Index

Notation by Chapter, 1

Chapter 1, 1
⇒, weak convergence, 1
π(P₁, P₂), Prohorov metric, 1
\(\mathcal{P} \equiv \mathcal{P}(\mathcal{S}) \), 1
A⁺, e-open nbhd., 2
\(\mathcal{G} \), set of real-val. fcts., 2
\(\pi_N(P₁, P₂) \), gen. Proh. metric, 3
A⁻, closure of A, 3
\(F(t) \), cdf, 6
\(F^{-1}(t) \), rt.-cont. inverse, 6
\(\text{rad}(A) \), radius of A, 8
∂A, boundary of A, 8
\(\delta_s \), Dirac measure, 10
Z(\mathcal{S}), finite signed measures, 16
B⁺, adjoint space, 16
\(p(X₁, X₂) \), in-prob. dist., 17

Chapter 2, 23
\(\overset{d}{=} \), equality in distribution, 23
\(\Phi \), std. normal cdf, 24
\(\phi_N : D \rightarrow D \), ref. map, 26

Chapter 3, 51
\(x^\dagger \), supremum map, 52, 173
\(\Lambda(\mathbb{R}_+) \), homeomorphisms, 51
\(\mathcal{R}(\alpha) \), regularly varying, 52

Chapter 4, 73
\(\Gamma \), scaling matrix, 75
\(\nabla g(\mu) \), gradient, 88

Chapter 5, 97
\(\psi(s) \equiv \log E e^{-sL(1)} \), Laplace exp., 99
\(\xi_n \), 101
\(\gamma_n \), 101

Chapter 6, 113
\(x(t⁻) \), left limit, 114
[\(a, b \)], standard segment, 117
[[\(a, b \)], product segment, 117
\(\Gamma_x \), thin graph, 117
\(G_x \), thick graph, 117
\(\rho(\Gamma_x) \), thick range, 117
\(\rho(G_x) \), thick range, 117
\(\Pi_x(x) \), set of strong par. reps., 118
\(\Pi_w(x) \), set of weak par. reps., 118
\(\beta_k : [0, 1] \rightarrow [0, 1] \), 123
\(\mu_x(x₁, x₂) \), \(SM_2 \) dist., 144
\(\Pi_{w, 2}(x) \), \(SM_2 \) par. reps., 148
\(\Pi_{w, 2}(x) \), \(W_M \) par. reps., 148

Chapter 7, 163
\(x \circ y \), composition, 164
\(\phi(x) \equiv x + (-x \vee 0)^\dagger \), one-dim. reflection map, 181
\(x⁻¹ \), inverse map, 183

Chapter 8, 195
\(\Psi(x) \), feas. regulator set, 197
\(\mathcal{R} \equiv (\psi, \phi) \), mult. ref. map, 197
\(\pi \equiv \pi_{x, Q} : D_1^L \rightarrow D_1^L \), 199

Chapter 9, 235
\(z_e \equiv z_e(x, y) \equiv e^{-1}[(x + ey)^\dagger - x^\dagger] \), 243
\(\Phi^L_x(t) \), 244
\(\Phi^R_x(t) \), 244
\(\Phi_x(t) \), 244

295
Abate, 22, 44, 48
adaptedness of ref. map, 202
addition
 continuity of
 for M_1, 135, 136
 for M_2, 159
measurability of, 136
adjoint space, 16
Albert, 87
analytic method, 22
Anscombe, 71, 87
approximation
 of functions
 in D by fcts. in D_c, 116
 in D_s by fcts. in D_{st}, 208
of graphs by finite sets, 119
ARMA (p, q), 47
arrivals see time averages, ASTA, 52
Asmussen, 36
ASTA, 52
asymptotic
 validity of seq. stop rule, 78
asymptotic efficiency of simulation
 estimators, 73
asymptotic equivalence of
 cting. and inv. fcts., 192
asymptotic variance, 30
 for a birth-and-death pr., 35
 for the $M/M/1$ queue, 35
autocovariance function, 34
autoregressive moving average, ARMA, 47

