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An Inversion Algorithm to Compute Blocking
Probabilities in Loss Networks with
State-Dependent Rates

Gagan L. Choudhury, Kin K. Leung, Senior Member, IEEE, and Ward Whitt

Abstract—We extend our recently developed algorithm for com-
puting (exact) steady-state blocking probabilities for each class in
product-form loss networks to cover general state-dependent ar-
rival and service rates. This generalization allows us to consider,
for the first time, a wide variety of buffered and unbuffered
resource-sharing models with non-Poisson traffic, as may arise
with overflows in the context of alternative routing. As before,
we consider noncomplete-sharing policies involving upper-limit
and guaranteed-minimum bounds for the different classes, but
here we consider both bounds simuitaneously. These bounds
are important for providing different grades of service with
protection against overloads by other classes. Our algorithm is
based on numerically inverting the generating function of the
normalization constant, which we derive here. Major features
of the algorithm are: dimension reduction by elimination of
nonbinding resources and by conditional decomposition based
on special structure, an effective scaling algorithm to control
errors in the inversion, efficient treatment of multiple classes with
identical parameters and truncation of large sums. We show that
the computational complexity of our inversion approach is usually
significantly lower than the alternative recursive approach.

1. INTRODUCTION

N [6] and [8], we developed a new algorithm for solving

product-form models based on numerically inverting the
generating function of the normalization constant. Here we ex-
tend the algorithm to cover loss networks (or resource-sharing
models) with general state-dependent arrival and service rates.
The model has multiple resources, each containing multiple
resource units which provide service to multiple job classes.
Each job requires a number of units from each resource, which
may be zero, one or greater than one. In a circuit-switched
telecommunications network, the resources may be links, the
resource units may be circuits on these links, and the jobs
may be calls.

In the standard loss network model [3], [6], [10], [11],
[12], [15], [21], [23], [28], [31], [32], the job arrival processes
are independent Poisson processes and the job holding times
are assumed to be independent with exponential distributions
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having a mean depending on the job class. (The exponential
assumption can be relaxed by virtue of insensitivity [3].)
Here, however, we consider a more general model with state-
dependent arrival and service rates, which still has a product-
form steady-state distribution. In particular, we assume that the
vector representing the numbers of jobs in service of each class
evolves as a continuous-time Markov chain, with the arrival
and service rates of each class depending on the number of jobs
from that class already in service. The state-dependent arrival
rates may be used in two ways. First, the arrival rate may
truly be state-dependent, as when there are only finitely many
sources or when the arrival rate is controlled based on the
number of jobs in service. Second, the state-dependent arrival
rate may be introduced to approximate nonstate-dependent
non-Poisson traffic (explained in Section V), generalizing
Delbrouck’s [13], [14] treatment of a more elementary model.

The state-dependent service rate includes as a special case
the standard unbuffered model in which each job goes into
service immediately upon entering the system, and hence the
service rate for a class is proportional to the number of jobs
of that class in service. However, the main attraction of the
state-dependent service rate is that it allows us to model the
rich class of buffered resource-sharing models in which a job
is buffered upon entering the system and starts service only
after other jobs of its class have finished their service. The
number of servers per class may be one or more. In contrast
to the unbuffered variant, where the resource units are servers,
in the buffered variant the resource units are buffer spaces.
In the special case of unlimited servers per class the buffered
variant is identical to the unbuffered variant.

The standard loss model has a complete-sharing (CS) policy,
in which jobs are admitted whenever all the required resource
units are free. Here, however, we consider more general
resource-sharing policies involving extra linear constraints
(which make the state space coordinate convex [17]). We pay
particular attention to the case in which upper-limit (UL) and
guaranteed-minimum (GM) bounds are assigned to each class.
The UL bounds limit the number of jobs from each class that
can be in service. The GM bound guarantees that there is
always space for a specified number of jobs from each class.
A set of GM bounds is equivalent to an upper limit on the
resource units used by each subset of the classes. The UL
and GM bounds are equivalent for two classes, but not for
more than two classes. We focus on combined UL and GM
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bounds (which cannot be reduced to either one alone). The
UL and GM bounds are very useful for providing protection
against overloads and for providing different grades of service
to different job classes.

If all requirements under the sharing policy in use can
be met upon arrival of a new job, then the new job is
admitted, and all required resource units are held throughout
the job holding time. Otherwise, the job is blocked and
lost. The primary measures of performance are the blocking
probabilities of the different classes.

The basic model we consider assumes fixed routing. How-
ever, we can also treat alternative routing approximately,
extending [14], [15], by using state-dependent arrival rates
represent overflow traffic associated with alternative routing.
Networks of moderate size or with special structure allowing
dimension reduction (see [6], [8]) can be treated by our
method exactly. Large networks without special structure can
be analyzed approximately by extending the reduced-load
fixed-point approximations [21].

The fact that the generalizations we introduce have product-
form is easy to show. So our main contribution is to provide an
effective algorithm for computing the normalization constants
in these models. We also show that blocking probabilities and
other steady-state characteristics have simple expressions in
terms of normalization constants. In general, a steady-state
performance measure (e.g., a moment) may involve compu-
tation of a very large number of normalization constants, but
we show in Section V that it is always possible to express the
quantity of interest in terms of a small number of modified
normalization constants, which are as easy to compute by our
method as the standard normalization constant.

As in [6], [8], our algorithm is based on deriving a conve-
nient expression for the generating function of the normaliza-
tion constant and then numerically inverting the generating
function. We use the Fourier-series method for inverting
generating functions [1], [2], [9]. Since the basic algorithm
is already described in [1], [2], [6]-[9], we will be brief here,
concentrating on new features. It is well known that computing
the normalization constant is a challenging problem when the
model is large. Through numerical examples we show that the
numerical inversion approach is remarkably effective.

The numerical inversion algorithm has a number of compu-
tational advantages: First, large finite sums may be efficiently
computed through judicious truncation or through acceleration
methods. Second, for large models with a high-dimensional
generating function, it is often possible to reduce the ef-
fective dimension by first, eliminating nonbinding resources
and, second, by performing conditional decomposition, i.e.,
by inverting the variables in a good order. For example,
dimension reduction enables us to solve models with UL
and GM resource-sharing policies nearly as quickly as the
standard model with the CS sharing policy. Similar approaches
to dimension reduction (but with quite different algorithms)
have been used by Lam and Lien [24] for closed queueing
networks and by Conway, Pinsky and Tripandapani [11], [12],
[28] for special cases of the loss networks considered here. It
is also possible to reduce the computations by exploiting mul-
tiplicities, i.e., multiple classes with identical parameters. We
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can make our models much larger by increasing multiplicities
at negligible computational cost. In models for large systems
the multiplicities occur very naturally.

In addition to developing the inversion algorithm, we also
derive a new convolution-based recursive algorithm for the
most general model considered in this paper. However, we
also show that the recursive algorithms are much slower than
our inversion-based algorithms, and so their primary use here
is in verifying the inversion-based computations for small
models. In the past, recursive algorithms have been derived
from generating functions (for different models) by Reiser
and Kobayashi [29], Delbrouck [14], Kogan and Shenfild [22],
Mitra and Morrison [26], and Morrison [27].

We now discuss the unbuffered and buffered variants sep-
arately in more detail.

A. The Unbuffered Variant

The unbuffered variant has become widely recognized as a
fundamental model for communication networks. For instance,
it is now being considered to analyze the performance of wire-
less networks [34] and emerging high-speed communication
networks employing the asynchronous transfer mode (ATM)
technology [26]. For ATM systems, the unbuffered variant of
loss models has possible applications at both the call level
and the burst level. In the basic application, the resources are
the bandwidth available at the network facilities. This model
applies at the call level if we can assign an effective bandwidth
requirement to each call (on each link). The loss network ap-
plies at the burst level if we can assign an effective bandwidth
requirement to each burst within an established connection.
The possibility of assigning such effective bandwidths and
ways to do so are actively being studied, e.g., see [36].

In the standard loss network model each arrival process is
a Poisson process, but it is desirable to generalize the model
in order to represent arrival processes that are significantly
more or less bursty than the Poisson process. For this purpose,
Delbrouck [13], [14] and Dziong and Roberts [15] consid-
ered linear state-dependent arrivals, the so-called Bernoulli-
Poisson-Pascal (BPP) model. The less bursty binomial case is
also directly of interest because it corresponds to arrivals from
finitely many sources. For practical applications, it is important
that the two parameters «; and (3; in the state-dependent
arrival-rate function for class j, \j(k) = a; + B;k, where
k class-j jobs are in service, can be conveniently expressed
in terms of the overall arrival rate and peakedness. (The
peakedness is a familiar partial characterization of burstiness.)
Hence, the BPP model is relatively easy to apply to represent
non-Poisson arrival processes, as arise in overflow processes
occurring with alternative routing; see Section V.

