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Abstract

The number of customers in a stable Mt/GI/n queue with a periodic arrival
rate function and n servers has a proper steady-state limiting distribution if
the initial place within the cycle is chosen uniformly at random. Insight is
gained by examining the special case with infinitely many servers, exponential
service times and a sinusoidal arrival rate function. Heavy-traffic limits help
explain an unexpected bimodal form. The peakedness (ratio of the variance
to the mean) can be used for approximations with finitely many servers.
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1. Introduction

The purpose of this paper is to gain insight into the steady-state dis-
tribution associated with stable Mt/G/n queues having a nonhomogeneous
Poisson process (NHPP) as its arrival process and a periodic arrival rate func-
tion. It is known that, under regularity conditions, the number of customers
in the system, Q(t), has a limiting periodic distribution as t increases; e.g.,
see [1, 2]. The limiting periodic distribution can be defined by the limiting
distribution of the subsequence obtained by looking at successive cycles at
the same place within the cycle. If the initial place within the cycle is chosen
uniformly at random, then there is a proper limiting steady-state distribu-
tion. That steady-state distribution describes the long-run (time) average
performance. (See Remark 2.1 for an arrival view.)

In order to gain insight into that steady-state distribution, we will focus
on a special case that is remarkably tractable: the Mt/M/∞ model with
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a sinusoidal arrival rate function. Many concrete results for this model are
contained in [3], and we will exploit them. We will obtain new results pri-
marily by establishing heavy-traffic limits for the steady-state distribution
of the Mt/M/∞ model. Similar results can be established for more general
models, as we explain in §6.

When queues have time-varying arrival rates, we are usually most inter-
ested in time-dependent descriptions of the performance. However, we may
also be interested in the long-term average performance, as captured by the
steady-state distribution. As we will show here, the steady-state distribution
for the relatively simple Mt/M/∞ model is somewhat complicated, having a
form that might not be anticipated, even given a good understanding of the
time-varying performance (as available from [3]). We will illustrate in §2.

There is likely to be greater interest in the steady-state distribution of
a periodic queue when the periodic cycles are relatively short. Then cus-
tomer times in the system might well extend across several cycles. Periodic
NHPP arrival processes with short cycles are natural models in service sys-
tems with arrivals generated by appointments. At first we might think that
an arrival process associated with appointments necessarily should be de-
terministic, but extra randomness leads to a periodic NHPP as a candidate
arrival process model. In particular, the deterministic appointment pattern
is often disrupted by the random arrivals of customers about their scheduled
appointment times, by random no-shows and by random extra non-scheduled
arrivals. Thus a periodic NHPP with short cycles is a natural candidate ar-
rival process model for systems with appointments. As in [4], an explicit
formula for the peakedness (ratio of variance to the mean of the steady-state
distribution) can be useful for approximations for systems with finitely many
servers; see (8).

We find that the steady-state distribution with short cycles tends to be
quite different from the steady-state distribution with long cycles. To capture
the behavior of the periodic Mt/M/∞ model with short and long cycles,
we establish double limits in §4 and §5. Previous work on periodic birth
and death processes and periodic queues is contained in [1, 2, 5, 6, 7] and
references therein.
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2. The Steady-State Distribution

Consider the Mt/M/∞ queueing model with the sinusoidal arrival rate
function

λ(t) ≡ λ̄ (1 + β sin (γt)) . (1)

There are three parameters: (i) the average arrival rate λ̄, (ii) the relative
amplitude β and (iii) the time scaling factor γ or, equivalently the cycle
length c = 2π/γ. Let the service times be i.i.d. and independent of the
arrival process, having mean service time 1/µ. Without loss of generality,
by choosing the measuring units of time, we assume that µ = 1. If we want
to consider µ 6= 1, then we must replace λ and γ by λ/µ and γ/µ in the
formulas below. We will be considering the limiting behavior as γ ↓ 0 and
γ ↑ ∞. These are equivalent to limits as µ ↑ ∞ and µ ↓ 0, respectively.