$B(x, \varepsilon)$, open ball, 5
$Bad(x)$, set of bad pts., 248
Baccelli, 71
backshift operator, 47
Banach space
 perspective on “weak”, 16
batch Markovian arrival pr., 39
Beran, 47, 50
Berry-Esseen theorem, 24
Bertoin, 41, 43, 100
Billingsley, 19–22, 40, 165, 166
Bingham, 81, 98
birth-and-death process, 35
 asymptotic variance for, 35
BMAP, batch Mark. arrival pr., 39
Bondesson, 44
book
 Appendix A, 52, 79, 80, 85
 Chapter 11, 27
 Chapter 12, 113
 Chapter 13, 38, 51, 163, 235, 237, 277
 Chapter 14, 195
 Chapter 3, 27
 Chapter 4, 23
 Chapter 5, 97, 196
 Chapter 7, 23
 Chapter 8, 97
 Chapter 9, 97
condition 12.5.4, 177
condition 12.5.5, 177
Corollary 12.11.2, 213
Corollary 12.11.4, 103
Corollary 12.11.6, 161, 193
Corollary 12.5.1, 174, 212
Corollary 13.4.1, 236
Corollary 13.7.1, 236
Corollary 13.7.2, 236
Corollary 14.3.2, 225
Corollary 14.3.4, 211
Corollary 14.3.5, 216
equation 11.5.3, 125
equation 11.5.4, 144
equation 12.4.1, 168
equation 12.4.3, 168, 171
<table>
<thead>
<tr>
<th>Equation/Example/Section/Figure</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>equation 12.4.4, 170, 171</td>
<td>Section 12.7, 102, 163</td>
</tr>
<tr>
<td>equation 12.5.3, 103</td>
<td>Section 12.9, 144</td>
</tr>
<tr>
<td>equation 13.4.1, 238</td>
<td>Section 13.4, 259</td>
</tr>
<tr>
<td>equation 13.5.1, 238</td>
<td>Section 13.6, 187, 268</td>
</tr>
<tr>
<td>equation 14.2.35, 216</td>
<td>Section 13.7, 62, 102, 190</td>
</tr>
<tr>
<td>equation 14.2.6, 216</td>
<td>Section 13.8, 55, 102</td>
</tr>
<tr>
<td>equation 14.8.6, 227</td>
<td>Section 14.2, 204</td>
</tr>
<tr>
<td>equation 2.3.6, 26</td>
<td>Section 14.6, 196, 218, 233</td>
</tr>
<tr>
<td>equation 3.3.2, 114, 121, 181</td>
<td>Section 14.7, 233</td>
</tr>
<tr>
<td>equation 3.3.4, 118, 181</td>
<td>Section 2.3, 26, 196</td>
</tr>
<tr>
<td>equation 4.5.12, 43</td>
<td>Section 3.2, 25</td>
</tr>
<tr>
<td>equation 4.5.13, 43</td>
<td>Section 3.4, 17</td>
</tr>
<tr>
<td>equation 4.6.13, 50</td>
<td>Section 3.5, 51, 163, 235</td>
</tr>
<tr>
<td>equation 4.6.6, 46</td>
<td>Section 3.5, 51, 163, 235</td>
</tr>
<tr>
<td>equation 4.7.1, 50</td>
<td>Section 4.3, 23, 41</td>
</tr>
<tr>
<td>equation 5.2.5, 181</td>
<td>Section 4.4, 30, 41, 90</td>
</tr>
<tr>
<td>Example 1.4.2, 47</td>
<td>Section 4.5, 41</td>
</tr>
<tr>
