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Abstract

This paper contains additional material supplementing the main paper to be published in

Management Science.

Abstract from main paper

An algorithm is developed to rapidly compute approximations for all the standard steady-

state performance measures in the basic call-center queueing model M/GI/s/r + GI, which

has a Poisson arrival process, IID service times with a general distribution, s servers, r extra

waiting spaces and IID customer abandonment times with a general distribution. Empirical

studies indicate that the service-time and abandon-time distributions often are not nearly

exponential, so that it is important to go beyond the Markovian M/M/s/r + M special case,

but the general service-time and abandon-time distributions make the realistic model very

difficult to analyze directly.

The proposed algorithm is based on an approximation by an appropriate Markovian

M/M/s/r + M(n) queueing model, where M(n) denotes state-dependent abandonment rates.

Simulation experiments show that the approximation is quite accurate. The M/M/r/s+M(n)

model is tractable because the number of customers in the system over time is a birth-and-death

process. After making an additional approximation, steady-state waiting-time and response-

time distributions are characterized via their Laplace transforms. Then the approximate dis-

tributions are computed by numerically inverting the transforms. The overall algorithm can

be applied to determine desired staffing levels, e.g., the minimum number of servers needed to

guarantee that, first, the abandonment rate is below any specified target value and, second,

that the conditional probability that an arriving customer will be served within a specified

deadline, given that the customer eventually will be served, is at least a specified target value.
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1. Introduction

In the main paper, Whitt (2005a), we develop an algorithm to rapidly compute approxi-

mations for all the standard steady-state performance measures in the M/GI/s/r+GI queue,

which has a Poisson arrival process (the M), IID service times with a general distribution (the

first GI), s servers, r extra waiting spaces, IID customer abandonment times with a general

distribution (the final GI) and the first-come first-served (FCFS) service discipline. We es-

pecially want the approximations to be effective for distributions and parameters commonly

occurring in call centers. In particular, we are particularly interested in the case in which

there is ample waiting room (r might be taken to be ∞), the number of servers is relatively

large (e.g., s = 100 or even s = 1000) and there is non-negligible customer abandonment (e.g.,

1−10%). We want to allow non-exponential service-time and abandon-time distributions. For

example, as observed in Brown et al. (2002), the service-time distribution might be lognor-

mal with a squared coefficent of variation (SCV , variance divided by the square of the mean)

between 1 and 2.

Our approach involves two approximations: First, we approximate the given M/GI/s/r +

GI model by a Markovian M/M/s/r + M(n) model, which has IID exponential service times

with the given service-time mean and state-dependent abandonment rates. Most of the novelty

lies in the state-dependent abandonment rates. Second, we develop an approximate solution

for all the performance measures in the approximating M/M/s/r + M(n) model. Just like

for the M/M/s/r + M model, the steady-state distribution of the number of customers in

the M/M/s/r + M(n) system at an arbitrary time is easy to compute exactly, because the

process is a birth-and-death process. The second approximation appears when we describe the

experience of individual customers; e.g., when we compute the probability that an entering

customer eventually is served or the conditional waiting-time distribution given that a customer

eventually will be served.

Our two approximations satisfy an important consistency condition: The approximations

are all exact for the special case of the M/M/s/r+M model, which is sometimes referred to as

the Erlang A model. The algorithm is very fast, so that it easily can be applied to determine

appropriate staffing levels in M/GI/s/r + GI systems. It can also serve as a component

analysis tool in more complex systems.

Here is how the rest of this supplement is organized: In Section 2 we show additional insight

can be gained by plotting the approximate abandonment rates; this is tantamount to simply
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plotting the hazard-rate function itself over the interval of relevant arguments.

The next six sections present additional experimental results showing how the approxima-

tion performs, by making comparisons to computer simulations. In Section 3 we investigate

how the approximation performs for a smaller number of servers. We first note that the classi-

cal M/GI/1/∞ model clearly shows limitations of the approximation in general. In particular,

it shows that the approximation can perform poorly when the number of servers is small and

there is negligible abandonment. However, we also show that the approximation can perform

reasonably well with much fewer servers. In the main paper we only considered the case of

s = 100 servers; here we consider s = 20 and s = 5.

In Sections 4 and 5 we evaluate the approximations when the load is very light and very

heavy, respectively. In Section 4 we present some results for the case s = 100 and λ = 90,

which we regard as a light load. Under lighter loads, the approximation tends to perform

better, but it does not produce small relative errors when the congestion is low.

In Section 5 we consider heavy loads. We present several results for the case s = 100

and λ = 120. To show what happens with fewer servers, we also consider the case s = 20

and λ = 24. Both these cases have the relatively high traffic intensity ρ = 1.2. We consider

two quite different distributions: Erlang (E2) and lognormal (LN(1, 4)), which have SCV 1/2

and 4, respectively. We consider each combination of these two distributions as service-time

distribution and time-to-abandon distribution. We show that the approximation performs

remarkably well in those cases. However, because of the approximation assumption that aban-

donments are relatively rare compared to arrivals, we would like to see if the approximation

will eventually break down if we make the loads heavy enough. To investigate the possible

performance degradation, we consider the case of s = 100 and λ = 200, which yields about

50% abandonment. however, even in that case, the approximation performs well.

In Section 6 we show in more detail that the approximation is effective for making staffing

decisions. We also show that the approximation does a much better job than the simple Erlang

A model, obtained by choosing an exponential abandon-time distribution with the same mean

as the given mean.

In Section 7 we investigate how the approximation performs for two uniform distributions,

one on the interval (0, 2) and the other on the interval (0.5, 1.5). We consider each of these

two uniform distributions in the role of the service-time distribution and the abandon-time

distribution, considering all four combinations. The experiment strongly supports the main

conclusion that the hazard rate for smaller arguments matters most for the abandon-time
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distribution, while only the mean matters for the service-time distribution.