By §5 of [3], the number of customers in the system (or the number of
busy servers), Q(t), in the Mt/M/∞ queueing model with the sinusoidal
arrival rate function in (1) and mean service time 1, starting empty in the
distant past, has a Poisson distribution at each time t with mean

m(t) ≡ E[Q(t)] = λ̄(1 + s(t)), s(t) =
β

1 + γ2
(sin(γt)− γ cos(γt)) . (2)

Moreover,

sU ≡ sup
t≥0

s(t) =
β

√

1 + γ2
(3)

and

s(tm0 ) = 0 and ṡ(tm0 ) > 0 for tm0 =
cot−1 (1/γ)

γ
. (4)

The function s(t) increases from 0 at time tm0 to its maximum value sU =
β/

√

1 + γ2 at time tm0 + π/(2γ). The interval [tm0 , t
m
0 + π/(2γ)] corresponds

to its first quarter cycle.
Let Z be a random variable with the steady-state probability mass func-

tion (pmf) of Q(t); its pmf is a mixture of Poisson pmf’s. In particular,

P (Z = k) =
γ

2π

∫ 2π/γ

0

P (Q(t) = k) dt, k ≥ 0, (5)

The moments of Z are given by the corresponding mixture

E[Zk] =
γ

2π

∫ 2π/γ

0

E[Q(t)k] dt, k ≥ 1, (6)
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so that E[Z] = λ̄.

Theorem 2.1. (the variance and higher moments) For the Mt/M/∞ model

defined above, starting empty in the distant past,

E[Z2] = (λ̄+ λ̄2) +
λ̄2β2

2(1 + γ2)
, V ar(Z) = λ̄+

λ̄2β2

2(1 + γ2)
,

E[Z3] = (λ̄+ 3λ̄2 + λ̄3) +
(3λ̄2 + 3λ̄3)β2

2(1 + γ2)
,

E[Z4] = (λ̄+ 7λ̄2 + 6λ̄3 + λ̄4) +
(7λ̄2 + 18λ̄3 + 6λ̄4)β2

2(1 + γ2)
+

λ̄4β4(3 + 6γ2 + 3γ4)

8(1 + γ2)4
.

Proof. We give a full proof in an appendix, and here do only the variance:

V ar(Z) = E[Z2]− λ̄2 =
γ

2π

∫ 2π/γ

0

(m(t) +m(t)2) dt− λ̄2

= λ̄+
λ̄2γ

2π

∫ 2π/γ

0

s(t)2 dt = λ̄+

(

λ̄2β2

(1 + γ2)2

)

1

2π

∫ 2π

0

[sin u− γ cosu]2 du.

applying the change of variables u = γt in the last step. Then expand the
integrand and apply the power reduction formulas, 2 sin2 θ = 1 − cos 2θ,
2 cos2 θ = 1 + cos 2θ, and 2 sin θ cos θ = sin 2θ, noting that the integrals of
the trigonometric terms vanish. There are corresponding formulas for higher
moments, e.g., 8 sin4 θ = 3− 4 cos 2θ + 4 cos 4θ.

Remark 2.1. (an alternative arrival view) In this paper we focus on the
random variable Z in (5) describing the time-average performance. If instead
we want to describe the average view of arrivals, then we would instead use
the random variable Za, with the pmf

P (Za = k) =
γ

2πλ̄

∫ 2π/γ

0

λ(t)P (Q(t) = k) dt, k ≥ 0; (7)

see Proposition A.1 in the Appendix of [8].

Remark 2.2. (peakedness) A successful approach for developing perfor-
mance approximations in stationary multi-server queues with non-Poisson
arrival processes is the concept of peakedness; see [4, 9, 10] and references
therein. This applies to many-server queues with or without extra waiting

4



space, and with or without customer abandonment from queue. The peaked-
ness is defined as the ratio of the variance to the mean of the number of busy
servers in the associated infinite-server queue. With an Mt arrival process
having a periodic arrival rate function, a many-server queue becomes a sta-
tionary model when we randomize over the starting place in a cycle. Taking
that point of view here, we see that Theorem 2.1 yields the peakedness of
the Mt arrival process (with the initial position uniformly distributed over
the cycle) relative to the exponential service-time distribution; i.e.,

z ≡ z(λ̄, β, γ) ≡ V ar(Z)

E[Z]
= 1 +

λ̄β2

2(1 + γ2)
. (8)

From (8), we can easily determine when z has a nondegenerate limit as we
let the parameters approach limits; we will be considering some of those
here. It is common to express the peakedness as a function of the service
rate µ. If we let the mean service time be 1/µ, then we replace λ̄ and γ
in (8) by λ̄/µ and γ/µ. We see that the peakedness goes to 1, the same
as an ordinary Poisson arrival process, when γ → ∞ (short cycles) or as
µ → 0 (long service times). We can apply this peakedness expression in (8)
to approximate the performance in a multi-server queue with this periodic
stationary arrival process, as in [4, 10]. This can be the basis for stationary-
process approximations for periodic queues, as in [11].

