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Abstract

Motivated by non-Poisson stochastic variability found in service system arrival data, we ex-
tend established service system staffing algorithms using the square-root staffing formula to allow
for non-Poisson arrival processes. We develop a general model of the non-Poisson nonstationary
arrival process that includes as a special case the nonstationary Cox process (a modification of
a Poisson process in which the rate itself is a nonstationary stochastic process), which has been
advocated in the literature. We characterize the impact of the non-Poisson stochastic variability
upon the staffing through the heavy-traffic limit of the peakedness (ratio of the variance to the
mean in an associated stationary infinite-server queueing model), which depends on the arrival
process through its central limit theorem behavior. We provide simple formulas to quantify the
performance impact of the non-Poisson arrivals upon the staffing decisions, in order to achieve
the desired service level. We conduct simulation experiments with non-stationary Markov mod-
ulated Poisson arrival processes with sinusoidal arrival rate functions to demonstrate that the
staffing algorithm is effective in stabilizing the time-varying probability of delay at designated
targets.
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1 Introduction

From analysis of service system data, e.g., [1, 2, 6, 18, 23, 24], there is consensus that (i) the arrival

rate typically varies significantly over the day in almost all service systems and (ii) service times

usually fit a lognormal distribution far better than an exponential distribution. The situation is

less clear for the stochastic properties of the arrival processes.

1.1 Non-Poisson Properties of Arrival Data

Statistical analysis of arrival data from intervals within a single day in call centers and hospital

emergency departments, where arrivals primarily occur exogenously based on individual choice, are

consistent with the commonly assumed nonhomogeneous Poisson process (NHPP) [6, 23, 24], but

analysis of data from multiple days, even restricted to the same hour and the same day of the week,

show significant over-dispersion, inconsistent with the Poisson property with a deterministic arrival

rate; see §§1.4 and 4-7 of [23]. Similarly, in [25] appointment-generated arrivals to an endocrinology

clinic were found to be consistent with an NHPP within each day, but the daily totals over multiple

days show significant under-dispersion, as expected because arrivals are controlled via appointment

systems.

Indeed, several authors have found significant non-Poisson properties in service system arrival

processes; see [4, 20, 22, 52]. In response, it has been suggested that the arrival process ought to be

a nonstationary Cox process (doubly stochastic Poisson process), which is a Poisson process where

the arrival rate itself is a nonstationary stochastic process; see [4, 5, 20, 52]. Hence, we develop

an arrival process model that encompasses those suggestions and develop a staffing algorithm to

stabilize performance for that model. We also show how to apply the algorithm to set staffing levels

from arrival data, without creating a complete arrival process model, by estimating the index of

dispersion for counts (IDC) of the arrival process, as in [8].

1.2 Two Forms of Scale: Spatial and Temporal

Experience indicates that an effective staffing algorithm should depend on two forms of scale:

spatial and temporal; see [18]. By “spatial,” we mean size, i.e., the typical number of servers.

The size of a queueing system has a significant influence on performance. For example, the typical

traffic intensity (server utilization) tends to be significantly greater in a queueing system with

many servers, under normal loading; see [45]. In addition, the average waiting time before starting

service in a queueing system tends to be significantly less (greater) than the average service time in
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a queueing system with many (few) servers, under normal loading. In this paper we are primarily

concerned with larger sizes. Accordingly, most of our examples have about 100 servers, but we also

consider a few examples with 4− 20 servers.

By “temporal scale,” we mean the relevant time scale. For most service systems, the relevant

time scale from the perspective of the performance experienced by customers is the expected re-

sponse time, the expected time from arrival until completing service. The response time can be

complicated if the service delivery is divided into temporarily separated pieces as in healthcare

and web chat; then it may be useful to use a more general network model, as in [31, 50]. For the

multi-server queueing models considered here, where there is a single uninterrupted service time,

the response time is the waiting time plus the service time. For larger systems, the relevant time

scale tends to be of order equal to the mean service time, because the waiting time tends to be small

compared to the mean service time.

As the system scale increases by increasing the number of servers and the arrival rate, but

leaving the service-time and patience-time cdf’s fixed, individual customer experience of service

remains unchanged, but the relevant scale in the arrival process becomes many interarrival times

instead of only one, because there typically are many (of order equal to the expected number of busy

servers) interarrival times during one mean service time. Thus, in a many-server queue, we should

expect the arrival process to influence its performance primarily through its long-time behavior

(as viewed through its mean interarrival time), i.e., through its central limit theorem (CLT). This

point of view is also advanced by [52]. Our staffing algorithm builds on this asymptotic view.

1.3 The Relevant Time Scale for Staffing: Short and Long Service Times

The relevant time scale (the mean service time) is important for interpreting the variation in the de-

terministic time-varying arrival-rate function. Even if an arrival-rate function changes dramatically

over a day, it can be considered approximately constant at each time t if it changes relatively little

over an interval of several mean service times. For example, in some telephone call centers, e.g.,

as in [6], the average service time may be about 3 minutes. Then, even if the arrival rate function

varies significantly over the day, if the arrival rate function does not change too much over each

half hour, it may be roughly appropriate to staff by using a pointwise stationary approximation

(PSA); i.e., by using a stationary model with the arrival rate prevailing at that time. (See §3 of

[23] for an examination of when it is appropriate to assume a constant rate over a subinterval.)

With this PSA view, at each time we have a steady-state view. With short service times, if the
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arrival data are consistent within a day, but over-dispersed over many days, then it may suffice to

staff according to a mixture of Poisson distributions, as in [22], or even a mixture of deterministic

fluid approximations, as in [48], if the uncertainty is large. The key to relatively simple analysis

without these special approaches (with short service times) is forecasting that successfully eliminates

most of the uncertainty about the rate, as in [4, 20, 40] and references there.

In contrast, in this paper we are primarily interested in the more difficult case of longer service

times, where the demand caused by each arrival extends over its service time, so that the PSA

view is no longer appropriate. Even in this setting forecasting is important. A direct statistical

data analysis of arrival data, analyzing all days, is likely to be highly misleading if it ignores

systematic effects like the day of the week. In good practice, the uncertainty is typically addressed

by becoming familiar with special features of the system and applying forecasting methods. With

proper understanding of the system and forecasting, the model introduced here or even an NHPP

may be found to be appropriate.

We emphasize that it is far from automatic that arrival processes in practice will be NHPP

except possibly for uncertainty about the rate. For example, it is well known that network structure

can directly cause non-Poisson properties in arrival processes. When an arrival process arises as an

overflow process or departure process from another system, that structure tends induce non-Poisson

variability. Discussions of overflow traffic can be traced from [26], which was aimed at creating a

relatively simple approximation, and [27]. Examples of non-Poisson departure processes are given

in §4 of [31]. In fact, the present paper addresses the open problem posed in §8.3 of [31].

1.4 Our Contributions

For theMt/GI/st queueing model, which has arrivals according to an NHPP (Mt) with time-varying

arrival rate function λ ≡ λ(t) and independent and identically distributed (i.i.d.) service times

with a general (non-exponential) service-time cumulative distribution function (cdf) G, successful

approaches to the staffing problem were developed in [21]; see reviews in [10, 18]. Since then,

further advances have been made in [9, 12, 28, 29, 31, 42, 50]. For the more general Gt/GI/st

queueing model, an offered-load (OL) normal approximation was proposed in §§5 and 6 of [21], but

that has never been tested. Here are our contributions, and the place they appear in the paper:

(i) In §2 we develop a general non-Poisson Gt arrival process model that encompasses

the nonstationary Cox process, based on methods of composition. In particular, we

represent the arrival counting process as the composition of a stationary counting process and
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a deterministic cumulative arrival rate function, separately treating the stochastic variability

and the deterministic variability of the arrival rate over time.

We propose a parsimonious partial characterization of the component stationary stochastic

counting process in terms of the asymptotic variability parameter c2A arising in its central

limit theorem. In §2.2 we elaborate on that general model by giving the stationary stochastic

counting process the structure of a stationary Cox process and showing how to compute

its asymptotic variability parameter. In §5 we indicate how the key asymptotic variability

parameter c2A can be computed in more specific stochastic models and estimated from system

data without constructing any model by estimating the IDC.