One of our contributions here is to develop faster algorithms
(see Section VIII). However, a more important contribution
is to be able to solve the model when there are the non-CS
resource-sharing policies involving UL and GM parameters.
Previous algorithms for non-CS resource sharing have been
very limited. A recursive algorithm for the UL policy with one
or two resources was developed by Chuah [10]. For a single
resource, the UL policy is equivalent to the tree networks
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considered by Tsang and Ross [31] (for the case of Poisson
arrivals).

B. The Buffered Variant

The buffered variant with a single constant-rate server per
class and a single resource was considered by Kamoun and
Kleinrock [16] to analyze a node of a store-and-forward
computer network, where the outgoing channels of the node
share a certain number of buffers. Each job class corresponds
to the traffic destined to a particular outgoing channel. The
resource here is the buffer space. As before, the job holding
time is the period the job occupies the resource. In this case
it is the waiting time plus the service time.

Unlike the unbuffered variant where almost all prior work
considers only the CS policy, Kamoun and Kleinrock did
consider the UL, GM, and combined UL and GM policies.
However, we generalize their work in several ways. First, we
allow multiple servers per class. Second, they assumed a single
resource, while we consider multiple resources. The multi-
ple resources could either be multiple nodes of a computer
network or more than one resource at a single node (e.g.,
several types of storage elements). Kamoun and Kleinrock
assumed that each job holds a single buffer element but we
can allow each job to hold multiple and possibly different
numbers of buffer elements. Kamoun and Kleinrock required
the different job classes to have either all identical traffic
intensities or all different traffic intensities. We do not have
this restriction. For the more complex UL, GM and combined
UL and GM policies, Kamoun and Kleinrock had further
restrictions on the system parameters. Also in some cases it
appears that the computational complexity of their algorithm
grows exponentially with 7, the number of job classes. (Their
numerical examples are only for 2 classes.) By contrast, we
do not have any restrictions on the system parameters and our
computational complexity grows linearly with the number of
different job classes and does not grow at all if the parameters
of a new job class are identical to those of one of the existing
classes, thereby allowing us to consider a very large number
of job classes. With all these generalizations, we believe that
we have made an important contribution to analyzing buffered
resource-sharing models, which are important for modeling
high-speed network buffers.

C. Organization of the Paper

Here is how the rest of this paper is organized. In Section
II we specify the model and derive the generating function of
the normalization constants with the complete-sharing policy.
In Section III we consider noncomplete-sharing policies. In
Section IV we discuss how to compute blocking probabil-
ities. In Section V we show how to compute probability
distributions and moments for each class. In Section VI we
discuss modeling with BPP arrival processes (the connection
to peakedness). In Section VII we introduce a new method
for reducing the dimension of the generating function by
eliminating very lightly loaded resources from the model
before doing the inversion. In Section VIII we describe a
new scaling algorithm that allows accurate inversion of all
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generating functions considered in this paper. In Section
IX we discuss multiplicities. In Section X we discuss the
computational complexity of our algorithm. In Section XI
we show how the generating functions can be used to derive
recursive algorithms. Finally, in Sections XII-XIV we present
illustrative numerical examples.

To save space, some material in the conference version of
this paper [7] has been omitted here. In [7, Sect. 8] we show
how to calculate derivatives of the blocking probabilities with
respect to model parameters by inversion. The single-source
examples in [7, Sect. 9 and 10] are different from the examples
here. The example in {7, Sect. 91 is the classical resource-
sharing model (single resource) with the CS policy and a
finite-source input. We implemented the recursive algorithm
of Delbrouck [14] and the uniform asymptotic approximation
(UAA) of Mitra and Morrison [26] and used them to validate
the inversion algorithm. (A variant of UAA was also developed
by Kogan and Shenfild [22].) The example in Section 10 of [7]
contains all the model variations considered in this paper in
the context of a single resource. In particular, it has four types
of classes, both buffered and unbuffered, with state-dependent
arrival rates and non-CS policies. Up to 4000 classes share
up to 100,000 resource units. Exploiting multiplicities and
truncation, we are able to solve the largest case in only a
few seconds on a SUN SPARC-2 workstation.

After completing this paper, we extended the algorithm here
in [5] to cover the case of state-dependent arrival of batches.
Previous work on batches was done by van Doorn and Panken
[33], Kaufman and Rege [18], and Morrison [27].

II. COMPLETE SHARING

A. The General Case

Consider a loss network with p resources and r classes of
jobs. Let the resources be indexed by ¢ and the job classes
by j. Let resource i have K; units, 1 < i < p, and let
K = (K1, -, K,) be the capacity vector. (We let vectors
be either row vectors or column vectors; it will be clear from
the context.) Each class j job requires a;; units on resource
i where a;; is a (deterministic) nonnegative integer. Let a be
the p X r requirements matrix with elements a;;.

Let the system state vector be n = (n1,---,n,) where n;
is the number of class 7 jobs currently in process. Let Sp(K)
be the set of allowable states, which depends on the capacity
vector K and the sharing policy P. The state space Sp(K) is
a subset of Z" , the r-fold product of the nonnegative integers.
With noncomplete-sharing policies, the set of allowable states
will typically depend on other parameters besides K. For the
complete-sharing policy,

Scs(K)={n€Z} :an <K}. D

The stochastic process {n(t) : ¢ > 0} where n(t) gives the
system state at time %, is an irreducible finite-state continuous-
time Markov chain (CTMC) with a unique steady-state proba-
bility vector 7. If there are k class-j jobs in the network, then
the arrival rate of class-j jobs is A;(k). Let (k) be the rate
of class-j service completion when there are k class-j jobs in
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the system. In the unbuffered variant (k) = kp; and in the
buffered variant with s; servers for class j, u;(k) = ku; for
k < s; and pj(k) = s;p; for k > s;. Each job is admitted
if all desired resource units can be provided; otherwise the
job is blocked and lost (without affecting future arrivals). All
resource units used by a job are released at the end of the job
holding time.
The steady-state probability vector has the simple product
form
7(n) = g(K)™' f(n) @)

where

fm) =[] £i(ny), fi(ng) = Aj(n)/Mj(n) (3
j=1

n;—1

M) = [ M0 M) = [, @
k=0 k=1

and the normalization constant (or partition function) is

gK)=gp(K)= D f(n)

neSp(K)

&)

In the unrestricted case (without capacity constraints), n(t) is a
vector of independent birth-and-death processes and thus a re-
versible Markov process. Thus, the restricted process is also a
reversible Markov process with a steady-state distribution that
is simply a truncation and renormalization of the distribution
in the unrestricted case; see [19, Sect. 1.6].

We now obtain the generating function of g(K) in the case
of a CS-policy. By definition

Gy= Y Y o s

K1=0  Kp=0

(6)

for a vector of complex variables z = (21, ..., 2p). We obtaina
more compact expression by changing the order of summation.
For this purpose, let K; = Y_7_; aijn;. Then

Ga)=3 D > f)® o2y
=0 n=0k,=K, K,=K,
oo S} r P
= H(l —z)7} Z Z H (f](n,-)Hz?”"j>
=1 n1=0 n,=0j5=1 =1
P T
=T[0-2"T]¢i@ )
i=1 j=1
where
oo P
Gi(z) =Y filny) [[ =™ ®)
n;=0 i=1

From (7), we see that the transform factors into 7 terms,
one for each class. However, in general, the factors G;(z)
in (8) will have common z; variables. In this section we do
not make any further assumption on the arrival and service
rates; hence no simplification of (8) is possible. However, the
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infinite series in (8) may always be truncated by realizing that
n; < min|K;/a;;] = N;j. So we can set Aj(nj) = 0 for
n; > N; which also implies fij(n;) = 0 for n; > N;. This
gives

P

N;
aiz) =Y fin) [T7"-

n;=0 =1

®

Using (9) we can do computations for arbitrary state-dependent
arrival and service rates. This is more general than the models
to be considered in Sections II-B and —-C where (8) has a
closed-form expression.

B. The Unbuffered Variant with BPP Arrivals

In this case M;(n;) =
/\](k) = )\j. Here

n; . .
p;’nj!. For Poisson arrivals,

PN
() = | 22 R 10
Ii(ns) (w) nil  ny! (1o
where p; = Aj/u;. Combining (8) and (10) yields
p .
G;(z) = exp [pj Hz“] (11)
=1

which is the same as [6, eq. (12)].

