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ABSTRACT

Motivated by interest in probability density functions (pdf’s) with nonexpo-
nential tails in queueing and related areas, we introduce and investigate two
classes of beta mixtures of exponential pdf’s. These classes include distribu-
tions introduced by Boxma and Cohen (1997) and Gaver and Jacobs (1998)
to study queues with long-tail service-time distributions. When the standard
beta pdf is used as the mixing pdf, we obtain pdf’s with an exponentially
damped power tail, i.e., f(t) ~ at™%e ™ as t — oco. This pdf decays exponen-
tially, but analysis is complicated by the power term. When the beta pdf of
the second kind is used as the mixing pdf, we obtain pdf’s with a power tail,
ie., f(t) ~ at™9ast — co. We obtain explicit representations for the cumula-
tive distributions functions, Laplace transforms, moments and asymptotics by
exploiting connections to the Tricomi function. Properties of the power-tail
class can be deduced directly from properties of the other class, because the



power-tail pdf’s are undamped versions of the other pdf’s. The power-tail
class can also be represented as gamma mixtures of Pareto pdf’s. Both classes
of pdf’s have simple explicit Laguerre-series expansions.

1. Introduction

In this paper we introduce and investigate convenient classes of probability
density functions (pdf’s) on the nonnegative real line. These pdf’s either have
power tails, i.e., for which f(t) ~ at™? as t — oo for positive parameters «
and ¢ (where f(t) ~ g(t) as t — oo means that f(t)/g(t) — 1 as t — 00),
or ezponentially damped power tails, i.e., for which f(t) ~ at™%e " as t — o0
for positive parameters «, ¢ and 7. By “convenient” we mean that the pdf
and its associated cumulative distribution function (cdf), Laplace transform,
moments and tail asymptotics should all be available explicitly or at least
be readily computable, so that the pdf’s can easily be used as components of
stochastic models, e.g., as service-time pdf’s in queueing models. We especially
want computable Laplace transforms so that we can apply numerical transform
inversion, e.g., to compute a waiting-time cdf when the service-time pdf is from
one of these classes. The classes should also be sufficiently large that they cover
an interesting range of cases.

As discussed in Feldmann and Whitt [18] and references therein, there
currently is great interest in power-tail pdf’s in the study of communication
network performance because measurements indicate that many distributions
have this property (e.g., file sizes), and that this property is largely respon-
sible for observed traffic complexity (e.g., long-range dependence and self-
similarity). The power-tail pdf’s here are alternatives to the Pareto mixture
of exponential (PME) pdf’s introduced in Abate, Choudhury and Whitt [9].

This paper can be regarded as a continuation of the operational calculus
for probability distributions via Laplace transforms in Abate and Whitt [4].
In particular, here we apply the stationary-excess operator £, the stationary-
lifetime operator £, the unimodal operator &/ and the damping operator D;
see (1.12), (5.7), (5.12) and (1.21) below.

The assumed tail behavior makes these classes of pdf’s special cases of
class-IIT (long-tail) and class-II (semi-exponential tail) distributions in the
terminology of Abate, Choudhury and Whitt [9] and Abate and Whitt [5].
Let f(s) be the Laplace transform of a pdf f(¢) and let —s* be the rightmost
singularity of f (s). Then f(t) and f (s) are classified as type I (exponential
tail) if s* > 0 and g(—s*) = oo, type II (semi-exponential tail) if s* > 0 and



1 < g(—s*) < 00, and type III (long or heavy tail) if s* = 0. Among the class-I
pdf’s are pdf’s with rational Laplace transforms. All phase-type distributions
are class I. Many explicit results in queueing theory are available when the
underlying distributions are class I. Our goal is to develop tractable classes of
pdf’s that are not class 1.

The principal pdf’s considered here are beta mixtures of exponential pdf’s,
but we consider both the standard beta pdf

b(p, ¢;y) = %y”‘l(l -yt 0<y<1, (1.1)

and the beta pdf of the second kind

ba(p, q;y) = %y”‘l(l +y) Py >0, (1.2)

for p > 0 and ¢ > 0, where I'(z) is the gamma function; e.g., see p. 50 of
Feller [19] and p. 51 of Johnson and Kotz [26]. The beta pdf of the second
kind is obtained by considering the random variable X /(1 — X), where X has
a standard beta pdf.

The (standard) beta mizture of exponentials (BME) pdf is defined as

1
v(p,q;t)E/ y e Vb(p, q;y)dy, t >0, (1.3)
0

while the second beta mizture of exponentials (BeME) pdf is defined as

v2(p,q;t)5/ y e by(p, q;y)dy, t>0. (1.4)
0

The pdf’s in (1.3) and (1.4) clearly are computable via numerical integration,
but they are not especially convenient. We will show that some special cases
have explicit formulas and others can be computed more rapidly by recursions.

We have used the beta pdf’s in (1.3) and (1.4) to mix the means or times of
the exponential pdf’s. We could also mix the exponential rates. Since mixing
rates is the form of the spectral representation, we call the associated mixing
pdf the spectral density. (By making the change of variables z = 1/y, we
see that a mixing density w(y) is related to the associated spectral density
#(x) by ¢(z) = 2 2w(z™") and w(y) = y2p(y~*).) The alternative spectral
representations of (1.3) and (1.4) are

L(p+q)

v(p,q;t) = T(p)T(q)

/ (ze ™)bo(q, p;z — 1)dx, t>0, (1.5)
1



and
L'(p+q)

I'(p)L'(q)
Note that the spectral density for v (p, ¢; ) is ba2(q, p; y), the same as the mixing
density but with the parameters p and ¢ switched.

These two forms of mixtures can also be represented as products and quo-
tients of independent random variables. Let X, Y(p,q) and Y3(p,q) be in-
dependent random variables with pdf’s e7¥, b(p, ¢;y) and by(p, ¢;y), respec-
tively. Then the BME pdf v(p, ¢; t) can be represented via the random variable
Z=Y(p,q)X or Z=X/(1+Y5(q,p)), while the B_ME pdf vs(p, ¢;t) can be
represented via the random variable Zs = Ys(p, ¢) X or Zy = X/Y3(q,p). The
random product representations are convenient for calculating moments, e.g.,
if Z=YX, then EZ" = EY"EX" for all n.

We could also consider a third beta mixture of exponentials (BoME), de-
fined by

valpy ;) = / (2~ oo(qpi e, £>0.  (L6)
0

1 ')
vg(p,q;t)Z/ w@‘t‘”b(p,q;w)dIZ/ y e by (g, py — Vdy (1.7
0 1

which is obtained by switching the BME mixing and spectral pdf’s. The BsME
pdf vs(p, q;t) can be represented by the random variable Z3 = X/Y(p,q) or
Z3 = X(1+ Ya(q,p)). The mixing representation shows that the BsME and
BsME pdf’s are similar, especially with regard to their tail behavior. We do
not discuss the BsME pdf further here, but we do in Abate and Whitt [7].