In Section 8 we present a few other examples that were deleted from the main paper in

order to meet space limitations. Finally, in Section 9 we present some additional details on

calculating performance measures in the approximating M/M/s/r + M(n) model.

We conclude this introduction by mentioning that important exact results for the M/M/s/r+

GI model appear in Brandt and Brandt (2002) and Mandelbaum and Zeltyn (2004). Those

papers, and earlier references cited there, should be consulted for additional insights.

2. Plotting Approximate Abandonment Rates

As discussed in Section 3 of the main paper, our main idea is to develop appropriate

approximate state-dependent Markovian abandonment rates. Those approximate rates provide

the M(n) in the approximating model M/M/s/r + M(n). The approximation is remarkably

simple: We let the abandonment rate for the jth customer from the end of the queue, when

the queue length is k, for k ≥ j, be

αk,j ≡ αj ≡ h(j/λ),

where h is the hazard-rate (or failure-rate) function, i.e.,

h(t) ≡ f(t)
F c(t)

, t ≥ 0 ,

with f(t) being the pdf and F c(t) ≡ 1−F (t) being the ccdf of the abandon time, and λ being

the arrival rate. We note that exact state-dependent non-Markovian abandonment rates for

the M/M/s/r + GI model were determined by Brandt and Brandt (2002).

In order to see how different abandon-time distributions affect performance, it is thus

instructive to look at the hazard rate functions h and the approximate state-dependent rates

αj . Moreover, it is useful to look at the approximate total abandonment rate

δ(k) ≡
k∑

j=1

αj , k ≥ 0 .

It is interesting to look at the functions αj and δk for values of j and k that occur reasonably

often. When s ≈ 100, we also have λ ≈ 100. In that case the queue length is typically less

than 40. The most common values for j and k may even be less than 10. That means that the

hazard-rate function is mostly only relevant over the domain (0, 0.4), say. Certainly, the tail

of the abandon-time distribution is relatively unimportant.
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In this section we complement the main paper by plotting the estimated state-dependent

abandonment rates, αj and δk for values of j and k that typically occur. We consider the case

λ = 100 and thus let j and k range from 0 to 40.

In Figures 1 and 2 we display the functions αj and δk for the Erlang E2 abandon-time

distribution with mean 1. In Figures 3 and 4 we display the functions αj and δk for the

lognormal LN(1, 1) abandon-time distribution with mean 1 and SCV = 1. In Figures 5 and

6 we display the functions αj and δk for the lognormal LN(1, 4) abandon-time distribution

with mean 1 and SCV = 4 and thus variance 4. We compare the cumulative abandonments

for these three distributions with the total exponential abandonment rate when the individual

customers have mean abandon time 1 in Figure 7.

As can be seen from Figures 1, 3 and 5, Erlang (Ek) and lognormal (LN(a, b)) distribu-

tions have zero hazard at the origin, i.e., h(0) = 0. For the Ek and LN(1, 1) distributions,

that implies few abandonments for small queue sizes. However, for more variable lognormal

distributions, the behavior of h at the origin can be misleading. To illustrate, note that the

LN(1, 4) plots in Figures 5 and 6 show that the values h(0) and h′(0) need not be too descrip-

tive of the hazard function away from the origin, even for time arguments that are not too

large. Higher SCV values leads to even more extreme behavior.

In Table 2 in the main paper, we saw that the E2 abandon-time distribution with mean

1 behaved much the same as the lognormal LN(1, 1) abandon-time distribution. Figure 7

shows that it is to be expected given the approximate abandonment rates determined from the

respective hazard-rate functions.

The limiting behavior of the abandonment rates δk as k → ∞ are determined by Brandt

and Brandt (2002), but it is not clear that these limits are relevant for system performance in

common cases in which k is not too large.

3. Smaller Numbers of Servers

In this section we consider what happens with a smaller number of servers. All the examples

in the main paper had 100 servers. We now want to show what happens when the number of

servers is reduced. We emphasize that our approximation is not intended for this case.

A very important reference case is the elementary M/GI/1/∞ model; it is a special case

occurring when s = 1, r is large, the load is not too large (ρ < 1) and the mean time to

abandon, E[T ] is large. In that case, our approximation essentially reduces to the M/M/1/∞
model. The steady-state performance of the M/GI/1/∞ model is characterized by the well-
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Figure 1: The approximate abandonment rate αj = h(j/λ) for the customer j positions from
the end of the queue in the M/GI/s/r + E2 model with λ = 100 and Erlang E2 abandon time
having mean 1.
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Figure 2: The approximate total abandonment rate δk when there are k customers in the queue
in the M/GI/s/r + E2 model with λ = 100 and Erlang E2 abandon time having mean 1.
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Figure 3: The approximate abandonment rate αj = h(j/λ) for the customer j positions from
the end of the queue in the M/GI/s/r+LN(1, 1) model with λ = 100 and lognormal LN(1, 1)
abandon time having mean 1 and SCV = 1.
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Figure 4: The approximate total abandonment rate δk when there are k customers in the
queue in the M/GI/s/r+LN(1, 1) model with λ = 100 and lognormal LN(1, 1) abandon time
having mean 1 and SCV = 1.
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Figure 5: The approximate abandonment rate αj = h(j/λ) for the customer j positions from
the end of the queue in the M/GI/s/r+LN(1, 4) model with λ = 100 and lognormal LN(1, 4)
abandon time having mean 1 and SCV = 1.
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Figure 6: The approximate total abandonment rate δk when there are k customers in the
queue in the M/GI/s/r+LN(1, 4) model with λ = 100 and lognormal LN(1, 4) abandon time
having mean 1 and SCV = 1.
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Figure 7: A comparison of four abandon-time distributions: the approximate total abandon-
ment rate δk when there are k customers in the queue in the M/GI/s/r + GI model with
λ = 100 and four different abandon-time distributions having mean 1: Erlang E2, lognormal
LN(1, 1) and LN(1, 4), and exponential M.
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known Pollaczek-Khintchine formulas. For example, when the mean service time is µ−1 = 1,

the mean steady-state waiting time is

E[W ] =
(1 + c2

s)
2

ρ

1− ρ
, (3.1)

where ρ ≡ λ/µ is the traffic intensity and c2
s is the squared coefficient of variation (SCV,

variance divided by the square of the mean) of the service-time distribution. Note that the mean

waiting time is directly proportional to 1 + c2
s. Since the SCV of the service-time distribution

plays a prominent role in the exact formulas, we see that our approximation can perform badly

when the SCV c2
s is not close to 1. A serious limitation of our approximation is thus quite

clear: The service-time approximation will produce poor results when the number of servers is

too small, the SCV of the service time is not near 1 and there is negligible abandonment (e.g.,

the load is not too large and the mean time to abandon is not small).