(ii) In §3 we develop a new staffing algorithm for this Gt/GI/st model, which extends the

modified-offered-load (MOL) algorithm for the Mt/M/st model developed in §4 of [21] by

exploiting the many-server heavy-traffic (MSHT) approximations for the stationary G/GI/s

model in [47]. We represent this new MOL algorithm as a square-root-staffing formula. In

doing so, we exploit the peakedness (the ratio of the variance to the mean of an associated

infinite-server model), as in [27] and references therein. The use of peakedness was also

suggested in §6 of [21] as part of a more elementary offered-load (OL) approach to staffing,

but that was never tested. Because the MOL algorithm has proven to be superior to the OL

algorithm for Mt arrivals, it is evident that the MOL approach here should be preferred.

In §4 we combine the contributions above to provide simple formulas to quantify the per-

formance impact of the non-Poisson arrivals upon the staffing decisions (here the number of

servers), in order to achieve the same service level. We estimate how many more (or possibly

fewer) servers are needed because the arrival process is Gt instead ofMt with the same arrival

rate function; that difference can be significant.

(iii) Next, in §6 we develop an extension of our staffing algorithm to the Gt/GI/st + GI

model having customer abandonment according to a general (non-exponential) patience-

time cdf F (the +GI), drawing upon [15, 51]. As emphasized in [15], including abandonment

in the model is often important in service systems, because it often occurs and significantly

affects performance. Moreover, the patience distribution is often non-exponential [6].

(iv) Finally, we have conducted extensive simulation experiments verifying that the new

algorithm is effective and robust; our numerical experiments cover cases with various
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performance targets, large and small system sizes, and various arrival processes, service-time

and patience-time distributions. In §§7 and §8, we report our simulation results for the

Gt/GI/st and Gt/GI/st +GI models.

We draw conclusions in §9. We present additional simulation results in an appendix.

2 The Non-Poisson Nonstationary Arrival Process Model

Our arrival process model has two key features: (i) a time-varying deterministic arrival-rate function

λ ≡ {λ(t) : t ≥ 0} and (ii) non-Poisson stochastic variability characterized parsimoniously by the

single parameter c2A. As usual, the arrival-rate function λ characterizes the predictable deterministic

variability over time, whereas the parameter c2A characterizes the additional stochastic variability.

The reference cases are c2A = 0 for a deterministic process, without any stochastic variability at

all, and c2A = 1 for a Poisson process. Thus a nonhomogeneous Poisson process (NHPP) will be

covered as a special case of the general model with c2A = 1.

2.1 A General Model Based on Composition

We construct the various stochastic processes considered here exploiting composition, as in §7 of

[34] and [16]. Let A(t) count the number of arrivals in the interval [0, t] for t ≥ 0. We represent

our general nonstationary arrival counting process A as the composition of a stochastic counting

process N and a deterministic cumulative arrival rate function Λ, using the composition function

◦, with (x ◦ y)(t) ≡ x(y(t)), t ≥ 0. In particular, we represent our arrival process as

A ≡ N ◦ Λ or, equivalently, A(t) ≡ N(Λ(t)), t ≥ 0, (2.1)

where N is a stochastic counting process with nondecreasing nonnegative integer-valued sample

paths, while the deterministic function Λ is the cumulative arrival rate function satisfying

Λ(t) =

∫ t

0
λ(s) ds, t ≥ 0, (2.2)

with 0 < λLB ≤ λ(t) ≤ λUB < ∞ for positive numbers λLB and λUB. As a consequence, Λ is

continuous and strictly increasing, so that it has a well defined continuous and strictly increasing

inverse Λ−1. Given Λ and a general nonstationary arrival process A, the counting process N could

be recovered by letting N = A ◦ Λ−1.

Since we think of Λ as specifying the deterministic rate of arrivals, it is natural to assume that

our stochastic process N is a rate-1 stationary counting process, but we only make the asymptotic
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assumption that N(t)/t → 1 with probability 1 (w.p.1). Thus, N could be a renewal process with

mean interarrival time 1 as well as its stationary (or equilibrium) version, as in §V.3 of [3]. Our

key stochastic assumption is that N obeys a central limit theorem (CLT):

t−1/2[N(t)− t] ⇒ N(0, c2N ) as t → ∞, (2.3)

where ⇒ denotes convergence in distribution and N(m,σ2) denotes a random variable with the

normal (Gaussian) distribution having mean m and variance σ2. As an immediate consequence,

we obtain an associated CLT for A,

Λ(t)−1/2[A(t)− Λ(t)] ⇒ N(0, c2N ) as t→ ∞, (2.4)

so that c2A ≡ c2N is the asymptotic variability parameter of A, based on its CLT. (We remark that,

at some places in this section, the technical development is facilitated by applying functional limit

theorems as in [46], but for simplicity and brevity we omit that.)

For general stationary point processes, the asymptotic variability parameter c2A can be charac-

terized and estimated from data via its representation as the limit of the the index of dispersion

for counts I ≡ {I(t) : t > 0}, i.e.,

c2A = lim
t→∞

IA(t) = lim
t→∞

IN (t) = c2N , where IA(t) ≡
V ar(A(t))

E[A(t)]
= IN (Λ(t)). (2.5)

see [8, 13, 31, 41]. We are assuming that I(t) is well defined and finite, and that a finite limit in

(2.5) exists. For an NHPP, I(t) = 1 for all t.

Remark 2.1 (Many-Server Heavy-Traffic Limits for Queues) Strong theoretical support for

characterizing the arrival process by its CLT behavior is provided by many-server heavy-traffic

(MSHT) limit theorems, because established MSHT limits depend on the arrival process only

through its CLT.

In particular, established MSHT limits for the stationary MarkovianM/M/∞,M/M/s,M/M/s/r

and M/M/s +M models extend to the associated G/M/∞, G/M/s, G/M/s/r and G/M/s +M

models, where the G arrival process can be N in §2.1, as reviewed in §7.3 of [36], which affects

the limit only through the parameter c2A. Moreover, the same is true for nonstationary arrival

process in MSHT limits established for the Gt/G/∞ infinite-server (IS) model in [37, 39] and the

Gt/M/st +GI model in [30].
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2.2 A More Detailed Model Based on Composition

We now explain how our general model encompasses the Cox process (or doubly-stochastic Poisson

process) mentioned in §1. For that purpose, we introduce a more detailed model. We now represent

the stochastic counting process N as the composition of two other stochastic processes, writing

N ≡M ◦ C or, equivalently, N(t) =M(C(t)), t ≥ 0, (2.6)

where M is a stochastic counting process with nondecreasing nonnegative integer-valued sample

paths and C is a stochastic cumulative process, expressed as

C(t) ≡
∫ t

0
Z(s) ds, t ≥ 0, (2.7)

with {Z(t) : t ≥ 0} being a stochastic “rate” process (SRP) with nonnegative sample paths. We

assume that the component stochastic processes M and C are mutually independent. Combining

representations (2.1) and (2.6) gives a three-fold composition representation for the overall arrival

process A: A =M ◦ C ◦ Λ.
This representation of N reduces to a stationary Cox process if we assume that M is a Pois-

son process. The most familiar stationary Cox process is a Markov-modulated Poisson process

(MMPP), which arises when the SRP Z is a function of a continuous-time Markov chain (CTMC);

see [14]. A further special case of an MMPP is an interrupted Poisson process (IPP), which is an

MMPP with a two-state environment process, where the rate of the Poisson process is 0 in one of

the two environment states. An IPP is equivalent to a renewal process with hyperexponetial (H2)

intervals between renewals; see [26] and §2.3.1 of [14].

Our key stochastic assumption in this new framework is the validity of CLT’s for the two

stochastic processes M and C. Given that we want N to asymptotically have rate 1 and C to

specify the cumulative rate, We assume that M(t)/t ⇒ 1 and C(t)/t ⇒ 1 w.p.1 as t → ∞. Our

key stochastic assumption in this new framework is the validity of CLT’s for the two independent

stochastic processes M and C.

t−1/2[M(t)− t] ⇒ N(0, c2M ) and t−1/2[C(t)− t] ⇒ N(0, c2C ) (2.8)

These together imply a CLT for N and A as in (2.3) and (2.4) with

c2A = c2N = c2M + c2C , (2.9)

as in Example 9.6.2 of [46]. For additional details on the derivation of (2.9), see Theorem 11.4.4

and §13.3 of [46].
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3 The New Staffing Algorithm

We consider the general Gt/GI/st model, which has unlimited waiting space and i.i.d. service times

that are independent of the arrival process specified in §2. We let the service times be distributed

as a random variable S with mean E[S] = µ−1 and general cdf G.