If, instead, A;(k) = a;j + B;k where f; # 0, as in the
binomial and Pascal (negative binomial) cases of the BPP
model of [13], [14], [15], then

ey rj+nj—l _ﬂ_] ™ 12
o= ()G o
where r; = a;/8;. Combining (8) and (12) yields
2 (it =1\ [ B T Lais "
Gi(z) = J J ) B Zi”
) nz::()( rj—1 uj,l;[l
ﬂj E a;; o
={1-=2]}%5" . (13)

With infinite state spaces, we would need to assume that
B; < p; in order to have a proper steady-state distribution, but
we can allow 3; > p1; because we have a finite state space.
In (13) we can allow f3; to be negative provided that
\j(k) = a; + Bk = 0 for some k. The case of (; negative
includes the finite-source input case. When there are N;

sources for class j, each with arrival rate X}, a; = N;jAj,
B; = =X, and r; = a;/B; = —N;. Further, defining
p; = A;/(N; + u ), (13) becomes
P Nj
Gj(z) = (1 —pj +ij2?”> (1-p)™. (14
i=1
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C. The Buffered Variant with Poisson Arrivals

Let s; represent the number of servers for class j, ; the
service rate per server, and A; the arrival rate. Let p; = A;/p;.
Then

fi(n;) = py’ [l for mnj <s;
Ty [siMpj/si)m T for

Combining (8) with (15), we get

15)

n; ZSJ'.

s;—1 a,l-]- n;
G]-(z) — Z (pJ i=1%i )
njz() n]
;i\ S5 P -1
+ (LZ:L) (1 - pj Hzgij /5]‘) . (16)
°J i=1

As s; approaches infinitely, (16) approaches (11). For s; = 1,

G;(2) = (1—911_[ a”) :

=1
It is interesting to note that the buffered variant with single
server per class and Poisson arrivals is the same as the
unbuffered variant with BPP arrivals, r; = 1 and §3;/p; = p;.

a7

III. OTHER SHARING POLICIES

We can introduce other sharing policies by imposing addi-
tional constraints on the set of feasible states. As noted in [6],
each additional linear constraint is equivalent to adding another
resource. Resource ¢ results in the constraint Z;zl a;;n; <
K; where K; and a;; are nonnegative integers. Assuming that
a new constraint is expressed in terms of rational numbers, it
can be re-expressed in terms of integers.

Hence, we can add linear constraints without changing the
general form of the model, but the computational complexity
is exponential in the number of resources. Therefore, it is
significant that certain special extra sets of linear constraints
can be treated efficiently. As shown in [6], this is true for
the upper-limit (UL) and guaranteed minimum (GM) sharing
policies. (For GM, we require special structure.) In both cases
an extra linear constraint is added for each class, but the
effective dimension of the generating function after dimension
reduction increases by at most 1.

In this paper we show that we can consider the combined
UL and GM policy with only slightly more computation than
the CS policy. (Clearly the individual UL and GM policies are
special cases.) As in [6], we impose an additional condition to
treat the GM policy. (This condition can be removed for the
pure UL policy.) In particular, we assume that a;; is either b;
or O for all 5. We let 6;; = 1 if a;; > 0 and 6;; = O otherwise.
Let N, be the number of resource units guaranteed for class
4 jobs (which must be the same for each resource type) and
let n = (Ny,---, N,).

Let L;; be the upper limit on the number of resource units
of type 4 that class j jobs are allowed to use simultaneously.
Let M; be the minimum value of |L;;/a;;| over all 1,
where || is the greatest integer less than or equal to z. Let
M= (M, -, M,).

The state space for sharing with both UL and GM bounds,
which we denote by UG, is the intersection of the two separate
state spaces, i.e.,

Sue(K,M,n) = Syr.(K,M) N Sau(K,n) (18)
where
Syr(K,M)={ne€Z,:an<K,n<M} (19
and
Sem(K,n) =
neZl : i(ai]—nj V§;;N;) < Ki,1 <i<p,p (20)

i=1

with z V y = max{z, y}. From (20), we see that GM bounds
for r classes corresponds to 27 linear constraints, one of
which is the CS constraint and another of which is the GM
consistency condition E 1 N; < K;. In other words, there
is a linear constraint correspondmg to each nonempty subset
of classes.

In the general case, the generating function of the normal-
ization constant g(K,M,n) is

G(z, Y, x) =
> Y s M
Ki=0 N.=0
x gyt al]. @1
After changing the order of summation, we obtain
G(z,y,x) =
n,=0 n,.=0 N;=0 N,.=0 M;=n, M,=n,
> fi(nj)
K,=K;(n,n) K, Kp(nn) j=1
N d K;
7 Mj i
Yy (1‘[ - )} 22)
=1

for Ki(n, n) = Z;zl(aijnj \Y 61']'1\[]'). Hence,

p r
G(z,y,x) = [[a-2)" [[Gi(zy:0) @3
=1 j=1

where

Gj(z,y,x) =
» -1
- 61'_7‘ bj 5”‘17]'
(1—y)~! (1_37sz1‘ > Fj(%’fﬂj sz‘ >
i=1 i=1
P
+(1—z;)7'F; (y]Hzf’)
— (1 —a;)7 (ijf II= J)}

(24)
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and

Fi(z) =Y fi(nj)a™. (25)
§=0
Since G;(z,y,x) in (24) contains only the variables z, y;
and z;, the effective dimension in (23) can always be reduced
from p + 2r to p + 2. However, we can do even better by
explicit inversion, as we now show. Explicit inversion with
respect to z; yields

G;(z,y;,N;) =
LA Nj |N;/b;]
(1—y;)™ (H%”) > filng)yy?
i=1 n;=0

o0

Y

n;=|N;/b;]+1

(26)

P g}
fj(nj)<yj Hﬁ”)

=1
Now doing explicit inversion of (26) with respect to y; and
remembering that M; > |N;/b;], yields

Gj(z, M;, Nj) =

p Nj [N;/bj]
85
(H) S i)
=1
MJ

nj=0
p n;b;
5is
+ ) f;-(nj)(ﬂziJ) :
n;=|N;/b;]+1

=1

27

Note the remarkably simple form of (27). Assuming N; to be
an integral multiple of b;, we can rewrite (27) as

P Nj
Gji(z, M;,N;) = (H Zf”)
i=1
M;—|N;/b;]

DY

=1

LN /b;]

> 50
=0

Ib;
fj(LNj/ijl)(Hzf“) . @8

=1

The overall remaining generating function is

P

G(z,M,n) = H(l —z)™! H G;(z, M;, N;) 29
j=1

i=1

where G;(z, M;, Nj) is given by (27) or (28). If we use (28),

Njbis
then there is a leading term []%_, z; " which can be

explicitly taken out, and we can consider a smaller problem
with K; replaced by K; — 337, 6;;N; for i = 1,2,---,p.
This step will be especially effective if K ~ Z;zl 0 N;. As
an extreme case, if K; = Z§=1 6:;;N;, 1 < i < p, then we get
complete partitioning. Then (28) and (29) provide an explicit
expression for the normalization constant as

r |N;/bj]

Q(Kvan):H Z fj(nj)'

j=1 nj=0

=1

(30)

Using (29) and (27) or (28), we have effectively reduced the
effective dimension of inversion from p + 27 to p. However,
since there are M; terms in (27) and (28), the computational
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complexity is about M; times that of a closed form p-
dimensional inversion. In general, M; could increase with the
K, but if there are many classes, M, may remain small even
with large K. If, however, M; is indeed very large, then it
will be advantageous to work with G(z,y;,N;) and do one
more level of inversion. If | N;/b;] is large, then it may even
be advantageous to work with G,(z,y;,%;).

All the unbuffered and buffered versions considered in
Section 1I are easily obtained by inserting in the corresponding
expressions for f;(n;) in (24), (26), (27), and (28). For the
buffered variant (with Poisson arrivals), the sums in (27)
and (28) may be expressed in closed form. Specifically, with
sj = 1in (15), (28) becomes

p ] N; l_pLNj/ij+1
Gj(vaijj) = (Hzi”) [ 1]_p,
7

i=1

» b;\ ! » b;
+|1-p; (H zf”‘) P}Nj/ijH (H zf”)
=1 i=1
» M;b;—N;+b;
M;+1 8i;
=1

Thus, remarkably, for the buffered variant (with Poisson
arrivals), the computation for the combined UL/GM model is
just as fast as for the simple CS model. Note that the overall
generating function, (7) or (23), is always a product of factors,
with one factor from each class. This property allows us to
combine several different types of arrival processes (e.g., from
the BPP family), model variants (buffered and unbuffered)
and sharing policies (CS and UL/GM) in the same model. We
illustrate this capability in our example in [7, Sect. 10].

€2y

IV. BLOCKING PROBABILITIES

It is important to distinguish between call (job) blocking and
time blocking. Call blocking refers to the blocking experienced
by arrivals (which depends on the state at arrival epochs),
while time blocking refers to the blocking that would take
place at an arbitrary time if there were an arrival at that time (as
in the virtual waiting time). Since the steady-state distribution
« refers to an arbitrary time, blocking probabilities computed
directly from it involve time blocking, but it is not difficult
to treat call blocking as well as time blocking. With Poisson
arrivals, the two probability distributions at arrival epochs and
at an arbitrary time agree, but not more generally; see [25].