Let G°(t) = 1 — G(t) be the complementary cdf (ccdf) associated with a
cdf G. By integrating in (1.3) and (1.4), we see that the associated ccdf’s are
simply related to the pdf’s with different parameters, in particular,

Ve(p,q;t) =

b
vip+1,q;t), t>0, 1.8
L p+ L) (1)

and

It turns out that BME and BoME have very nice structure. It may not be
initially evident from (1.3)—(1.9), but these pdf’s and ccdf’s have the indicated
tail behavior. The following are special cases of more general asymptotic
expansions given in Section 3.



Theorem 1.1. For all p > 0 and ¢ > 0,

¢ I'(p+qe”™’
Vep g;t) ~ W as ¢t — o0 (1.10)
and I )
c p+q

The BME and B;ME classes have the two parameters p > 0 and ¢ > 0,
but we can also add an additional scale parameter, say a; e.g., if X has pdf
v(p, q;t), then X/a has pdf av(p, g; at), t > 0. Hence BME and BoME are both
three-parameter families, where the parameters run over the positive reals.

Being mixtures of exponential pdf’s, the BME and BoME pdf’s are all
completely monotone (CM); e.g., see p. 439 of Feller [19]. Consequently, they
can be approximated arbitrarily closely by hyperexponential (H}) pdf’s, which
are finite mixtures of exponential pdf’s; see Feldmann and Whitt [18]. The
BME and BsME pdf’s often might be preferred to H pdf’s, however, because
they have fewer parameters. On the other hand, since the standard beta cdf
approaches the cdf of a point mass at m as p — 0o, ¢ — oo with p/(p+q) — m,
we have the following result. (This proof and other omitted proofs are given
in the final section.)

Theorem 1.2. Finite miztures of BMEs constitute a dense (in the sense of
convergence in distribution) subset of the family of all CM pdf’s.

Since mixtures of beta pdf’s can be quite different from single beta pdf’s,
it may actually be useful to consider mixtures of BMEs and BoMEs. A mix-
ture of two BMEs has seven parameters, the parameter triple (p, ¢, a) for each
BME and the mixing probability. To get additional pdf’s, we can also consider
convolutions and mixtures of such convolutions. Mixtures of (m-fold) convo-
lutions of BME pdf’s are dense in the family of all probability distributions.
However, BME and BsME pdf’s are probably of most interest used directly or
with only a small number of mixture and convolution operations.

As discussed in Abate and Whitt [4] and previous papers, a fundamental
operation on probability distributions is the stationary-excess operation. The
stationary-excess ccdf associated with a cdf G with mean m,(G) is

1

E(G)() =

/ G°(u)du, t>0, (1.12)
t



while the associated stationary-excess pdf is

Ge(t)
mi (G) ’

E(g)(t) = t > 0. (1.13)

(1)

It is significant that £ maps the classes BME and BoME into themselves, in
particular, the next result follows easily from (1.8) and (1.9). We use the fact
that the mean of a BME (BsME) with parameters p and ¢ is p/(q+q) (p/q—1);
see Section 2.

Theorem 1.3. For all p > 0 and ¢ > 0,
velp, ¢;t) =v(p+1,¢;t), ¢t=0, (1.14)
and, for allp > 0 and g > 1,
v2e(p, ;1) = v2(p+ L g —L;t), £2>0. (1.15)

Theorem 1.3 is important for constructing new members of the BME and
BsME classes from given ones. For any function f, let f be its Laplace trans-
form. Since ge(s) = (1 —g(s))/m1(G)s for any pdf g, Theorem 1.3 implies the
following.

Corollary. For allp >0 and g > 0,
p+q

i(p+1,98) = p” (1=9(p,q;5)) (1.16)
and, for allp >0 and ¢ > 1,
. q—1 X
v2(p+1aq_]-7s>: ?(l—vg(p,q,S)) . (117)

It turns out that pdf’s associated with the time-dependent behavior of
reflected Brownian motion (RBM) previously studied in Abate and Whitt
[1, 2, 3, 4] and elsewhere are BME pdf’s (with the scale parameter chosen
so that the beta pdf is on [0,2]; e.g., see Theorem 4.2 of Abate and Whitt
[3]. The previously exploited stationary-excess relations among these pdf’s is
largely explained by Theorem 1.3.

It is straightforward to calculate the Laplace transform of v(p, ¢;t),

o(p,q;8) = / e *'v(p, g; t)dt , (1.18)
0



obtaining an integral representation, which can be identified with an instance
of the Gauss hypergeometric function »F(a,b;c;2); see (5.80) on p. 207 of
Graham, Knuth and Patashnik [22] or 15.3.1 of Abramowitz and Stegun [12];
hereafter referred to as AS.

Theorem 1.4. For all p > 0 and ¢ > 0,

1
o(p,q;8) = / (14 sy)"b(p, ;y)dy = 2F1 (1, p;p+ q;—s) , (1.19)
0

where o Fy(a,b; c; z) is the Gauss hypergeometric function.

It turns out that Theorem 1.4 is very useful for computing BME Laplace
transforms via continued fractions; see [8].

We can then apply Theorem 1.4 to obtain the following symmetry result
for BME pdf’s. Exploiting the Gauss hypergeometric function, we can also
obtain this next result by an application of the Pfaff reflection law; see (5.101)
on p. 217 of Graham, Knuth and Patashnik [22] or 15.3.4 of AS.

Theorem 1.5. For all p > 0 and ¢ > 0,

. .
U(qapa S) - 1+Sv(p7Qa S/(1+S)) : (120)
As noted in Section 5 of Abate, Choudhury and Whitt [9], there is a one-
to-one correspondence between class IT and class III pdf’s; one type of pdf can
be converted into the other by damping or undamping, i.e., by multiplying by
an appropriate exponential and rescaling. It turns out the BME and BoME
classes are related by such transformations. From (1.19) it is evident that the
rightmost singularity of v(p, ¢;s) is —s* = —1. The value of 9(p, ¢; —s*) can
be obtained from the integral representation (1.19). It yields 0(p,¢; —1) = oo
for ¢ <1 and 9(p,q;—1) =1+ p(q — 1)~! for ¢ > 1, so that the BME pdf is
class I for ¢ < 1 and class II for ¢ > 1. Hence, BME pdf’s can be mapped
into BoME pdf’s for all ¢ > 1. Instead, we now map BME ccdf’s into BoME
ccdf’s, which applies for all ¢ > 0.

Theorem 1.6. For all p > 0 and q > 0, the BoME ccdf and pdf can be
represented as
Vy(p,qit) = e'Ve(p,q;t), t=>0, (1.21)



and

etv(p,q+ 1;t)

t>0
ev(p,q+ L;u)du’ — —

Y

wp,q;t) = €lp,gt)—Vip,qt) = =

qa
= ev(p,q+ 1;t), t>0. 1.22
et 1) (122

Theorem 1.6 is useful because it enables us to obtain many properties of
the BoME class directly from properties of the BME class. As indicated above,
we could have damped the pdf’s instead of the ccdf’s as in the second formula
in (1.22), but then the normalizing integral is finite only for ¢ > 1. That
alternative approach just shifts g by 1.