Example 2.1. (numerical examples) Below we show plots of the steady-
state pmf. First, Figure 1 shows the steady-state pmf for λ̄ = 10 (left)
and λ̄ = 1000 (right), both for β = 10/35 = 0.286 and three values of
γ: 1/8, 1 and 8. As anticipated, for λ̄ = 10, we see that the steady-state
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Figure 1: The steady-state pmf in the Mt/M/∞ model with the sinusoidal arrival rate
function in (1) for λ̄ = 10 (left) and λ̄ = 1000 (right), β = 10/35 = 0.286 and three values
of γ: 1/8, 1 and 8.
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pmf looks much like the Poisson pmf that holds at each time t, which in
turn is approximately a normal probability density function (pdf), using the
standard normal approximation for the Poisson distribution. However, being
a mixture, the steady-state distribution has extra variability, as can be seen
from (8), because V ar(Z) > E[Z], whereas V ar(Z) = E[Z] for the Poisson
distribution. As γ decreases, the cycles get longer, making the steady-state
even more variable (as quantified by the variance).

However, we see a radically different picture for higher arrival rates. When
λ̄ = 1000, the plots for γ = 1 and γ = 1/8 look radically different from the
plot for γ = 8, which is reminiscent of the previous plots for λ̄ = 10. For
γ = 1 and γ = 1/8, we see that these pmf’s λ̄ = 1000 are bimodal, showing
that the steady-state distribution places more weight on the extremes than it
does on the mean. In order to better explain these results, we next establish
heavy-traffic limits.

3. Heavy-Traffic Limits

In order to explain the plots for γ = 1 and γ = 1/8 when λ̄ = 1000
in Figure 1, we now establish heavy-traffic limits by letting λ̄ → ∞. In
the appendix we give a heavy-traffic limit for the moments in Theorem 2.1.
As a consequence, we obtain the following revealing limits for the skewness
and the kurtosis of Z. The limiting kurtosis of −1.5 should be compared
with the least possible value of −2 obtained by a Bernoulli random variable
attaching probability 1/2 to each of ±1. The variance V ar(Z) is one half of
the variance of that two-point distribution.

Corollary 3.1. (heavy-traffic limit for the kurtosis) As λ → ∞, the skewness

and kurtosis of Z approach the simple limits

γ1(Z) ≡ E[(Z −E[Z])3]

E[(Z −E[Z])2]3/2
→ 0,

γ2(Z) ≡ E[(Z − E[Z])4]

E[(Z −E[Z])2]2
− 3 → −1.5.

We now establish a limit for the entire distribution of Z by considering
a sequence of Mt/M/∞ models indexed by n, where n is the average arrival
rate. In particular, we assume that (1) holds with λ̄n = n. We again let the
mean service time be 1/µ = 1 and assume that the system starts empty in
the distant past, so that the system is in periodic steady state at time 0.
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By letting λ̄n = n, we are using the familiar many-server heavy-traffic
scaling, as in many previous studies, e.g., [12, 13, 14] and references therein.
We will apply the functional weak law of large numbers (FWLLN), which is
a special case of Theorem 3.21 of [14], but for the Mt/M/∞ model there is
more history, e.g., [12]. The ordinary LLN version of the fluid limit concludes
that

Qn(t)

n
⇒ 1 + s(t) in R as n → ∞ (9)

for each t. The associated deterministic fluid approximation is

Qn(t) ≈ n(1 + s(t)), t ≥ 0. (10)

Let Zn be a random variable with the steady-state distribution associated
with the nth model, defined as in (5). Let Z̄n ≡ Zn/n be the associated
scaled steady-state random variable, again using the usual fluid scaling. This
application of the fluid limit in (9) is interesting mathematically because it
leads to a stochastic limit for the scaled steady-state random variable Z̄n.
That can be explained because the variability, as partially characterized by
the variance, is an order of magnitude larger in the present setting than in
the usual stationary setting. Let ⇒ denote convergence in distribution.