<td>Example 12.10.1, 145</td>
<td>Section 4.6, 23, 50</td>
</tr>
<tr>
<td>Example 12.3.1, 121, 214</td>
<td>Section 4.7, 23, 41, 50</td>
</tr>
<tr>
<td>Figure 11.2, 113</td>
<td>Section 5.9, 36, 73</td>
</tr>
<tr>
<td>Figure 13.1, 191</td>
<td>Section 7.3, 190</td>
</tr>
<tr>
<td>Lemma 12.4.2, 169</td>
<td>Section 8.5, 22</td>
</tr>
<tr>
<td>Lemma 12.5.1, 160</td>
<td>Theorem 11.3.1, 5, 9</td>
</tr>
<tr>
<td>Lemma 13.4.1, 239</td>
<td>Theorem 11.3.4, 20, 21, 76</td>
</tr>
<tr>
<td>Lemma 13.5.1, 239</td>
<td>Theorem 11.3.5, 17</td>
</tr>
<tr>
<td>Lemma 13.6.3, 190</td>
<td>Theorem 11.4.5, 77, 85</td>
</tr>
<tr>
<td>Lemma 13.8.1, 55</td>
<td>Theorem 11.5.2, 164</td>
</tr>
<tr>
<td>Lemma 14.3.3, 225</td>
<td>Theorem 11.5.3, 164</td>
</tr>
<tr>
<td>Lemma 14.4.4, 214</td>
<td>Theorem 11.6.1, 221, 231</td>
</tr>
<tr>
<td>Proposition 13.2.1, 82</td>
<td>Theorem 11.6.7, 221</td>
</tr>
<tr>
<td>Section 1.3, 7</td>
<td>Theorem 12.11.1 (v), 167</td>
</tr>
<tr>
<td>Section 1.4, 7, 23</td>
<td>Theorem 12.11.2 (iv), 167</td>
</tr>
<tr>
<td>Section 10.4.4, 73</td>
<td>Theorem 12.2.2, 175</td>
</tr>
<tr>
<td>Section 11.2, 139</td>
<td>Theorem 12.4.1, 169, 172, 177</td>
</tr>
<tr>
<td>Section 11.5, 144</td>
<td>Theorem 12.5.1, 103, 105, 177, 255, 258</td>
</tr>
<tr>
<td>Section 11.6, 114, 221</td>
<td>Theorem 12.5.1 (v), 167, 212</td>
</tr>
<tr>
<td>Section 12.11, 163</td>
<td>Theorem 12.5.2 (iv), 167</td>
</tr>
<tr>
<td>Section 12.2, 255</td>
<td>Theorem 12.7.3, 102</td>
</tr>
<tr>
<td>Section 12.4, 166, 168</td>
<td>Theorem 12.9.4, 217</td>
</tr>
<tr>
<td>Section 12.6, 134, 163</td>
<td>Theorem 13.2.3, 81, 85</td>
</tr>
</tbody>
</table>
Theorem 13.3.2, 71, 236, 263, 264
Theorem 13.4.1, 54
Theorem 13.6.2, 270
Theorem 13.6.3, 269, 275
Theorem 13.7.2, 109, 236
Theorem 13.7.4, 105, 108, 236
Theorem 13.8.2, 62
Theorem 14.2.4, 225
Theorem 14.2.5, 214, 216
Theorem 14.2.9, 195, 216
Theorem 14.4.1, 211
Theorem 14.4.2, 213
Theorem 14.4.2 (a), 215
Theorem 14.4.3, 215, 216
Theorem 14.8.1, 226
Theorem 14.8.3, 227
Theorem 14.8.6, 226
Theorem 3.2.1, 1
Theorem 3.2.2, 6
Theorem 3.4.2, 25, 26
Theorem 3.4.3, 19
Theorem 3.4.4, 20
Theorem 4.3.2, 86
Theorem 4.3.5, 87
Theorem 4.4.2, 31
Theorem 4.4.4, 40
Theorem 4.6.1, 50
Theorem 5.2.1, 80
Theorem 5.8.2, 99
Theorem 8.3.1, 100
Theorem 8.5.2, 99
Theorem A.5, 53