We obtain many structural results by making connections to appropriate
special functions. The key special function is the Tricomi function Ul(a,b,t),
i.e., the second of the confluent hypergeometric functions; see Chapter 48 of
Spanier and Oldham [32] or Chapter 13 of AS. In particular, the representation
here follows form 13.2.6 of AS and (1.5) here after making the change of
variables y = = — 1 in (1.5).

Theorem 1.7. For all p > 0 and ¢ > 0,

v(p,q;t) = W@‘t(](q, 2—p,t), t>0, (1.23)

where U(a, b, t) is the Tricomi function.

From the perspective of queueing theory, this link to special functions in
Theorems 1.4 and 1.7 is reminiscent of Srivastava and Kashyap [33], but BME
and BoME pdf’s are not discussed there. The function 5 F; was also used in a
different way in Example 4 of Duffield and Whitt [16].

We now apply Theorem 1.7 to obtain an interesting alternative character-
ization of BsME ccdf’s as gamma mixtures of Pareto distributions. (This is
not a scale mixture.) Boxma and Cohen [15] introduce the subclass of BsME
distributions with p = 2 —¢q in this form to study queues with long-tail service-
time distributions. (They also include an atom at the origin.)

Theorem 1.8. The BoMFE ccdf is a gamma mizture of Pareto ccdf’s, i.e.,

[e'¢) T qxp—le—x
VE(p, g;t) = dr, t>0. 1.24




Here is how the rest of this paper is organized. In Section 2 we give formulas
for all BME and BoME moments. We then use the BME moments to obtain
series representations for the Laplace transform. We then show that the BME
and BoME pdf’s and ccdf’s admit explicit Laguerre-series expansions. These
series representations can serve as an effective means of computation for any
p and ¢, using the algorithm in Abate, Choudhury and Whitt [10].

In Section 3 we give asymptotic expansions as t — oo and as t — 0 for the
pdf’s and cdf’s, and asymptotic expansions for the moments as n — oo. In
Section 4 we observe that gamma pdf’s with shape parameter p < 1 are BME
pdf’s, in particular, v(p,1 — p;t). In Section 5 we given recurrence relations
that facilitate determining new BME and BoME pdf’s given established ones.
In Section 5 we also establish connections to pdf’s introduced by Gaver and
Jacobs [20] and Boxma and Cohen [15] to study the M/G/1 queue with a
long-tail service-time pdf. In particular, we analytically invert a transform in
Gaver and Jacobs [20], solving a problem they pose.

In Section 6 we discuss concrete examples. In Section 7 we show that all
gamma mixtures of exponential pdf’s can be represented as limits of BME
pdf’s and thus inherit BME properties. We discuss other related mixtures
in Section 8, e.g., showing that beta mixtures of betas are again betas in
certain situations, so that beta mixtures of BMEs are again BMEs. We give
previously omitted proofs in Section 9. Finally, we make a few concluding
remarks in Section 10.

2. Moments and Series Representations

Let m,(p,q) be the n'* moment of the BME pdf v(p,q;t). Since the n'®
moment of a mixture is just the mixture of the component n'® moments,
m,(p, q) is just the n'® moment of the beta pdf b(p, ¢; y) multiplied by n!, i.e.,

i (p ) = : (P)n

D+ Q)nn! (2.1)

where (z), is the Pochhammer symbol; ie., (z)o = 1 and (x), = =z(z +
1)...(z+n—1) = I'(x + n)/T'(z); see 6.1.22 of AS. Hence, the first two
moments are

2p(p+1)
p+a)p+q+1)’

ma(p,q) = —— and ma(p ) = ¢ (2.2)

P+q



and the squared coefficient of variation (SCV, variance divided by the square
of the mean) is

2 mz(paQ) 2q
A(p, BAACAC oL VA R T S
(p.q) m1(p, q)? p(p+q+1)

(2.3)

Formula (2.3) is consistent with the fact that any mixture of exponentials must
have ¢ > 1.
The normalized third moment is

ms(p,¢)ma(p,q) _ 1+4q/(p+1)
ma(p, q)* 1+q/(p+2)

, (2.4)

which is increasing in ¢ for all p.

We can deduce from (1.10) that the tail of the BME distribution for fixed
mean, gets heavier as g increases. We now establish related properties of the
moments.

Theorem 2.1. For all p > 0 and ¢ > 0,

M1 (P, ) :(p+q)< ptn ) , (2.5)

ma(p, ¢)mn(p, q) P p+qg+n

which is increasing in q and n, but decreasing in p.

Corollary. For fized mean and variance, m,(p,q) is increasing in q and
decreasing in p for all n > 3.

Formula (2.1) directly gives a series representation of the Laplace trans-
form, namely,

o(p,q;8) = /OOO e"*v(p, g; t)dt = Z(—S)"% : (2.6)

n=0

By the ratio formula, the radius of convergence of the series in (2.6) is

*

o iy PPt @ (pn)(ptgtn—1)
n=00 (P)n(P+ @)py1 n=o (p+n—1)(p+q+n)

=1. (2.7)

This is consistent with remarks following Theorem 1.5.
Formula (2.6) looks promising for computing when |s| < 1. Otherwise,
(2.6) might be not so convenient. Hence, we can consider an alternative series



expansion based on the symmetric representation in Theorem 1.5. It provides
a nice connection to Laguerre functions, because s™/(1 + s)"*! is the Laplace
transform of the Laguerre function

L,(t) =e"Ly(t), t>0, (2.8)

where

—~ (1) (=t)*
Ln(t) = kzzo (k) o (2.9)
is the Laguerre polynomial; e.g., perform a change of variable upon 29.3.34
of AS to account for the e™* factor, as in 29.2.12 of AS. (Note that we use
the prefactor e~* in (2.8) instead of e™*/?2 as is often done in order to have
{l.(t),n > 0} be an orthonormal basis.) Hence, we can invert term by term to
obtain an explicit Laguerre-series representation for v(p, ¢;t). We can apply
the Corollary 1 to Theorem 1.3 and Theorem 1.5 to obtain corresponding
results for the BME and BoME cedf’s.

Theorem 2.2. For each p >0 and g > 0,

o0

0 g =3 — (@ (2.10)

(14 s)" (p+q)n

n:O

so that

v(p,git) = D I(t) , (2.11)

Vepat) = o h(-L L0 .12

Vi(p,q;it) = ;Ln(t) (piq) w jf?i e (2.13)

where 1,(t) is the n™® Laguerre function in (2.8) and L,(t) is the Laguerre
polynomial in (2.9).

Combining Theorems 1.7 and 2.2, we obtain a Laguerre-series representa-
tion for the Tricomi function, namely,

o0

Lo+ a) 17,9 Z La(t) . (2.14)

I'(p) wrt p+q



It would seem that formula (2.14) should be well known, but it evidently is
not. After much search, we found a source with formulas close to (2.14), from
which (2.14) can be derived, in particular, formulas (48.3.3) and (48.3.16) in
Hansen [23]. Even though extensive references are given to sources in Hansen
23], none is given for these two formulas.

