLLNs by the continuity of the composition map, which is defined
by (x ◦ y)(t) ≡ x(y(t)): Ān = N̄a,n ◦ �̄n → e ◦ e = e, i.e., Ān(t) = N̄a,n(�̄n(t)),
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t ≥ 0; see Sect. 13.2 of [34]. Similarly, S̄1,n = N̄s,n ◦ ρ−1e → e ◦ ρ−1e = ρ−1e.
Then the ordinary SLLNs are obtained by applying the projection map from D to R

taking x to x(t) at t = 1, which is also continuous at all t that are continuity points of
x . ��
Proof of Theorem 4.1. We first deduce the conclusion for the system with queue-
length process Q1, having constant arrival and service rates. For that system, we can
apply the sample-path version of Little’s law to the service facility, using the notation
L∗ = λ∗W ∗; see [28,32]. The limit in (4.3) for Ū1,ρ to be established is then L∗. The
LLN for Na with limit 1 is λ∗. Since the service rate is constant, Ns(ρ

−1t) counts the
number of partial sums of the service times that are less than or equal to t . Since the
SLLN of S1 established in Lemma 4.1 is equivalent to the SLLN of the service times,
we see that the average of the service times approaches ρ, which isW ∗. Since the limits
for λ∗ and W ∗ hold, the limit for Ū1,ρ holds as well with L∗ = λ∗W ∗ = 1 × ρ = ρ.

For the second limit, perform a change of variables as in (3.20) to obtain

d̄ρ(t) =
∫ �(t)
0 1{Q1(u)>0} du

�(t)
. (4.6)

Since �(t) → ∞ as t → ∞, we can apply the first result. ��
Finally, we conclude this section by observing that there is a proper limiting

steady-state distribution for Q(t) as t → ∞ whenever there is a proper steady-state
distribution for Q1(t) as t → ∞.

Theorem 4.2 (stabilizing the queue-length distribution and the steady-state delay
probability) Let Q1(t) be the queue-length process when λ(t) = 1, t ≥ 0. If
Q1(t) ⇒ Q1(∞) as t → ∞, where P(Q1(∞) < ∞) = 1, then also

Q(t) ⇒ Q1(∞) in R as t → ∞, (4.7)

and

P(W (t) > 0) = P(Q(t) ≥ 1) → ρ as t → ∞. (4.8)

Proof Let �−1 be the inverse of the continuous strictly increasing function �. It
follows that {Q(�−1(t)) : t ≥ 0} is distributed as {Q1(t) : t ≥ 0}. Since �−1 is
deterministic with�−1(t) → ∞ as t → ∞, Q(�−1(t)) ⇒ Q1(∞) as t → ∞, which
directly implies that Q(t) ⇒ Q1(∞) as t → ∞ as well, which in turn immediately
implies the associated limit. Given Little’s law for the system with Q1, we have
P(Q1(∞) > 0) = ρ in (4.8). ��

5 The virtual waiting time with the rate-matching control

Often we are interested in the distribution or the moments of the virtual waiting time

W (t). Unlike Theorem 3.1, we do not have W (t)
d= W1(�(t)), where

d= means equal
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in distribution. Unfortunately, the virtual waiting time is more complicated. We can
write

P(W (t) > w) =
∞∑
k=1

P(W (t) > w|Q(t) = k)P(Q(t) = k), (5.1)

where

P(W (t) > w|Q(t) = k) = P(inf {u ≥ 0 : D(t + u) − D(t) ≥ k} > w). (5.2)

Theorem4.2 shows that Q(t) approaches a steady-state limit as t → ∞ in considerable
generality, but, because of the first passage time structure in (5.2), the conditional
probability in (5.2) is in general time varying.

In this section, we first develop an explicit expression for the virtual waiting time
W (t) with the rate-matching service-rate control in (2.1). Afterwards, we establish a
heavy-traffic limit theorem.

5.1 An explicit expression

To develop an explicit expression for the virtual waiting time for the rate-matching
service-rate control, we exploit the connection to the stationary G/G/1 model. For
the base G/G/1 model, we assume that the interarrival times U1,k of the counting
process A1 ≡ Na and the service times V1,k of the counting process S1 ≡ Ns ◦ ρ−1e
have been specified.

Given the interarrival times and service times,we use the classical Lindley recursion
as on p. 207 of [34] that maps the interarrival times U1,k and the service times V1,k
into the waiting times W1,k in the stationary G/G/1 model. (Specifically, W1,k is
the waiting time before starting service of the kth arrival, which occurs at time Ak ,
assuming that the system starts empty at time 0.) The formulas for the arrival times A1,k
and departure times D1,k as well as the waiting times W1,k are through the equations

A1,k ≡ U1,1 + · · · +U1,k,

W1,k+1 ≡ [W1,k + V1,k −U1,k+1]+,

D1,k ≡ A1,k + W1,k + V1,k, k ≥ 1, (5.3)

where [x]+ ≡ max {0, x} andW1,1 ≡ 0. The associated arrival counting process A1(t)
and departure counting process D1(t) are constructed as inverse processes, while the
queue-length process Q1(t) is their difference, i.e.,

A1(t) ≡ max {k ≥ 0 : A1,k ≤ t},
D1(t) ≡ max {k ≥ 0 : D1,k ≤ t},
Q1(t) ≡ A1(t) − D1(t), t ≥ 0. (5.4)
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We then can construct the virtual waiting time at time t in terms of the waiting time
of the last arrival before time t , W1,A1(t), by

W1(t) ≡ [W1,A1(t) + V1,A1(t) − (t − A1,A1(t))]+, t ≥ 0. (5.5)

A short S program to convert the sequence {(U1,k, V1,k,W1,k) : k ≥ 1} into the
associated sequence {(A1,k, D1,k,C1,k, Q1,k) : k ≥ 1}, where C1,k is the time of
the kth change in the queue-length process (caused by an arrival or a departure) and
Q1,k = Q1(C1,k) is the queue length at timeC1,k , is given on p. 210 of [34]. Similarly,
the associated virtual waiting time in the G/G/1 model at change time C1,k is then
W1(C1,k).

We then obtain a relatively simple construction of the associated sequence
{(Ak, Dk,Ck, Qk) : k ≥ 1} for our Gt/Gt/1 model with time-varying arrival rate
function λ: in particular,

(Ak, Dk,Ck, Qk) ≡ (�−1(A1,k),�
−1(D1,k),�

−1(C1,k), Q1,k), k ≥ 1, (5.6)

where �−1 is the inverse of �, which is well defined because � is strictly increasing
and continuous.

Then for any t ≥ 0, we can construct the queue length at time t by setting

C(t) ≡ max {k ≥ 0 : Ck ≤ t} and Q(t) ≡ QC(t), t ≥ 0. (5.7)

Similarly, for any t ≥ 0, we can construct the departure counting process at time t by
setting

D(t) ≡ max {k ≥ 0 : Dk ≤ t}, t ≥ 0. (5.8)

Theorem 5.1 (constructing the virtual waiting time) The virtual waiting time W (t)
can be represented as

W (t) = �−1
t (W1(�(t))), t ≥ 0, (5.9)

where W1(t) is the waiting time at time t in the associated stationary G/G/1 model
and �−1

t is the inverse of

�t (v) = �(t + v) − �(t), v ≥ 0 and t ≥ 0, (5.10)

which is strictly increasing and continuous. If W1(t) has its stationary distribution

W ∗
1 , then W (t)

d= �−1
t (W ∗

1 ).