Heavy-traffic limits for the GI/GI/s/∞ model (without abandonments) shows that the

same phenomenon occurs in heavy traffic for multiple servers, when there is no abandonment,

so the M/GI/1/∞ problem does not go away completely by just increasing the number of

servers. But the behavior of multi-server GI/GI/s/∞ queues, with moderately many servers

and no abandonments, is by now quite well understood; e.g., see Whitt (1993). Thus limitations

of our proposed approximations are well known.

But the situation is less clear when there are substantial abandonments. Then the simple

M/GI/1/∞ description no longer describes the steady-state behavior well. To provide ad-

ditional insight into what happens, we now consider smaller numbers of servers. Instead of

s = 100 servers, we now consider s = 20 and s = 5. In Table 1 here we repeat the experiment

in Table 1 in the main paper with s = 20. In particular, we simulate the M/E2/20/100 + E2

model and the M/M/20/100 + E2 model with 20 servers and arrival rate λ = 18. (As always,

the mean service time is µ−1 = 1. The mean time to abandon is E[T ] = 1. The results in

Table 1 show that the approximation still performs quite well for a smaller number of servers,

but we do not regard 20 as an extremely small number. We think of the approximations as

being aimed for s = 100, but applying reasonably well for s ≥ 20. As before, the results in

Table 1 are better than an M/M/s/r + M approximation obtained by directly matching the

mean abandon time, but they are not so much better.

We draw attention to two particular approximations that do not perform so well in Table

1. First, there is significant error in the abandonment probability. The exact value is 0.030,

while the approximation is 0.037, an error of 23%. The error was only 10% in Table 1 in the
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main paper. The 23% error is not too large for most applications, we think, but it should be

noted.

Second, we see significant error in the approximation for the conditional waiting time

distribution, given that the customer abandons. No such errors were present in the tables

of the main paper, but we did observe in other experiments that this is a weak point of

the approximation: The approximation is not consistently good in predicting the conditional

waiting time distribution for the customers that abandon. The approximation is much more

accurate for the conditional waiting time distribution for the customers that are served. We

regard the conditional distribution for served customers as more important for applications.

in the usual case of few abandonments, the overall waiting time distribution is well predicted

by the approximation, because a small probability is attached to the less accurate conditional

probability.

In Table 2 we consider an even smaller number of servers, in particular s = 5. In particular,

we simulate the M/E2/5/100 + E2 model and the M/M/5/100 + E2 model with 5 servers and

arrival rate λ = 4.0. The results in Table 2 show that the approximation begins to degrade

when the number of servers is so small. Nevertheless, the approximation performs reasonably

well for this small number of servers. However, in this case, the approximation is not too

different from a direct M/M/s/r + M approximation obtained by directly matching the mean

abandon time.

In Tables 1 and 2, the quality of the direct Erlang-A model approximation is better than

in Table 1 of the main paper. That can be explained, at least in part, by the fact that the

traffic intensities are smaller in these examples with fewer servers. Before, the traffic intensity

was 102/100 = 1.02. Here the traffic intensities are 18/20 = 0.90 and 4/5 = 0.80. Under light

loads, the M/GI/s/r +GI model behaves much like the M/GI/∞ model, which is insensitive

to the service-time distribution beyond its mean.

4. Lighter Loads

In this section we consider what happens with lighter loads. In fact, we performed an

extensive set of experiments with s = 100 and three values of λ: λ = 90, λ = 98 and λ = 102.

We found that the most challenging case was λ = 102, so we only displayed results for that

case in the main paper. Here we supplement those results by displaying a few of the results

for s = 100 and λ = 90.

Just as in the previous section, there is an important theoretical reference case: Here it is
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M/GI/20/100 + GI model with λ = 18 and E[T ] = 1.0
M/GI/20/100 + E2 M/M/20/100 + M

Performance Measure simulation approx. exact
M service E2 service

P (W = 0) 0.587 0.577 0.599 0.651
±0.00107 ±0.00096 – –

P (A) 0.0342 0.0295 0.0369 0.0499
±0.00017 ±0.00014 – –

E[Q] 1.45 1.36 1.31 0.90
±0.0059 ±0.0053 – –

V ar(Q) 7.19 6.13 6.07 3.68
±0.033 ±0.032 – –

E[N ] 18.84 18.83 18.65 18.0
±0.012 ±0.0095 – –

E[W |S] 0.075 0.0711 0.0682 0.0460
±0.00028 ±0.00026 – –

V ar(W |S) 0.0178 0.0148 0.0154 0.0094
±0.000075 ±0.000071 – –

E[W |A] 0.240 0.216 0.195 0.124
±0.00041 ±0.00042 – –

V ar(W |A) 0.0213 0.0167 0.0192 0.0122
±0.00011 ±0.000064 – –

P (W ≤ 0.1|S) 0.742 0.740 0.758 0.826
±0.00084 ±0.00081 – –

P (W ≤ 0.1|A) 0.167 0.194 0.289 0.528
±0.00075 ±0.0011 – –

P (W ≤ 0.2|S) 0.844 0.854 0.860 0.915
±0.00070 ±0.00060 – –

P (W ≤ 0.2|A) 0.457 0.517 0.585 0.798
±0.00089 ±0.0012 – –

Table 1: A comparison of approximate steady-state performance measures in the
M/GI/20/100 + E2 model with simulations in the case of exponential (M) and Erlang (E2)
service-time distributions. The models have arrival rate λ = 18, mean service time µ−1 = 1,
and mean time to abandon E[T ] = 1.0. These results are also compared to the exact numerical
results for the purely Markovian M/M/20/100 + M model, having exponential service-time
and time-to-abandon distributions with the same mean. The half-width of the 95% confidence
interval is given for each simulation estimate.
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M/GI/5/100 + GI model, with λ = 4 and E[T ] = 1.0
M/GI/5/100 + E2 M/M/5/100 + M