We can also approach Theorems 1.5 and 2.2 in another way. Recognizing
that the series in (2.6) does not always converge rapidly, we might make a
transformation to obtain a more rapidly convergent series. If we use the Euler
(E, 1) transformation for this purpose, e.g., see p. 7 of Hardy [24], we obtain
the same result. In fact, the Euler transformation in Theorem 2.3 provides
a general way to construct Laguerre-series representations for pdf’s and their
Laplace transforms. We investigate this general approach in Abate and Whitt
[7].

Theorem 2.3. The Euler transformation of the series in (2.6) yields

. [ s\ (@ 1 . —s
U@ﬂﬁ)—1+82;<1+8)(p+®n—1+ﬂv(%%1+s)- (2.15)

Note that, for any s with Re(s) > 0, |s/(1 + s)| < 1, so that the series in
(2.15) converges geometrically fast. See [7] and [8] for further discussion about
how to compute the Laplace transforms.

Theorem 2.2 provides an effective way to compute the pdf’s and ccdf’s for
any p and g. As shown by Abate, Choudhury and Whitt [10], these Laguerre
series can be difficult to compute directly, but there are effective ways to
enhance the computation. Interestingly, Examples 2.1, 2.2 and 2.5 there are
for BME pdf’s (see Section 4 here), so we already have done considerable
numerics for this class.

We now turn to the B,ME moments. Let u,(p,q) be the n'® moment of
v2(p, ¢; ). From (1.2),

L(p+n)I'(g —n)n!

(D, q) = , if g>n, 2.16
pn(: ) I'(p)T'(q) (2.16)
with p,(p,q) = oo if n < q. Hence, the first two moments, when finite, are
p 2p(p + 1)
p,q) = —— and p,q) = ——"— . 2.17
:U’l( ) q—l /1’2( ) (q—l)(q—Z) ( )
The associated SCV is
p2(p; q) (p+1)(¢—1)

e pa—2)

c(p, q) —1>1. (2.18)



It follows immediately from (1.21) that V(p, ¢;t) is stochastically less than
or equal to Va(p,q;t); ie., V(p,q;t) < Vi(p,q;t) for all t. Consequently,
mn(p,q) < pn(p,q) for all p,q and n. Moreover, from (2.3) and (2.16), we
see that c3(p,q) > *(p,q) for all p,q (with ¢ > 2 so that us(p,q) < o). In
particular,

G +1  (¢-Dp+qg+1)
A(p,g) +1 (¢=2)(p+9)

Since the moments p,(p,q) in (2.16) are not finite for all n, we cannot
obtain a power-series representation of the Laplace transform v5(p, ¢; s) from
(2.20). However, we can undamp the transform of V¢(p, ¢;t) for this purpose.
In particular, it follows from (1.8) that

>1. (2.19)

~

Ve(p,q;s) =

v(p+1,q;8) . 2.20
Lo+ Las) (220)

Then it follows from Theorems 1.4-1.6 that
. . p

Vilp,q;8) = Vi(p,q;s—1) = v(p+1,q;5—1
S (D, q; s) (p.q ) p+q(p q )
p
= (— ) sFR(L,p+Lip+q+1;1—s
(p+q) 2Fi(Lp+1Lip+gq )
1 —(s—1
— 25 (q,p—l—l,g) . (2.21)
S S
and
~ “re ~ _(8_1)
Oa(p,q;8) =1 —sVy(p,q;8) =1—10 P+l ——]. (2.22)

3. Asymptotics

To obtain an asymptotic expansion for the pdf’s as ¢ — oo, which implies
Theorem 1.1, we can simply apply 13.5.2 of AS with Theorem 1.7. (We can
also obtain the asymptotic expansion directly by applying Watson’s lemma to

(1.5).)

Theorem 3.1. For all p > 0 and ¢ > 0,

Fp+q) e’ o= \n(@nlp+q—1n
T(p) t1 Z(_l) nltn

v(p,q;t) ~ as t—oo. (3.1)

n=0



We can apply (1.8) and (1.21) to obtain corresponding asymptotic expan-
sions for V¢(p, ¢;t) and Vi (p, q;t).

Corollary 1. For allp > 0 and q > 0,

Lp+a) e’ 5~ (=1)"(@ap+ @

Ve (1) ~ E t— 3.2
(p7Qa ) F(p) a — n'tn as 0 ( )
and
_Tl+a) Z(p+q
Vy(p,q;t ( E n't" Jn as t— 0o . (3.3)

T'(p)te

n=0

We can apply (3.2) and Theorem 5.3 of Abate, Choudhury, Lucantoni and
Whitt [11] to obtain an asymptotic expansion for the moments. Alternatively,
since the moments are available explicitly in (2.1), we can also apply 6.1.47 of
AS for this purpose.

Corollary. Asn — oo,

ma(pg) Llo+a) [ apte+l  alg+Hp+g-1p+q)
n! ['(p)ne n 2n?

. (3.4)

The explicit formulas make it possible to fit BME and BoME distributions
to data or other distributions quite directly. For example, we might fit a BoME
ccdf with parameter triple (p, q,a), where a is the scale parameter, to a cedf
G°(t) with tail asymptotics G¢(t) ~ At™# as t — oo for 3 > 1 and mean
m = my(G) by setting ¢ = §, and p = m(q — 1)a, because of (2.17). By the
Corollary to Theorem 3.1, A = I'(p + q)/I'(p)a?. Hence, we must solve the
equation
I'(m(q —1)a+q)

L(m(q —1)a)ad
Since the right side of (3.5) is decreasing in a, going from oo to 0, there is a
unique solution a* to (3.5).

We can also apply 13.5.8-13.5.12 of AS to describe the asymptotic behavior
for small t. Let v = .5772... be Euler’s constant and let ¥(z) = I'(z)/I'(2) be
the digamma function; see 6.3.1 of AS. The behavior is somewhat complicated,
so we only describe three cases.

A:

(3.5)



Theorem 3.2. (a) If p < 1, then

(p+¢T'(—p)
['(q)T'(p)

(b) If p > 1 and p non-integer, then

Ve(p,q;t) ~ e (1 + t”) as t—0.

Ve(p,q;t) ~ e’ <1— Lt) as t—0.
p—1

(c) If p =1, then

Ve(p,q;t) ~e (1 +qp(1+q) +2y—1+logt]t) as t—0.

Proof. Combine (1.8) and (1.23) to express V¢(p, q;t) in terms of U. For p
noninteger, use 13.1.2 and 13.1.3 of AS. For p = 1, use 13.1.6 and 13.1.7 of
AS.

4. Gamma Distributions

In this section we show that gamma pdf’s with shape parameter less than 1
are all BME pdf’s. This gives us a convenient starting point to construct other
pdf’s (as well as associated ccdf’s and transforms) via recurrence relations
discussed in the next section.