Borel-Cantelli theorem, 28
Box, 47, 48
Bratley, 75, 87
Bremaud, 71

Brownian motion
fluctuations of, 28

modulus of continuity for paths, 28
nondifferentiability of paths, 28

$C_0 \equiv C \cap D_0$, 164
$C_1 \equiv C \cap D_1$, 164
$C_{\uparrow \uparrow} \equiv C \cap D_{\uparrow \uparrow}$, 164
$C_m \equiv C \cap D_m$, 164

$C(S)$, cont. bdd. real-val. fcts. on S, 1

Carson, 75, 91
centering
for convergence preservation
linear, 188
in other direction, 180
central-server model, 110
characterizations of
SM_1 convergence in D
main theorem, 128
by linear maps, 136
by visits to strips, 138
SM_2 convergence in D
main theorem, 149
by linear maps, 159
by local extrema, 160

WM_1 convergence in D, 131
WM_2 convergence in D, 155
feasible regulator set, 199
local uniform convergence, 126
multidimensional reflection map
by complementarity, 199
by fixed-point property, 199

parametric reps., 122

Chen, 27
Choudhury, 22
Chow, 87
closed queueing network, 110
CLT equivalence for cting. fcts., 62

comparison of
INDEX

SJ1 and SM1 metrics, 121
SM1 and WM1 topologies, 121
complementarity and reflection, 199
complete
metric space, 139
composition map, 68, 164
continuity of, 165
not continuous everywhere, 165
with centering, 173
conditional prob. measure, 14
confidence set, 74, 76
conjugate, see adjoint
conservation laws, 52
continuity
of addition
for M1, 135, 136
for M2, 159
of composition, 165
of multidim. reflect.
in uniform (top.), 202
on (D, SJ1), 203
with M1 tops., 210
of the inverse map, 184
right, 114
continuous-mapping approach, 17, 51, 73
continuous-mapping theorem, 17, 19
convergence
characterization of
SM1, 128, 138
SM2, 149, 160
WM1, 131
WM2, 155
extending to product spaces
for SM1, 134
for SM2, 158
local uniform, 124
of prob. measures, 1
of restrictions, 143
of sets, 246
strengthening the mode
for WM1, 134
for WM2, 158
to Lévy processes, 45
convergence preservation
WM2 within binding fcts., 161
with centering
inverse map, 188
reflection map, 182
supremum map, 174, 180
coordinate mapping, 10
counterexample
for weak consistency, 94
counting fcts., 190–194
asym. equiv., inv. fcts., 192,
193
counting functions, 55
CLT equivalence, 62
with centering, 62
counting process, 190
couplings, 27
covariance function, 34
Crane, 88
Csörgö, 25, 27–29
cumulative process, 37
cylinder set, 15
D, the space, 161
SM2 and WM2 tops., 144
characterization of
M1 convergence, 128
M2 convergence, 148
regularity properties, 114
D([0, ∞), \mathbb{R}^k), 142, 216
Dc, piecewise-const. fcts., 116
D0, subset with x(0) ≥ 0, 164
D↑, nondecreasing x in D0, 164
D↑↑, increasing x in D↑, 164
Dm, x^i monotone, all i, 164
INDEX

D_u, \ x \text{ in } D_0 \text{ unbounded above}, 183
D_{u\dagger} \equiv D_u \cap D_\dagger, 183
D_{u\dagger\dagger} \equiv D_u \cap D_{\dagger\dagger}, 183
D_{u,c}, \text{ subset of } D_u, 184
D_{u'}, \text{ subset of } D_u, 184
D_{u',c}, \text{ subset of } D_{u'}, 184
D_s, \text{ jumps same sign}, 205, 215
D_1, \text{ jumps in one coord.}, 214
D_{l,r}, \text{ limits either left or right}, 248
\text{Disc}(x), \text{ set of disc. pts.}, 19, 115
D_Q, \text{ subset of } D \text{ with discs. at rationals}, 25
d_{J_1}(x_1, x_2), J_1 \text{ metric}, 25
d_{M_1}(x_1, x_2), M_1 \text{ metric}, 25, 118
d_{S_1}(x_1, x_2), SM_1 \text{ metric on } D, 118
d_w(x_1, x_2), WM_1 \text{ dist. on } D, 118
d(A, \Gamma_x), \text{ order-consist. dist.}, 119
d_p(x_1, x_2), \text{ product metric}, 121
d^*(A, A_n), \text{ graph subsets}, 129
d(A, G_x), \text{ order-const. dist.}, 131
d_{S_2}(x_1, x_2), SM_2 \text{ dist.}, 148
d_{W_2}(x_1, x_2), WM_2 \text{ dist.}, 148
Damedjii, 90
derivative
\text{and conv. preservation}, 237
\text{of inverse map}, 267
\text{of supremum map}, 243
\text{of the reflection map}, 259
difference operator
\text{fractional}, 48
differences, 47
Dirac measure, 10
discontinuity points, 115
jumps common sign, 136, 159
distance
in-probability, 17
order-consistent, 119, 131
Donsker's theorem
\text{rate of convergence in}, 25
double sequences, 41
Dudley, 6
Dunford, 16
Edgeworth expansion, 24
Egorov's theorem, 12
Einmahl, 27
El-Taha, 52, 54, 71, 72, 164
equicontinuous, 2
estimating a steady-state mean, 89
estimation process, 74
Ethier, 29, 40
extending
\text{conv. to product spaces}
\text{for } SM_1, 134
\text{for } SM_2, 158
\text{graphs for } M' \text{ tops.}, 186
FARIMA, 47
FCLT
\text{for a CTMC}, 34
\text{for a DTMC}, 31
\text{for regenerative processes}, 38
martingale, 40
\text{with weak dependence}, 30
feasible regulator
\text{definition}, 197
Feller, 22, 24, 41, 44, 45, 140, 230
Fishman, 75, 91
fixed-point char. of ref. map, 199
Fox, 75, 87, 91
fractional AR integrated MA, FARIMA, 47
fractional difference operator, 48
function
oscillation, 125
INDEX