Proof From (5.1) and (5.2),

W (t) ≡ inf {u ≥ 0 : D(t + u) − D(t) = Q(t)}
= inf {u ≥ 0 : D1(�(t + u)) − D1(�(t)) = Q1(�(t))}, t ≥ 0, (5.11)
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while

W1(�(t)) = inf {v ≥ 0 : D1(�(t) + v) − D1(�(t)) = Q1(�(t))}. (5.12)

Thus we have �(t) + W1(�(t)) = �(t + W (t)) or

W1(�(t)) = �(t + W (t)) − �(t) = �t (W (t)), t ≥ 0, (5.13)

for �t defined in (5.10) above or, equivalently, the claimed formula (5.9). ��
We can use Theorem 5.1 to give an explicit integral formula for the mean E[W (t)]

in the Mt/Mt/1 model. Hence we can numerically compute the mean in this case.

Corollary 5.1 (mean wait in the Mt/Mt/1 model) For the Mt/Mt/1 model with the
rate-matching service-rate control, if t is large so that W1(t) can be regarded as being
in steady state, then

E[W (t)] = ρ

∫ ∞

0
e−(1−ρ)�t (x)/ρ dx . (5.14)

Proof First the associated stationary G/G/1 model is M/M/1 with arrival rate 1
and service rate 1/ρ, so that P(W1(t) > x) = ρe−(1−ρ)x/ρ for large t . Next use the
tail-integral formula for the mean with (5.9) to write

E[W (t)] =
∫ ∞

0
P(W (t) > x) dx =

∫ ∞

0
P(�−1

t (W1(�(t))) > x) dx

=
∫ ∞

0
P(W1(�(t))>�t (x)) dx=

∫ ∞

0
ρe−(1−ρ)�t (x)/ρ dx . (5.15)

As a sanity check, note that if λ is constant, then the model is M/M/1 with arrival
rate 1 and service rate ρ, so that E[W (t)] = ρ2/(1 − ρ). ��

To illustrate Theorem 5.1 and Corollary 5.1, we consider a sinusoidal arrival rate
function.

Example 5.1 (a sinusoidal example) Consider the sinusoidal arrival rate function

λ(t) ≡ 1 + β sin (γ t) for 0 < β < 1 and γ > 0 (5.16)

with parameters β = 0.2 and γ = 1.0. Since Theorem 5.1 and Corollary 5.1 are
for the Markovian Mt/Mt/1 model, we consider that model. We plot that arrival rate
function over one cycle together with the periodic steady-state time-varyingmeanwait
computed numerically using Matlab from Corollary 5.1 in the case ρ = 0.9 in Fig. 4.
Figure 4 shows that the waiting time is not stabilized. Consistent with previous results
about time-varying queues, for example, as in [6,7], we see that the peak and trough
of the mean waiting time lag behind the corresponding peak and trough of the arrival
rate function. In this example, the peak mean waiting time occurs slightly before the
trough of the arrival rate.
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Fig. 4 The periodic steady-state
time-varying mean wait
E[W (t)] (with values shown on
the left vertical axis) in the
Mt/Mt/1 model with the
rate-matching service-rate
control in (2.1) and the
sinusoidal arrival rate
λ(t) ≡ 1 + β sin (γ t) with
β = 0.2 and γ = 1.0 (with
values shown on the right
vertical axis) for traffic intensity
ρ = 0.9 and no scaling over one
cycle [0, 2π ], computed from
Corollary 5.1

5.2 A heavy-traffic limit for the virtual waiting time

We now obtain a heavy-traffic limit for W (t) that provides helpful insight. As usual
with heavy-traffic limits of single-server queues, we scale time and space as we allow
the traffic intensity to increase toward 1; for example, see Chaps. 5 and 9 of [34]. We
start by constructing a sequence of the models with constant arrival and service rates,
corresponding to the triple (A1, D1, Q1) indexed by n. As usual, we let the traffic
intensity in model n be ρn = 1 − (1/

√
n), we scale time by n = (1 − ρn)

−2 and we
scale space by n−1/2 = (1 − ρn). We achieve these traffic intensities by scaling the
service requirements, i.e., we let S1,n(t) ≡ Ns(t/ρn) for ρn just specified.

To obtain interesting limits that capture the time-varying arrival rate, we consider a
sequence of arrival rate functions {λn : n ≥ 1} indexed by n, with each being contin-
uous and strictly positive. Let associated scaled arrival rate functions and cumulative
arrival rate functions be defined by

λ̄n(t) ≡ λn(nt) and �̄n(t) ≡ n−1�n(nt), t ≥ 0 and n ≥ 1, (5.17)

so that �̄n(t) = ∫ t
0 λ̄n(s) ds. We also introduce a refined scaling involving increments

of order
√
n in �n about time nt . For that purpose, let

�̃n,t (u) ≡ n−1/2[�n(nt + u
√
n) − �n(nt)], t ≥ 0 and n ≥ 1. (5.18)

We assume that these scaled functions have the limits

λ̄n → λ f and �̄n → � f in D as n → ∞ (5.19)

and

�̃n,t (u) → λ f (t)u as n → ∞ (5.20)
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uniformly in t and u over bounded subintervals of [0,∞), where λ f is continuous
and strictly positive. To be consistent with Sect. 3, we assume that λ f has a long-run
average λ̄ f = 1. As a further regularity condition, we assume that λn(t) is uniformly
bounded for all n and t .

We also specify a refined “diffusion scale” scaling with

�̂n(t) ≡ n−1/2[�n(nt) − n� f (t)], t ≥ 0 and n ≥ 1, (5.21)

and assume that

�̂n → �d in D as n → ∞, (5.22)

where �d is a continuous function, although the limit (5.22) will play no role in
Theorem 5.2 below.

Extending (2.2) in a natural way, we let the arrival process in model n be

An(t) ≡ Na(�n(t)) = Na

(∫ t

0
λn(s) ds

)
, t ≥ 0, (5.23)

where Na is the fixed base process introduced before in (2.2). Since Na is a rate-1
process and λ̄ f = 1, the long-run arrival rate is 1.

Since ρn → 1 as n → ∞, the service requirements as specified by S1,n(t) ≡
Ns(t/ρn) remain O(1) as n → ∞. The time scaling in (5.17)–(5.20) makes the
arrival rates and service rates of the scaled arrival and service processes become of
order O(n) as n → ∞, meaning that we look over large time intervals. As usual, the
heavy-traffic scaling of space and time will make the queue lengths and waiting times
be of order O(

√
n). Hence, the service times are asymptotically negligible compared

to the waiting times, but both are asymptotically negligible compared to the time scale
n.

Even though the arrival rate at time t remains O(1) as n → ∞, the arrival rate
function is affected significantly by the scaling, because it is changingmore slowly as n
increases. In particular, the arrival rate at time t is λn(t) ≈ λ f (t/n), so it has derivative
λ̇n(t) ≈ λ̇ f (t/n)/n. Thus, the arrival rate changes more slowly as n increases. That
makes the model tend to be in steady state at each time t with arrival rate λn(t), service
rate λn(t)/ρn , and constant traffic intensity ρn = 1− (1/

√
n). It is significant that the

steady-state behavior at time t itself depends on t , because the operative arrival rate
itself is a function of time.

The following example may help to understand the scaling in (5.17)–(5.22) and the
interpretation above.

Example 5.2 (scaling in the sinusoidal example) To illustrate, we return to Example
5.1, but nowmodified to be in the asymptotic framework just introduced. In particular,
we start with the limit arrival rate function λ f (t) defined as in (5.16) (with the subscript
notation added now) and proceed backwards to construct the sequence of arrival rate
functions with this limit, using the usual scaling. Let � f (t) ≡ ∫ t

0 λ f (s) ds for t ≥ 0.
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Let �n(t) ≡ n� f (t/n), so that

λn(t) ≡ λ f (t/n) = 1 + β sin (γ t/n) for 0 < β < 1 and γ > 0 (5.24)

and λ̇n(t) = λ̇ f (t/n)/n. From the perspective of the arrival rate function in model n,
we see that the scaling corresponds to slowing time down by a factor of n, making the
periodic cycles get longer as the scale n gets larger.