Let the gamma pdf be

(pit) = %, £>0. (4.1)

There is only the one parameter p in (4.1) because the scale parameter has
been omitted. The associated Laplace transform is

i(p;s)=(1+s)7P. (4.2)
Theorem 4.1. For 0 <p <1,

o(p, 1 —p;t) =v(p;t), t>0. (4.3)



Proof. Paralleling (1.19), we represent the Laplace transform as the Stieltjes
transform of the spectral density; i.e., assuming that a pdf f is a mixture of
exponential (rates), i.e.,

$) = [ e totaydn,

it Laplace transform is the Stieltjes transform of x¢(z), i.e., by changing the
order of integration,

~ ®©  x
= dz . 4.4
fo) = [ ot (1.4
We can then calculate z¢(x) by inverting its Stieltjes transform, e.g., see p. 126
of Widder [34]. Starting with (4.2), we obtain

—_—1mA o) = sinp 1 .
o(z) = 7T$I ¥(p; —2) rr(x —1)»  T(p)T(1—p)z(x —1)P’ =1,
(4.5)

applying 6.1.17 and 4.3.4 of AS.
We can also approach (and generalize) Theorem 4.1 another way, using the
following lemma, e.g., see p. 329 of Moran [28].

Lemma 4.2. If X and Y are independent random wvariables with densities
v(p;t) and v(q;t), then the ratio X/(X +Y') has the beta b(p, q;y) pdf and this
ratio is independent of the denominator X +Y .

We can apply Lemma 4.2 to establish the following generalizations of The-
orem 4.1, evidently first due to Sawkins [30]. (We obtain Theorem 4.1 by
letting p+ ¢ =1.)

Theorem 4.3. A beta b(p,q;y) scale mizture of gamma v(p + ¢;t) pdf’s is
gamma y(p;t); i.e., for all p > 0 and g > 0,

1 1
v(p;t)=/ y‘l'y(erq;t/y)b(p,q;y)dy:/ vy o(p, q; t/y)v(p+ ¢; y)dy -
0 0

Proof. Let X and Y have the gamma pdf’s v(p; t) and v(gq;t). We can write

X:(X+Y)(XXfY),



but (X +Y) has pdf v(p+ ¢;t) and, by Lemma 4.2, the ratio has pdf b(p, ¢; y)
and is independent of X 4+ Y. The moment sequences also provide a short
proof: Note that the n'® moment is

<mn=«p+@“<fgb_>.

P+ qQ)n

5. Recurrence Relations

In this section we give recurrence relations that enable us to calculate new
BME pdf’s from given ones. Simple modifications of these recurrences apply
to BME ccdf’s and BoME pdf’s and cedf’s by virtue of (1.8), (1.21) and (1.22);
we will not state them.

In formulas (1.8), (1.14) and (1.16), we have seen that we can increase
p by 1, i.e., go from v(p,¢;t) to v(p + 1,q;t) by integrating (or dividing by
s in the Laplace transform). Now we want alternative recurrence relations
that do not require integration. For this purpose, we can apply Theorem 1.7
and recurrence relations derived for the Tricomi function. The following four
recurrence relations follow directly from 3.4.17, 3.4.16, 3.4.15 and 3.4.20 of AS,
respectively.

Theorem 5.1. For all p > 0 and ¢ > 0,

(a) v@q+¢¢>=(Bgﬁ)v@4¢>—§wp+1qn> (5.1)
(b) v(p+1,qt) = %tv(p —1,q:t)
(p+q) .
- W(t +1—-p(p,¢i) (5.2)
() vip,q+1;t) = (?) <1 + ;ii%) v(p,q;t)
- (?) v(p, g —1;t) (5.3)
(d) vp+1,q:¢) = (1’%) (U(p,q— 1) — (%) v(p,q;t)) (5.4)

Recurrence (5.1) can also be derived from a recurrence for the beta pdf

b(p, ¢;y) = <]%) b(p, ¢;y) — Sb(p +1,q;9) . (5.5)



Combining (5.1) with (1.16), we obtain

p+q
qs
Formula (5.6) can also be obtained by combining (1.16) and (1.20).

As in (3.15) of Abate and Whitt [4], let £ be the stationary-lifetime oper-
ator that maps a pdf f with finite mean m;(F") into the pdf

L(f(t) = ;{((2) t>0. (5.7)

o(p,q+1;s) = [(1+s)o(p,q;5) — 1] . (5.6)

which has inverse (valid for unimodal pdf’s)

ft) =L (g(t) = —tg'(t), t>0. (5-8)

Paralleling Theorem 1.3, we can give the stationary-lifetime pdf associated
with any BME pdf. (Integrate by parts in (1.3).)

Theorem 5.2. For all p > 0 and q > 0,
L(v(p,g;:t)) = (p+Dv(p+2,g—1;t) —po(p+ 1, ¢t) . (5.9)
Recurrence (5.2) can also be derived from (5.9) and restated in that form,
which is appealing because all component functions are pdf’s.
Corollary. For allp >0 and q > 0,

_l_
v(ip+1,¢;t) = Rﬁ%ﬁ}BE@@—lﬂﬁ»—

+ O—Eﬁ—i——)dnmﬂ, (5.10)

p+q—1)

mﬁ(v(p,%t))

which is equivalent to (5.2).
Formula (2.1) implies that

n n
mn(p,q) = 1+—) my(p,q+1) = <1+ —) mn(p—1,¢+1). (5.11
o) = (15 2 Y maa ) = (14 7 ) (511

As in Section 2 of Abate and Whitt [4], let & be the unimodal operator
mapping any pdf into a unimodal (decreasing) pdf, which can be expressed
via transforms as

u(ie) =3 [ i (5.12)



or directly as

UF(t)) = / T (@)de (5.13)

t
As noted there, g = U(f) if and only if m,(f) = (n + 1)m,(g) for all n.
The moment characterization follows from the moment generating function
representation. We see that this structure holds in the two formulas in (5.11)
when p+ g = 1 and p = 2, respectively. Hence, we can use the unimodal
operator to generate new BME pdf’s.

For this purpose, note that & maps gamma pdf’s into associated incomplete
gamma pdf’s, i.e.,

1 > - - F(p - 17t)
U(v(p;t :—/ e Yy idy="—~—22 t>0. 5.14
p:) I'(p) Ji I'(p) (514)
Hence, we have the following result.
Theorem 5.3. For 0 <p <1,
I'p—1,t
v(p,2 —p;t) =U(v(p, 1 —p;t)) = (F(p) ), t>0, (5.15)
and
v(l,g+1,1) =U(2,¢t), t=>0. (5.16)

It turns out that the incomplete gamma pdf’s v(p, 2 — p; t) coincide with a
class of pdf’s introduced by Gaver and Jacobs [20]. They consider the trans-
form

gla;s) = (as) H((1+s)*—=1), 0<a<l, (5.17)

obtained through manipulations of stable laws. It follows from (5.6) and The-
orem 5.3 that
g(1=pit) =v(p,2—pit), 0<p<2; (5.18)

can be extended to —1 < o < 1 and we give an alternative characterization of
the distribution via Theorem 5.3.