The probability that a class-j job would not be admitted
at an arbitrary time (time blocking) with a combined UL/GM
policy is easily seen to be

g(K — ae;,M —e;,n — ae;)
g(K,M,n)

B =1- (32)
where a; = (ay;,"- -, ap;) is the requirements vector for class
j and e, is a vector with a 1 in the jth place and 0’s elsewhere.

If the blocking probability is very small, then formula (32)
presents a numerical difficulty, since we are taking the differ-
ence of two quantities both much larger than the final answer.
Specifically, if we compute in double precision arithmetic with
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a precision of around 10714, then large roundoff error will be
introduced whenever the blocking probability is near or below
10~14, However, this difficulty may be removed by rewriting
(32) as

h(K,M,n)
B(t) — ) ’
7 g(K,M,n) &)
where
h(K,M,n) = g(K,M,n)
- g9(K—ae;,M —e;,n— ae;). 34
Let
p
H(z,M,n) Z Z h(K,M,n) [[ 5. 35)
K1=0 i=1
To get a closed-form expression for H(z,M,n), define

g(K,M,n) to be 0 whenever K; < 0 for any ¢ in the
range 1 < ¢ < p. It can be shown that

p r
H(z,M,n) = [0 - )" [] G(z, M, Ni)
i=1 k=1
k#j
Y4
x |Gj(z,M;,N;) — [ ] %7 Gj(z, Mj — 1,N; — b))
=1
(36)

where G,(z, Mj, N;) is as in (31). The numerical difficulty
disappears if, instead of computing h(K, M, n) via (34), we
compute it by transform inversion of the generating function
expression (36). The inversion procedure and scaling are
identical to those used for the standard generating function
G(z,M,n).

As noted above, if class-j jobs arrive in a Poisson process,
then (32) also yields the call blocking, but not more generally.
However, the call blocking always can be obtained by caicu-
lating the time blocking in a modified model. Let B; be the
class-j blocking probability (call blocking).

For notational simplicity only, consider the CS policy. Let
a = (a;;) be the requirements matrix. Then

Y nian<K-a, 2i(n5)7(0)
Yon: an<K)‘ (nj)m(n)
En:anSK —a; Aj(nj) f(n)
>on :an<K Aj(nj)f(n)

for f(n) in (3). However, we can rewrite Aj(nj)f(n) as
A;(0)f(n) and thus (37) as

an —-_n
szl-z“' <K aif( ):1—

Zn:anSK f(l’l)

where f(n) is the analog of f(n) with A;(m) replaced by
Aj(m) = Xj(m + 1), and g(K) is the analog of g(K) with
f(n) replaced by f(n). The same argument clearly holds for
non-CS policies. We summarize this result for the combined
UL/GM policy as follows.

Bj=1-

=1-

(37

9(K —aj)
9(K)

(38)

Theorem 1: With the combined UL/GM policy, the class-
j blocking probability B; coincides with the time-blocking
quantities B’ in (32) for the modified model in which the class-
Jj arrival- rate function is changed from A;(m) to X;(m) =
Aj(m + 1).

For the special case in which A;(m) = a; + B;m

X](m) = /\](m + 1) =a; + ﬂ](m + 1)
= (o + Bj) + Bim

so that the modified model is a model of the same general
form. For the BPP model, this approach to computing call
blocking was pointed out by Dziong and Roberts [15, p.
273]. Note that A; coincides with A; when there are Poisson
arrivals and ); reduces to the arrival rate with one less class-j
source when class j has a finite source input, agreeing with
known properties. Van de Vlag and Awater [32] have recently
developed an efficient procedure for computing call blocking
probabilities for many classes. However, both of these papers
only consider the CS policy.

(39)

V. OTHER PERFORMANCE MEASURES

Let X; represent the steady-state number of class-j jobs in
service at an arbitrary time. The primary performance mea-
sures other than the probability of blocking are the marginal
distribution P(X; < [) and the kth factorial moment, defined
as

E[X](.k)]:E[Xj(Xj—l)"'(Xj‘k+1)] for £>1.

From (2)—(5), it is easy to see that these quantities are given by

1))
94 \B) (K)
P(X; <l 40
K<h="rm “
and
(3,k) K)
pix ) = 9 K) 41
167 = "0 41
where
o= Y s @)
“ESP(K)
n; <l;
and
gg,k)(K): E nj(nj — 1) (n; —k +1)f(n). (43)

neSs, (K)

Note that the performance measures in (40) and (41) are
ratios of a modified normalization constant and the standard
normalization constant. We show that it is possible to construct
the generating function of each type of modified normalization
constant, and that it has an expression similar to G(z), so
that it may be directly inverted. Hence, each performance
measure requires the inversion of just two generating func-
tions. Specifically, let GY"V(z) and GYF)(z) represent the
generating functions of g(’ l)(K) and g$™® (K), respectively.
We can get expressions in the CS case if we work with (8)
and the UG (combined UL/GM) case if we work with (27). To
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save space, we only consider the UG case. As in Section III,
we include M and n as arguments of normalization constants
and their generating functions. (Note that the CS case is a
special case of the UG case with N; = 0 and M; = oo, but
it does not have the restriction a;; = 8;;b;).

It is easy to see that

Gl(ij’t)(z, M,n) =

P T
[1@ - 207G (2 M, Ny) [ ] Gl My, Ny 44)
=1

q=1
q#]

and

GUF)(z, M,n) =

P T
[1( = 207Gz, My, Nj) T Ga(z, My, No) - (45)
=1

q=1
q#]

where G,(z, My, N,) is as in (27),
!
GY) (2, M;, N;)

l
=}/ S fing) for I < [Nj/b;), and

n;=0
LV, /bs] 1

=y ST L)+ Y

n;=0 n;=|N;/b;]+1

filni)y;’
(46)
for Mj >1> ]_Nj/bj_l,

k
Gsn_')j(z’M]'aNj)
N/b_LN]/ij
=y Y0 filng)ng(ng = 1) (ny — k1)

n;=k

mj

+ > filngnng = 1) (ny — k+ Dy
n;=|N;/b;j+1

for k < |N;/b;], and

M;
= " filng)ni(n; — 1) (nj = k+ 1)y;”

n;=k

47

for M; > k > |N;/b;], and

r

— Sijb; _ a;
=L =11

i=1 =1

(48)

Note that GY”(z,M,n) and GU (z,M,n) are just
as easy to compute and then invert (see Section VII) as
G(z,M,n). Also, typically, whenever there is a simple
closed-form expression for G(z, M, n) [as for the unbuffered
CS policy with BPP arrivals in (13) or the buffered CS/UG
policy with Poisson arrivals in (31)] there will be a similar
one for Gfi]’l)(z,M,n) and G%’k)(z,M,n) as well. For the
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unbuffered model with UG policy and BPP arrivals, using the
expression for f;(n;) from (12), it is easy to show that

E[Xj(vk)] — aj(aj +565) - ';Sj + (k- 1)8;)
J
5(K — kae;, M — ke;,n — kae;)
: 4(K. M.n) @

where g in the numerator implies that we have to consider a
system with «; replaced by a; + kf3;.

VI. MODELING AND PRELIMINARY ANALYSIS FOR
THE UNBUEFERED VARIANT WITH BPP ARRIVALS

In Section IV we assumed that the sources really are of type
BPP, ¢.g., because they are in finite-source models or in mod-
els with controlled arrival rates. However, another important
use of the BPP model is represent non-Poisson traffic, which
occurs in overflow traffic associated with alternative routing.
Non-Poisson traffic can be characterized approximately via a
peakedness parameter [13]-[15], [37]. Peakedness is defined
as the ratio of the variance to the mean of the number of
jobs in service in the associated infinite-capacity system. For
Poisson arrivals, the steady-state distribution in the infinite-
capacity system is Poisson, so that the peakedness is 1. For
more bursty arrival processes, the peakedness is greater than 1;
for less bursty arrival processes, the peakedness is less than 1.

A way to approximately represent non-Poisson traffic in
our product-form model is to approximate the actual arrival
process by a BPP arrival process with the same arrival rate
and peakedness. For an unbuffered model with pi(k) = kpgj
and BPP arrival processes with state-dependent rates (k) =
a; + kB;, the means and variances in the infinite-capacity
system are

m; = o;/(p; - B;) and vy = pia;/(uj — B;)*. (50)

From (50), we see that the two BPP parameters for each class
can be expressed as

a; = mjuj/zj and ﬂ]’ = /J,j(Zj - ].)/Z]‘ (51)

where z; = vj/m; is the peakedness. (This traditional peaked-
ness notation overlaps with our convention for complex vari-
ables, but the context makes it clear which is intended.)