Then, by construction, λ̄n(t) ≡ λn(nt) = λ f (t), �̄n(t) ≡ n−1�n(nt) = � f (t)
and �̂n(t) = 0 ≡ �d(t) for all n and t , while

�̃n,t (u) = √
n[� f (t + u/

√
n) − � f (t)] → λ f (t)u (5.25)

as n → ∞ uniformly in t and u, by the definition of a derivative, consistent with the
assumptions in (5.19) and (5.20).

In order to have �d play a role, we can define a more general family of arrival rate
functions,

�n(t) ≡ n� f (t/n) + √
n�d(t/n). (5.26)

With (5.26), we have

�̄n(t) = � f (t) + n−1/2�d(t) and �̂n(t) = �d(t) (5.27)

so that again �̄n → � f and �̂n → �d in D. Instead of (5.25), we now have

�̃n,t (u) = √
n[� f (t + u/

√
n) − � f (t)] + [�d(t + u/

√
n) − �d(t)] (5.28)

so that, just as before, �̃n,t (u) → λ f (t)u as n → ∞ uniformly in t and u over any
bounded interval, now exploiting the assumed continuity of �d . We use the bounded
interval to obtain uniform continuity.

In applications, we would want our system to be system n for some n. For any n to
be appropriate, the long-run average arrival rate should be unchanged at 1, but since
the length of the sinusoidal cycle in λ f is 2π/γ , the length of the sinusoidal cycle in
λn should be 2πn/γ . The key relationship assumed as n → ∞ is that the cycles in
the periodic arrival rate function are of length O(n), where n = (1 − ρ)−2. ��

As a consequence of (5.17)–(5.22), we have associated limits for the scaled arrival
process. To state them, let

Ān(t) ≡ n−1Na(�n(nt)), Ân(t) ≡ n−1/2[An(nt) − n� f (t)] and

Ãn,t (u) ≡ n−1/2[An(nt + u
√
n) − An(nt)], t ≥ 0 and n ≥ 1. (5.29)

Lemma 5.1 (limits for the scaled arrival process) Under the scaling above, we have
the FSLLN

Ān = N̄a,n ◦ �̄n → � f in D as n → ∞ w.p.1, (5.30)
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the associated FCLT

Ân = N̂a,n ◦ �̄n + �̂n ⇒ B ◦ � f + �d in D as n → ∞ (5.31)

and

Ãn,t (u) → λ f (t)u as n → ∞ (5.32)

uniformly in t and u within finite intervals.

Proof Apply the continuous mapping theorem with the composition map, with and
without centering; see Sects. 13.2 and 1.3.3 of [34]. For (5.32), we use the fact that
tightness associated with the weak convergence of N̂a,n in (3.1) implies that

n−1/2[Na(nt + u
√
n) − Na(nt)] ⇒ u as n → ∞ (5.33)

uniformly in t and u within bounded time intervals. In particular,

n−1/2[An(nt + √
nu) − An(nt)] = n−1/2[Na(�n(nt + u

√
n)) − Na(�n(nt))]

= n−1/2[Na(�n(nt) + λ f (t)u
√
n + o(

√
n)) − Na(�n(nt))] ⇒ λ f (t)u

(5.34)

uniformly in t and u within finite time intervals. We use the convergence �̄n → � f

to deduce that �n(nt) < cnt for some constant c for all suitably large n. ��
We now introduce the scaled queueing processes, using the usual heavy-traffic

scaling. Let

Q̂1,n(t) ≡ n−1/2Q1,n(nt), t ≥ 0, (5.35)

so that Q̂n(t) = Q̂1,n(�̄n(nt)), t ≥ 0 by Theorem 3.1. LetWn(t) be the virtual waiting
time at time t in model n and define the associated scaled processes

Ŵn(t) ≡ n−1/2Wn(nt), t ≥ 0. (5.36)

LetDk be the k-fold product space ofDwith itself with the usual product topology. Let
R(t; a, b) be reflected Brownianmotion (RBM)with drift−a and diffusion coefficient
b.

Theorem 5.2 (heavy-traffic limit for the time-varying waiting time) Let the system
start empty. Under the scaling assumptions above, including (5.17)–(5.20),

(Q̂n, Ŵn) ⇒ (Q̂, Ŵ ) in D2 as n → ∞, (5.37)

where

Ŵ (t) ≡ Q̂(t)/λ f (t) and Q̂(t) ≡ R(� f (t);−1, c2a + c2s ), t ≥ 0, (5.38)
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with λ f in (5.16). As a consequence, for each T > 0,

sup
0≤t≤T

{
|Ŵn(t) − (Q̂n(t)/λ f (t))|

}
⇒ 0 as n → ∞ (5.39)

and, for each x ≥ 0,

P(Q̂n(t) > x) → e−2x/(c2a+c2s ) and P(λ f (t)Ŵn(t) > x) → e−2x/(c2a+c2s )

(5.40)

as first n → ∞ and then t → ∞.

Proof We rely on the basic heavy-traffic FCLT for the standardG/G/1 queue covering
the triple (A1,n, Q1,n, D1,n) and related processes, as given in Theorem 9.3.4 of [34]
and the continuity of the inverse function used in the first passage time, as discussed
in Sects. 5.7, 13.6, and 13.7 of [34]. The essential argument follows Sect. 5.4 of the
Internet Supplement of [34], drawing on Theorem 13.7.4 of [34], but we will give a
direct proof.

First, we define the sequence of scaled processes associated with the arrival and
service processes:

Â1,n(t) ≡ n−1/2[Na(nt) − nt], t ≥ 0 and n ≥ 1 (5.41)

and

Ŝ1,n(t) ≡ n−1/2[Ns(nt/ρn) − nt] = n−1/2[Ns(nt/ρn) − nt/ρn] + t,

t ≥ 0 and n ≥ 1. (5.42)

As a consequence,

( Â1,n, Ŝ1,n) ⇒ (Ba, Bs + e) in D2, (5.43)

where Ba and Bs are independent BMs. Thus, Â1,n − Ŝ1,n ⇒ Ba − Bs − e in D
and we can apply Theorem 9.3.4 of [34] to obtain

Q̂1,n ⇒ R(·) ≡ R(·; −1, c2a + c2s ) in D as n → ∞, (5.44)

so that Q̂n = Q̂1,n ◦ �̄n ⇒ R(� f (·)) in D as n → ∞, by applying the continuous
mapping theoremwith the compositionmapwithout centering, as in Sect. 13.2 of [34].

We now come to the more difficult part of the argument. Let Dn(t) and D1,n be the
departure processes associated with system n. Note that

Ŵn(t) ≡ n−1/2Wn(nt) = inf {u ≥ 0 : Dn(nt + u
√
n) − Dn(nt) ≥ Qn(nt)}

= inf
{
u ≥ 0 : n−1/2[Dn(nt + u

√
n) − Dn(nt)] ≥ n−1/2Qn(nt)

}

= inf
{
u ≥ 0 : D̂n,t (u) ≥ Q̂n(t)

}
, (5.45)
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where D̂n,t (u) ≡ n−1/2[Dn(nt + u
√
n) − Dn(nt)]. We have observed that Q̂n ⇒

R(� f (·)) in D as n → ∞; we will now show that D̂n,t (u) → uλ f (t) uniformly in t
and u over the time intervals [0, T ] for 0 < T < ∞.