Theorem 3.1. (the fluid limit) For the sequence of Mt/M/∞ models indexed

by n defined above,

Z̄n ⇒ Z in R as n → ∞, (11)

with E[Z̄n] = E[Z] = 1 for all n and

V ar(Z̄n) → V ar(Z) ≡ β2

2(1 + γ2)
as n → ∞, (12)

where Z has support on the interval [1− sU , 1 + sU ] and non-degenerate cdf

F (x) ≡ P
(

Z ≤ 1 + sUx
)

= 1− F (−x) =
1

2
+

γ

2π
[s−1(xsU)− tm0 ], (13)

for 0 ≤ x ≤ 1, s in (2), sU in (3) and tm0 in (4).
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Proof. The convergence in (11) follows from the LLN stated in (9). In par-
ticular,

P (Z̄n ≤ 1 + x) = P (Zn ≤ n(1 + x)) =
γ

2π

∫ 2π/γ

0

Πn(1+x)(nm1(t)) dt, (14)

⇒ γ

2π

∫ 2π/γ

0

1(−∞,x](s(t)) dt ≡ P (Z ≤ 1 + x) as n → ∞,

where Πx(m) is the cdf of a Poisson distribution with meanm and 1A(x) is the
indicator function of the set A, equal to 1 when x ∈ A and 0 otherwise. We
also use the bounded convergence theorem to get associated convergence of
the integrals, using the fact that, for each x, the indicator function appearing
in the limit is continuous in t for all but finitely many t. We then see that
(13) is an equivalent expression for this limiting cdf, using the fact that m(t)
is a continuous strictly increasing function over its first quarter cycle, starting
where it is 0 and increasing. The variance result in (12) follow from Theorem
2.1.

Theorem 3.1 establishes convergence in distribution Z̄n ⇒ Z, which
means convergence of the cdf’s. To directly see that convergence, Figure
2 shows the cdf’s of the scaled random variables Z̄n for Example 2.1 with
four values of n ranging from 10 to 1000. The limiting random variable Z has
support on the interval [0.798, 1.202]. Thus, we see that the case n = 1000
is close to the limiting form.
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Figure 2: The cdf of the scaled steady-state random variable Z̄n in the Mt/M/∞ model
with the sinusoidal arrival rate function in (1) for β = 10/35 = 0.286, γ = 1 and four
values of n = λ̄ = 10, 35, 100 and 1000.
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We will now derive the probability density function (pdf) of Z. For that
purpose, it is convenient to introduce

g(x) ≡ s(tm0 + [xπ/(2γ)])

sU
, 0 ≤ x ≤ 1. (15)

From (3) and (4), we see that g : [0, 1] → [0, 1] is strictly increasing and
continuous with g(0) = 0, g(1) = 1 and ġ(1) = 0, where ġ is the derivative.
Hence g has a unique inverse g−1 : [0, 1] → [0, 1], which also is strictly
increasing and continuous, with g−1(0) = 0, g−1(1) = 1 and g(g−1(x)) =
g−1(g(x)) = x for 0 ≤ x ≤ 1.

On the other hand, after letting h(x) ≡ F (x)− (1/2), from (13) and (15),
we have

h(g(x)) ≡ F (g(x))− 1

2
= P

(

Z ≤ 1 + sUg(x)
)

− 1

2
=

γ

2π
[s−1(g(x)sU)− tm0 ],

=
γ

2π
[s−1(s(tm0 + xπ/γ))− tm0 ] = x for all x, 0 ≤ x ≤ 1, (16)

so that h = g−1.

Corollary 3.2. The limiting random variable Z in (11) has interval of sup-
port [1− sU , 1 + sU ], cdf

P
(

Z ≤ 1 + sUg(x)
)

= P
(

S > 1− sUg(x)
)

= x+
1

2
, 0 ≤ x ≤ 1, (17)

and pdf

fZ(1 + sUg(x)) = fS(1− sUg(x)) =
1

sU ġ(x)
, 0 ≤ x ≤ 1, (18)

for g in (15), or

fZ(1 + sUy) = fS(1 + sUy) =
1

sU ġ(g−1(y))
, 0 ≤ y ≤ 1. (19)

The pdf fZ(y) is bimodal, approaching +∞ at y = 1± sU , and has a unique

minimum value at y = 1.
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Proof. The expression for the cdf in (17) follows directly from (13), (15) and
(16), noting that

x = h(g(x)) = F (g(x))− 1

2
= P

(

S ≤ 1 + sUg(x)
)

− 1

2
.

Expressions (18) and (19) follow from (17), the chain rule and the inverse
function theorem. From (15) and (2), we see that g(x) is increasing over
[0, 1] with g(1) = 1, while ġ(x) is decreasing with ġ(1) = 0. (The maximum
of g(x) for x ≥ 0 occurs at x = 1.)

The limiting steady-state random variable Z associated with the deter-
ministic fluid approximation for Qn(t) in (10) is not itself deterministic. The
non-degenerate steady-state pdf explains the shape we see for γ ≤ 1 in Figure
1 when n = 1000.