Notable examples of the subclass v(p;2 — p;t) are: for p = 1/2, the RBM
first moment pdf hi(¢) in Abate and Whitt [1]; for p = 1, the exponential-
integral pdf E(t), and for p = 3/2, the stationary-excess of vy(1/2;t), denoted
by 7.(1/2;t); see Tables 1 and 2. These cases can be determined directly from
the incomplete gamma function representation in 6.53 of AS. Examples of pdf
pairs (f, g) for which g = U(f) are given in Table 1.



f(t) =U"(g(t)) g9(t) =U(f(t))

v(p, 1 — p;t) v(p,2 — p;t)
v(1/2,1/2;t) = ~(t) v(1/2,3/2;t) = ha(2)
2t7(t) v(3/2,1/2;t) = 7.(t)
4thy (t) v(3/2,3/2;t) = hie(t)

2/3v(1/2,3/2;t) + 1/3v(3/2,3/2: 1) v(1/2,5/2;¢)

et v(1,1;t) = E(t)
v(2,q;t) v(l,q+ 1;1)
(2,1/2;1) v(1,3/2;1)
v(2,1;t) v(1,2;¢)

Table 1: Examples of pdf’s f and g satisfying g = U(f).

f(t) g(t)
v(3/2,1/2;t) = 7.(t) v(1/2,3/2;t) = ha(t)
v(3/2,3/2;t) = ha(t) v(1/2,5/2;t) = Yee(t)
v(1/2,1/2;t) = ~(t) Ey(t)/(2v/Tt)
2t(t) v(1/2,1/2;t) = ~(t)
et v(1/2,1;t) = /Terfc (V1)/(2V1)
v(3/2,1;1) v(1/2,2;1)
v(3/2,q;t) v(1/2,q+ 1;1)

Table 2: Examples of pdf’s f and ¢ satisfying the moment relation in Theo-
rem 5.4, i.e., for which f(t) = —2tg'(t) — g(1).

It also turns out that the associated BoME pdf’s vs(p, 2 — p; t) correspond
to pdf’s introduced by Boxma and Cohen [15]. The ccdf is

Vi(p,2—p;t) =ev(p, 1 —p;t) — (t+1—ple'v(p,2 —p;t), t>0. (5.19)

We can apply the gamma relations established for p+¢=1and p+ q =2 to

obtain
t

e
)
which can be shown to be equivalent to their formula (4.4).

Especially tractable is the stationary-excess pdf in the (1/2,3/2) case.
Then

Vi(p,2 —pit) = = (e = (t+1—p)T(p—1,1)) , (5.20)

VE(1/2,3/2;t) = (2t + 1)elexfe (V) — 24/t/7 (5.21)



1

0(1/2,3/2) = () - 7ehe() (5.22)

0(1/2,3/2;5) = 311 (155\/5—1) :1—(1:W (5.23)

. 1

U9e(1/2,3/2;5) = TEVOER (5.24)
where hy(t) is again the RBM first-moment pdf in Table 1 and erfc(t) is
the complementary error function, which is related to the standard (mean
0, variance 1) normal ccdf ®°(t) by erfc(t) = 28°(v/2t); see 7.1.1 and 26.2.29
of AS. Boxma and Cohen showed that the M/G/1 steady-state waiting-time
distribution can be solved explicitly when the service-time pdf is the BoME
pdf vy(1/2,3/2;t). We extend this explicit representation to a larger class of
service-time pdf’s, all with the tail asymptotics f(t) ~ at~2, in Abate and
Whitt [6]. In Proposition 8.2 of Abate and Whitt [4] we had previously ob-
tained explicit solutions for the M/G/1 waiting-time distribution for a class of
service-time pdf’s including the BME pdf v(1/2,3/2;t). Using formula (5.24),
the argument for v,(1/2,3/2;t) is a natural extension of the previous one.

Now consider the case p = 3/2 in the second formula in (5.11), which yields

the relation

mn(3/2,q9) = (2n+ 1)m,(1/2,q+ 1) . (5.25)

It turns out that this moment relation induces a relation between cdf’s similar
to the unimodal operator in (5.12) and (5.13).

The following can be established by relating the coefficients of the moment
generating functions.

Theorem 5.4. If f(t) and g(t) are pdf’s satisfying m,(F) = (2n + 1)m,(G)
for all n, then f(t) = —2tg'(t) — g(t), F(t) = G(t) + 2tg(t), f(s) = g(s) +
2s¢'(s) and

A

. 1 [*f(2)
i) =5z [ L2 (5.26)
Corollary. For all g > 0,
v(3/2,q;t) = —2t0"(1/2,q + 1,t) —v(1/2,g+ 1;t) , t>0. (5.27)

Examples of pdf pairs (f, g) for which f(t) = —2tg’(t) — g(t) are given in
Table 2. Finally, note that (5.11) provides generalizations of the two moment
relations that we have considered in detail.



6. Concrete Examples

In Section 2 we showed that the BME pdf’s v(p, ¢;t), cdf’s V¢(p, ¢;t) and
Laplace transform o(p, ¢; s) can readily be computed for any p and ¢, exploit-
ing the series representations (2.6), (2.10)—(2.13). Explicit formulas are also
available in special cases, as is evident from Section 13.6 of AS. When p + ¢ is
an integer, we can obtain explicit formulas starting from the gamma case in
which p 4+ ¢ = 1 and then applying the recurrence relation in Section 5.

Convenient explicit formulas can also be obtained when p and ¢ are both
integer multiples of 1/2. Indeed, many of these cases correspond to pdf’s that
we have considered in previous work. The results are summarized in Tables 3—
5. Table 3 contains cases in which both p and ¢ are odd multiples of 1/2.

p q| bp,qy) ma(p,q)/n! 9(p, q;5) v(p, ;1)

3 3| s | PEwG) [ =4128) = A= Y(t) = 1(1/2%1) = <=
R = B Fe(s) = 2[1 - 4(s)] Ye(t) = 2erfe (Vi)

3 5| A Lo hi(s) = 5= hi(t) = 29(t) — 7e(?)

5 5 Svivi-v| Goids | me(®=10-m)] | hie(t) =22+ Dre(t) -~ 89()
é % %8“;2,32/2 (%Tﬁfgﬁ)m A%[(lfiﬁ”(s)f 1 _g:m - éjlem

2 3| 3T 3(ntD(nt2) Fee(s) = g5[1 —Ae(8)] | Yee(t) = 3t7(t) — 5(2t — 1)7e(?)

Table 3: Properties of BME pdf’s when both p and ¢ are odd multiples of 1/2.

The first entry in Table 3 is v(1/2,1/2;t) = v(t) = (1/2;t), which follows
from Section 4. The next entries are its stationary-excess 7.(t) = v(3/2,1/2;1t)
and the RBM first-moment pdf hy(t) = v(1/2,3/2;t). As noted in Corollaries
1.3.2, 1.5.1 and 1.5.2 of Abate and Whitt [1], k1 (¢) has the interesting property
that hie(t) = hi(t) * hi(t), where * denotes convolution. This property can be
seen from the h; moment sequence, i.e.,

ma(H) 1 (2n> _o, (6.1)

n! :n+1 n

where {C,} = {1,2,5,14,42,...} is the sequence of Catalan numbers, with
defining property

Cos1 =Y CiChi (6.2)
k=0



where Cy = 1. When rescaled, hi(t) = v(3/2,3/2;t) coincides with the RBM
correlation function; see p. 320 of Abate and Whitt [2].
Table 4 displays cases in which p and g are both integers. We start with

p q| ma(p,gq)/n! o(p, g; 5) v(p, g;t)

1 1 n-lﬁ—l Ei(s) = %log(l + ) Eq(¢)