Having obtained «; and 3;, we wish to compute the
blocking probabilities. This could be done directly by applying
Section IV, but as noted by Delbrouck [13], a better approx-
imation is obtained if we calculate the blocking probability
indirectly via the mean number of active jobs in the finite-
capacity system with the BPP arrival process. Hence, the
next step is to compute the mean number of class-j jobs in
service in the actual system with capacity constraints, which
we denote by ;. Note that Delbrouck [13] computed 7; in
a much simpler system with single rate, single resource and
CS policy. However, we have shown in Section V (49) that
simple expressions for 7n; exist even in our much more general
model. Specifically, with combined UL/GM policy,

m; = BX]
a;5(K —ae;, M —e;,n — ae;)

= 52
[ng(K,M,n) ( )
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where the symbol g in the numerator of (52) indicates that we
have to consider a system with a; replaced by a; + 3;. Note
that this replacement is only done in the numerator. Finally,
the expression for call blocking is

b1 (1)
m;j Hi
g(K —ae;,M —e;,n — ae;)

. 9(K, M, n)

(33)

VII. ELIMINATING VERY LIGHTLY LOADED RESOURCES

We now show how reduce the dimension of the generating
function before performing the inversion by eliminating very
lightly loaded resources. This step is done before doing
conditional decomposition in [6, Sect. 3.1].

For this purpose, we can use the infinite-server means m;
and variances v; in (50) to estimate the load on each resource.
If there were no capacity constraints, then the mean and
variance of the number of resource units in use on resource
1 would be

Mi = ijﬂ,ij and V; = Zvja?j (54)
j=1 j=1

for 1 <4 < p. We call M; the resource-i offered load and V;
the resource-i variance.

The resource-7 offered load and variance are very important
for recognizing when the analysis of large multi-resource
problems can be simplified before doing any computation. If
M; is much smaller than K, then we can simply ignore the
constraint imposed by resource ¢. This reduces the dimension
of the generating function.

We can better estimate the importance of the constraint
imposed by resource i by approximating the distribution of
the number of required circuits by a normal distribution with
mean M; and variance V; in (54). The normal distribution
tends to be appropriate because, without capacity constraints,
the resource-i occupancy is the convolution of the r occupancy
distributions for each class. The normal approximation will
tend to be more accurate when r is large, by virtue of the
central limit theorem.

Let N(m,o?) represent a normally distributed random
variable with mean m and variance o2. Let ¢(z) and ®(z)
be the density and cdf of N(0,1), respectively; i.e., ¢(x) =
(2w)~ Y% exp(—22/2) and ®(z) = P(N(0,1) < z). Let
®°(z) = 1 — ®(x). Let X; be the steady-state number of
occupied resource units in resource ¢. The simple normal
approximation without capacity constraints has X; approxi-
mately distributed as N(M;,V;) for M; and V; in (54). This
means that (X; — M;)/+/V; is distributed approximately as
N(0,1).

Thus, to approximately quantify the importance of the
various resource constraints, we can solve the equations

M; + 7/ Vi = Ki,

where «; is called the resource-i binding parameter. Resources
with larger binding parameters ~y; values will tend to be less
binding, and thus less important. If y; is suitably large, then we

(55)

can delete resource i from the model before performing the
computation. For previous work on normal approximations,
see [14], [35] and references there. We are now suggesting
these approximations as an initial step before applying our
algorithm.

We have calculated the means and variances in this section
under the simplifying assumption that there are no capacity
constraints. However, when we use the UL and GM bounds,
the individual class means and variances m; and v; may
change dramatically. For instance, if the GM bound is signif-
icantly bigger than m;, then the new mean is approximately
the GM bound itself and the new variance is approximately 0.
More generally, we can calculate approximate adjusted means
and variances for each class using properties of conditioned
normal distributions, as we now show.

We assume that the occupancy for the class in question is
approximately distributed as the conditional normal random
variable (N(m,c?) | N(m,0?) < U) where U is the upper-
limit parameter. (We omit the j subscript.) When we consider
the number of resource units used, we need to multiply m by
b and o2 by b? where b = a;; for resource 7 and class j.

The key to our analysis is the following property of condi-
tioned normal distributions.

Lemma 1: For —co < L < U < oo,

E[N(m,0?)| L < N(m,o?) < U]

¢((L —m)/o) = ¢((U —m)/o)

=M OS(U —m)fo) - @((L —m)/o)

(56)

and

E[N(m,c%)?| L < N(m,o”) < U]

a oty g S = m)/0) = $(U = m)/2)
s (@((U ~m)/a) - ®((L - m)/o))
(L —m)¢((L —m)/o) = (U = m)¢((U - m)/U))_
®((U - m)/o) — ®((L — m)/0))

+ 0o
(57

Proof: For the mean, note that z¢(z) = —¢'(z) for all
x, so that

¢(L) — ¢(U)
< < =
from which (56) follows easily. Similarly, for the second
moment, note that z2¢(z) = ¢(z) + ¢”'(z), so that

Lé(L) — Up(U)

E[N(0,1)’ | LS N(0,1) < U] =1+ (U) - (L) '

from which (57) follows easily. O

We now apply Lemma 1 to calculate the (approximate)
first two moments of the capacity used by a single class,
in the presence of guaranteed minimum and an upper limit
parameters.

Theorem 2: Let L and U be guaranteed minimum and
an upper limit parameters. Assuming that the occupancy for
some customer can be approximated by the conditional normal
variable (N (m,o?) | N(m,o?) < U), the first two moments
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of the capacity used at any time are
EC(L,U) = bLP(N(m,0%) < L| N(m,0®%) < U)
+ [BE(N(m,0?) | L < N(m,0%) < U)
x P(L < N(m,c?) | N(m,0?) < U)]

_ ML =m)/o)
(T —m)/o)
S((U —m)/o) — B((L = m)/a)

ThX < (U —m)/o) ) ©8)

where
(L —m)[o) = (U = m)/o)

X =mt o myo)—e(L=mfo)

and

E[C(L,U)?| = B*L*P(N(m,0?) < L | N(m,0%) < U)
+ [b2E(N(m,02)2 | L < N(m,a*) <U)
x P(L < N(m,o?) | N(m,o?) <U)]

32 2¢((L - m)/o)
=YL —m)/o)
O((U —m)/) — B((L = m)/o)
ey (M) ©
where
Y =m?+ o2

(UL =m)/a) = @ = m)/o)

2 (@((U “m)o) - (L - m)/o>)

N U((L —m)$((L — m)/a) — (U = m)p((U — m)/a))
S(U — m)/o) = (L —m)/o) '

(61)

If, in addition, ®((U — m)/o) ~ 1 and ¢((U — m)/a) = 0,
then

EC(L,U) = bm — b(m — L)®((L — m)/o)

+bo((L —m)/o) (62)
and
E[C(L,U)}] = > L2®((L — m)/0o)
+ B?(m? 4+ o*)®°((L — m)/0o)
+ b?[2mo + (L — m)]¢((L — m)/o)). (63)

Note that when we guarantee the average rate, i.e., when
L = m, (62) reduces to

EC(L,U) = mb+ obg(0)

b
—mb+ —— ~ (m + 0.40)b,

64
o (64)

while the variance is
Var O(L,U) = o%b%(r — 1) /27 ~ 0.340%6%.  (65)

In summary, the idea is to apply Theorem 2 to compute the
approximate mean and variance of the capacity used by each
class j. Next we add these means and variances, as in (54), to
compute the mean and variance of the capacity needed for each
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resource i. We then apply (55) to identify resources that can be
deleted from the model. We evaluate the binding parameters
using the standard normal tail probabilities ®°(y;). (Recall
that ®¢(2) = 0.023, ®°(3) = 0.0014, ®°(4) = 0.000032 and
®°(5) = 3 x 10~7.) Hence, we can often remove resource v if
~; > 5. We should also make adjustments for requirements of
multiple resource units. The blocking probability for a class
that requires b resource units is roughly b times the blocking
probability of a class that requires only 1 resource unit.

Finally, with the resulting reduced model, we can apply di-
mension reduction using conditional decomposition to further
reduce the required computation [61, [8].

VIII. SCALING IN THE INVERSION ALGORITHM

Most of the algorithm is as in [6,8], so we will be brief.
Given a p-dimensional generating function G(z), we first do
the dimension reduction to determine the order in which the
variables should be inverted. We then perform (up to) p one-
dimensional inversions recursively, using the algorithm in 9]
which is based on the Fourier-series method.

An important component of the algorithm is an appropriate
scaling of the generating function in each step of the inversion.
The primary purpose of the scaling is to effectively control
the aliasing error of the inversion procedure. (This is done
in conjunction with geometric damping as described in [6]
and [9]). The scaling also effectively avoids the floating point
exception problem commonly encountered in computing very
large or small normalization constants.