4. A Double Limit for Short Cycles

From the plot of the steady-state pmf when λ̄ = 1000 on the right in
Figure 1, we see that the fluid approximation performs very poorly when
γ = 8. Indeed, the plot is so different from the conclusion of Theorem 3.1
that we are inclined to question the validity of Theorem 3.1. However, Figure
3 below addresses that concern by displaying the steady-state distribution
for even larger values of λ̄. In particular, Figure 3 shows the steady-state
pmf when λ̄ = 104 (left) and λ̄ = 106 (right). These are computed by
approximating the Poisson pmf at each time t by the associated normal pdf
with the same mean and variance. From these plots, we see that Theorem 3.1
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Figure 3: The steady-state pmf in the Mt/M/∞ model with the sinusoidal arrival rate
function in (1) for λ̄ = 104 (left) and λ̄ = 106 (right), β = 10/35 = 0.286 and three values
of γ: 1/8, 1 and 8.

finally does apply to γ = 8 for these extremely large values of λ̄. Nevertheless,
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Theorem 3.1 does not yield reasonable approximations for typical values of
λ̄. That motivates us to also develop other approximations based limits in
which γn → ∞ as well as n → ∞.

We now consider the new scaled random variable

Ẑn ≡ Zn −E[Zn]√
n

=
Zn − n√

n
, n ≥ 1. (20)

Let N(m, σ2) denote a random variable with the normal distribution having
mean m and variance σ2.

Theorem 4.1. (double limit for the steady-state distribution with short cycles)
For the sequence of Mt/M/∞ models indexed by n with the scaling

γn√
n
→ ∞ as n → ∞, (21)

we have the convergence

Ẑn ⇒ N(0, 1) in R as n → ∞, (22)

for Ẑn in (20), which is consistent with E[Ẑn] = 0 for all n and

V ar(Ẑn) → 1 as n → ∞. (23)

Proof. For the stationary processes associated with the associated sequence
of stationary M/M/∞ models indexed by n, the limit in (22) is elementary.
We will show that the limit is in the same for this sequence of Mt/M/∞
models is the same. It suffices to show that the functional central limit
theorem for the arrival process has the same limit. Let An(t) be the arrival
counting process in system n, We will show that

Ân(t) ≡
An(t)− nt√

n
⇒ B(t) in D as n → ∞, (24)

where here ⇒ denotes convergence in distribution in the functions space D,
as in [15], and {B(t) : t ≥ 0} is standard Brownian motion (BM). From [14],
that limit for the arrival process will imply the corresponding limit for Qn(t).

To establish (24), recall that An can be expressed as An(t) = N(Λn(t)),
t ≥ 0, where N(t) be a rate-1 Poisson process and Λn(t) is the cumulative
arrival rate function in system n, i.e.,

Λn(t) ≡
∫ t

0

λn(s) ds = n

(

t +
β[1− cos (γnt)]

γn

)

, t ≥ 0.

11



.
It is well known that

N̂n(t) ≡
N(nt)− nt√

n
⇒ B(t) in D as n → ∞.

Moreover, with the scaling in (21) we have Λ̄n ⇒ e in D as n → ∞, where
Λ̄n(t) ≡ Λn(t)/n and e(t) ≡ t, t ≥ 0. Since {An(t) : t ≥ 0} is distributed the
same as {Nn(Λ̄n(t)) : t ≥ 0, we can apply the continuous mapping theorem
with the composition map to get the convergence

An(t)− Λn(t)√
n

=
Nn(Λ̄n(t))− nΛ̄n(t)√

n
⇒ B(t) in D as n → ∞. (25)

We can thus complete the proof by applying the convergence-together theo-
rem, Theorem 11.4.7 of [15], since

Λn(t)− nt√
n

=

√
n(1− cos (γnt))

γn
⇒ 0 as n → ∞ (26)

uniformly in t over compact intervals by virtue of the scaling in (21).
Observe that, with the scaling in (21), the variance satisfies

V ar(Ẑn) = 1 +
nβ2

2(1 + γ2
n)

→ 1 as n → ∞ (27)

We thus suggest combining the exact variance with Theorem 4.1 to generate
the approximation for large n and γ:

Ẑn ≈ N(0, σ2
n) for σ2

n = 1 +
nβ2

2(1 + γ2
n)
. (28)

Remark 4.1. (an associated diffusion process limit) A minor modification
of the proof of Theorem 4.1 yields a periodic diffusion process limit for Qn(t)
if we instead assume that βn

√
n → β∗ > 0 with γn = γ as n ≡ λ̄n → ∞.