Our proposed staffing algorithm for the general Gt/GI/st model is designed to stabilize the

(virtual) delay probability, i.e., the probability that a potential arrival at time t must wait before

starting service, P (W (t) > 0) = P (Q(t) ≥ s(t)), where Q(t) denotes the number of customers in

the system at time t. The algorithm is an extension of the OL approach developed in [21] and

reviewed in [18], which leads to the classical square-root staffing (SRS) formula.

3.1 The Square Root Staffing Formula

Our SRS formula stipulates that the staffing (number of servers) at time t be

s(t) = m(t) + βα
√

m(t), with βα ≡ βα(z) ≡ β
√
z and β ≡ βα(1), (3.1)

when the targeted delay probability is α, where m(t) is the OL, i.e., the mean number of busy

servers in the associated Gt/GI/∞ infinite-server (IS) model with the same arrival and service

processes, βα(1) is the previous quality-of-service (QoS) parameter for the modified-offered-load

(MOL) approximation for the Mt/M/st (Erlang-C) Markovian model based on the MSHT limit

in [19], and z is a one-parameter characterization of all non-Markov variability in the associated

stationary G/GI/∞ IS model, with arrival process N , i.e., acting as if Λ(t) = t. Since the number

of servers is necessarily an integer, we round to the next largest integer in all staffing formulas.

3.2 Explicit Formulas

We now specify the key parameters m(t), βα(1) and z explicitly. First,

m(t) =

∫ t

−∞
λ(s)Ḡ(t− s) ds, t ≥ 0, (3.2)

where λ(t) is the deterministic arrival rate at time t (assumed to start in the indefinite past, but

we could have λ(s) = 0 for s ≤ t0) and Ḡ(s) ≡ 1−G(s). Second,

βα(1) = H−1(α), (3.3)

where H−1 is the inverse of the strictly increasing continuous function

H(β) = [1 + βΦ(β)/φ(β)]−1, 0 < β <∞, (3.4)
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and Φ (φ) is the cdf (pdf) of a standard (mean 0, variance 1) normal random variable. Third,

z ≡ z(c2A, G) = 1 + (c2A − 1)µ

∫ ∞

0
Ḡ(x)2 dx, (3.5)

where µ−1 is the mean service time and c2A is an arrival process variability parameter specified in

§2.

3.3 Additional Justification

These choices can be further justified. First, as observed in §5 of [21], formula (3.2) is (exactly)

the same as for the much more elementary Mt/GI/∞ model, which has a Poisson number of busy

servers at each time t. Second, the particular way βα(1) and z are combined in (3.1) draws on

the MSHT approximation for the stationary G/GI/s model developed in [47]. The refined MOL

staffing formula proposed for the Markovian Mt/M/st model in §4 of [21] is (3.1) with z = 1. The

MSHT limit assumes that λ→ ∞ and s→ ∞ with the SRS in (3.1) holding asymptotically. When

there is customer abandonment (discussed in §6), we use the related MSHT limits from [15] and

[51].

The parameter z in (3.5) is the heavy-traffic limit (letting the arrival rate grow) of the peakedness

in the associated stationary G/GI/∞ IS model, with a stationary version of the Gt arrival process

(the process N in §2), where the peakedness is the ratio of the variance to the mean of the steady-

state number of busy servers. Formula (3.5) is discussed further in [27, 38] and references therein.

Consistent with established theory for the M/GI/∞ model, z = 1 for all service-time cdf’s if

c2A = 1, which occurs if the arrival process is Poisson. We have z ≥ (≤)1 if and only if c2A ≥ (≤)1.

In §7 we will show that the new staffing algorithm in §3 is effective for the Gt/GI/st model

and that it provides a significant improvement over the corresponding staffing algorithm from [21],

which is obtained by using z = 1 in (3.1); e.g., see §7.4.

4 Predicting the Impact of the Non-Markov Features

The SRS formula in (3.1) and the peakedness formula z in (3.5) allow us to predict the staffing

implications of the non-Markovian stochastic features in the model (having Gt instead of Mt),

assuming that we want to maintain the same QoS: The (approximately constant) difference in the

staffing level is simply

sG(t)− sM(t) = βα(1)(
√
z − 1)

√

m(t) ≈ βα(1)(
√
z − 1)

√

s(t). (4.1)
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(As m(t) grows, formula (3.1) implies that s(t)/m(t) → 1.) The QoS parameter βα(1) in (3.1)

should usually satisfy 0.5 ≤ βα(1) ≤ 2.0; see the Halfin-Whitt (HW) curve in Figure 2 of [18]. If

we take βα(1) = 1 as a typical reference case, then we see that the non-Markovian structure should

lead to changing the number of servers by (
√
z− 1)

√

s(t). If s(t) = 100, then the change would by

10(
√
z−1) servers. This usually means additional servers, but it could mean fewer servers, because

we could have 0 ≤ z < 1 as well as z ≥ 1.

An important practical reference case is exponential M service, yielding z = (c2A + 1)/2. For

this case, we see right away that the approximate performance impact when βα(1) = 1 is

sG − sM = (
√
z − 1)

√
sM =

(

√

(c2A + 1)/2− 1

)√
sM servers. (4.2)

Hence, when βα(1) = 1, c2A = 4 and sM = 100, we need 10(
√
2.5 − 1)/2 = 5.8 additional servers

compared to the Markovian case. Very roughly, this is about 6% more servers.

Another important reference case for the peakedness z is a deterministic service cdf, yielding

z = c2A. Surprisingly, perhaps, if the service-time cdf were changed from M to D in the numerical

example above with βα(1) = 1, c2A = 4 and s(t) = 100, the number of extra servers required to

achieve the same QoS would increase from 5.8 servers to 10 servers. Clearly, the impact becomes

much greater if c2A is larger. These formulas allow quick back-of-the-envelope calculations.

Given the common case in which c2A > 1, z is decreasing as the variability of G increases. (As

the variability increases for fixed mean, µ
∫∞
0 Ḡ(x)2 dx→ 0. Think of a two-point distribution with

mean 1 having a very small probability p of a very large 1/p and otherwise being 0. Understanding

this phenomenon is facilitated by the integral representation in (11) of [38]. See [49] for an early

discussion of this phenomenon.) For c2A > 1, the largest possible value of z occurs with deterministic

service times, yielding z = c2A. Overall, the possible values of z as a function of c2A are

z ≡ z(c2A, G) in [c2A ∧ 1, c2A ∨ 1], (4.3)

where a ∧ b ≡ min {a, b}, a ∨ b ≡ max {a, b}. Moreover, all possible values of z can be attained

(possibly asymptotically). The range of possible z values as a function of c2A increases as |c2A − 1|
increases for either c2A ≥ 1 or c2A ≤ 1.

Table 1 shows peakedness values z ≡ z(c2A, G) as a function of the arrival variability parameter

c2A and common service-time cdf’s G: lognormal (LN(µ−1, c2s)), deterministic, Erlang (of order

2, E2), hyperexponential (H2(µ
−1, c2s)) and exponential. The mean service times µ−1 are chosen

to be 1, but z is independent of the mean. The second service-time parameter c2s is the squared
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coefficient of variation (scv, variance divided by the square of the mean). The third parameter of

the H2 distribution is fixed by using balanced means, as on p. 137 of [43]. Only modest levels of

variability, as measured by c2A and z, are considered in Table 1.

c2
A

D E2 M LN(1, 0.25) LN(1, 1) LN(1, 4) H2(1, 1.5) H2(1, 2) H2(1, 4)
0.25 0.25 0.53 0.63 0.45 0.58 0.72 0.66 0.69 0.74
0.50 0.50 0.69 0.75 0.63 0.72 0.82 0.78 0.79 0.83
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2.00 2.00 1.63 1.50 1.74 1.56 1.37 1.45 1.42 1.35
3.00 3.00 2.25 2.00 2.48 2.11 1.74 1.90 1.83 1.70
4.00 4.00 2.88 2.50 3.22 2.67 2.11 2.35 2.25 2.05

Table 1: Values of the peakedness z ≡ z(c2A, G) for six different arrival process variability parameters
c2A and nine different service distributions.