Let the innermost level of inversion be with respect to 21
and successive outer levels of inversion be done with respect
10 29,23, - - , 2p. At the jth level, the inversion is with respect
to z; and let the generating function involved at this stage be
defined as GU)(z;). Instead of inverting it as is, we invert the
scaled generating function

a(])(zj') = aojé(})(ajzj). (66)
Our main concern is to find an appropriate a = (a1,
®z,...,q,) and ag = (@01, 02, - - ., agp). In [6] we did this
for Poisson arrivals and unbuffered resource-sharing models.
We develop the following unified heuristic scaling algorithm
to treat all the generating functions in the paper. All generating
functions (including the modified ones considered in Section
V) have the generic form

P

G(z) = [J0 - =) [L G0
j=1

=1

(67)

The scale vector a should be a maximal vector satisfying
0<aq <1fori=12---,pand

T i—1
ax; 0
2 (Hrk’”)zi—ln@(z) <K (69
— . 0z; -
j=1 \k=1 z
for i = 1,2,...,p where

e = 10~ (e /2t Ki)

as in [6, Sect. 3.2]. “Maximal” means that (68) should be sat-
isfied with equality for at least one i unless a = (1,1,---,1).
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The remaining scale parameters ap;, 1 < ¢ < p, are obtained
recursively starting with ¢ = p by

p T
Ha()k = HGj(alTlaaTr?’---7ai—17'i—17
k=1 j=1

-1

) 0tp)

(69)

Oy Ol 15+ - -

The scaling, although heuristic, has been tested extensively
over a wide range of parameter values for all generating
functions in this paper and elsewhere (e.g., [8]) and in all cases
it performed well. Also, in the special case of Poisson arrivals
and unbuffered resource-sharing model, the scaling becomes
identical to that developed in [6].

Recently it has been shown [4] that there is an asymptotic
justification of the heuristic scaling in the one-dimensional
case based on the theory of the saddle point method. Since
the value of integrand falls off very fast away from the saddle
point, this theory also gives further justification for why we
can have great computational saving by judicious truncation
in the inversion formula.

IX. MULTIPLICITIES

If two or more classes have the same parameters (traffic
parameters, resource requirements, UL and GM parameters),
then we say that there is a multiplicity. We can exploit
multiplicities to significantly reduce the required computation.

Let 7 be the number of different rypes of job classes and
let the jth type have multiplicity m;. Then the total number
of job classes is

r= Z m;. (70)
j=1
If the generating function of interest can be written as
P r
Gz)=[Ja-=)"[] Gita), (71)
i=1 j=1
then it can be rewritten as
P 7
G(z) = -=)" [ Gi2™. (72)
i=1 j=1

The computational complexity in evaluating (71) is O(r),
while the computational complexity in evaluating (72) is O(T).

For the unbuffered variant with Poisson arrivals and the
CS policy, we can obviously replace all classes of type
j by a single class with traffic intensity m;p; and hence
the benefit of multiplicity can be trivially achieved by any
algorithm. However, in other cases it is not straightforward
for other algorithms (e.g., recursive algorithms) to benefit
from multiplicities. In some cases a general multiplicity is
not even allowed in other algorithms. For example, Kamoun
and Kleinrock [16] allow either 7 = 1 or m; = 1 for all j in
their algorithm for the buffered variant.

X. COMPUTATIONAL COMPLEXITY

We now roughly analyze the computational complexity of
the inversion algorithm. For simplicity, assume that the capac-
ity of each resource is K. Let Cp represent the computational
complexity for sharing policy P where P may be CS, UL,
GM or UG (combined UL/GM). For the inversion algorithm,
the computational complexity is the same for state-dependent
inputs as for Poisson arrivals, so we do not focus on that
aspect. The main computational burden is carrying out the p-
fold nested inversion in [6, egs. (20)-(22)]. Other work, such
as finding the scale parameters is insignificant compared to
that. A straightforward application of our algorithm in the
CS case to compute one normalization constant would require
O(KP) evaluations of the generating function, each of which
would involve O(r) work. In order to compute the blocking
probability for each class, we need to compute 7 + 1 or 2r
normalization constants, but in [6, Sect. 5.2] we have shown
that all this work can be done in time O(1) by sharing the bulk
of the computation (requiring storage only of O(r)). Without
further enhancements, this yields Ccs = O(rKP).

However, in [6, Sect. 5.1] we have shown that we can use
truncation to reduce K to K = O(VK) and, with special
structure (see [6, Sect. 3.1]), we can reduce p to p < p.
Moreover, with multiplicities, we can reduce 7 to 7. So, finally,
we get

Ces = OFK"), (73)
where K < K,;’ﬁgp,F{_r, and
K = O(VK) forlarge K,

7 <« p with special structure, and (74)

7« r for large r and large multiplicities.

By contrast, for the Delbrouck [14] recursion for a single
resource (p = 1),

Ces = O(rK?), (75)

and so we are much faster even for a moderate K. Recently
van de Vlag and Awater [32] improved the Delbrouck re-
cursion to have a computational complexity O(rK). Their
improvement also extends to multiple resources in which case
they get

Ccs = O(TKP). (76)

Comparing (73) and (76), we see that we are faster when we
can replace K, p or r by K, p or 7 in (74), respectively.

For general state-dependent arrival and service rates, we
compute using (9). Assuming K; = K for all 7 and a;; = a
for all ¢ and j, we get the computational complexity

Cos = O((K/a)TE") (77

for K,p and 7 in (74). For the combined UL and GM policy
(UG), the computational complexity is

Cue = O(MFK?) (78)
where we have assumed the class upper limit M; = M for all
4. For the case of the buffered variant with Poisson arrivals,

CUG = CCS; see (31).
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For state-dependent rates or with UL/GM policies, there are
no previous algorithms to compare with except for Kamoun
and Kleinrock [16] which applies only to a special case. We do
not do any elaborate comparison with [16], but it appears that
with UL/GM policy and many classes, our algorithm would be
much faster than theirs. In the next section we develop a new
convolution-based recursion to treat the most general model
in this paper. Its computational complexity is

Ccon = O(rK’p). (79
Comparing (79) with (77) and (78) we see that our inversion
algorithm is much faster than the convolution algorithm.

XI. RECURSIVE ALGORITHMS
FROM THE GENERATING FUNCTIONS

In this section we show that the generating functions we
have derived can be used to derive recursions for the nor-
malization constants. This method for obtaining recursions
was first proposed by Reiser and Kobayashi [29] for closed
queueing networks, but it has not been widely used since,
¢.g., the method is not used by Kaufman [17], Roberts [30] or
Dziong and Roberts [15] to derive their recursions. However,
generating functions have been used to derive recursions for
loss models by Delbrouck [14], Mitra and Morrison [26] and
Morrison [27], Appendix A.

As noted in [29], a starting point for the recursions is the fact
that the coefficients of a generating function that is a product of
two generating functions is the convolution of the coefficients
from the two component generating functions. This remains
true with vectors using multidimensional convolution. To
express the result, let

Gy(z) = Z Z g,,(K)zf1 ---zII,{P

K1=0 K,=0

(80)

where K = (K1,--,Kp), 2z = (21, -, 2p) and 7 is an index,
which may be an integer or a vector of integers.

Lemma 2: If Gy2(z) = G1(z)Go(z)for generating func-
tions defined in (80), then

Ky Ky
gia(K) =3 Y gik)g2(K-k) 8D
k,=0

k=0

where k = (ky, -, kp).

It is straightforward to apply Lemma 2 repeatedly to our
generating functions in (7) because they are expressed as prod-
ucts of 7 + 1 generating functions. (Note that TT;_, (1 — z) !
can be regarded as a single factor.) However, in general the
computational complexity is quite high. In particular, for each
value of K, O(JT\_, K;) operations are needed. However,
since we need repeat this operation, we need to compute
g1,2(K) for the O([T5_, K;) possible values of K. Thus,
the computational complexity of (80) is really O(IT¢_, K7),
assuming that each factor can be inverted separately.

We can also exploit the special structure of our generating
functions. For example, we have the factor [T7_ (1 — z;)~!
in each case.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 3, NO. 5, OCTOBER 1995

Lemma 3: If the condition of Lemma 2 holds with G2(z) =
P_(1—2)"", then

Ky Kp
912(K) = Z Z g1(k)

(82)
k=0  kp=0
for K; = k;, so that (using the method of inclusion and
exclusion)
912(K) = g1(K)
P p P
+ Zgl,z(K —€;) — ZZng(K —e; —€;)
i=1 1=1 =1
it
p p P
0D qa(K—ei—ej—er)
i=1 j=1 k=1
i#§,i#k, £k

(83)

Proof: For (82), apply Lemma 2 noting that g2(k) =1
for all k. O

Formula (83) does not appear to be especially helpful for
computation, because it involves subtraction of large, nearly
equal quantities.

The computation required for (82) is O(TT%_, K;) if done
for only one value of K. This is possible if (82) is applied
only in the last step. From (7), we see that we use (82)
once and (81) r — 1 times. If we use (82) in the last step,
then the computational complexity of (82) is dominated by
that of (81). Hence the overall computational complexity is
O((r— )T, K2) ~ O(rK?) for Ki = K, 1 <i < p.