For that purpose, let B1,n(t) be the amount of time that the server has been busy in
the interval [0, t] in the systemwith queue length Q1,n . Since Dn(nt) = D1,n(�n(nt)),
we have Dn(nt) = Ns(ρ

−1
n B1,n(�n(nt))), t ≥ 0. We obtain

n−1/2[B1,n(�n(nt + u
√
n)) − B1,n(�n(nt))] → uλ f (t) (5.46)

uniformly in t and u in [0, T ] by applying condition (5.20) and the FCLT for B̂1,n con-
tained in Theorem 9.3.4 of [34]. From the assumed FCLT for Ns in (3.5), we obtain the
desired convergence D̂n,t (u) → uλ f (t) uniformly in t and u over the time intervals
[0, T ] for 0 < T < ∞. From there we can apply the continuity of the inverse function
used in the first passage time. This argument directly implies (5.39), where we already
have established that Q̂n ⇒ Q̂ with the specified distribution in (5.38). The joint limit
in (5.37) then follows by the convergence-together theorem, as in Theorem 11.4.7 of
[34].

The last two limits in (5.40) follow immediately from (5.37) by applying the
continuous mapping theorem with the projection at t because the direct limit
R(t;−1, (c2a + c2s )) converges in distribution to an exponential random variable with
mean (c2a + c2s )/2 as t → ∞. ��

Paralleling Theorem 2 and Corollary 1 of [21] for many-server queues, we now
show that any service rate control that stabilizes the queue length in heavy-traffic
cannot also stabilize the virtual waiting time at the same time.

Theorem 5.3 (stabilizing both in heavy traffic) Let the system start empty. Let the
scaling assumptions above apply, including (5.17)–(5.20), but consider any service-
rate control that stabilizes the queue length in the sense that Q̂n ⇒ Q̂ inD as n → ∞,
where Q̂(t) ⇒ Q̂(∞) as t → ∞ with 0 < E[Q̂(∞)] < ∞. Then

(Q̂n, Ŵn) ⇒ (Q̂, Ŵ ) in D2 as n → ∞, (5.47)

where Ŵ (t) ≡ Q̂(t)/λ f (t), t ≥ 0. As a consequence, Ŵn(t) is not stabilized asymp-
totically as first n → ∞ and then t → ∞ unless λ f (t) → λ f (∞) as t → ∞.

Proof We can apply the second half of the proof of Theorem 5.2. Given the assumed
convergence Q̂n ⇒ Q̂ in D as n → ∞, we can apply the tightness that follows from
this convergence to deduce that

n−1/2[Qn(nt + u
√
n) − Qn(nt)] ⇒ 0 as n → ∞ (5.48)

uniformly in t and u over finite intervals. Combined with the limit for Ãn,t in (5.32),
(5.48) implies that

D̃n,t (u) ≡ n−1/2[Dn(nt + u
√
n) − Dn(nt)] ⇒ λ f (t)u as n → ∞ (5.49)
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uniformly in t and u over finite intervals. Thus the limit (5.47) and the subsequent
results hold by the proof of Theorem 5.2. ��
Remark 5.1 (the resulting approximation) The limit in (5.40) leads to approximating
Qρ(t) andWρ(t) by exponential random variables if t is not too small. It also leads to
a time-varying approximation for the time-varying mean. In particular, if we express
the limiting arrival rate function λ f in terms of the original arrival rate function λ and
the traffic intensity ρ, using λ(t) ≡ λρ(t) ≈ λ f ((1 − ρ)2t), then we get

E[Qρ(t)] ≈ c2a + c2s
2(1 − ρ)

≈ ρ(c2a + c2s )

2(1 − ρ)
, (5.50)

and

E[Wρ(t)] ≈ c2a + c2s
2(1 − ρ)λ(t)

= (c2a + c2s )

2(1 − ρ)ρμ̄(λ(t)/λ̄)
≈ ρ(c2a + c2s )

2(1 − ρ)μ̄(λ(t)/λ̄)
,

(5.51)

where μ̄ = λ̄/ρ is the limiting average of μ(t), which exists by (2.1) and (3.4). The
last approximation in each case is obtained to make the approximation consistent with
the exact result for the M/M/1 model, and is justified by using ρ ≈ 1; see [30] for
a discussion of such refinements to direct heavy-traffic approximations. That final
formula in (5.51) differs from the familiar heavy-traffic approximation for the steady-
state wait in a G/G/1 queue, E[W ] ≈ ρ(c2a + c2s )/2(1 − ρ)μ, by simply inserting
the relative arrival rate λ(t)/λ̄ in the denominator. (We assume that t is sufficiently
large, or we have different initial conditions, so that a steady-state formula would be
appropriate otherwise.) The joint limit also leads to the pathwise approximation

Wρ(t) ≈ Qρ(t)

μ̄(λ(t)/λ̄)
, t ≥ 0. (5.52)

��
Remark 5.2 (Application of Corollary 5.1) For the sequence ofMt/Mt/1models with
long-run average arrival rates λ̄n = 1 and average service rate 1/ρn = 1/(1−(1/

√
n)),

we can apply Corollary 5.1 to obtain a limit for the mean waiting time consistent with
Theorem 5.2 under the assumed scaling. Again assume that W1,n(t) can be regarded
as being in steady state distributed as W ∗

1,n with mean ρ2
n/(1− ρn) ∼ √

n as n → ∞,

so that E[Ŵ ∗
1,n] ≡ E[W ∗

1,n]/
√
n → 1 as n → ∞. Then Corollary 5.1 implies that

E[Ŵn(t)] ≡ E[Wn(nt)/
√
n] → 1

λ f (t)
as n → ∞. (5.53)

Paralleling (5.15), the reasoning is

E[Ŵn(t)] =
∫ ∞

0
P(Wn(nt) > x

√
n) dx =

∫ ∞

0
P(�−1

n,t (W
∗
1,n) > x

√
n) dx
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=
∫ ∞

0
P(Ŵ ∗

1,n > �̃n,t (x)) dx = (1 − (1/
√
n))

∫ ∞

0
e−�̃n,t (x)/(1−(1/

√
n)) dx

→
∫ ∞

0
e−λ f (t)x dx = 1

λ f (t)
as n → ∞. (5.54)

However, for the approximation, we should not simply replace 1−ρn = 1− (1/
√
n)

by its limit 1. Instead, the approximation should be

E[Ŵn(t)] ≡ E[Wn(nt)/
√
n] ≈ (1 − (1/

√
n))2

λ f (t)
, n ≥ 2. (5.55)

To compare these to the limit, we would write instead

E[Ŵn(t)]
(1 − (1/

√
n))2

≈ 1

λ f (t)
. (5.56)

��
Example 5.3 (more with the sinusoidal example) To illustrate Theorem 5.2 and
Remark 5.2, we again consider the sinusoidal example in Examples 5.1 and 5.2 with
base arrival rate functionλ f (t) ≡ 1+β sin (γ t)with parametersβ = 0.2 and γ = 1.0.
We now consider a sequence of Mt/Mt/1 models indexed by n with the same base
arrival rate function λ f (t) and the scaling in this section with 1 − ρn = 1/

√
n. As in

Example 5.2, we let λn(t) ≡ λ f (t/n), t ≥ 0 and n ≥ 1. We now plot the scaled peri-
odic steady-state mean waiting time function, using (5.56), over one (scaled) cycle
[0, 2π ] in Fig. 5. Figure 5 strongly supports the heavy-traffic limit established in
Theorem 5.2, confirming that the scaled mean waiting time is not stabilized by the
rate-matching control and has the indicated form. ��

We formalize the qualitative conclusion about the implications of time variability
to be drawn from formula (5.51) in the following corollary.