Under that condition, Ân(t) ≡ n−1/2[An(t) − nt] ⇒ B(Λ∗(t)) in D, where
B is again BM and Λ∗(t) = β∗(1 − cos(γt))/γ and we can apply [14]. The
resulting approximation for Z is a mixture of Gaussian distributions, which
does not offer much advantage over the exact distribution in (5).
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5. A Double Limit for Long Cycles

We can also establish a double limit for long cycles by letting γn ↓ 0 as
n → ∞. We then obtain simple explicit expressions for the cdf and pdf,
which help explain the figures. These are closely related to the classical
arcsine law in probability theory, which in turn is a special beta distribution;
see p. 50 of [16].

Theorem 5.1. (double limit for the steady-state distribution with long cycles)
If γn → 0 as n → ∞ for the sequence of Mt/M/∞ models indexed by n, then

Z̄n ≡ Zn

n
⇒ Z in R as n → ∞, (29)

where Z has cdf

P (Z ≤ 1 + βx) =
1

2
+

arcsin (x)

π
, −1 ≤ x ≤ 1, (30)

and pdf

f(Z−1)/β(x) = f(Z−1)/β(−x) =
1

π
√
1− x2

, 0 ≤ x ≤ 1. (31)

or, equivalently,

fZ(x) = fZ(−x) =
1

βπ
√

1− [(x− 1)/β]2
, 1 ≤ x ≤ 1 + β. (32)

with

E[Z] = 1 and V ar(Z) =
β2

2
. (33)

Proof. We use a minor modification of the proof of Theorem 3.1. For any
fixed γ, perform the change of variables u = γt in (14) to obtain

P (Z̄n(γ) ≤ 1 + βx) = P (Zn(γ) ≤ n(1 + βx)) =
1

2π

∫ 2π

0

Πn(1+βx)(m1(u/γ)) du,

⇒ 0

2π

∫ 2π

0

1(−∞,βx](s(u/γ)) du ≡ P (Z(γ) ≤ 1 + βx) as n → ∞, (34)

Next observe that

m1(t/γ) =

(

1 +
β

1 + γ2

)

(sin (t)− γ cos (t)) → 1 + β sin (t) as γ ↓ 0
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uniformly in t. Hence the convergence in the second line of (34) is uniform
in γ with the limit being the expression for γ = 0. We thus have the limit

P (Z ≡ Z(0) ≤ 1 + β sin (π(t− 0.5)) = t, −1 ≤ t ≤ 1,

which directly implies (30) and (31). For the variance, start with a direct
expression and then perform the change of variables y = x2 to get

E[((Z − 1)/β)2] =
2

π

∫ 1

0

x2

√
1− x2

dx =
1

π

∫ 1

0

y
√

y(1− y)
dy =

1

2
, (35)

because the final integral is the expression for the mean of the arcsine or
Beta(1/2, 1/2) distribution on [0, 1], which of course is 1/2.

From Theorem 5.1, we have the approximations

P (Zn ≤ nx) ≈ P (Z ≤ x) and P (Zn ≤ y) ≈ P (Z ≤ y/n), (36)

so that

fZn
(y) ≈ fZ(y/n)

n
(37)

for fZ in (32).
The cdf’s and pdf’s are compared in Figure 4.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Fixed gamma times square root lambda bar CDF

lambdaBar=10

lambdaBar=100

lambdaBar=10000

limit

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8
Fixed gamma times square root lambda bar

lambdaBar=10

lambdaBar=100

lambdaBar=10000

limit

Figure 4: A comparison of the cdf (left) and pdf (right) of the limit Z in Theorem 5.1 with
the exact values of the cdf and pdf of the scaled steady-state random variable Z̄n in the
Mt/M/∞ model with the sinusoidal arrival rate function in (1) for β = 10/35 = 0.286,
γn = 1/

√
n and three values of n = λ̄ : 10, 100 and 10, 000.

6. Extensions

Extension of the results here for other related models follow by essen-
tially the same arguments. First, extensions to the Mt/GI/∞ model with

14



the sinusoidal arrival rate function in (1) and a non-exponential service-time
distribution follow from §4 of [3]. The same reasoning applies, but the formu-
las are more complicated. Second, extensions also hold for Mt/GI/∞ models
with other periodic arrival rate functions, but the expressions become even
more complicated. The cdf of S remains easy to compute in the same way
if (i) cycles can be defined so that the mean function is first increasing in
the first part of the cycle and then decreasing thereafter, and (ii) the mean
function is symmetric when it is reflected about its peak, so that the down-
ward part in reverse time starting at the end of the cycle coincides with the
upward part in forward time over its half cycle. Without condition (ii), we
can treat the upward and downward portions separately and combine the
results.