In order to determine the components g;(k) needed in the
convolution algorithm, we apply (9). Given (9) and

Gim=3 S a®llH @
k=0  k,=0 i=1
we obtain
gj(lavj, -+ lapg) = fi(l) (85)
for { = 0,1,---,L; where
L;j = min{Ki/a;;} (86)

and g;(k) = 0 for all other k. Hence, we can compute g;(k)
for each j and k using (85) and (3).

Note that the algorithm we have derived is very general.
It allows arbitrary state-dependent arrival and service rates.
We have just shown how to treat the CS policy using (9),
but it also applies in essentially the same way to treat the
combined UL and GM policy using (27) or (28). (We illustrate
the convolution algorithm with the UL policy in the example
of Section XIV.)

It is to be noted that with special structure alternative
faster recursive algorithms can be developed. In particular,
the generalized Kaufman [17]-Roberts [30] recursion has
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complexity O(rK?). The same is true for the improved
algorithm for the unbuffered variant with BPP arrivals by van
de Vlag and Awater [32]. We now show how the generalized
Kaufman—Roberts algorithm (the Poisson case of [14]) can be
derived from the generating function.

‘Theorem 3: If

r p
G(z) = exp ij Hzf”
=1 i

for positive constants p; and nonnegative integers a;;, then

&7

Kig(K) =) pjaij9(K—a;), 1<i<p (88)
j=1
where a; = (aij,---,ap;)-

Proof: Let G®)(z) be the partial derivative of G(z) with
respect to z;. By taking the logarithm of (87) and then the
partial derivative with respect to z;, we get

(#)
G (z) ija” (Hz ) (89)
On the one hand,
G()( Z Z Kig(K Pzi‘l, (90)
K1=0
while on the other hand, by (89),
G(2 ija” <Hza”) 71G (z)
= Do 3 3 [oR0aL
K,=0 K,=
-ziKera"fl ‘e zf”*"”]. 1)

Matching coefficients of (zf' -2/~ 1.

Ki=1...22) in (90) and
(91) yields (88). O

If we at first do (88) and then do (82) in the last step,
then we have a required computation of O([[Y_, K;) +
O(r LK) = O((r + 1) [T%_, K;) and a storage require-
ment of 0(2 [, Ki).

We now treat the two non-Poisson BPP cases in Section
II-B. The following theorem applies to each of the r factors.
The overall algorithm has computational complexity O(r K ??),

but it can effectively handle multiplicities.

Theorem 4: 1If
p C
i=1

for constants ¢ and p, and nonnegative integers a;, as in (13),
then

92)

i — Ki+a;
§;7§ii>ﬂK_w

,p)-

9(K) = p( (93)

ifa; >0,1<4i<p,fora=(a,- -

K,

Ox; /Zi___\\\g %O

K;

Fig. 1. The Kelly example.

Proof: Differentiate the generating function with respect
to z; and get

Gi(z):c<1+pﬁzf">4 P %] Isz,
=1

so that

P
()(z)(l—kpl—[zfi) = ¢pG(z)a;z; 1Hz i
i=1

i=1

94)

Then identify the coefficients of zf{ R e

KP
; -+ zp © on both
sides of (94), exploiting (90), to obtain

Kig(K) + p(Ki = a;)g(K — a) = cpa;g(K —a)  (95)
from which (93) follows. O
As a simple check on (93), note that when p = land

a; = a1 = 1, (93) should reduce to the well-known recursion
for the binomial and negative binomial distributions, namely,

9(K) (c—K+1)
JKk-1) " K

(96)

XII. THE KELLY EXAMPLE

We now give examples illustrating the numerical inversion
algorithm. Two single-resource examples not discussed here
appear in [7]. All computations were done on a SUN SPARC-2
workstation.

We first consider the Kelly example used in [6, Sect. 1 and
9], which originally came from [20]. It has five resources. The
resources are five links connecting five nodes, as shown in
Fig. 1. (The nodes themselves play no role.)

In this example we consider the six routes {1}, {2}, {1,2},
{3,5}, {4,5}, {1,3,5}. The standard example has the CS pol-
icy, Poisson arrivals and single circuit requirements. We keep
the CS policy, but consider finite sources as well as Poisson
sources, and the multi-rate generalization. Furthermore, we
allow multiple classes with different multi-rate requirements.
We considered this example for Poisson arrivals in Section 9
of [6]. Now we consider the effect of finite sources.

The r traffic classes are divided among the six routes as
follows. Define nonnegative integers r; for¢ = 0,1, - - -, 6 such
that l =7y < 7 < ro--- < rg = r. Class j goes over route !
ifr;_1+1<j <r for1 <1< 6. For this generalized Kelly
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TABLE 1
BLOCKING PROBABILITIES IN THE KELLY EXAMPLE WITH THE CS PoLicY

class parameters blocking probabilities for each class
Poisson | finite source | finite source

j | pj | route | rqmts. | arrivals | p; = 1073 p; =101
112 1 1 0.069930 0.069934 0.070243
271 1 2 0.155912 0.155892 0.153620
3] 2 2 1 0.011306 | 0.011285 0.009104
411 2 2 0.030032 0.029961 0.022803
51 2 1,2 1 0.079276 0.079265 0.077959
611 1,2 2 0.176021 0.175969 0.170178
712 35 1 0.071961 0.071961 0.071908
8|1 3,5 2 0.159575 |  0.159550 0.156668
91 2 45 1 0.071961 0.071961 0.071908
101 4,5 2 0.159575 |  0.159550 0.156668
1112 | 1,35 1 0.134236 | 0.134246 0.135156
12| 1| 1,35 2 0.280670 | 0.280668 0.279973

example, the generating function in the finite-source case is
given by

1 O 1N
[T —pi + )™

H(l - Zl) =1

i=1

T2
x I (t—ps+piz)"
j=ri+1

T3
arj _a )
j=ra2+1

T4
a3z; a .
< [T 0 =ps+psz5 25
j=rz+1

5
ag; G454 .
x ]I (1= pj +ps25" 257"
j=ra+1

T
a1 agz5 asy -
X H (1—p; +pjzlljz3SJZ5SJ)N]-
j=rs+1

G(z) =

o7

As in [6], the dimension can be reduced from 5 to 3 by
designating z; and zs as initial variables to invert. For any
given (z1,25), the generating function G(z) can be written
as the product of three factors, each involving only one of
the remaining variables, i.e., the optimal order of inversion
is 21, 25, z2, 23 and z4. Thus, the inversion dimension is
reduced from 5 to 3. For the optimal inversion order, we use
the roundoff-error-control [; parameter vectors (1,2,3,3,3)
and (1,3,3,3,3) in the inversion. (See [6, Sect. 3.2].)

The specific example we consider has capacities K; = 15
for each i, 1 < i < 5. There are 12 classes, with two
classes using each of the six routes. We use this example
to show how the finite sources approach Poisson sources as
Nj; gets large and p; decreases with N;p; = p; (constant)
for each j. We consider Poisson arrivals and two cases of
finite sources, one with p; = 1073 for all j and the other
with p; = 10~! for all j. We choose N; so that the given
Poisson model is the natural Poisson approximation for the
finite-source models. The specific offered loads are given in
Table 1. We let the requirements be either 1 or 2 for each
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TABLE II
THE INITIAL REQUIREMENTS MATRIX
job type
resource | 1 2] 3[4]l5(6|7]|8
1 20€/10[10]5|5|2111}1
2 20 | 10 0j0]|5]|2|1]|0
3 20 oji10{0}j0]0]|1)0
4 0110 ol5{0]l0(01]0
5 0|10 ojo|s5|2f0f1
6 20 ol10|5{0fj0|1]|1
7 0 0 0(0]5]0(0¢1
8 0 0 olo{0|2;010

request, with each request having the same requirements on
each link. The specific requirements are also given in Table I.

The blocking probabilities for each class in these three
cases are given in Table 1. As anticipated, the finite-source
blocking probabilities are quite close to the Poisson blocking
probabilities, especially when p = 10~3. The computation of
the blocking probabilities in Table 1 took about 1 min. For
this specific example, we could allow some of the resource
capacities to be much larger through the use of truncation.
However, the inversion algorithm will encounter difficulties
for even larger networks without special structure.

XIII. AN EXAMPLE ILLUSTRATING ELIMINATION
OF VERY LIGHTLY LOADED RESOURCES

The Kelly example above illustrates dimension reduction
by conditional decomposition of the generating function, i.e.,
by inverting the variables in a good order. Now we illustrate
dimension reduction by initially eliminating resources that are
so lightly loaded that they impose essentially no constraint,
as proposed in Section VIL In some cases, it is obvious that
resources impose essentially no constraint, but in other cases it
is not. Here it is not so obvious. In general, it seems desirable
to systematically exploit the normal approximations in Section
VII for this purpose, as we do here. Afterwards, we would look
for further dimension reduction by conditional decomposition.

Our example starts with eight resources serving eight types
of job classes, but it turns out that only three of the eight
resources actually need to be considered. Moreover, each type
uses at most one of these three remaining resources, so that
all final required inversions are only one-dimensional. Thus,
this is a best-case scenario, but it seems realistic.