Performance Measure simulation approx. exact
M service E2 service

P (W = 0) 0.594 0.584 0.618 0.629
±0.00038 ±0.00022 – –

P (A) 0.083 0.074 0.096 0.103
±0.00011 ±0.000091 – –

E[Q] 0.550 0.521 0.438 0.410
±0.00084 ±0.00051 – –

V ar(Q) 1.32 1.18 0.94 0.91
±0.0027 ±0.0018 – –

E[N ] 4.22 4.22 4.05 4.00
±0.0019 ±0.0011 – –

E[W |S] 0.113 0.112 0.092 0.086
±0.00015 ±0.000093 – –

V ar(W |S) 0.048 0.042 0.037 0.044
±0.000080 ±0.000062 – –

E[W |A] 0.404 0.363 0.279 0.250
±0.00023 ±0.00025 – –

V ar(W |A) 0.068 0.052 0.056 0.054
±0.00016 ±0.000090 – –

P (W ≤ 0.1|S) 0.724 0.710 0.762 0.779
±0.00030 ±0.00016 – –

P (W ≤ 0.1|A) 0.076 0.087 0.252 0.310
±0.00022 ±0.00025 – –

P (W ≤ 0.2|S) 0.790 0.783 0.827 0.841
±0.00024 ±0.00019 – –

P (W ≤ 0.2|A) 0.235 0.268 0.466 0.532
±0.00037 ±0.00057 – –

Table 2: A comparison of approximate steady-state performance measures in the
M/GI/5/100 + E2 model with simulations in the case of exponential (M) and Erlang (E2)
service-time distributions. The models have arrival rate λ = 4, mean service time µ−1 = 1,
and mean time to abandon E[T ] = 1.0. These results are also compared to the exact numeri-
cal results for the purely Markovian M/M/5/100 + M model, having exponential service-time
and time-to-abandon distributions with the same mean. The half-width of the 95% confidence
interval is given for each simulation estimate.
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the M/GI/∞ queue. When s and r are not too small and the loads are light, the M/GI/s/r+

GI model behaves much like the associated M/GI/∞ model. And the M/GI/∞ model is

known to have the insensitivity property: Its steady-state performance in the M/GI/∞ model

depends upon the service-time distribution only through its mean, so that the service-time

M approximation is strongly supported theoretically, and thus is clearly reasonable in this

domain.

However, a caveat is in order: Under light loads, the congestion is low, so the performance

measures will take small values. Experience shows that we cannot expect good relative accuracy

in this domain. But that is not a serious problem, because engineering applications rarely

require such relative accuracy.

We now give some examples to show what actually happens. In these examples we let

s = 100, µ = 1 and λ = 90, implying that ρ ≡ λ/sµ = 0.90, which is a light load for this

many servers; for discussion, see Whitt (1992, 1993). In Table 3 we display results for the

M/E2/100/200 + E2 model with three different values for the mean time to abandon E[T ]:

0.25, 1.00 and 4.00.

We regard the quality of the approximations in these cases as excellent, in fact perhaps

even phenomenal. However, the relative accuracy of the probability of abandonment, P (A),

and the conditional mean waiting times, E[W |S] and E[W |A], is not always good.

In Table 4 we perform a similar experiment for the M/M/100/200 + LN(E[T ], 4) model.

Now the time to abandon is given the relatively highly variable lognormal distribution with

SCV 4. Again we let s = 100, µ = 1 and λ = 90, so that ρ = 0.90. Again we consider three

values for the mean time to abandon E[T ]: 0.25, 1.00 and 4.00.

For the most part, the approximation is amazingly accurate. However, as we have observed

in on several occasions, the approximation for the conditional waiting-time distribution, given

that the customer abandons, is not consistently good. That is a weak point of the approxima-

tion. Since abandonment is relatively rare, that difficulty has negligible effect upon the overall

waiting-time distribution. Its accuracy is about the same as for the conditional waiting-time

distribution, given that the customer is served.

5. Heavy Loads

In this section we present results from experiments showing the performance of the ap-

proximation under heavy loads. We consider the same M/GI/100/200 + GI model as before,

but now we increase the arrival rate. We are motivated to consider this case, because the
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lightly loaded M/E2/100/200 + E2 model, λ = 90
E[T ] = 0.25 E[T ] = 1.00 E[T ] = 4.00

perf. meas. sim. approx. sim. approx. sim. approx.
P (W = 0) 0.852 0.859 0.806 0.807 0.792 0.786