Finally, the heavy-traffic limit supporting the fluid approximation in §3
can also be established for more general models with periodic arrival rate
functions, including the Gt/G/∞ model with dependent service times stud-
ied in [17] and the non-Markovian Gt/GI/st + GI model with time-varying
finite capacity and customer abandonment from queue as in [13], exploiting
the FWLLN’s established in those papers. Just as here, the approximating
steady-state distribution will be non-degenerate even though the fluid limits
for the number of customers in the system are deterministic.

Acknowledgement. I thank Columbia undergraduate Ethan Kochav for as-
sistance with the numerical examples and NSF for research support (grants
CMMI 1066372 and and 1265070).
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7. Appendix

In this appendix we first give a full proof of Theorem 2.1 and then we
establish limits for the moments displayed there as λ̄ → ∞, γ → ∞ and
γ → 0. We conclude with a figure related to Figure 1, showing the same
example for λ̄ = 35 and 100.

7.1. Proof of Theorem 2.1

Recall that the first four moments of a Poisson distribution with mean m
arem1 = m, m2 = m+m2, m3 = m+3m2+m3 andm4 = m+7m2+6m3+m4.
Hence, from (5), we have the following formula for the first four moments of
of the steady-state variable Z:

E[Z] =
γ

2π

∫ 2π/γ

0

m(t) dt = λ̄,

E[Z2] =
γ

2π

∫ 2π/γ

0

(m(t) +m(t)2) dt,

E[Z3] =
γ

2π

∫ 2π/γ

0

(m(t) + 3m(t)2 +m(t)3) dt,

E[Z4] =
γ

2π

∫ 2π/γ

0

(m(t) + 7m(t)2 + 6m(t)3 +m(t)4) dt. (38)

Recall from (2) that s(t) = m(t) − 1. To evaluate the integrals in (38),
let

Sk =
γ

2π

∫ 2π/γ

0

s(t)k dt =
1

2π

∫ 2π

0

s(u/γ)k du, k ≥ 1, (39)

where s(u/γ) = (β/(1+γ2))(sin u−γ cos u), with the last expression following
from the change of variables u = γt. Now recall the power-reduction formulas
that follows from the double angle formula:

sin2 θ =
1− cos 2θ

2
,

sin3 θ =
3 sin θ − sin 3θ

4
,

sin4 θ =
3− 4 cos 2θ + 4 cos 4θ

8
,

sin θ cos θ =
sin 2θ

2
,

cos2 θ =
1 + cos 2θ

2
,

cos3 θ =
3 cos θ + cos 3θ

4
,

cos4 θ =
3 + 4 cos 2θ + cos 4θ

8
,

sin2 θ cos2 θ =
1− cos 4θ

8
.

(40)
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As a consequence of (40), we have S1 = S3 = 0 (and S2k+1 = 0 for all k ≥ 0),
and

S2 =

(

β

1 + γ2

)2(
1 + γ

2

)

,

S4 =

(

β

1 + γ2

)4(
3 + 6γ2 + 3γ4

8

)

. (41)

Hence,

γ

2π

∫ 2π/γ

0

m(t)2 dt = λ̄2(1 + S2) = λ̄2 +
λ̄2β2

2(1 + γ2)
,

γ

2π

∫ 2π/γ

0

m(t)3 dt = λ̄3(1 + 3S2) = λ̄3 +
3λ̄3β2

2(1 + γ2)
,

γ

2π

∫ 2π/γ

0

m(t)4 dt = λ̄4(1 + 6S2 + S4),

= λ̄4 +
6λ̄4β2

2(1 + γ2)
+

λ̄4β4(3 + 6γ2 + 3γ4)

8(1 + γ2)4
(42)

for Sk in (39) and (41). Finally, we combine (38) and (42) to obtain the
desired moments in Theorem 2.1.

7.2. Limiting Forms of the Moments

In this section we show how the moments in Theorem 2.1 behave as
various parameters approach limits: λ̄ → ∞, γ → ∞ and γ → 0.

7.2.1. Heavy-Traffic Limits

We next describe the asymptotic behavior of these moments as λ̄ → ∞.
Of particular interest are the skewness and the kurtosis, which approach 0
and −1.5, respectively.