2 1 3 2[1 — B (s)] 2E,(t) = 2et — 2tE; (1)
1 2| e 2[(1 4 s)E1(s) — 1] 2E; (1) — 2E»(1)

2 2| ey | 2 |~ 9)E(s)+5+1 6Fx(t) — 6F5(t)

1 3| oo | = |(L+5)2Ei(s) — % — 1| | 3E1(t) — 6Ex(t) + 3E3(t)
3 1 o 31— Eic(s)] 3E;3(t)

Table 4: Properties of BME pdf’s when both p and ¢ are integers.

the exponential-integral pdf v(1,1;t) = E;(t). Indeed, from (1.5) here and
5.1.4 of AS, we see that

v(n,1;t) = nE,(t) = n/ r e "dx . (6.3)
1

From 5.1.52 of AS, we see that

v(n,1;t) we* as n—o00. (6.4)

Indeed, we see that v(p,q;t) — e ' as p — oo because the distribution of

b(p, q;y) approaches to a unit point mass at 1 as p — co. Given Theorem 1.3,
the limit (6.4) can also be deduced from limits of iterates of the stationary-
excess operator; see Harkness and Shantaram [25], Shantaram and Harkness
[31], and van Beek and Braat [13].

We can obtain the transform (1, 1; s) as the limit of 0(p,2—p;s) asp — 1,
using (5.17) and (5.18), i.e.,

0(p,2 — p; s) = lim (1+s)?—1)= log(1 + 5) :

p—1 (1 —p)s s (6.5)

We note that the cases v(1/2,1/2;t) = ~(t) and v(1,1;t) = E;(t) were used
to study the Laguerre-series algorithm in Abate, Choudhury and Whitt [10];
see Tables 1 and 2 there.

Table 5 contains cases in which one of p and ¢ is integer while the other
is an odd multiple of 1/2. The first entry v(1/2,1;t) is a curious pdf. Noting



p q|blp,q;y) | Mu(p,q)/n! 0(p, q; 5) v(p, q;t

% 1 32% % Af(s)_zga“‘ta‘;f T(t)_E _T:fﬁ\/i
2 VY ont3 6(3):§[1_T<8)] Te(t)zge —6757“(75)
Lo T S 2 (4 s)i(s) 1] [ 3r() — sre(®)
5| o Gt 17 /3(3)51og(\>/§g+1+15+3) pl(t) = <5~ Ko (5)
2 3| 5 | eosoim | Pels) = 51— As)] pe(t)

1 3] M [ (1 s)p(s) — 1] | 3p(t) — 2p.(1)

Table 5: Properties of BME pdf’s when one of p and ¢ is an integer and the
other is an odd multiple of 1/2.

that its moments are n!/(2n + 1) and recalling that the power series for the
arctan function has coefficients (2n + 1)7!, see 2.5.9 on p. 53 of Wilf [35], we
see that
arctan,/s ' (6.6)
NG
We can also obtain (6.6) from the transform representation in Theorem 1.4,
using 15.1.5 of AS. The (1/2,2) and (3/2,1) entries can be determined by
applying (5.1) and Theorem 5.4.
The pdf v(1,1/2;t) in Table 5 is determined from an integral representation
of the Bessel function Ko(t); see 9.6.23 and 13.6.21 of AS. For the transform,

see p. 119 of Oberhettinger and Badii [29]. Note that 0(1,1/2;s) = §(s) f(s),
where

0(1/2,1;s) = 7(s)

f(s) =log(v/s +V1+s)//s (6.7)
and
ft)=E\(t)/2V/nt, t>0, (6.8)

which has moments 3,/(2n + 1). Hence, f(t) and 7(¢) are related as in Table
2 and we have an entry there.
We obtain

v(2,1/2;t) =2 <% + 6_t/2K1(t/2)> — ;tv(l, 1/2;t)

from 11.3.15 of AS. We obtain v(1,3/2;t) from (5.1).
From the concrete examples for BME distributions, we obtain correspond-
ing concrete examples of BoME distributions. We give an illustrative example



Example 6.1. We consider the case p = 1 and ¢ = 3. By (1.21) and (1.8),
the ccdf is

VE(1,3:4) = e'Va(1,3,4) = ietv(2,3;t) - zet(E2(t) C 2Byt + Ea() . (6.9)

After some algebra, we find that the transform is

1—ZS+1—182 343
( (12—3)?? )+(1_S)4logs. (6.10)

7}2(1’37 S) =
From (6.10), we see that m; = 1/2, my = 2 and mg = 0.

7. Gamma Mixtures of Exponential Distributions

In this section we show that all gamma mixtures of exponential (GME)
pdf’s can be obtained as limits of BME pdf’s. These GME pdf’s can in turn
be represented in terms of Bessel functions K.

Theorem 7.1. For all p > 0,

. v(pg;t/q) /oo L1 el 2 (p-1)2
lim ———— = e e dpy = ——tV? K, 1(2vt) . (7.1
=y : M) T) P (2V8) - (71)

Proof. Apply (1.3) and make the change of variables ;1 = gy to obtain

U(p,q,t/Q) — F(p‘l‘Q) /qu—le—t/,uup—l <1_E>q_1d'u )
q L(p)T(9)er Jo q

Since I'(p + q)/T(q)¢”? — 1 and (1 — (u/q))9™ ' — e * as ¢ — oo, we have the
first limit. For the Bessel function limit, apply 13.3.3 of AS. =

Let g(p;t) represent the GME pdf with parameter p. Note that the
stationary-excess property in Theorem 1.3 is inherited: g¢.(p;t) = g(p + 1;1).
From p. 155 of Oberhettinger and Badii [29], we obtain its Laplace transform

g(p;s) = s_pel/sf‘(l —p,1/s). (7.2)

Two special cases of interest are p = 1/2 and p = 1, for which we get

§(1/2;5) = \/m/se'/* exfe (1//5) (7.3)



and
g(1;8) = s te Ey(sTY) (7.4)

from 6.5.17 and 6.5.15 of AS.

For purposes of numerical inversion, we can effectively compute these trans-
forms by using the power series expansion for erfc(z) and E1(z). For other cases
where p is a multiple of 1/2, we can use §(1 + p;s) = (1/smq)(1 — g(p; s)).
For cases in which p is not a multiple of 1/2, we can use the following series
developed from 6.5.4 of AS

A el/s ' & —1)"
9(p;s) = — (P(l—p)s -> (n+(1 _)p)n!sn> : (7.5)

n=0

We remark that the GME pdf with p = 1/2 coincides with the Weibull
pdf with shape parameters 1/2 and mean 1/2; i.e., the ccdf is e~2Vt This
can be seen from its moment sequence. The moments of a GME pdf are
my(p) = n!(p),. Hence,

mn(1/2) = ! (Z_' (2:» _ (2;)! | (7.6)

The exponential mixture of exponentials arising when p = 1 is the heavy-
traffic limit for the waiting time in the M/G/1 queue with random order of
service; see p. 89 of Kingman [27].