±0.0007 – ±0.0015 – ±0.0012 –
P (A) 0.0090 0.0107 0.0024 0.0034 0.00028 0.00047

±0.00009 – ±0.00003 – ±0.000006 –
E[Q] 0.544 0.521 1.15 1.27 1.48 1.82

±0.04 – ±0.013 – ±0.015 –
E[N ] 89.74 89.56 90.94 90.96 91.47 91.78

±0.04 – ±0.04 – ±0.04 –
E[W |S] 0.0056 0.0054 0.0126 0.0138 0.0164 0.0202

±0.00005 – ±0.00014 – ±0.0002 –
E[W |A] 0.051 0.045 0.095 0.098 0.137 0.159

±0.00014 – ±0.0007 – ±0.003 –
P (W ≤ 0.1|S) 0.9922 0.9923 0.956 0.949 0.940 0.924

±0.00012 – ±0.0006 – ±0.0007 –
P (W ≤ 0.1|A) 0.926 0.938 0.597 0.579 0.416 0.358

±0.0010 – ±0.0042 – ±0.009 –

Table 3: A comparison of exact numerical results with simulations for the steady-state perfor-
mance measures in the M/E2/100/200 + E2 model with λ = 90 and µ = 1 for three different
mean times to abandon: E[T ] = 0.25, 1.00 and 4.00. The half-width of the 95% confidence
interval is given for each simulation estimate.
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lightly loaded M/M/100/200 + LN(E[T ], 4) model, λ = 90
E[T ] = 0.25 E[T ] = 1.00 E[T ] = 4.00

perf. meas. sim. approx. sim. approx. sim. approx.
P (W = 0) 0.894 0.900 0.842 0.846 0.801 0.801

±0.00062 – ±0.0009 – ±0.0023 –
P (A) 0.0156 0.0165 0.0083 0.0089 0.0023 0.0026

±0.00010 – ±0.00005 – ±0.00005 –
E[Q] 0.259 0.23 0.714 0.668 1.43 1.40

±0.0018 – ±0.0035 – ±0.027 –
E[N ] 88.84 88.74 89.94 89.87 91.17 91.17

±0.030 – ±0.03 – ±0.071 –
E[W |S] 0.0025 0.0022 0.0075 0.0070 0.0156 0.0152

±0.000017 – ±0.00004 – ±0.00029 –
E[W |A] 0.027 0.022 0.059 0.051 0.121 0.109

±0.00011 – ±0.0002 – ±0.00088 –
P (W ≤ 0.05|S) 0.987 0.989 0.939 0.943 0.889 0.891

±0.00013 – ±0.0003 – ±0.0019 –
P (W ≤ 0.05|A) 0.879 0.906 0.480 0.575 0.138 0.208

±0.0016 – ±0.002 – ±0.0019 –
P (W ≤ 0.10|S) 0.9991 0.9993 0.981 0.984 0.941 0.943

±0.000026 – ±0.00011 – ±0.0013 –
P (W ≤ 0.10|A) 0.995 0.996 0.862 0.894 0.455 0.523

±0.00025 – ±0.0016 – ±0.0050 –

Table 4: A comparison of exact numerical results with simulations for the steady-state per-
formance measures in the M/M/100/200 + LN(1, 4) model with λ = 90 and µ = 1 for three
different mean times to abandon: E[T ] = 0.25, 1.00 and 4.00. The half-width of the 95%
confidence interval is given for each simulation estimate.
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abandonment-rate approximation is partly based on the assumption that abandonments are

relatively rare compared to arrivals and service completions. Under heavier loads, that as-

sumption will not hold.

We first consider the case λ = 120. We let the mean service time and mean time to abandon

be 1. We consider two different distributions for the service times and abandon times: Erlang,

E2, and lognormal, LN(1, 4). The E2 distribution has SCV c2
s = 1/2, while the LN(1, 4)

distribution has SCV c2
s = 4. The hazard rate functions for these two distributions have been

plotted in Figures 1 and 5. The associated total abandonment rates have been plotted in

Figures 2 and 6. So we know the distributions we are considering.

We consider four cases, with each of these two distributions serving as the service-time

distribution and time-to-abandon distribution. The results are displayed in Tables 5 and

6. The Table 5 shows the results for the E2 time-to-abandon distribution, while Table 6

shows the results for the LN(1, 4) time-to-abandon distribution. These results show that

the approximation performs spectacularly well under heavy loads. In these cases, we see that

performance primarily depends on the service-time distribution through its mean, but depends

significantly upon the time-to-abandon distribution beyond its mean. In each table, the results

are nearly the same for the two service-time distributions. However, changing from table to

table, with the different time-to-abandon distributions, we see significant differences. In Table

5, the mean queue length is about 40, while in Table 6 the mean queue length is about 14. In

Table 5, the conditional mean waiting time for served customers is about 0.35, while in Table

6 the conditional mean waiting time for served customers is about 0.125.

In Tables 5 and 6 the probability of no delay, P (W = 0), is very small, as should be expected

because of the heavy load. The approximation correctly predicts that, but the relative accuracy

is not good. That is a common phenomenon for the approximation; it does not produce small

relative error for small values. However, we do not consider that a problem for most engineering

applications.

From Tables 5 and 6, we see that some performance measures are the same for all four

cases. In particular, the abandonment probability is very consistent throughout, being approx-

imately 1/6 = 0.16667. That phenomenon and other regularity in the heavily loaded cases can

be explained by many-server heavy-traffic fluid limits in the overloaded or efficiency-driven

(ED) limiting regime; see Whitt (2004a, b, 2005b). Indeed, the deterministic fluid approxi-

mation performs spectacularly well in this overloaded regime. It is significant that the fluid

approximation strongly supports our approximation approach under heavy loads: The fluid ap-
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M/GI/100/200 + E2 model with λ = 120 and E[T ] = 1.0
service-time distribution