Analysis of service-time data by [6] and others has shown that service system service-time

cdf’s often fit the LN(1, 1) lognormal cdf quite well, but simulation experiments show that the

performance impact of that distribution is not very different from the commonly assumed exponen-

tial distribution. Table 1 is consistent with that, showing that z(c2A, LN(1, 1)) ≈ z(c2A,M). This

suggests that assuming exponential service times is unlikely to seriously invalidate performance

predictions. However, the non-Poisson arrival process is an important feature. Note that the

peakedness z for LN(1, 1) is relatively large in Table 1 for c2A > 1, e.g., for c2A = 4. In particular,

note that the peakedness z ≡ z(c2A, LN(1, σ2)) for c2A > 1 and LN(1, σ2) service is decreasing in σ2,

so that the relatively small variance seen in estimated lognormal service times does not help when

the arrival process is more bursty than Poisson.

To summarize, for service-time cdf’s something like exponential (as measured by z), we roughly

need (
√

(c2A − 1)/2−1)
√

s(t) additional servers at time t compared to the same model with Poisson

arrivals.

To illustrate the consequence of the non-Markov variability on the approximation, we display

the QoS parameter βα ≡ βα(z) as a function of α for three arrival process variability parameters c2A

(0.25, 1.00, 4.00) and four service-time distributions: (a) LN(1, 4), (b) H2(1, 4), (c) deterministic

(D), and (d) exponential (M) in Figure 1.

5 Parameter Specification

The processes N andM introduced in §2.1 and §2.2 above are understood to be conventional rate-1

stationary counting processes, so interest centers on the variability parameters, which we already

have discussed in general terms. We now elaborate for the more structured model in §2.2.

12



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

α

(a)

β
α
=

√

z
λ
H

−
1
(α

)

 

 

c
2
λ = 0.25

c
2
λ = 1

c
2
λ = 4

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

α

(b)

β
α
=

√

z
λ
H

−
1 (
α
)

 

 

c
2
λ = 0.25

c
2
λ = 1

c
2
λ = 4

0 0.2 0.4 0.6 0.8 1
0

2

4

6

α

(c)

β
α
=

√

z
λ
H

−
1
(α

)

 

 

c
2
λ = 0.25

c
2
λ = 1

c
2
λ = 4

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

α

(d)

β
α
=

√

z
λ
H

−
1 (
α
)

 

 

c
2
λ = 0.25

c
2
λ = 1

c
2
λ = 4

Figure 1: The QoS parameter βα ≡ βα(z) as a function of α, for three different arrival variability
parameters c2λ = 0.25, 1, 4 and four different service-time distributions: (a) LN(1, 4), (b) H2(1, 4),
(c) deterministic (D) (d) exponential (M).

5.1 Calculating Variability Parameters for Stochastic Models

As indicated in (2.7), the process C in (2.6) is an integral of the SRP Z. In most applications,

the SRP is a regenerative process, which makes C a cumulative process as in [17] or §VI.3 of [3].

That commonly occurring structure provides general sufficient conditions for the FCLT for Cn

to hold, but the parameters are expressed in terms of relatively complicated variables associated

with the underlying regenerative cycles. However, these usually can be numerically calculated or

estimated in simulations. In general, the rate λC is just the steady-state mean E[Z(∞)], assuming

that Z(t) ⇒ Z(∞) as t→ ∞ and E[Z(∞)] <∞.

A relatively convenient model for N is an MMPP, because it is not difficult to simulate and

analyze. One natural construction is to let M be a rate-1 Poisson process and let Z(t) = f(Γ(t)),

t ≥ 0, where Γ ≡ {Γ(t) : t ≥ 0} is a CTMC taking values in the finite set {1, 2, . . . ,m}. Then

f(i) = λi, where λi is the deterministic arrival rate that prevails whenever Γ(t) = i.

With this convention, not only is M a rate-1 Poisson process, but C is a special cumulative

process, with successive visits of the underlying CTMC Γ to any fixed state constituting regenerative

cycles. In this setting,

E[Z(∞)] = lim
t→∞

t−1E[C(t)] = 1, (5.1)
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Cumulative processes associated with functions of DTMC’s and CTMC’s are discussed, respectively,

in §I.7 of [3] and [44] (and many references therein). Formulas and algorithms to compute c2C are

given in (12) and Corollary 3 of [44]. More elementary formulas and algorithms for birth-and-death

processes are given in (6) (Proposition 1) and Remarks 1-3 of [44].

The key parameters of an MMPP can also be obtained from [14], but it is important to recognize

that it is a different representation. They directly represent N and do not separately exploit the

rate-1 Poisson process M . Nevertheless, expressions for a general rate λN and c2N can be obtained

from [14]. We can obtain λN from expressions for the mean E[N(t)]. In particular, in [14] we see

that λN = πλ =
∑m

j=1 πjλj from the first term on the right of (23). Here πj is the steady-state

probability that the CTMC is in state j and λj is the rate of the MMPP when the CTMC is in state

j. Similarly, we can obtain the variability parameter c2N from the related expressions for E[N(t)2]

in (25) and (26) of [14]. We close this section by noting that the MMPP is a special case of the

batch Markovian arrival process (also known as the versatile Markovian process or Neuts process),

for which asymptotic variability parameters can be found in §5.4 of [35] and [7].

5.2 Estimating the Arrival Process Variability Parameter Directly from Data

Since the arrival process beyond its determinitic rate λ(t) affects the staffing algorithm in (3.1)

only through the asymptotic variability parameter c2A = c2N in the peakedness z in (3.5), in many

applications it may be convenient to directly estimate c2A from arrival process data. That can

be done using the IDC characterization in (2.5). Since the limits of IA(t) and IN (t) as t → ∞
are identical, we can directly work with the nonstationary arrival process A and estimate IA(t),

estimating c2A by the estimated limit of IA(t) as t→ ∞.

Unfortunately, this estimation is not entirely straightforward, tending to require large samples.

Large samples present relatively little problem with simulation, but they may not be possible with

arrival data. See [13] and §4 of [31] for examples involving single-server and many-server queues,

respectively.

Remark 5.1 (detecting model violations) Model violations from excessive variability sometimes

can be identified from divergence of I(t) as t→ ∞. For example, if N(t) = Π(Xt), where Π is a unit-

rate Poisson process and X is a nonnegative random variable with E[X] = 1 and 0 < V ar(X) <∞,

then E[N(t)] = t for all t, but

V ar(N(t)) = V ar(E[N(t)|X]) + E[V ar(N(t)|X)] = V ar(X)t2 + t,
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so that I(t) = 1 + V ar(X)t → ∞ → ∞ as t→ ∞. Our model requires that both the variance and

the mean of N(t) grow linearly in t.

6 Extension to Models with Customer Abandonment

We next extend our MSHT MOL SRS algorithm based on (3.1) to the corresponding Gt/GI/st+GI

model with customer abandonment. We first consider cases in which the service and patience

distributions are exponential (M). We next extend to the framework non-exponential service and

patience times.

6.1 Extension of the Algorithm for the Model with Exponential Patience Times

In particular, it is natural to use (3.1) with the same peakedness z in (3.5), but with the MSHT

QoS parameter βα(1) ≡ H−1(α) in (3.3) replaced by G−1(α), where G is the Garnett MSHT PoD

function from pp. 217-218 of [15], which is based on the QED MSHT limit for the stationary

M/M/s+M model. As noted previously, the MSHT limit for the M/M/s+M model extends to

the associated G/M/s+M model by §7.3 of [36]. Just as for the Gt/GI/st that we have considered,

the extensions to GI service and GI abandonment are heuristic.

From (3.9) of [18], the Garnett PoD function can be written as

G(β) ≡ G(β, θrat) ≡
[

1 +

√
θrath(β/

√
θrat)

h(−β)

]−1

, −∞ < β <∞, (6.1)

where θrat ≡ θ/µ and h(x) ≡ φ(x)/Φ̄(x)) = φ(x)/(1 − Φ(x)) is the hazard rate of the standard

normal distribution.

Unfortunately, there are typographical errors in other representation of the Garnett function.