Fig. 5 The scaled periodic
steady-state time-varying mean
wait E[Ŵn(t)]/ρ2n ≡
E[Wn(nt)]/ρ2n

√
n) as in (5.56)

with the scaled sinusoidal arrival
rate function having β = 0.2 and
γ = 1.0 for ρn = 0.7 and 0.9,
compared to the limit 1/λ f (t),
over one cycle [0, 2π ]
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Corollary 5.2 In the heavy-traffic limit of Theorem 5.2, the approximating time-
varying mean wait at time t is decreasing in the relative arrival rate λ(t)/λ̄, being
largest when λ(t)/λ̄ is smallest. If λ↓ ≤ λ(t) ≤ λ↑ for all t ≥ 0, then provided that t
is sufficiently large,

λ↓

λ↑ ≤ E[W (t1)]
E[W (t2)] ≤ λ↑

λ↓ for all t1, t2 such that t1 > t and t2 > t. (5.57)

In applications we have a single model with a fixed traffic intensity ρ. The applied
relevance of the heavy-traffic limit in Theorem 5.2 will depend on the limiting cumu-
lative rate function � f in (5.19). To usefully approximate an observed time-varying
arrival rate, it is important that� f have time variability seen in the application.Wenow
want to see the consequence of omitting the time scaling of the arrival rate functions
in Example 5.2, so we return to that example.

Example 5.4 (the sinusoidal examplewithout time scaling)Wenow return toExample
5.2 and suppose instead that we do not include the time scaling as n increases. It is
natural to approach this through the arrival rate function. If we do so, then we would
have λnon (t) = λ f (t) and thus �no

n (t) = � f (t) for all n. Having done this, we see that
�̄no

n (t) = n−1λ f (nt) → t in D as n → ∞ and �̃no
n,t (u) = n−1/2[� f (nt + u

√
n) −

� f (nt)] → uλ̄ = u as n → ∞ uniformly in t and u, because we are looking at the
average of λ f over an interval of length u

√
n multiplied by u. Hence, we do not see

the impact of the periodicity in the limit.
Wemight instead omit the time scaling in the cumulative arrival rate function. Then

we would have the cumulative arrival rate function

�#
n(t) ≡ n� f (t), t ≥ 0, (5.58)

without including the time scaling in �n above. Then we still get the limits in (5.19)
and (5.20), but now �#

f (t) = t and λ#f (t) = 1 for all t ≥ 0. Thus, if we do not scale
time, the limits in (5.19) and (5.20), and thus also in Theorem 5.2, reveal no impact
of the time variability. This example is consistent with [8] and Corollary 3.1 in [35].��

6 A periodic arrival rate function

Let us now consider the special case of a periodic arrival rate function λwith period c;
see [16,27] for background. (The sinusoidal function in Examples 5.1–5.4 is a special
case.) In addition, we assume that the stationary model (A1, D1, Q1) has a limiting
steady-state version, by which we mean the following process limit

{(A1(t + s) − A1(s), D1(t + s) − D1(s), Q1(t + s)) : t ≥ 0}
⇒ {(A∗

1(t), D
∗
1(t), Q

∗
1(t) : t ≥ 0} (6.1)

in D3 as s → ∞, where Q∗
1 is a stationary process, while (A∗

1, D
∗
1) has stationary

increments.
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6.1 A periodic steady state

With these assumptions, we can deduce that our model has a periodic steady state. The
following expresses a process version of that periodic steady state. It is significant that
the one-dimensional marginals Q(t) have a simple limiting steady-state distribution,
independent of the periodic structure, but the 2-dimensional (and higher) marginals
(Q(t1), Q(t2)) only have a limiting periodic steady-state distribution, with the periodic
structure.

Theorem 6.1 (periodic steady state) If λ is periodic with period c and (6.1) holds,
then

{(A(t + kc) − A(kc), D(t + kc) − D(kc), Q(t + kc),W (t + kc)) : t ≥ 0}
⇒ {(A∗(t), D∗(t), Q∗(t),W ∗(t)) : t ≥ 0} in D4 as k → ∞, (6.2)

where (Q∗,W ∗) is a periodic process with the marginal distribution of Q∗(t) in R

independent of t , while (A∗, D∗) has periodic increments, i.e., the distribution of
{(A∗(t + kc) − A∗(kc), D∗(t + kc) − D∗(kc), Q∗(t + kc),W ∗(t + kc)) : t ≥ 0} in
D4 is independent of k.

Proof With the assumptions, Theorem 3.1 implies that (6.2) holds for the triple
(A, D, Q). Then (5.1) and (5.2) imply that the same is true for W . (Theorem 5.2
and (5.51) yield an approximation for that periodic steady-state variable W ∗(t).) ��

In this context of a periodic steady-state distribution, under regularity conditions, the
waiting times of successive arrivals will directly have a steady-state distribution. For
example, if the arrival process Na is a renewal process with a non-lattice interarrival-
time distribution, then the waiting time of the kth arrival Wn,k should converge to a
proper steady-state limitWn,∞ as k → ∞ for each n, because the arrivals do not occur
at fixed places within a cycle. The periodic arrival rate implies that the steady-state
wait Wn,∞ should be a continuous mixture of W ∗

n (s) over a cycle, i.e.,

P(Wn,∞ > w) =
∫ nc
0 λn(s)P(W ∗

n (s) > w) ds

ncλ̄
; (6.3)

see Proposition A1 in the Appendix of [24].
However, Theorem 5.2 provides a heavy-traffic limit as n → ∞ for the integrand

in (6.3), which is independent of the time argument s. Hence, we see that the limit in
(5.40) should apply to Ŵn,∞ as well as λ f (t)Ŵn(t); i.e., paralleling (5.51), we have
the associated heavy-traffic approximation

E[Wρ,∞] ≈ ρ(c2a + c2s )

2(1 − ρ)μ̄
. (6.4)

As a consequence, the expected waiting time of successive arrivals is also stabilized by
the rate-matching service rate control. However, this occurs, not because the expected
waiting time is independent of the time of arrival, but because successive arrivalsmight

123

Author's personal copy



Queueing Syst (2015) 81:341–378 367

occur anywhere in the periodic cycle. That is, we focus on Wn,k , the waiting time of
the kth arrival as k gets large, which has no fixed arrival time within a cycle. We can
only conclude that (6.3) should hold. If we consider possible arrival times, then we
should focus on E[W (t)], which is periodic.

6.2 A heavy-traffic limit for the waiting times of successive arrivals

We now show that a heavy-traffic limit can be obtained for the waiting time sequence
{Wn,k : k ≥ 0} in the periodic setting of Sect. 6 above, which has a periodic limit.
This shows that the order of the two limits as t → ∞ and as n → ∞ cannot be
interchanged, just as for the multi-server queues with deterministic service times in
[20]. In the heavy-traffic limit, the arrival times occur at fixed places within the cycle.

To state the limit, let

Ẑn(t) ≡ n−1/2Wn,�nt�, t ≥ 0 and n ≥ 1, (6.5)

where �x� is the floor function denoting the greatest integer less than or equal to x .

Theorem 6.2 (heavy-traffic limit for the waiting times of successive arrivals) Let the
system start empty. Under the scaling assumptions above, including (5.17)–(5.20),

Ẑn ⇒ Ẑ = Ŵ ◦ �−1
f in D as n → ∞, (6.6)

where Ẑn is defined in (6.5) and

Ẑ(t)
d= R(t;−1, c2a + c2s )

λ f (�
−1
f (t))

, t ≥ 0, (6.7)

with λ f (�
−1
f (t)) being a periodic function with period cλ̄.

Proof Note that ‖Ẑn − Ŵn ◦ Ā−1
n ‖T ⇒ 0 as n → ∞ for any T > 0. Any difference is

due to multiple arrivals at the same time, which is o(
√
n) uniformly in t over bounded

intervals by the tightness of Ân . By the continuous mapping theorem with the inverse
map, Ā−1

n → �−1
f in D as n → ∞; see Sect. 13.6 of [34]. Hence, by the continuous

mapping theorem with composition, we have the claimed (6.6). We then obtain (6.7)
from (5.38).