Perf. Meas. E2 LN(1, 4) approx.
P (W = 0) 0.00046 0.0068 0.0014

±0.00006 ±0.00035 –
P (A) 0.16653 0.16683 0.1667

±0.00035 ±0.00060 –
E[Q] 40.25 39.56 39.95

±0.057 ±0.097 –
V ar(Q) 139.6 221.6 153.9

±0.69 ±1.09 –
E[N ] 140.3 139.5 139.9

±0.057 ±1.22 –
E[W |S] 0.353 0.343 0.351

±0.00051 ±0.00094 –
V ar(W |S) 0.0097 0.0176 0.0118

±0.000058 ±0.000087 –
E[W |A] 0.247 0.261 0.245

±0.00025 ±0.00041 –
V ar(W |A) 0.0130 0.0163 0.0141

±0.000032 ±0.000065 –
P (W ≤ 0.2|S) 0.063 0.140 0.084

±0.0009 ±0.0018 –
P (W ≤ 0.2|A) 0.363 0.348 0.379

±0.0008 ±0.00086 –
P (W ≤ 0.4|S) 0.680 0.661 0.672

±0.0020 ±0.0024 –
P (W ≤ 0.4|A) 0.901 0.851 0.709

±0.0006 ±0.0011 –

Table 5: A comparison of approximations with simulation estimates of steady-state perfor-
mance measures in M/GI/100/200 + E2 models under heavy load, specifically for λ = 120.
The mean time to abandon is E[T ] = 1. The two service times are Erlang (E2) with c2

s = 1/2
and lognormal (LN(1,4) with c2

s = 4. The half-width of the 95% confidence interval is given for
each simulation estimate. The common approximation based on the M/M/100/200 + M(n)
model are also displayed.
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M/GI/100/200 + LN(1, 4) model with λ = 120 and E[T ] = 1.0
service-time distribution

Perf. Meas. E2 LN(1, 4) approx.
P (W = 0) 0.032 0.065 0.049

±0.00037 ±0.00077 –
P (A) 0.1678 0.1696 0.1685

±0.00023 ±0.00054 –
E[Q] 14.51 14.52 14.02

±0.018 ±0.043 –
V ar(Q) 61.1 81.5 66.6

±0.18 ±0.30 –
E[N ] 114.4 114.2 113.8

±0.019 ±0.47 –
E[W |S] 0.126 0.125 0.122

±0.00017 ±0.00040 –
V ar(W |S) 0.0046 0.0066 0.0053

±0.000014 ±0.000027 –
E[W |A] 0.095 0.103 0.093

±0.00008 ±0.00014 –
V ar(W |A) 0.0030 0.0039 0.0034

±0.000006 ±0.000014 –
P (W ≤ 0.1|S) 0.359 0.404 0.398

±0.0011 ±0.0020 –
P (W ≤ 0.1|A) 0.593 0.554 0.605

±0.00054 ±0.00090 –
P (W ≤ 0.2|S) 0.859 0.821 0.856

±0.00065 ±0.0015 –
P (W ≤ 0.2|A) 0.954 0.920 0.846

±0.00025 ±0.00051 –

Table 6: A comparison of approximations with simulation estimates of steady-state per-
formance measures in M/GI/100/200 + LN(1, 4) models under heavy load, specifically for
λ = 120. The mean time to abandon is E[T ] = 1. The two service times are Erlang (E2)
with c2

s = 1/2 and lognormal (LN(1,4) with c2
s = 4. The half-width of the 95% confidence

interval is given for each simulation estimate. The common approximation based on the
M/M/100/200 + M(n) model are also displayed.
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proximation depends upon the service-time distribution only through its mean, but it depends

upon the time-to-abandon distribution beyond its mean.

We repeat the experiments above with a smaller number of servers in Tables 7 and 8.

Specifically, we let s = 20 and λ = 24, so that the traffic intensity is again ρ = 1.2.

From Tables 7 and 8, we see that the M/M/s/r + M(n) approximation still performs well

for this smaller number of servers. For s = 20 and λ = 24, we again see that the performance

does indeed primarily depend on the service-time distribution only through its mean, while it

strongly depends on the time-to-abandon distribution beyond its mean. That is demonstrated

by the similarity between the two simulation results within each table and the differences

between the simulation results in the two different tables.

The traffic intensity ρ = 1.20 in the four tables so far is greater than we expect to see

in call-center applications. However, the results show that the approximation does not break

down under this heavy load. The abandonment rate is still less than 20% in all these examples.

The assumption used in developing the approximations that abandonments are relatively rare

compared to arrivals obviously operates with great force when the abandonment rate is lower

than 5%. Nevertheless, the assumption remains roughly reasonable when the abandonment

rate increases to 20%.

It is of course interesting to see if the quality of the approximation will indeed eventually

degrade if the abandonment rate is high enough. To investigate this feature, we consider the

unrealistic case of s = 100 and λ = 200. Then the abandonment rate is about 50%. Results for

this case are displayed in Table 9. Surprisingly, even in this case, the approximations perform

well. It thus remains to identify heavy-load cases causing the performance of the approximation

to degrade.

6. Staffing Application

In Section 2 of the main paper we asserted that the approximation if effective for staffing

decisions. In this section we provide extra details supporting that claim. In particular, we give

results for the M/E2/s/200 + E2 model with arrival rate λ = 100 and different numbers of

servers. The models have common arrival rate λ = 100, mean service time µ−1 = 1, number of

extra waiting spaces r = 200 and mean time to abandon 1.0. The goal is to choose the number

s of servers so that both P (A) ≤ 0.05 and P (W ≤ 0.1|S) ≥ 0.8. In Table 10 we display results

for s = 103, s = 104 and s = 105. The middle case, s = 104, is the least number of servers

meeting the performance constraints.
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M/GI/20/100 + E2 model with λ = 24 and E[T ] = 1.0
service-time distribution