First, an alternative expression is given for the Garnett function G in (11) on p. 331 of [12], but

there is a typo in the definition of β̂ below (11). It should be β̂ ≡ β
√

µ/θ or β̂ ≡ β/
√

θ/µ instead

of β̂ ≡ β
√

θ/µ. Yet another alternative expression of G is given in (4) on p. 1553 of [29], but it

too has a problem. The intended formula for h there is h(x) ≡ φ(x)/Φ̄(x), where Φ̄(x) ≡ 1−Φ(x),

consistent with established notation in that paper, but the bar cannot be seen.

6.2 Extension for Non-Exponential Service and Patience Times

We also conducted simulation experiments for several Gt/GI/st+GI models with non-exponential

service times and patience times. We have found that our approach for the Gt/M/st +M model

in §8 of the main paper continues to work well in many cases, but needs refinement in some cases.
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We see stable performance in all cases, but not always at the desired target. The major difficulty

encountered was for non-exponential patience times. A basis for extension to the Gt/M/st + GI

model is provided by results in Theorem 4.1 of [51] (see also p. 1196 of [33]), which suggests a

refined Garnett function

G∗(β) ≡ G∗(β, θ∗rat) ≡
[

1 +

√

θ∗rath(β/
√

θ∗rat)

h(−β)

]−1

, −∞ < β <∞, (6.2)

where θ∗rat ≡ f(0)/µ, f(0) is the patience-time pdf at x = 0 and h(x) ≡ φ(x)/Φ̄(x) = φ(x)/(1−Φ(x))

is the hazard rate of the standard normal distribution. This generalization from M abandonment

to GI abandonment is quite intuitive: because the system is in the QED regime where waiting

times are asymptotically negligible, the patience-time distribution plays an role only through the

patience hazard rate at 0, that is hF (0) = f(0)/F̄ (0) = f(0). Even though there are not yet any

supporting MSHT limits for the more general stationary G/GI/s+GI model with non-M service,

we propose the same approximation based on (6.2) for the Gt/GI/st+GI model too. In particular,

to capture non-M abandonment we use (6.2) instead of (6.1); to cope with non-M service, we again

rely on the peakedness z in (3.5), which depends on the non-M service.

7 Simulation Experiments

We now report results of simulation experiments to evaluate the new MOL staffing algorithm for

the Gt/GI/st model given in §2 and §3.

7.1 The Simulation Models

For all the examples, the system starts empty, the service time has mean 1 and the Gt arrival

process has deterministic sinusoidal arrival rate

λ(t) = λ̄(1 + ψλ sin(γλt+ φλ)), t ∈ [0, 96], (7.1)

with average arrival rate λ̄, relative amplitude ψλ, 0 ≤ ψλ ≤ 1, period (cycle length) 2π/γλ and

phase shift φλ. Our base case has λ̄ = 100, ψλ = 0.2, γλ = 1 and φλ = 0. Explicit formulas for the

associated offered load m(t) for this sinusoidal arrival rate are given in [11] and (19) of [29].

We construct the arrival process as indicated in §2. In each case, we let the stochastic counting

process N be a rate-1 stationary counting process. Our base case is an H2(1, 4) renewal process,

which is also an IPP, the special MMPP with two states in the underlying CTMC with the rate in

one state being 0. The H2 distribution was characterized for Table 1. For H2(1, 4), the probabilities
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on the two exponential components are p1 ≡ p = (5 +
√
15)/10 = 0.8873 and 1− p ≡ 0.1127, while

the rates (reciprocals of the two means) are µ1 = 2p = 1.7745 and µ2 = 2(1 − p) = 0.2254. From

§2.3.11 of [14], the associated IPP parameters are: rate in the on state λon = 4p2+4(1−p)2 = 1.60,

the mean time in the on state is 1/µon = 1/0.15 = 6.667 and the mean time in the off state is

1/µoff = 1/0.40 = 2.500. Our overall base case is the Ht
2(1, 4)/LN(1, 4)/st model.

We also consider variations on our base case. For the arrival process N , we consider other

rate-1 renewal processes with non-H2 inter-renewal times and other non-renewal MMPP’s. For the

service-time cdf, we also consider the other service-time cdf’s in Table 1. We make the renewal

arrival process stationary by letting the first interval have the equilibrium stationary-excess cdf, as

in §V.3 of [3].

7.2 Simulation implementation

The simulation experiments were performed with MATLAB. Since we are interested in the virtual

waiting time, i.e. the delay of a potential arrival at each time t, we generate virtual customers at

each fixed time △t, 2△t, 3△t, . . ., with △t = 0.05. Those virtual customers are different from real

customers, because once they enter the service, they leave the service immediately, so that they do

not occupy any service resource. They are not counted in queue length. If the number of servers

needs to decrease while all servers are busy, we wait until the next customer to finish service then

remove that server.

System performance measures are measured at the fixed time points △t, 2△t, . . .. We record the

queue length Q̂(t) then take the average over all replications. We also calculate potential waiting

time Ŵ (t) which is defined as the waiting time of a virtual costumer that arrives at time t, then

take the average of all replications. The estimated probability of delay P̂D(t) is calculated as the

average of the indicator variable 1{Ŵ (t)>0} over all replications.

We ran 1000 independent replications to obtain the estimates of all the performance measures.

To understand why this yields adequate statistical precision, note that for a delay probability of

about 0.1 at a single time t, our approach corresponds to looking at the average of 1000 i.i.d Bernoulli

random variables with approximate mean 0.1 and variance 0.09 ≈ 0.1, making the sample mean

have mean 0.1 and sample variance of about s̄2n ≈ 10−4 with associated sample standard deviation

of about s̄n ≈ 10−2. Thus the halfwidth of a 95% confidence interval would be approximately

0.00067, which is about 0.7% of the mean 0.10. As in [21], the larger oscillations we see in simulation

estimates are primarily due to the significant impact of changing a single agent. (Recall that the
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Figure 2: Estimated time-varying probability of delay for theHt
2(1, 4)/LN(1, 4)/st model (z = 2.11)

with the MOL SRS staffing (3.1) s(t) (left) and one less server s(t) − 1 (right), for five delay
probability targets α.

staffing is in integer values.)

7.3 Performance Estimates in the Base Case

We now report results for the Ht
2(1, 4)/LN(1, 4)/st base case, with the distributions of the i.i.d.

interarrival times of N and the service times as specified in §4. First, Figure 2 shows the estimated

time-varying probability of delay (PoD) for the Ht
2(1, 4)/LN(1, 4)/st base case with z = 2.11, for

five PoD targets α using the MOL SRS formula (3.1) (left) and using one server less (right). All plots

here show an initial transient associated with starting empty, but stabile performance is seen after

a short time. (The mean service time is 1.) We only show targets α ≤ 0.5, because higher targets

tend to be inconsistent with practical staffing levels without customer abandonment (which will be

discussed in §6). Higher targets α tends to move the system out of the quality-and-efficiency-driven

(QED) regime into the more heavily loaded efficiency-driven (ED) regime. To provide evidence, we

show the average traffic intensity for each of the five cases of Figure 2 in Table 2.

To show that our extension of the MSHT MOL SRS algorithm in (3.1) performs just as well

for the non-Markov Ht
2(1, 4) arrival process as the previous MSHT MOL SRS algorithm with

z = 1 in [21] performs for the Mt/M/st model, Figure 1 of the EC shows the estimated time-

varying probability of delay (PoD) for the Mt/M/st model with z = 1 on the left and for the

Ht
2(1, 4)/LN(1, 4)/st base case with z = 2.11 on the right.

To drill down deeper into the results in Figure 2, we display the average, maximum and minimum

of the PoD for t ∈ [36, 96] as a function of the target for the base model with the specified staffing

(s(t)) and for one less server (s(t)−1) in Table 3, also see Figure 2 for plot comparison. For all five
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targets, the average PoD falls below the target, while the average PoD with one less server lies above

the target. The fact that the maximum estimated PoD for all time points is above the target, while

the minimum with one less server is below the target, indicates that (i) the performance is indeed

stabilized over time, after an initial transient, and (ii) the performance and statistical precision are

within the difference caused by the change of a single server. In addition, the change of one server

plays a bigger role for higher α (smaller s(t)) and a smaller role for lower α (bigger s(t)). We later

demonstrate in §8.1 the effect of changing one server for a smaller system with λ̄ = 10.