8. Other Scale Mixtures

As indicated in the introduction, scale mixtures are usefully viewed as prod-
ucts of independent random variables. The scale mixture can be represented
as a random variable Z, where Z = XY for independent random variables X
and Y. It follows trivially that successive mixture operations are commutative
and associative, i.e., Y1Y; = Y5Y] and (Y1Y2)Y; = Yi(Y2Y3) for independent
random variables Y7, Y5 and Y53.

The random product representation shows that mixtures can be conve-
niently characterized by their moment sequences provided that the moment
sequences of the component random variables are known, as is the case for
beta and exponential random variables. We now give some further results
along these lines.

We first show that beta scale mixtures of betas are again betas in certain
circumstances. Of particular note is the quick proof.



Theorem 8.1. For all p > 0 and g3 > q1,

t
b(pa qZ:t) = / y_lb(pa QI:t/y)b<p+q17Q2 _q17y)dy
0

t
= / y (0 + @1, 42 — @13 t/y)p(p, @1 y)dy
0

Proof. In the random product XY, the n'* moments are

(525) = (25) ()

From the moment sequences, it is also easy to see that not all beta mixtures
of betas are betas.

We apply Theorem 8.1 to show that beta mixtures of BMEs (BMBMEs)
are again BMEs in certain circumstances.

Corollary. For allp >0 and g2 > ¢, > 0,
1
v(p g2;t) = / y ™ o(p, a5 t/9)b(p + a1, 42 — @15 9)dy
0

1
= / y '+ a1, g — @13 t/y)b(p, qu;y)dy
0

We now show that BME pdf’s multiplied by a power of ¢ and renormal-
ized are beta mixtures of gamma pdf’s. Such pdf’s arise from applying the
stationary-lifetime operator L£; see (5.7).

Theorem 8.2. Forallp>0,q>0anda >p—1,
() = I'(a+¢)L'(p)
F(@)l(1+a—-p)I(p+aq)

is a bonafide cdf with moments

t*"Po(p, ;1) (8.1)

I+ a—p)(a),
(g+a)n

My, = : (8.2)
so that

£(t) ZLAy”%1+a—%Umemw@

= /0 y~b(a, g;t/y)y(1+a — pyy)dy . (8.3)



Proof. First express f(t) as

I'(a+q)t* P
Fa)I'(1+a—p)

f(t) = e 'U(q,2 — p;t) .

Then apply (7) on p. 270 of Erdelyi [17] plus 15.3.5 and 13.1.29 of AS to obtain

f(s) = 2Fi(l+a—p,a,q+o;—s)

(A +a—p(a) (=5)"
B ; (g +a), n!

We now give some other examples from Theorem 8.2. First, if a = 1/2,
p=1and g =1, then

f(t) = Ei(t)/2v/nt, t>0. (8.4)
Next, if « = 1/2, p=1 and ¢ = 1/2, then
f(t) = e 2Ky (t/2) /Vmt, t>0. (8.5)
Finally, if « = 1/4, p =1/2 and ¢ = 5/4, then
__ 4 ~1/4 .

and f(t)* f(t) = h1(t) = v(1/2,3/2;t). None of these three examples are BME
pdf’s. Cases in which f is a BME are contained in Theorem 4.3; assume that
g=1-—2pand p < 1/2. We do not yet know all cases in which the BMBMEs
in Theorem 8.2 are BME.

9. Omitted Proofs

We now give five omitted proofs.

Proof of Theorem 1.2. Recall that cdf’s F), converge weakly to a cdf F' if
and only if either (i) F,,(z) — F(z) for all z that are continuity points of F’
or (i) [~ gdF, — [;° gdF for all continuous bounded real-valued functions
g; see Billingsley [14]. Apply this with the integral representation of the cdf
paralleling (1.5).



Proof of Theorem 1.5. Observe that b(q,p;y) = b(p,q;1 —y), 0 <y <1,
for all p > 0 and ¢ > 0 and apply Theorem 1.4. Hence,

1
1
0 y D = baal_ d
0(q,p; s) /01+y (p,q; 1 —y)dy

S
! 1

L[t
= ,;Z z
1+ s Jo 1—|—z(1_—+85) P-4

1

- 1+S?7(p,q; —s/(1+5s)) .

Proof of Theorem 1.6. Perform the change of variables y = z — 1 in (1.5)
to get

Plota) o [* e o
I'(p)T(q) /0 yt (L ty) Py (9.1)

Hence we can integrate in (9.1) to get the ccdf and then undamp the cedf by
multiplying by e! to get

v(p,q;t) =

P N I'(p+q) [T —ty Yt
e'Ve(p,q;t) = W/o e Wdy , (9.2)

which has the corresponding mixing representation
e'Ve(p,g;t) =/ e”by(p, ¢ y)dy = V5 (p, ;) - (9.3)
0

From the right side of (9.2) or (9.3), we see that e'V¢(p, ¢; t) is a bonafide cdf
(is decreasing).
Next,

—d
va(p, q;t) = %eth(p,q;t) = e'w(p,g;t) —Vi(p, qt)]

= Uol (i — 1) 6‘t/yb(p,q;y)dy}

q
= ——ev(p,q+1;t),
e ( )

which must equal the normalized version of e'v(p, g + 1;1).



Proof of Theorem 1.8. Combining (1.8) and Theorem 1.7,

Vi) = LV - (9.4
but, from 13.1.29 of AS,
U(qg,1—p,t)=t’U(p+q,p+ 1,t) , (9.5)
so that o - a1
Vi) = 505 /O . (9.6)

The result follows from (9.6) by making the change of variables x = tu.

Proof of Theorem 2.3. From p. 7 of Hardy [24], the Euler transformation

1S
00 . 1 0o s n
D an(=s)" = 1+szb" (1+s>

where

However,

by (7.1) on p. 58 of Gould [21].

10. Concluding Remarks

A major theme here, extending Abate and Whitt [4], has been the devel-
opment of an operational calculus for probability distributions. For instance,
the two classes BME and BoME were related by the exponential damping op-
erator in Theorem 1.6. Here we made greater use of moment sequences to
characterize probability distributions. This is illustrated most clearly by The-
orems 4.3, 5.3, 5.4, 8.1, and 8.2. Since scale mixtures correspond to products
of independent random variables, the n'® moment of a scale mixture is easily
seen to be the product of the component n'* moments. For distributions such
as beta and gamma (which includes exponential), where the moments have



a convenient explicit form, it is possible to work effectively with the moment
sequences.

A natural extension to consider is BME distributions where the beta pdf
has support [a,b] for 0 < a < b. By introducing the scale parameter, we
already have implicitly treated the case [0,b] for all b > 0, but a > 0 is
different. Examples of these more general BME pdf’s appear in Abate and
Whitt [3]. For the M/M/1 queue, the beta mixing pdf’s have support [a, b] for
a > 0. In the heavy-traffic limit with p — 1, a — 0. Hence, the results here
apply to the RBM distributions in Abate and Whitt [1, 2, 3].

We conclude with an observation about BME pdf’s (a conjecture by us
proved by a referee). In particular, 1/(1+ s)o(p, ¢; s) is the Laplace transform
of a bonafide pdf with mean q/(p+q) and SCV ¢ = 1+2p(p+q)/q(p+q+1).
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