For the final statement, since λ f is periodic with period c, we have � f (nc + t) =
ncλ̄+� f (t), 0 ≤ t ≤ c. As a consequence,�−1

f (ncλ̄+t) = nc+�−1
f (t), 0 ≤ t ≤ cλ̄.

Since λ f is periodic with period c, λ f (nc+�−1
f (t)) = λ f (�

−1
f (t)), 0 ≤ t ≤ cλ̄, and

λ f (�
−1
f (ncλ̄ + t)) = λ f (�

−1
f (t)), 0 ≤ t ≤ cλ̄, showing that indeed λ f (�

−1
f (t)) is a

periodic function with period cλ̄. ��
We remark that the steady-state approximation in (6.4) can be obtained from (6.7)

if we consider t sufficiently large that we replace the RBMwith its exponential steady-
state distribution and we replace λ f (�

−1
f ) in the denominator by its long-run average
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λ̄ f = 1. As in [20], the periodic heavy-traffic limit shows the possibility of nearly
periodic behavior for systems in practice.

Theorems 3.1 and 6.1 are useful for conducting simulation experiments in order to
evaluate the time-varying behavior of the queue length Q(t) and the virtual waiting
timeW (t) with the rate-matching service-rate control. First, Theorem 3.1 implies that
Q(t) approaches the steady-state limiting distribution of Q1(t) in the associated sta-
tionaryG/G/1model (assuming that it has a proper limiting steady-state distribution).
Hence, it suffices to start by simulating the stationary G/G/1 model in a conventional
way.

Second, Theorem 6.1 implies that, if the arrival rate function is periodic with period
c, then the stochastic process {(Q(t),W (t)) : t ≥ 0} has a periodic steady-state dis-
tribution {(Q∗(t),W ∗(t)) : t ≥ 0}, where (Q∗(t + c),W ∗(t + c))

d= (Q∗(t),W ∗(t))
for all t ≥ 0. Hence, if we consider examples with periodic arrival processes, then we
can observe when the periodic steady state is reached, and thus know when the impact
of the initial conditions will have dissipated.

Formula (5.6) requires that we will be able to compute �−1, while Theorem 5.1
requires that we will be able to compute �−1

t . That task is simplified if we have a
periodic function. In particular, if λ is periodic with periodic cycle c and with long-run
average λ̄ = 1, then

�−1(kc) = �(kc) = kc for all k ≥ 1. (6.8)

As a consequence, it suffices to know the inverse over just one cycle, because

�−1(kc + t) = kc + �−1(t), 0 ≤ t ≤ c. (6.9)

Hence, we could compute, tabulate, and apply the values of�−1(ck/n) for 1 ≤ k ≤ n
to compute relevant inverse function values.

Example 6.1 (Example 5.2 revisited) Consider the sinusoidal arrival rate function
λ = λ f in (5.16), so that

�(t) = t − (β/γ )(cos (γ t) − 1), t ≥ 0, (6.10)

and

�t (u) = u − (β/γ )(cos (γ (t + u)) − cos (γ t)), t ≥ 0. (6.11)

Also note that, since the periodic cycles are of length 2π/γ , we have

�(2kπ/γ ) = 2kπ/γ = �−1(2kπ/γ ) for all k ≥ 1.

We conclude this section by observing that the heavy-traffic scaling of time and
space in Sect. 5 makes the approximate simulation method in (3.16) more appropriate
as n increases. As observed just prior to Example 5.2, the service requirements and
service times are of order O(1) as n → ∞. However, the arrival rate and service rate

123

Author's personal copy



Queueing Syst (2015) 81:341–378 369

change more slowly as n increases. Indeed, the derivative of the service rate is O(1/n)

as n → ∞. This provides strong support for approximation (3.16), showing that it is
asymptotically correct as n → ∞ with the scaling.

7 Controls to stabilize the expected waiting time

In this section, we consider controls aimed to stabilize the time-varying waiting time
W (t).

7.1 An impossibility result

Paralleling Theorem 5.3, we now show that any control that stabilizes the waiting time
distribution P(W (t) > x), x ≥ 0, cannot also stabilize the mean number waiting in
queue E[(Q(t) − 1)+] unless the arrival rate function is constant.

Theorem 7.1 (impossibility of stabilizing both) Consider a Gt/Gt/1 system starting
empty in the distant past. Suppose that a service-rate control makes the distribution
of W (t) independent of t with finite positive mean EW. Then the only arrival rate
functionsλ forwhich0 < λL ≤ λ(t) ≤ λU < ∞ for all t and themeannumberwaiting
in queue E[(Q(t)−1)+] is a finite constant, independent of t , are the constant arrival
rate functions.

Proof The key step is to express the mean number waiting in queue in terms of the
time-varying waiting time distribution using the time-varying version of Little’s law
as in [2,11], and then perform a change of variables to get

E[(Q(t) − 1)+] =
∫ t

−∞
λ(s)P(W (s) > t − s) ds

=
∫ ∞

0
λ(t − s)P(W (t − s) > s) ds, t ≥ 0. (7.1)

Under the assumptions that (i)W (t)
d= W and (ii) E[(Q(t)−1)+] = m for all t , (7.1)

implies, for any ε > 0, that

∫ ∞

0
[λ(t + ε − s) − λ(t − s)]P(W > s) ds = 0 for all t. (7.2)

However, (7.2) is not possible because the left side can be rewritten as

∫ ∞

0
λ(t − s)][P(W + ε > s) − P(W > s)] ds ≥ λLε > 0 for all t, (7.3)

using the tail-integral formula for the mean. ��
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The argument in Theorem 7.1 applies directly to E[Q(t)] if we replace W (t) be
the sojourn time (waiting time plus service time). Since

E[Q(t)] = P(Q(t) ≥ 1)E[(Q(t) − 1)+|Q(t) ≥ 1], t ≥ 0, (7.4)

we see that in heavy traffic, under regularity conditions, P(Q(t) ≥ 1) ≈ 1 and
E[(Q(t) − 1)+]/E[Q(t)] ≈ 1, so that the result applies to E[Q(t)] in heavy traffic,
consistent with Theorem 5.3.

Remark 7.1 (simple proof of Lemma 1 in [21]) Theorem 7.1 is similar to Lemma 1
of [21] used to prove Corollary 1 to Theorem 2 in Sect. 4 of [21]. A more elementary
proof than given there can be provided by using amodification of the proof of Theorem
7.1 above: Given that m(t + ε) = m(t) for any ε > 0 and any t ≥ w as in (16) of
[21], for any for any ε > 0, we can write

m(t + ε) − m(t) = 0 =
∫ w

0
[λ(t + ε − x) − λ(t − x)]Fc(x) dx, t ≥ w,

which is equivalent to

0 =
∫ w

0
λ(t − x)[Fc(x − ε) − Fc(x)] dx, t ≥ w,

=
∫ ∞

0
λ(t − x)[P((A ∧ w) + ε > x) − P(A ∧ w > x)] dx, t ≥ w,

where A is a random variable with cdf F and A ∧ w ≡ min {A, w}, but that is not
possible because, by the tail-integral formula for the mean and the lower bound on λ,

∫ ∞

0
λ(t − x)[P((A ∧ w) + ε > x) − P(A ∧ w > x)] dx

≥ λL(E[(A ∧ w) + ε] − E[A ∧ w] = λLε > 0.