We emphasize that this staffing algorithm is not simply choosing the staffing to make the time-

varying instantaneous traffic intensity ρ(t) ≡ λ(t)/µs(t) constant. Figure 3 shows the instantaneous

traffic intensity resulting from the MOL algorithm applied to the base case for three PoD targets:

α = 0.1, 0.3, 0.5. See Figures 1-3 of [21] to see that other staffing alternatives such as PSA and

constant staffing at the average load perform very badly.
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Figure 3: The instantaneous traffic intensities ρ(t) ≡ λ(t)/µs(t) for the Ht
2(1, 4)/LN(1, 4)/st model

with µ = 1 and MOL SRS staffing for α = 0.1, 0.3, 0.5 from bottom to top.
We now investigate the extent to which other performance measures are stabilized by the MOL

SRS staffing algorithm. Figure 4 shows the estimated time-varying mean queue length E[Q(t)]

(left) and mean waiting time E[W (t)] (right) for the base model. As in all previous studies, we

find that the mean waiting times are not always stabilized, but all performance measures tend to

be stabilized with low PoD targets, where we aim to provide high QoS; e.g., see Table 4 of [21] and

§3 of the e-companion to [12]. While [12] primarily focuses on an interative simulation algorithm

α 0.1 0.2 0.3 0.4 0.5

ρ̄ 0.828 0.865 0.891 0.912 0.930

Table 2: Time average ρ̄ of the instantaneous traffic intensity ρ(t) for the Ht
2(1, 4)/LN(1, 4)/st

model using the MOL SRS staffing
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Average(±HW) Max Min
(diff. to target) (diff. to target) (diff. to target)

Target s(t) s(t)− 1 s(t) s(t)− 1 s(t) s(t)− 1
0.5 0.468(±0.0219) 0.516(±0.0219) 0.503 0.550 0.437 0.478

(-0.032) (+0.016) (+0.003) (+0.050) (-0.063) (-0.022)
0.4 0.377(±0.0212) 0.418(±0.0216) 0.416 0.449 0.344 0.387

(-0.023) (+0.018) (+0.016) (+0.049) (-0.056) (-0.013)
0.3 0.282(±0.0197) 0.315(±0.0203) 0.316 0.352 0.251 0.282

(-0.018) (+0.015) (+0.016) (+0.052) (-0.049) (-0.018)
0.2 0.192(±0.0172) 0.217(±0.0181) 0.219 0.247 0.166 0.188

(-0.008) (+0.017) (+0.019) (+0.047) (-0.034) (-0.012)
0.1 0.0956(±0.0129) 0.111(±0.0137) 0.123 0.134 0.0755 0.0855

(-0.0044) (+0.011) (+0.023) (+0.034) (-0.0245) (-0.0145)

Table 3: Average, maximum and minimum of the probability of delay for t ∈ [36, 96] as a function
of the target for the base model Ht

2(1, 4)/LN(1, 4)/st with the specified staffing (s(t)) and for one
less server (s(t)− 1). The halfwidths (HW) of 95% confidence intervals are shown.

(ISA) for staffing, it also provides strong support for the OL approach using the SRS formula by

showing that the implied empirical quality of service βISA(t) ≡ (sISA(t)−m(t))/
√

m(t) in (10) of

[12] is stabilized by ISA; see Figures 3 and 12 of the e-companion to [12]. Significant fluctuations

were observed in both the expected waiting times in the Mt/M/st model and in the abandonment

probabilities in the Mt/M/st +M model; see Figures 6 and 13 of the e-companion to [12]. These

observations are confirmed by Figure 4.
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Figure 4: Estimated time-varying mean queue length E[Q(t)] (left) and mean waiting time E[W (t)]
(right) for the Ht

2(1, 4)/LN(1, 4)/st model with z = 2.14 using the MOL SRS formula (3.1) for the
five delay probability targets α = 0.1, 0.2, 0.3, 0.4, 0.5.
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7.4 The Consequence of Using the Old MOL SRS Algorithm

We now show the consequence of using the old MOL SRS staffing, i.e., (3.1) with z = 1. Figure

5 shows the performance of the MOL SRS staffing with z = 1 applied to the Ht
2(1, 4)/LN(1, 4)/st

model, with z = 2.11, for targets α = 0.1, 0.3, 0.5. Figure 5 shows that the staffing algorithm with

z = 1 still stabilizes performance; the refinements are needed only to hit the PoD target α. Figure

5 also shows the significantly higher staffing levels required with the higher value of z.
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Figure 5: Estimated probability of delay for the Ht
2(1, 4)/LN(1, 4)/st model with z = 2.11 using

the MOL staffing algorithm in (3.1) with z = 1 as would be done for the same model with an Mt

arrival process, for targets α = 0.1, 0.3, 0.5 (above) and comparison of the associated staffing levels
using the MOL staffing for Ht

2(1, 4) and Mt arrivals (below).

8 Variations of the Base Model

In this section we report results of the MSHT MOL SRS algorithm for variations of the base model.

We first consider higher QoS (lower α targets) and smaller scale. Then we consider alternative ar-

rival processes and service-time distributions. Finally, we report results evaluating the performance

of our MOL algorithm for models with customer abandonment.

8.1 Lower Targets and Lower Arrival Rates

In this section we consider the performance of the SRS MOL staffing algorithm with lower targets

α (higher QoS) and for lower average arrival rate, and thus smaller scale (fewer servers).

First, Figure 6 shows on the top the estimated PoD for the base Ht
2(1, 4)/LN(1, 4)/st model
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Figure 6: Estimated time-varying probability of delay for the Ht
2(1, 4)/LN(1, 4)/st model with four

low targets α less than 0.1 (top) and associated staffing for the case α = 0.02 (bottom).

with four low targets α less than 0.1, ranging from 0.02 to 0.08. On the bottom of Figure 6 is

shown the associated higher time-varying staffing levels required for the target α = 0.02.

Next, Figure 7 are displayed the estimated PoD’s for the base Ht
2(1, 4)/LN(1, 4)/st model with

the average arrival rate λ̄ reduced from 100 to 10, i.e., for the arrival rate function λ(t) = 10+2 sin(t).

The reduced offered load leads to reduced staffing accordingly; the old OL m(t) in (3.2) is now

simply divided by 10, while the peakedness z is unchanged. Hence, unlike the case on the left, each

single server matters much more. Figure 7 shows that the MSHT MOL SRS algorithm in (3.1) still

stabilizes the delay probability in these new cases. However, the performance falls further below the

target at the higher PoD targets (left-hand plot in Figure 7). But note that a single server makes

a much greater difference now (right-hand plot in Figure 7). Despite the rather unconvincing left

plot, from both plots, we can see that the stabilization at the target α has been achieved as well

as possible, because there is a substantial gap for s(t), but understaffing with s(t)− 1. With fewer

servers, each server matters more; there is a limit to what is possible. Figure 14 in the e-companion

shows similar performance for the more challenging case λ̄ = 4.

8.2 Alternative Arrival Processes

We now consider the MOL SRS staffing algorithm to the base Ht
2(1, 4)/LN(1, 4)/st model except

that we change the arrival process. First, we considered the performance for a deterministic Dt

arrival process and an Et
2 Erlang renewal arrival process, which have the same deterministic arrival
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Figure 7: Estimated time-varying probability of delay in the base Ht
2(1, 4)/LN(1, 4)/st model with

the same targets as before, but with the average arrival rate λ̄ reduced from 100 to 10, using the
MOL SRS formula (3.1) s(t) (left) and s(t)− 1 (right).

rate function, but has N a stationary D and E2 renewal process. These processes are less variable

than a Poisson process, having asymptotic variability parameters (equal to the interarrival times

scv) of c2A = 0 and c2A = 0.5, respectively. Such low-variability arrival processes commonly occur in

service systems with arrivals by appointment. Figure 15 in the e-companion shows that the same

excellent performance holds in these low-variability examples.