piecewise-constant, 115
functions of sample means, 88
fundamental matrix
 for a CTMC, 33
 of a DTMC, 31
G_{x}, thick graph, 117
gamma process, 100
generalized cont.-map. thm., 20
generalized Pollaczek-Khintchine transform, 22, 98, 99
Glazebrook, 87
Gleser, 87
Glynn, 27, 36, 38, 53, 71–95
Gnedenko, 41
Goldie, 81
Govindarajulu, 87
Granger, 48
graph
 extended for M^{t} topologies, 186
 thick, 117
 thin, 117
Gut, 71, 72

Halmos, 12
Hausdorff metric
 on compact subsets of \mathbb{R}_{+}, 246
 on graphs for D, 144
heavy-traffic limit
 for nonstationary queues, 262
heavy-traffic limits
 for finite-capacity queues, 217
 for queueing networks, 217
 for stochastic fluid networks, 217
Heidelberger, 75, 89
Helly selection theorem, 140
Hill estimator, 92
Horváth, 25, 27
Hosking, 48

Hsu, 27
Iglehart, 90
in-probability distance, 17
infinitely divisible distribution, 41
infinitesimal generator matrix for
 CTMC, 33
inheritance of jumps from WM_{2}
 convergence, 157
innovation process, 47
 heavy-tailed, 50
instantaneous reflection map, 204
Internet Supplement, 164, 167, 210, 220
inverse
 map, 183–194
 continuity of, 184
 conv. pres. with centering,
 188
 derivative of, 267
 relation for cting. fcts., 55, 190

J, max-jump fct., 157
jackknife, 88
Jaco, 40–42, 45, 46, 142, 178
Jenkins, 47, 48
joint conv. of ran. elts.
 for sup with centering, 178
Joyeux, 48

Kella, 98, 218, 224
Kelton, 75, 87, 91
Kemeny, 31, 33
Kennedy, 26
Kiefer-Wolfowitz stochastic approx.,
 91
Koenig, 87
Kogan, 111
Kolmogorov, 41
Komlós, 27
INDEX

product
 measure, 10
 metric, 145
 space, 10
Prohorov, 1–6, 139
Prohorov metric, 2, 17, 25
projection map, 26
Puhalskii, 97, 105, 108, 110, 111, 186, 277

\[Q \equiv \lim_{t \to 0} (P(t) - 1), \quad 33 \]
\[Q \equiv P^t, \text{ reflection matrix, 197} \]
queueing network, 233
queueing networks, 217

Révész, 27–29
\[R \equiv (\psi, \phi), \text{ mult. ref. map, 197} \]
\[Rinc(x), \text{ rt. inc. pts. of } x, \quad 248 \]
\[r_{t_1, t_2}, \text{ restriction map, 143} \]
radius of a set, 8

random
 measure, 43
 sum, 37, 164
 time change, 72, 164

range
 thick, 118
 thin, 117

rates of convergence
 for heavy-traf. limits, 26
 in CLT, 24
 in FCLT, 25
reflected Lévy process, 22, 98
 steady-state distribution, 98
reflected process
 limiting stationary version, 218
 tightness of marginals, 221
reflection
 matrix, 197
 norm, 200
 of a parametric rep., 204

reflection map, 26
 multidimensional, see multidim
 one-sided, one-dim., 181–183
 \(M_2 \)-cont. fails, 181
 conv. pres. with chaining, 182
 derivative of, 259
 Lipschitz property, 181

reflexive space, 17
regenerative
 cycles, 36
 process, 36
 structure, 30
regularly varying, see Appendix A
 function, 52
Reiman, 112
Reinsel, 47, 48
remainder processes, 37
renewal process, 37
renewal-reward processes, 194
rescaling of mult. ref. map, 202
Resnick, 92, 93
 restriction of fct., 143
Robbins, 87
Robbins-Monro stochastic approx., 91
Rogers, 100
Ruppert, 91, 92

\(SM_1 \)
 converg. charact. of
 main theorem, 128
 by linear maps, 136
 visits to strips, 138
 metric, 118