The initial 8 x 8 requirements matrix is given in Table 1I
and the remaining model parameters are given in Table I1I. The
positive entries in each column of the requirements matrix are
identical, as required by our assumptions for efficiently treating
guaranteed minimum parameters; see Section III.

Each type has multiplicities, so that there are more than eight
classes. Indeed, there are 490 classes in all. We consider the
unbuffered variant with BPP arrivals, where the arrival process
is specified by. the (average) arrival rate Aj = o5 + Bim;
and peakedness z; = v;/m;, using (50). The associated BPP
parameters are given by (51). For simplicity, we let the mean
job holding time for each class be 1.
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TABLE 111 TABLE IV
PARAMETERS FOR THE JOB TYPES THE CAPACITY OF THE RESOURCES AND AN INITIAL ANALYSIS OF THE DEMAND
Jjob type resource

parameters 1 2 3 4 5 6 7 8
for each type 1 2 3 4 5 6 7 8 capacity K; 23,000 18,500 9,500 3,000 12,500 13,500 7,000 2,000
multiplicity 10 10 40 i0 10 100 300 10 mean capacity
arrival rate 10.0 200 50 100] 1000] 100] 100 1000 noeded M T 19757 116200 | 9000 | 2557 | 10200 |10557 16200 |2,000
peakedness 10 20 0] 08] 10] 10] 30] 07 needed V, 82,000 | 61,519 | 20000 |a0gs1 | 53210 |30381 [oe2i0 | 4000
mean holding time 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 standard deviation of
upper limit 30 40 15 30 150 30 30 180 capacity needed vV, 288. 248.0 170. 202. 231 174. 96. 63.
guaranteed mini 20 10 1 10 100 0 5 50 binding
mean capacity used Y 11.3 9.3 2.9 2.2 10.0 16.9 8.3 0.0
for each class 400. 200. 50. 55.7 1 520. 20. 10. 100. percentage of capacity
variance of capacity expected to be needed |  86% 88% 95% 85% 82% 78% 89% | 100%
used for each class 0. 4000. 500. 68.1 | 851.9 40. 30. 70.
mean capacity used
for each type 4000 2000 2000 | 557 | 5200 {2000 | 3000 | 1000
variance of capacity
used for each type 0 40,000 20,000 681 8519 4000 9000 700 TABLE V

Each type has upper limit and guaranteed minimum bounds.
Class 1 has a premium grade of service with a guaranteed
minimum twice the specified rate. Hence, the mean capacity
used for class 1 is (approximately) this guaranteed minimum
bound itself and the variance is approximately O.

Class 4 and 5 have the next highest grades of service. Their
GM parameters are set equal to their arrival rates. We thus
apply Theorem 2 to determine the means and variances of the
capacity used by each class. In particular, we apply (64) and
(65).

The remaining classes have sufficiently low GM parameters
and sufficiently high UL parameters that they have negligible
effect on the capacity used (assuming that these classes send
traffic according to the specified parameters). Thus, for these
classes, the means and variances are given by m; = A; and
v; = m;z;. The last two rows of Table 3 give the means and
variances of the capacity used by all the classes of each type
(in the resources they require).

The capacities of the resources are given in Table IV. Also
given are the means, variances and standard deviations of the
capacity needed in each resource. The means and variances are
obtained by adding the values in the last two rows of Table 3
for all classes that use the resource.

For each resource, Table IV also displays the binding
parameter, as specified in (55). For comparison, we also
display the percentage of the total capacity that is expected
to be needed. These percentages range from 78 to 100%. The
two highest percentages, 95 and 100%, correspond to two of
the three resources that are not negligible, but the third relevant
resource (resource 4) actually ranks sixth in percentage. This
can be explained by the fact that it has smaller capacity. A
rough estimate for the threshold of mean capacity needed is
K; — 3V/K;. The fraction (K; — 3VK;)/K; =1 - 3/VK; is
larger for larger K.

When we eliminate the negligible resources and consider
only resources 3, 4, and 8, we see that no type needs more
than one of these resources. Thus, we can analyze these three
resources separately. Moreover, types 5 and 8 do not need any
of these resources. Hence, they should experience essentially
no blocking.

We thus can compute all the blocking probabilities using
three separate one-dimensional inversions, i.e., we consider
types 1, 3 and 7 on resource 3, types 2 and 4 on resource 4,
and type 6 on resource 8. These remaining problems are not

BLOCKING PROBABILITIES FOR THE EIGHT CUSTOMER TYPES. THE ALGORITHM
Has BEEN APPLIED TO THE THREE RELEVANT RESOURCES SEPARATELY

type | blocking probability | type | blocking probability
1 2.489¢-6 5 0.0
2 3.615e-3 6 2.496e-2
3 3.591e-4 7 1.827e-5
4 4.701e-4 8 0.0

nearly trivial though. For example, resource 3 with capacity
K5 = 9,500 serves 350 classes (of 3 types). Nevertheless, our
algorithm requires only a few seconds for each of the three
separate problems. The blocking probabilities for each class
are given in Table V. (No calculation is performed for types
5 and 8.)

XIV. AN EXAMPLE WITH GENERAL
STATE-DEPENDENT SERVICE RATES

We now give an example showing that we can treat general
service rates, i.e., showing that the algorithm is not restricted
to the unbuffered and single-server buffered variants. Earlier
recursions developed for the unbuffered variants no longer
apply, but our recursion based on convolution developed in
Section XI does apply. We apply both the inversion and
convolution algorithms to this example.

Our example has a single resource with three types of
classes, each with Poisson arrivals, an upper limit sharing
policy and multiple servers. Multiple servers means that the
service rate is proportional to the number of jobs up to a
threshold and thereafter it is constant, as in the multi-server
M/M/s queue. Here are the parameters:

Class type 1 has 2 servers, offered load p; = 1.5, resource-
unit requirement a;; = 3 and an upper limit of 10 jobs (30
resource units).

Class type 2 has 10 servers, offered load p2 = 10.0,
resource-unit requirement a;2 = 2 and an upper limit of 50
jobs (100 resource units).

Class type 3 has 40 servers, offered load p3 = 42, resource-
unit requirement a;3 = 1 and an upper limit of 100 jobs (100
resource units).

In Table VI we show the results for 4 cases with different
multiplicities and capacities.

Note that the computational complexity of the inversion
algorithm is O(7v/K) and that of the recursive algorithm is
O(rK?) where K is the number of resource units, 7 is the
number of classes, and 7 is the number of types (3 in the above
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: TABLE VI
: BLOCKING PROBABILITIES FOR THE MULTISERVER EXAMPLE
multiplicity | number of blocking probabilities
number of of each resource
classes type units type 1 type 2 type 3°
3 1 100 | 0.17755446 | 0.11995594 | 0.06159283
30 10 1000 | 0.15486823 | 0.10372589 | 0.06354832
300 100 10,000 | 0.15098952 | 0.10117050 | 0.06341047
3000 1000 100,000 | 0.15056962 | 0.10089765 | 0.06339184
30,000 10,000 | 1,000,000 | 0.15052725 | 0.10087015 | 0.06338993
TABLE VII
DERIVATIVES FOR THE FIRST CASE OF THE MULTISERVER EXAMPLE
dB; . , .
i=1 1=2 1=3
dp;
j=1] 0.027234283 | 0.010284699 0.005366907
=21 0.0212418781 |. 0.015484701 0.008190657
j =3 0.036043304 | 0.026384510 0.014137514

example). For any two consecutive cases, r and K grow by a
factor of 10, while 7 remains constant. So the computational
complexity of the inversion algorithm grows by a factor of
V10 ~ 3.16, while that of the recursive algorithm grows by
a factor of 10° = 1000. In fact the recursive algorithm can
only compute the first two cases in reasonable time, taking
about a minute for the second case. For those two cases, the
two algorithms agree closely (more than the displayed eight
digits). We did not apply the recursive algorithm in the last
three cases since it would have taken about 10%, 10¢ and 10°
minutes, respectively. By contrast, the inversion algorithm was
applied to all cases and even in the challenging last case took
less than half a minute.

Accuracy in the last three cases was verified by doing the
inversion twice with inversion parameters [; = 1 and I3 = 2
(see [6, Sect. 3.2]) and the agreement was more than the
displayed eight digits. The high accuracy of this example
supports the heuristic scaling in Section VIIL

Next we compute derivatives of the blocking probabilities
with respect to the offered-load parameters using [7, eqgs. (67)
and (69)]. Due to many possible combinations of derivatives,
we show them only for the first case of this example.

The accuracy of these derivative calculations was verified
in two ways. First, as usual, we compared the results with
inversion parameters /; = 1 and /; = 2. Second, we computed
finite differences of blocking probabilities and observed that
they approach the derivative value as the granularity of the
finite difference decreases.
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