As noted in §2.2, our base Ht
2(1, 4) arrival process is constructed from an H2(1, 4) renewal

process, which also is an IPP (a special MMPP). We next consider non-renewal MMPP’s as the

arrival process. In particular, we consider an MMPP with an underlying CTMC {Γ(t), t ≥ 0} that

is a birth-and-death process having three states 0, 1 and 2. Let Z(t) = f(Γ(t)) with state-dependent

rate f(i) = λi, where (λ0, λ1, λ2) = (3, 1, 1/3). The long-run rate of the MMPP is

λC = lim
t→∞

t−1C(t) = lim
t→∞

t−1

∫ t

0
Z(s)ds = lim

t→∞
t−1

∫ t

0
f(γ(s))ds =

2
∑

j=0

πjλj ≡ λ∗,

where π ≡ (π0, π1, π2) is the steady state distribution for the CTMC. We consider two sets of birth

and deaths rates (i) λ̂0 = 2, λ̂1 = 1.5, µ̂1 = µ̂2 = 1 and (ii) λ̂0 = 20/27, λ̂1 = 5/9, µ̂1 = µ̂2 = 10/27,

which yield the same steady state π = (1/6, 1/3, 1/2) and asymptotic rate of MMPP λC = λ∗ = 1,

but different variability parameter of C: (i) c2C = 10/9 and (ii) c2C = 3, where c2C is given by

c2C =
σ̄2C
λC

= σ̄2C = 2
1

∑

j=0

1

λ̂jπj

[

j
∑

i=0

(λi − λ∗)πi

]2

.

See Proposition 1 of [44] for details, also see [14]. Because M is a rate-1 Poisson process, the

stochastic variability parameters for the Gt arrival are (i) c2A = c2M + c2C = 1 + 10/9 = 19/9 and
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Figure 8: Estimated time-varying probability of delay for the MMPP t(1, c2A)/LN(1, 4)/st model
with c2A = 19/9 (left) and c2A = 4 (right), using the MOL SRS formula (3.1) for five delay probability
targets α.

(ii) c2A = 1 + 3 = 4. Figure 8 shows the time-varying delay probability for different targets α with

the MMPP t/LN(1, 4)/st model having MMPP arrivals with c2A = 19/9 (left) and c2A = 4 (right).

Clearly the performance is again excellent.

8.3 Alternative Service-Time Distributions

We also conducted experiments for the base Ht
2(1, 4)/LN(1, 4)/st model with different service

distributions. Figure 9 shows that the same stable plots of the delay probability hold for exponential

(M) and lognormal LN(1, 0.25) service times.

8.4 Models with Customer Abandonment

Finally, we conducted simulation experiments evaluating the performance of our new MOL SRS

algorithm for the general Gt/GI/st +GI model. using the refined Garnett functions in (6.1) and

(6.2).

Exponential service and patience times. Figure 10 reports simulation results of this staffing

algorithm applied to the Ht
2(1, 4)/M/st +M model, having our base arrival process and exponen-

tial service times with mean 1/µ = 1, but now also with customer abandonment for a range of

abandonment rates θ from 1/16 to 16. Figure 10 shows that the staffing algorithm is effective for

all θ and all delay probability targets 0.1 ≤ α ≤ 0.9.
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Figure 9: Estimated time-varying probability of delay for theHt
2(1, 4)/M/st model with exponential

service times yielding z = 2.5 (left) and for the Ht
2(1, 4)/LN(1, 0.25)/st model with the low-

variabiity lognormal LN(1, 0.25) service times yielding z = 3.25 (right) using the MOL SRS formula
(1) of the main paper for five delay probability targets α.

Non-exponential service and patience times. Figure 11 shows the results for theHt
2(1, 4)/H2(1, 4)/st+

H2(1, 4) model and Ht
2(1, 4)/E2(1)/st +H2(1, 4) model. In the e-companion we show correspond-

ing results for models with low-variability, service times and arrival processes, in particular, for

the Et
2/LN(1, 4)/st +H2(1, 4) and Dt/LN(1, 4)/st +H2(1, 4) models, having the process N be a

renewal process with E2 and D times between renewals. We find that the performance is stabilized

at all targets in all these cases.

Smaller Arrival Rates. Figure 12 shows the results for λ̄ = 10 and λ̄ = 4 for our main

Ht
2(1, 4)/LN(1, 4)/st + H2(1, 4) example. We see that (i) our staffing method continue to sta-

bilize the performance for a wide range of targets; and (ii) a single agent matters more with a

smaller OL.

9 Conclusions

We have developed (i) a new non-Poisson nonstationary arrival process model in §2 that includes

the nonstationary Cox (doubly stochastic Poisson) process as a special case and (ii) a new many-

server heavy-traffic (MSHT) modified-offered-load (MOL) square-root-staffing (SRS) algorithm in

§3 for the general Gt/GI/st and in §6 for the general Gt/GI/st + GI models with that arrival

process. We have shown that the algorithm is effective for stabilizing the probability of delay with

this model by conducting simulation experiments in §§7-8.
In §2 we have shown how to construct and usefully characterize general arrival processes that
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(g) θ = 1/16
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Figure 10: Estimated time-varying probability of delay with nine targets α = 0.1, . . . , 0.9, for the
Ht

2(1, 4)/M/st +M model with µ = 1 and different θ, ranging from 1/16 to 16.
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Figure 11: Estimated time-varying probability of delay for the Ht
2(1, 4)/GI/st + H2(1, 4) model

with (a) H2(1, 4) service times yielding z = 2.05 (left) and (b) E2(1) service times yielding z = 2.88
(right), and i.i.d. H2(1, 4) patience times, yielding θ = µ = 1, using the MOL SRS formula (1) and
the Zeltyn-Mandelbaum (2005) refinement to the Garnett function in (41) of the main paper for
nine delay probability targets α, ranging from 0.1 to 0.9.
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Figure 12: Estimated time-varying probability of delay for the Ht
2(1, 4)/LN(1, 4)/st + H2(1, 4)

model with a wide range of targets, but with the average arrival rate λ̄ reduced from 100 to 10
(left) and to 4 (right).
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combine non-standard stochastic variability with significant time variability. First, in §2.1 we

constructed a general model exploiting composition. In §2.2 we exhibited a special case, which

includes the nonstationary Cox process, i.e., a nonhomogeneous Poisson process with a rate function

that is itself a stochastic process. In §5 we showed how to compute the asymptotic variability

parameter of the arrival process, c2A, from stochastic models and estimate it from data without

constructing a specific stochastic model, by estimating the index of dispersion I(t) for large t.

The new MSHT MOL SRS algorithm §3 in exploits the approximation for the steady-state delay

probability in the stationary G/GI/s model in [47], which is based on the many-server heavy-traffic

(MSHT) limit for the GI/M/s model in [19], extended to the G/M/s model by §7.3 of [36]. The

new algorithm extends the MSHT MOL approach to staffing introduced for the Mt/M/s model in

[21]. The extension exploits the MSHT limit of the peakedness z, i.e., the ratio of the variance to

the mean of the steady-state number of busy servers in the associated infinite-server (IS) model,

which is supported by the MSHT limits in [30, 37, 39]. The MSHT limit of the peakedness in (3.5)

succinctly captures the important nontrivial combined impact of the service-time distribution and

the variability in the arrival process on system performance.

Broadly, this paper is useful for showing one way to model and staff for more complex non-

Poisson nonstationary arrival processes. Moreover, the analysis in this paper yields useful insights

about the impact of stochastic variability upon the performance of many-server queues. First,

our analysis supports the conclusion that the variability in the arrival process primarily affects

performance and staffing through the asymptotic variability parameter c2A arising in the CLT.

Second, there is a complicated interaction between the service-time distribution and the arrival

process in their impact upon performance, which tends to be captured by the MSHT limit of the

peakedness, as in MSHT limits for the G/G/∞ infinite-server queue in [37, 39]. As discussed in

§4, the peakedness representation shows the impact of the service-time variance σ2 on performance

and staffing with a lognormal LN(1, σ2) service distribution. Counter to conventional wisdom, for

an arrival process that is more variable than Poisson, the congestion tends to be decreasing in σ2,

so that the commonly found σ2 ≈ 1 is not helpful compared to a higher variance such as σ2 ≈ 4 or

more.

It is significant that the new staffing algorithm in (3.1) and §3 is relatively simple, being a variant

of the widely used square-root-staffing formula. Our results show that even the basic algorithm

with z = 1 stabilizes performance for our general models. The refinement is important for hitting

the delay probability target α. The robustness suggests that variants of our proposed algorithm
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might be useful in other complex settings.