Corollary 7.1. (heavy traffic limits) If λ̄ → ∞, then

E[Z]

λ̄
→ 1,

E[Z2]

λ̄2
→ 1 +

β2

2(1 + γ2)
,

E[Z3]

λ̄3
→ 1 +

3β2

2(1 + γ2)
,

E[Z4]

λ̄4
→ 1 +

6β2

2(1 + γ2)
+

β4(3 + 6γ2 + 3γ4)

8(1 + γ2)4
, (43)
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so that the central moments satisfy

V ar(Z)

λ̄2
≡ E[(Z − E[Z])2]

λ̄2
→ β2

2(1 + γ2)
,

E[(Z − E[Z])3]

λ̄3
→ 0,

E[(Z − E[Z])4]

λ̄4
→ 3β4

8(1 + γ2)2
, (44)

and the skewness and kurtosis have the simple limits

γ1(Z) ≡ E[(Z −E[Z])3]

E[(Z −E[Z])2]3/2
→ 0,

γ2(Z) ≡ E[(Z − E[Z])4]

E[(Z −E[Z])2]2
− 3 → −1.5. (45)

7.2.2. Short Cycles

We now consider the limits of the moments in (38) as γ → ∞ and as
γ → 0. For the kurtosis, we see that the two iterated limits limλ̄→∞ limγ→∞

and limγ→∞ limλ̄→∞ do not agree.

Corollary 7.2. (short cycles) As γ → ∞, the moments in (38) approach the

moments of a random variable Z∞ having a Poisson distribution with mean

λ̄:

E[Z∞] = λ̄, E[Z2
∞] = λ̄+ λ̄2, E[Z3

∞] = λ̄+ 3λ̄2 + λ̄3,

E[Z4
∞] = λ̄+ 7λ̄2 + 6λ̄3 + λ̄4.

The associated second, third and fourth central moments of Z∞ are

V ar(Z∞) ≡ E[(Z∞ − E[Z∞])2] = λ̄, E[(Z∞ − E[Z∞])3] = λ̄ and

E[(Z∞ −E[Z∞])4] = λ̄+ 3λ̄2, (46)

so that the skewness and kurtosis are

γ1(Z∞) ≡ E[(Z∞ − E[Z∞])3]

E[(Z∞ − E[Z∞])2]3/2
=

1√
λ̄
,

γ2(Z∞) ≡ E[(Z∞ −E[Z∞])4]

E[(Z∞ − E[Z∞])2]2
− 3 =

1

λ
, (47)

both of which converge to 0 as λ̄ → ∞.
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7.2.3. Long Cycles

In contrast to Corollary 7.2, we see that the two iterated limits limλ̄→∞ limγ→0

and limγ→0 limλ̄→∞ do agree.

Corollary 7.3. (long cycles) As γ → 0, the moments in (38) approach

E[Z0] = λ̄, E[Z2
0 ] = (λ̄+ λ̄2) +

λ̄2β2

2
,

E[Z3
0 ] = (λ̄+ 3λ̄2 + λ̄3) +

(3λ̄2 + 3λ̄3)β2

2
, (48)

E[Z4
0 ] = (λ̄+ 7λ̄2 + 6λ̄3 + λ̄4) +

(7λ̄2 + 18λ̄3 + 6λ̄4)β2

2
+

3λ̄4β4

8
.

The associated second, third and fourth central moments of Z0 are

V ar(Z0) ≡ E[(Z0 − E[Z0])
2] = λ̄+

λ̄2β2

2
,

E[(Z0 − E[Z0])
3] = λ̄+

3λ̄2β2

2
, (49)

E[(Z0 − E[Z0])
4] = λ̄+ 3λ̄2 +

(7λ̄2 + 6λ̄3)β2

2
+

3λ̄4β4

8
,

so that the skewness and kurtosis satisfy

γ1(Z0) ≡ E[(Z0 − E[Z0])
3]

E[(Z0 − E[Z0])2]3/2
=

√
2
(2λ̄+ 3λ̄2β2)

(2λ̄+ λ̄2β2)3/2
∼ 3

√
2

λ̄β
,

γ2(Z0) ≡ E[(Z0 −E[Z0])
4]

E[(Z0 − E[Z0])2]2
− 3 → 3

2
− 3 = −3

2
. (50)

as λ̄ → ∞.

7.3. Additional Plots

We conclude by giving plots of more cases related to Figure 1.

20



0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
lambdaBar=35

gamma=1/8

gamma=1

gamma=8

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
lambdaBar=100

gamma=1/8

gamma=1

gamma=8

Figure 5: The steady-state pmf in the Mt/M/∞ model with the sinusoidal arrival rate
function in (1) for λ̄ = 35 (left) and λ̄ = 100 (right), β = 10/35 = 0.286 and three values
of γ: 1/8, 1 and 8.
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