7.2 The first square-root service-rate control

We now examine the two square-root service-rate controls in (2.3) and (2.4) as ways
to stabilize the waiting time. For multi-server models with time-varying arrival rates,
the various approaches to server staffing (choosing a time-varying number of servers)
in order to stabilize the performance of a queueing system with a time-varying arrival
rate function lead to a square-root staffing formula, i.e.,

s(t) = m(t) + ξ
√
m(t), (7.5)

where m(t) is an appropriate offered load, corresponding to an expected number of
busy servers in an associated infinite-server model, with different methods to find the
quality-of-service parameter ξ in (7.5) in order to focus on a particular performance
measure; see [5,21,37] and references therein.
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To apply (7.5) here, we need to define an appropriate offered load in the present
setting, which we do not take up here. A direct analog in our setting is the square-root
service-rate control in (2.3). From Theorem 5.2, we see that, if we are interested in
stabilizing the expected virtual waiting time E[W (t)], then the rate-matching control
in (2.1) overstaffs when the arrival rate λ(t) is relatively large and understaffs when
it is relatively low. Formula (2.3) acts to correct that bias. We now show that the
square-root service-rate control in (2.3) is asymptotically optimal with respect to an
appropriate criterion (which is not stabilizing) with an appropriate time scaling.

To establish this positive asymptotic result, we exploit connections to the earlier
work on optimal capacity allocation in [3,18,19,36] mentioned in Sect. 1. The goal in
that work is to allocate service ratesμi to each of n single-server queues with specified
arrival rates λi . The object is to minimize the total expected steady-state waiting time
at all queues,

∑n
i=1 E[Wi ] subject to a budget constraint ∑n

i=1 riμi ≤ M , where ri is
the cost of allocating rate μi at queue i and M > � ≡ ∑n

i=1 riλi . (The waiting time
is the elapsed time from customer arrival to starting service.)

The key to a simple solution of the steady-state capacity-allocation problem is
the product-form steady-state distribution for open queueing networks. Since the n
queues are mutually independent in steady state, the allocation of μi affects queue
i but no other queue. The product form is exact for a Markovian Jackson network,
where in steady state each queue behaves as anM/M/1model, and can be a reasonable
approximation for a generalized Jackson network, where each queue behaves as an
GI/GI/1 model. Interestingly, this problem is also solved by a square-root formula
much like (7.5). Assuming that E[Wi ] ≈ λi (c2a,i + c2s,i )/2(μi − λi ), where c2a,i and

c2s,i are the squared coefficients of variation (scv, variance divided by the square of the
mean) of an interarrival time and a service time (which is exact for M/M/1), and the
product form is approximately valid, the optimal allocations are

μi = λi +
(M − �)

√
λi ri (c2a,i + c2s,i )∑n

j=1

√
λ j r j (c2a, j + c2s, j )

. (7.6)

We make three initial observations: First, if ri (c2a,i + c2s,i ) is independent of i , then
(7.6) looks more like (7.5). Second, we note that the theoretical bases for (7.5) and
(7.6) are quite different. Formula (7.5) can be explained by the central limit theorem
(for example, the number of busy servers in the Mt/GI/∞ infinite-server model is
Poisson, and thus approximately Gaussian, with mean and variance equal to m(t)),
whereas formula (7.6) follows from basic optimization theory (the form of the convex
objective function withμi −λi in the denominator of each term and the independence
of the queues). Third, the form of the solution in (7.6) depends critically on the form
of the objective function. If we want to balance the ratio of the mean waiting time
to the mean service time or minimize the sum of these ratios, then the rate-matching
service rate control in (2.1) would be optimal.

The nice analysis leading to (7.6) would apply to our time-varying arrival rate-
setting under two conditions: (i) if we had a similar objective function involving the
sum of the mean waiting times at different times, and (ii) if we could assume that the
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performance of the queue at one time is approximately independent of its performance
at another time,with the allocationof capacity at one timenot affecting theperformance
at any other time.

To consider condition (i), we first need to replace the steady-state waiting time by
the time-varying virtual waiting time, W (t), i.e., the time an arrival at time t would
have to wait if there were an arrival at time t . Condition (i) should be approximately
satisfied if we elect to minimize the average mean time-varying expected waiting time,
i.e., if for some T > 0 and m > 1, the objective function is

1

m

m∑
k=1

E[W (kT/m)] (7.7)

and we have the service rate constraint

∫ T

0
μ(t) dt > ρ−1

∫ T

0
λ(t) dt for 0 < ρ < 1. (7.8)

However, condition (ii) ismore problematic. Clearly, condition (ii) cannot hold exactly,
because the performance at any time depends on the history prior to that time. Nev-
ertheless, it might hold approximately. Indeed, for queues with time-varying arrival
rates, condition (ii) is captured by the pointwise stationary approximation (PSA), dis-
cussed in [1,13,25,33]. Assuming that the PSA is valid as an approximation, then
(7.5) is optimal. We state the asymptotic result for Markovian systems that follows
from [33], which has been established.

Theorem 7.2 (asymptotic optimality in the PSA scaling) Consider the Markovian
Mt/Mt/1 model with the time-varying arrival rate λ(t) and service rate μ(t), where
μ(t) is subject to the constraint that μ(t) > λ(t) for all t , 0 ≤ t ≤ T . Consider
a sequence of models indexed by n in which both the arrival rate function and the
service rate function in model n are multiplied by n. If the goal is to choose a service
rate function μ(t) to minimize the objective function (7.7) subject to the constraint in
(7.8), then the PSA control in (2.3) is asymptotically optimal as n → ∞.

Proof We combine the asymptotic result in [33], which shows that the system asymp-
totically has the steady state distribution of an M/M/1 queue at each time with the
traffic intensity at that time, independent of other times, and the optimization in [18].��

We conclude by (i) observing that Theorem 7.2 evidently extends to Gt/Gt/1
models, but producing a control analogous to (7.6) and (ii) emphasizing that the goal
expressed by the objective function in Theorem 7.2 is not stable performance and,
indeed, Fig. 2 shows that E[W (t)] is not fully stabilized with the square root control
in (2.3) even though PSA is appropriate in that example.

7.3 The second square-root service-rate control

We now consider the second square-root service-rate control in (2.4). It too is based on
assuming that we have time scaling so that the PSA is appropriate. Thus, we directly
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assume that the expected time-varyingwaiting time at each time t can be approximated
by

E[W (t)] ≈ ρ(t)V

μ(t)(1 − ρ(t))
, t ≥ 0, (7.9)

as would be appropriate if the Gt/Gt/1 model were in steady state at each time t with
arrival rate λ(t), service rate μ(t), and traffic intensity ρ(t) ≡ λ(t)/μ(t) < 1, where
V is a variability formula, which we take to be V ≡ (c2a + c2s )/2.

We then assume that the goal is to choose μ(t) to stabilize E[W (t)] at the target w
for all t . Thus, from (7.9), we have the equation

w = λ(t)V

μ(t)2 − μ(t)λ(t)
, (7.10)

which leads to the quadratic equation in x = μ(t)

wx2 − λ(t)wx − λ(t)V = 0, (7.11)

which has the solution given in (2.4) for ζ ≡ 4V/w.
Since

√
1 + ε = 1+ ε/2+ o(ε2) as ε ↓ 0, we see that if we let the target w → ∞,

then the solution to (7.11) approaches

x ≡ μ(t, w) = λ(t) + V/w. (7.12)

That can be formalized by considering a sequence of models indexed by n, where we
increase the arrival and service rates with n even larger than in Theorem 7.2. As for
Theorem 7.2, we consider Mt/Mt/1 models.

Theorem 7.3 (heavy-traffic behavior of the service rate control (7.3) with PSA) Con-
sider a sequence of Mt/Mt/1 models indexed by n with λn(t) ≡ n pλ(t) for p > 1,
where λ(t) is continuous and strictly positive. Suppose that the service-rate control in
(7.3) is used as a function of the target w in the form μn(t) = λn(t) + n p−1/2/w for
t ≥ 0. Then, for each t > 0,

√
n(1 − ρn(t)) → 1/wλ(t),

n−1/2Qn(t) ⇒ wλ(t)X and np−(1/2)Wn(t) ⇒ wX as n → ∞, (7.13)

where X is a mean-1 exponential random variable, so that the scaled waiting time is
stabilized in the limit.