Perf. Meas. E2 LN(1, 4) approx.
P (W = 0) 0.068 0.126 0.096

±0.0004 ±0.0007 –
P (A) 0.1748 0.1838 0.1783

±0.00031 ±0.00034 –
E[Q] 7.7 7.6 7.2

±0.013 ±0.013 –
V ar(Q) 25.2 33.3 25.3

±0.04 ±0.07 –
E[N ] 27.5 27.2 26.9

±0.015 ±0.015 –
E[W |S] 0.322 0.307 0.303

±0.0005 ±0.0005 –
V ar(W |S) 0.042 0.061 0.046

±0.00006 ±0.00013 –
E[W |A] 0.309 0.351 0.288

±0.0003 ±0.0004 –
V ar(W |A) 0.028 0.040 0.031

±0.00005 ±0.00009 –
P (W ≤ 0.2|S) 0.297 0.384 0.350

±0.0009 ±0.0008 –
P (W ≤ 0.2|A) 0.292 0.253 0.356

±0.0004 ±0.0005 –
P (W ≤ 0.4|S) 0.647 0.659 0.676

±0.0010 ±0.0009 –
P (W ≤ 0.4|A) 0.725 0.641 0.753

±0.0007 ±0.0008 –

Table 7: A comparison of approximations with simulation estimates of steady-state perfor-
mance measures in M/GI/20/100 + E2 models under heavy load, but with a smaller number
of servers, specifically for s = 20 and λ = 24. The mean time to abandon is E[T ] = 1. The
two service times are Erlang (E2) with c2

s = 1/2 and lognormal (LN(1,4) with c2
s = 4. The

half-width of the 95% confidence interval is given for each simulation estimate. The common
approximation based on the M/M/20/100 + M(n) model are also displayed.
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M/GI/20/100 + LN(1, 4) model with λ = 24 and E[T ] = 1.0
service-time distribution

Perf. Meas. E2 LN(1, 4) approx.
P (W = 0) 0.210 0.254 0.252

±0.00047 ±0.00064 –
P (A) 0.1914 0.1993 0.1974

±0.00022 ±0.00044 –
E[Q] 3.15 3.26 2.90

±0.0036 ±0.0081 –
V ar(Q) 9.6 12.0 9.7

±0.10 ±0.037 –
E[N ] 22.56 22.48 22.17

±0.0052 ±0.0092 –
E[W |S] 0.129 0.130 0.119

±0.00016 ±0.00035 –
V ar(W |S) 0.0166 0.0227 0.0177

±0.000025 ±0.00010 –
E[W |A] 0.139 0.159 0.130

±0.00008 ±0.00022 –
V ar(W |A) 0.0091 0.0140 0.0115

±0.00002 ±0.00006 –
P (W ≤ 0.1|S) 0.494 0.537 0.549

±0.00065 ±0.0009 –
P (W ≤ 0.1|A) 0.420 0.380 0.486

±0.00035 ±0.0007 –
P (W ≤ 0.2|S) 0.731 0.731 0.758

±0.00042 ±0.0009 –
P (W ≤ 0.2|A) 0.778 0.717 0.784

±0.00018 ±0.0006 –

Table 8: A comparison of approximations with simulation estimates of steady-state perfor-
mance measures in M/GI/20/100 + LN(1, 4) models under heavy load, but with a smaller
number of servers, specifically for s = 20 and λ = 24. The mean time to abandon is E[T ] = 1.
The two service times are Erlang (E2) with c2

s = 1/2 and lognormal (LN(1,4) with c2
s = 4. The

half-width of the 95% confidence interval is given for each simulation estimate. The common
approximation based on the M/M/20/100 + M(n) model are also displayed.
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M/GI/100/400 + GI model with λ = 200 and E[T ] = 1.0
time-to-abandon distribution
E2 LN(1, 4)

Perf. Meas. sim. approx. sim. approx.
P (W = 0) 0.00027 ≈ 0 0.00028 ≈ 0

±0.000006 – ±0.000015 –
P (A) 0.50046 0.5000 0.49913 0.5000

±0.00092 – ±0.00073 –
E[Q] 131.2 135.0 65.2 63.2

±0.30 – ±0.20 –
V ar(Q) 219.4 174.0 137.7 127.4

±3.6 – ±1.7 –
E[N ] 231.2 235.0 165.2 163.3

±0.30 – ±0.20 –
E[W |S] 0.8326 0.864 0.443 0.427

±0.0021 – ±0.0016 –
V ar(W |S) 0.0084 0.0077 0.0072 0.0064

±0.00015 – ±0.00011 –
E[W |A] 0.479 0.243 0.209 0.205

±0.00069 – ±0.00060 –
V ar(W |A) 0.049 0.52 0.0163 0.0157

±0.00023 – ±0.00011 –

Table 9: A comparison of approximations with simulation estimates of steady-state perfor-
mance measures in M/M/100/400 + GI models under extremely heavy load, specifically for
s = 100 and λ = 200. The mean time to abandon is E[T ] = 1. The two time-to-abandon
distributions are Erlang (E2) with c2

s = 1/2 and lognormal (LN(1,4) with c2
s = 4. The half-

width of the 95% confidence interval is given for each simulation estimate. The run lengths
were divided by 10 for this example.
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From the simulation results and the associated displayed approximations, we see that the

approximation yields the correct decision in this case, as well as good approximations for the

performance measures themselves. In contrast, if we used the M/M/s/r + M (Erlang A)

model, obtaining the exponential abandon-time distribution by simply picking an exponential

distribution with the same mean as the given Erlang E2 abandon-time distribution, we would

select s = 99 servers, an error of 5%, in the decision variable. We display the exact numerical

results for the M/M/s/r + M model with λ = 100 and four values of s in Table 11.

7. Two Uniform Distributions

In this section we present additional evidence to show that the approximation is effective.

In particular, in this section we consider two uniform distributions with mean 1. The first is

U(0, 2), which is uniform on the interval (0, 2), while the second is U(0.5, 1.5), which is uniform

on the interval (0.5, 1.5). From some perspectives, the two uniform distributions are not too

different. The uniform on (0, 2) is somewhat more variable than the uniform on (0.5, 1.5).

However, from the perspective of abandonments, the U(0.5, 1.5) distribution is very different,

because it does not permit any very small values. It does not permit any values less than

0.5. As a consequence, the hazard rates for small values are strikingly different for these two

uniform distributions.