It may prove useful to consider other variants of the SRS algorithm in (3.1), such as the

alternative staffing formula s(t) = m(t) + βm(t)c for c 6= 2 investigated by [32].
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APPENDIX

This is an appendix to the main paper. We display additional results from simulation experi-

ments that examine the performance of the proposed staffing algorithm.

After giving a brief review in §A, we consider the base model with very low arrival rate in §B,
in particular, the average arrival rate λ̄ reduced from 100 to 4. In §C we consider the performance

of the base model modified to have different arrival processes, in particular, with variability less

variable than Poisson, instead of more variable than Poisson. In §D we consider the performance

for additional models with customer abandonment.

A Brief Review

Recall that we applied the MOL SRS staffing algorithm to the Ht
2(1, 4)/LN(1, 4)/st base model

with the sinusoidal arrival rate function

λ(t) = λ̄(1 + ψλ sin(γλt+ φλ)), t ∈ [0, 96], (A.1)

with average arrival rate λ̄, relative amplitude ψλ, 0 ≤ ψλ ≤ 1, period (cycle length) 2π/γλ

and phase shift φλ. Our base case has λ̄ = 100, ψλ = 0.2, γλ = 1 and φλ = 0. The arrival

process is constructed from an H2 renewal process (having hyperexponential inter-renewal times),

which is a special MMPP. The service-time distribution is lognormal. These H2(1, 4) and LN(1, 4)

distributions are specified in §4 and §6.1 of the main paper.

First, Figure 13 shows the estimated time-varying probability of delay (PoD) for the Mt/M/st

model with z = 1 on the left and for the Ht
2(1, 4)/LN(1, 4)/st base case with z = 2.11 on the right,

using the MOL SRS formula (10) in the main paper for five PoD targets α. Of course, the plots on

the left in Figure 13 just confirm the results of [21]. The plots on the right in Figure 13 show that

our extension of the MSHT MOL approximation performs just as well for the non-Markov Ht
2(1, 4)

arrival process.

B Low Arrival Rates

We first consider the Ht
2(1, 4)/LN(1, 4)/st base model having the sinusoidal arrival rate in (A.1)

with λ̄ = 100 reduced to λ̄ = 4. Figure 14 shows the performance with the SRS staffing s(t) (left)

and s(t) − 1 (right). We observe that the change of a single server now makes an even greater

difference to the performance than the case λ̄ = 10, shown in Figure 8 of the main paper. Because
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the overall staffing levels are low, the change of one server (as time evolves) account for the relatively

large fluctuations of the PoD.

C Alternative Arrival Processes

Figure 15 shows the performance for the Ht
2(1, 4)/LN(1, 4)/st base model with λ̄ = 100 modified

to have deterministic Dt arrival process (left) and an Et
2 Erlang renewal arrival process, which has

the same deterministic arrival rate function but has N a stationary D and E2 renewal process.

These processes are less variable than a Poisson process, having asymptotic variability parameters

(equal to the interarrival times scv) of c2A = 0 and c2A = 0.5, respectively.

The associated peakedness in these two cases is z = 0.64 and z = 0.82, both less than 1. Just

as for the MOL algorithm from [21] for the Markovian Mt/LN(1, 4)/st on the left and for our new

MOL algorithm for the base case Ht
2(1, 4)/LN(1, 4)/st model on the right in Figure 2 of the main

paper, we see that the performance target is met perfectly at the lower PoD targets, but there is

some gap at the higher PoD targets, but we have seen that this is due to the impact of a single

server.

D Customer Abandonment

In this final section we show the results of additional simulation experiments for Gt/GI/st + GI

models with non-exponential service times and patience times.

D.1 Different Service Variability and Abandonment Rates

Figure 16 shows the performance for the Ht
2(1, 4)/LN(1, v)/st+M(m) for all combinations of three

variances v = 0.25, 1.0, 4 of the mean-1 lognormal service-time distribution and three mean values

for the exponential patience distributions: m = 0.25 and 4.0. The performance is consistently good,

except in the case of a low-variability LN(1, 0.25) service distribution and a high-abandonment-rate

M(0.25) patience distribution, with mean 0.25 and abandonment rate of 4, appearing in the top-left

plot of Figure 16. The performance remains good for the low targets, but we see under-staffing at

the high targets.

D.2 Nonexponential Patience Distributions

The left-hand plots in Figures 17 and 18 show two cases with H2(1, 4) patience distribution, the

first for M(1) service and the second for LN(1, 4) service. Again we see stable performance, but
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both give evidence of over-staffing, because the delay probabilities fall below the targets for the

higher targets. These cases do not yet benefit from the refined steady-state delay-probability

approximation in [51].

From [51], we know that the steady-state distribution for the non-M abandonment requires

a modification of the Garnett function. The right-hand plots in Figures 17 and 18 show the

performance in the left-hand plots after the refinement has been made. These new figures show

significant improvement, notably at the higher targets.

D.3 Low Arrival Variability

We consider models with low arrival variabilities in Figure 19 for the Et
2/LN(1, 4)/st + H2(1, 4)

and Dt/LN(1, 4)/st +H2(1, 4) models, where the base process N is a renewal process with E2 and

D times between renewals, and show that the performance is stabilized at all targets in all these

cases.
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Figure 13: Estimated time-varying probability of delay for the Mt/M/st model (z = 1, left) and
the Ht

2(1, 4)/LN(1, 4)/st model (z = 2.11, right) using the MOL SRS formula (3.1) for five delay
probability targets α.
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Figure 14: Estimated time-varying probability of delay in the base Ht
2(1, 4)/LN(1, 4)/st model

with the same targets as before, but with the average arrival rate λ̄ reduced from 100 to 4, using
the MOL SRS formula s(t) (left) and s(t)− 1 (right).
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Figure 15: Estimated time-varying probability of delay for the Dt/LN(1, 4)/st model with z = 0.64
(left) and the Et

2/LN(1, 4)/st model with z = 0.82 (right) using the MOL SRS formula in (1) of
the main paper for five delay probability targets α.
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(a) LN(1,1/4) service, m = 1/4
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(b) LN(1,1) service, m = 1/4
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(c) LN(1,4) service, m = 1/4
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(a) LN(1,1/4) service, m = 4
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(b) LN(1,1) service, m = 4
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(c) LN(1,4) service, m = 4

Figure 16: Estimated time-varying probability of delay for the Ht
2(1, 4)/LN(1, s)/st+M(m) model

with LN(1, v) lognormal service times for v = 0.25, 1.0 and 4.0 and exponential abandonment with
mean m = 1/4 (left) and m = 4 (right) using the MOL SRS formula (1) and the Garnett function
in (41) of the main paper for nine delay probability targets α, ranging from 0.1 to 0.9.
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Figure 17: Estimated time-varying probability of delay for the Ht
2(1, 4)/M(1)/st +H2(1, 4) model

withM(1) exponential service times and i.i.d. H2(1, 4) patience times, yielding θ = µ = 1, using the
MOL SRS formula (1), and (a) the Garnett function (left) and (b) the Zeltyn-Mandelbaum (2005)
refinement to the Garnett function (right), in (41) of the main paper for nine delay probability
targets α (left) and (ii) , ranging from 0.1 to 0.9.
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Figure 18: Estimated time-varying probability of delay for the Ht
2(1, 4)/LN(1, 4)/st + H2(1, 4)

model with LN(1, 4) lognormal service times as in the base case, yielding z = 2.11, and i.i.d.
H2(1, 4) patience times, yielding θ = µ = 1, using the MOL SRS formula (1), (a) the Garnett
function (left) and (b) the Zeltyn-Mandelbaum (2005) refinement to the Garnett function (right),
in (41) of the main paper for nine delay probability targets α, ranging from 0.1 to 0.9.
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Figure 19: Estimated time-varying probability of delay for the Gt/M(1)/st +H2(1, 4) model with
low arrival variabilities: (i) Et

2 arrivals (left) and (ii) Dt arrivals (right), M(1) exponential service
times and i.i.d. H2(1, 4) patience times, yielding θ = µ = 1, using the MOL SRS formula (1) and
the Zeltyn-Mandelbaum (2005) refinement to the Garnett function in (41) of the main paper for
nine delay probability targets α, ranging from 0.1 to 0.9.
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