Proof The proof can be a variant of the proof of the PSA limit in [33] used in the proof
of Theorem 7.2. For any T > 0, there exists λ↓ and λ↑ such that 0 < λ↓ ≤ λ(t) ≤
λ↑ < ∞, 0 ≤ t ≤ T . We can thus construct bounding stationary M/M/1 models with
the maximum arrival rate and minimum service rate over the interval [0, T ] for each
n. These are ordered by sample-path stochastic order. As a consequence, we deduce
that the set of random variables {n−1/2Qn(t) : 0 ≤ t ≤ T, n ≥ 1} is stochastically
bounded.
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Wenext observe thatwe can approximate theMt/Mt/1model in an interval [t−δ, t]
by a stationary M/M/1 model with constant arrival rate λn(t) and associated service
rates. By the continuity of λ, for any ε > 0, there is a δ > 0 such that λ(t)−ε ≤ λ(s) ≤
λ(t) + ε, t − δ ≤ s ≤ t . Hence, bounds can be constructed above and below that are
arbitrarily close; i.e., we can consider λ(s) as essentially constant for s ∈ [t − δ, t].
Because {n−1/2Qn(t − δ) : n ≥ 1} is stochastically bounded and the scaling of the
arrival rate function, we can apply standard heavy-traffic arguments to deduce that
n−1/2Qn(t) ⇒ wλ(t)X as n → ∞; i.e., we get the steady state of the RBM limit
at time t . We then can apply (5.1) and (5.2) to deduce that n p−(1/2)Wn(t) ⇒ wX ,
completing the proof. ��

Evidently, Theorem 7.3 extends to a large class of Gt/Gt/1 queues, provided that
approximation (7.9) is appropriate. Exact formulas apply for Mt/Gt/1 queues, while
a large class of heavy-traffic limits are consistent with (7.9) as well.

Remark 7.2 (applying the reasoning to the first square-root service-rate control in
(2.3)) We can also apply the reasoning in (7.9) and (7.10) to see what happens if we
aim to stabilize the mean waiting time at w. Combining (7.10) with (2.3), we see that
the solution is

w = (V/ξ)

1 + √
λ(t)

(7.14)

which shows that stabilization cannot occur even with long cycles where PSA is a
good approximation.

8 Simulation examples

The performance of the staffing algorithms developed in this paper have been sub-
stantiated with simulation experiments. For all experiments, the mean values were
estimated by performing 10,000 i.i.d. replications of individual runs. For γ = 0.001,
the time interval is [0, 2 × 104], which is about three cycles. We first consider the
rate-matching service-rate control in (2.1) with traffic intensity ρ = 0.8. The exact
service times are generated using (3.12), but for such long cycles the approximations
in (3.13) and (3.14) yield visually identical plots; that is not true for larger γ such as
0.1.

We illustrate the results in this paper by displaying simulation results for the
Gt/Gt/1 model with the sinusoidal arrival rate function λ(t) ≡ 1 + β sin γ t , as
in (5.16), with parameter β = 0.2 and several values of γ . We primarily focus on the
Mt/Mt/1 model with γ = 0.001; see Figs. 1, 2, and 3 in Sect. 2. Since a sine cycle
is 2π/γ , such a small γ makes for long cycles, one cycle being of length 6.28× 103.
Consistent with Figs. 1, 2, and 3 and Theorems 3.1 and 4.2, corresponding estimates
of the time-varying delay probability show that, just like E[Q(t)], it is stabilized by
the rate-matching control (2.1), but not by the two square-root controls (2.3) and (2.4).

Figure 3 shows the performance estimates for the second square-root service-rate
control in (2.4) with parameter ζ = 1.0, again with the same arrival process as before.
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Since V = 1 in this case and ζ = 4V/w for Eq. (7.11), we see that ζ = 1 should
stabilize the mean waiting time at 4.0, provided that PSA is appropriate, which is the
case with γ = 0.001. Figure 3 shows that this second square-root service-rate control
in (2.4) indeed stabilizes the mean waiting time at the targeted value 4.0 after an initial
transient period, but does not stabilize the mean queue length.

The stabilization of E[Q(t)] and P(W (t) > 0) = P(Q(t) > 0), but not of
E[W (t)], by the rate-matching control, as illustrated by Fig. 1, remains true for all γ ,
as illustrated by the corresponding plots for γ = 0.1 in Fig. 6. The simulation run is
now over the time interval [0, 2000], but only the last three cycles are shown, where
each is of length 2π ≈ 6.28.

However, this good property of the rate-matching control (holding for all γ ) does
not apply to the second square-root control, because it depends on the validity of the
PSA. The waiting times cease to be stabilized for larger values of γ , where PSA no
longer holds, as illustrated by Fig. 7, which shows the case of γ = 0.1.

As γ → ∞, the cumulative arrival rate function approaches a linear function and
the arrival process approaches a stationary Poisson process, so that the performance of

Fig. 6 Simulation estimates of the time-varying mean number in the system, E[Q(t)] (left) and the mean
waiting time, E[W (t)] (right) for the Mt/Mt/1 model with the rate-matching service-rate control in (2.1)
for the same sinusoidal arrival rate function except shorter cycles based on γ = 0.1

Fig. 7 Simulation estimates of the time-varying mean number in the system, E[Q(t)] (left) and the mean
waiting time, E[W (t)] (right) for the Mt/Mt/1 model, having the same sinusoidal arrival rate with shorter
cycles (γ = 0.1), with the second square-root service-rate control in (2.4)
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Fig. 8 Simulation estimates of the time-varying mean number in the system, E[Q(t)] (left) and the mean
waiting time, E[W (t)] (right) for the Mt/Mt/1 model with the rate-matching service-rate control in (2.1)
for the same sinusoidal arrival rate function with very short cycles based on γ = 10

Fig. 9 Simulation estimates of the time-varyingmean number in the system, E[Q(t)] and themeanwaiting
time, E[W (t)] for the Gt/Gt/1 model with the rate-matching control in (2.1) (left) and second square-
root control in (2.4) (right) for long cycles γ = 0.001. The arrival rate is as before, while the underlying
processes Na and Ns are both H2 renewal processes with c2 = 2

the Mt/Mt/1 model with the rate-matching control approaches that of the stationary
M/M/1 model (proved as in [31]). That phenomenon can already be seen from γ =
10, where E[W (t)], E[Q(t)], and P(W (t) > 0) are all stabilized by all the controls,
as shown in Fig. 8 for the rate-matching control. Similar plots hold for the two square-
root service-rate controls too for γ = 10. As for γ = 1, each simulation run is over
the interval [0, 2000], but only the last three cycles are shown. In this case each cycle
is of length 2π/10 ≈ 0.628. Significant averaging is to be expected since the average
waiting time is now several cycle lengths.

Simulation experiments were also conducted for non-MarkovianGt/Gt/1models,
constructed by letting the base counting processes Na and Ns be renewal processeswith
times between renewals being i.i.d. hyperexponential (H2,mixtures of two exponential
distributions) and Erlang (E2, sums of two i.i.d. exponential random variables). The
H2 distributions were chosen to have mean 1 and squared coefficient of variation (scv,
variance divided by the square of the mean) c2 = 2. Figure 9 shows the performance
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Fig. 10 Simulation estimates of the time-varying mean number in the system, E[Q(t)] and the mean
waiting time, E[W (t)] for the Gt/Gt/1 model with the rate-matching control in (2.1) (left) and second
square-root control in (2.4) (right) for long cycles γ = 0.001. The model is the same as for Fig. 9 except
the service times are now E2

of the rate-matching service-rate control (left) and second square-root service-rate
control (right) for the case in which Na and Ns are both H2 renewal processes with
c2 = 2, while Fig. 10 shows the corresponding result for the case in which the service
times are instead E2.
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