\(SM_2 \)
 converg. charact. of
 main theorem, 149
 by extrema, 160
 by linear maps, 159
 metric, 145
INDEX

param. rep., 148

topology, 144

Samorodnitsky, 47, 50, 100

sample mean
functions of, 88
of IID random variables, 86
of IID random vectors, 87
with infinite variance, 93

sample-path method, 22

Sauer, 75, 88, 110

Schrage, 75, 87

Schwartz, 16

segment
product, 117
standard, 117

seminartingales, 46

separable metric space, 1

sequential stopping rule
absolute-precision, 77
relative-precision, 78

service interruptions, 217

set
feasible regulator, 197
of discontinuity points, 115

Shiryaev, 40–42, 45, 46, 111, 142, 178

Siegmund, 87

signed measures, 16

Simmons, 16

simulation
application of limits to, 73
run length, 74
sequential stopping rules
asymptotic validity, 73

Skorohod, 6–16, 29, 45, 121, 128, 129, 137, 144, 149, 155, 160, 161, 194

embedding theorem, 29
representation theorem, 2, 6

SLLN and FSLLN equivalence, 53

Smorodinskii, 111

Snell, 31, 33

space
topological
of sets, 246
topologically complete, 139

Srivastava, 87

Stărică, 92, 93

stable innovations, 50

Starr, 87

stationary
process, 218

statistical
regularity
goal to see, iii

steady-state distribution
of a reflected Lévy pr., 98

steady-state mean
estimating, 89

Stidham, 52, 54, 71, 72, 164

stochastic approximation
Kiefer-Wolfowitz, 91
Robbins-Monro, 91

stochastic fluid networks, 217

stochastic-process limit
topic of book, iii

Stolyar, 112

Stout, 27

Strassen representation theorem, 17

strengthening mode conv., 134

strong
approximations, 27
dependence, 46

supremum map, 54, 173–180
conv. pres., centering, 174
criterion for joint conv., 174
cring in other direction, 180
derivative of, 243

switching u and r in par. rep. of
inverse fct., 184
Takács, 98, 100
Taqqu, 47, 50, 100
Teugels, 81

theorem
Berry-Esseen, 24
Borel-Cantelli, 28
continuous-mapping, 17, 19
Donsker’s, 25
Egoroff’s, 12
gen. cont.-mapping, 20
Helly selection, 140
Lipschitz-mapping, 17, 26
Prohorov metric, 2
Skorohod embedding, 29
Skorohod representation, 2, 6
Strassen representation, 17
strong approximation, 27

thick
graph, 117
range, 118
thin
graph, 117
range, 117

Thorin, 44
tightness
of a reflected process, 221
topologically complete, 139
totally skewed Lévy motion, 43
transform, 22
triangular arrays, see double sequences
triple of characteristics for Lévy pr., 42
truncation function for Lévy pr., 42
Tusnády, 27
two-sided regulator, 217

$u(x_1, x_2, t, \delta)$, unif. dist. fct., 124
uniform

convergence of integrals, 2
distance functions, 124
metric, 114
metric for cdf’s, 18, 24
norm, 16
uniformly bounded, 2
upper semicontinuity
of max. abs. jump fct., 157
preservation by infimum, 198
useful functions, 194

$v(x; A)$, modulus of cont., 116
$v(x_1, x_2, t, \delta)$, unif. dist. fct., 125
$v_{t_1, t_2}^{a, b}(x)$, visits to strip $[a, b]$, 137
Venter, 91, 92
virtual Mark. arriv. pr., see BMAP

volume of confidence set, 74

WM_1
conv. characteriz. of, 131
topology, 118

WM_2
convergence
characterizations of, 155
inherit jumps from, 157
pres. within bnding fcts., 161
param. rep., 148
topology, 144

$w_s(x, t, \delta), SM_1$ oscil. fct., 125
$w_w(x, t, \delta), WM_1$ oscil. fct., 125
$\bar{w}_s(x_1, x_2, t, \delta), SM_2$ osc. fct., 125
$\bar{w}_w(x_1, x_2, t, \delta), WM_2$ osc. fct., 125
$\bar{w}_s(x, \delta), SM_2$ osc. fct., 128
$w_w(x, \delta), osc. fct., 131$
Wang, 27

weak
consistency
a counterexample for, 94
convergence, 1, 16
dependence, 30
INDEX

 topology, 17
weak* topology, 17
Welch, 75
Wetherill, 87
Wichura, 6

\[Y = \lambda X, 72 \]

\[Z \equiv (I - P + \Pi)^{-1}, \text{ for DTMC, 31} \]
Zhang, 27
Zolotarev, 98