We now analyze the multiserver queue with each of the four combinations of these two

uniform distributions playing the role of the service-time distribution and the abandonment-

time distribution. In Table 12 we analyze the M/GI/100/200 + U(0, 2) model in which

the service-time distribution is either U(0, 2) or U(0.5, 1.5). In Table 13 we analyze the

M/GI/100/200 + U(0.5, 1.5) model in which the service-time distribution is either U(0, 2)

or U(0.5, 1.5). We see that the specific uniform distribution makes a great difference as an

abandon-time distribution, but very little difference as a service-time distribution. In all these

cases, just as in most previous tables, the arrival rate is λ = 102, the individual mean service

time is µ−1 = 1, there are s = 100 servers, there are r = 200 extra waiting spaces and the

mean abandon time is 1.

In order to better understand these uniform-distribution examples, we also present plots

of the approximate abandonment rates, αj and δk, for relevant values of j and k in Figures 8

– 11. From these plots, we see that the two uniform distributions should indeed behave very

differently as abandonment distributions.

As mentioned before, exact non-Markovian abandonment rates for the M/M/s/r + GI
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M/E2/s/200 + E2 model with common λ = 100 and different s
s = 103 s = 104 s = 105

Perf. Meas. sim. approx. sim. approx. sim. approx.
P (W = 0) 0.472 0.491 0.527 0.541 0.576 0.589

±0.0023 – ±0.0016 – ±0.0020 –
P (A) 0.0135 0.0161 0.0108 0.0132 0.0087 0.0108

±0.00011 – ±0.00009 – ±0.00008 –
E[Q] 5.34 5.53 4.48 4.68 3.75 3.94

±0.032 – ±0.027 – ±0.030 –
V ar(Q) 59.8 67.2 50.6 57.5 42.4 48.6

±0.43 – ±0.44 – ±0.41 –
E[N ] 104.0 103.9 103.4 103.4 102.9 102.9

±0.060 – ±0.037 – ±0.057 –
E[W |S] 0.052 0.054 0.044 0.045 0.037 0.038

±0.00031 – ±0.00026 – ±0.00029 –
V ar(W |S) 0.0054 0.0063 0.0046 0.0053 0.0039 0.0045

±0.000039 – ±0.000037 – ±0.000036 –
E[W |A] 0.124 0.127 0.119 0.122 0.114 0.117

±0.00037 – ±0.00064 – ±0.00052 –
V ar(W |A) 0.0051 0.0060 0.0047 0.0057 0.0044 0.0054

±0.000049 – ±0.000062 – ±0.000056 –
P (W ≤ 0.1|S) 0.776 0.769 0.815 0.806 0.848 0.840

±0.0013 – ±0.0013 – ±0.0015 –
P (W ≤ 0.1|A) 0.426 0.423 0.452 0.446 0.479 0.470

±0.0014 – ±0.0032 – ±0.0027 –
P (W ≤ 0.2|S) 0.941 0.928 0.956 0.944 0.967 0.958

±0.00073 – ±0.00058 – ±0.00063 –
P (W ≤ 0.2|A) 0.851 0.828 0.869 0.845 0.886 0.862

±0.0017 – ±0.0027 – ±0.0026 –

Table 10: A comparison of approximations with simulations in M/E2/s/200+E2 models with
common arrival rate λ = 100 but different numbers s of servers, to show the impact on staffing
decisions. The models have common arrival rate λ = 100, mean service time µ−1 = 1, number
of extra waiting spaces r = 200 and mean time to abandon 1.0. The goal is to choose the
number s of servers so that both P (A) ≤ 0.05 and P (W ≤ 0.1|S) ≥ 0.8. The three displayed
cases are s = 103, s = 104 and s = 105. Here the waiting-time constraint is binding, so that
the appropriate number of servers is s = 104.
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M/M/s/200 + M model with common λ = 100 and different s
exact numerical values

Perf. Meas. s = 98 s = 99 s = 100 s = 104
P (W = 0) 0.407 0.447 0.487 0.642

P (A) 0.0505 0.0450 0.0399 0.0233
E[Q] 5.05 4.50 3.99 2.33

V ar(Q) 43.8 39.6 35.4 21.1
E[N ] 100.0 100.0 100.0 100.0

E[W |S] 0.049 0.044 0.039 0.023
V ar(W |S) 0.0043 0.0038 0.0034 0.0020

E[W |A] 0.067 0.065 0.063 0.054
V ar(W |A) 0.0032 0.0030 0.0028 0.0023

P (W ≤ 0.1|S) 0.795 0.823 0.847 0.922
P (W ≤ 0.1|A) 0.763 0.778 0.792 0.843
P (W ≤ 0.2|S) 0.963 0.970 0.977 0.992
P (W ≤ 0.2|A) 0.969 0.973 0.977 0.987

Table 11: Approximations by the M/M/s/200+M model for staffing in the M/E2/s/200+E2

models with common arrival rate λ = 100 but different numbers s of servers, to show the
impact on staffing decisions. The approximation here matches the mean abandon time. The
models have common arrival rate λ = 100, mean service time µ−1 = 1, number of extra waiting
spaces r = 200 and mean time to abandon 1.0. The goal is to choose the number s of servers so
that both P (A) ≤ 0.05 and P (W ≤ 0.1|S) ≥ 0.8. The four displayed cases are s = 98, s = 99,
s = 100 and s = 104. Here the waiting-time constraint is binding, so that the appropriate
number of servers is s = 99. The correct value for the M/E2/s/200 + E2 model is s = 104, as
can be seen from Table 10.
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M/GI/100/200 + U(0, 2) model with mean time to abandon = 1.0
service-time distribution

Perf. Meas. U(0, 2) U(0.5, 1.5) approx.
P (W = 0) 0.295 0.276 0.320

±0.0013 ±0.0017 –
P (A) 0.0401 0.0382 0.0433

±0.00020 ±0.00014 –
E[Q] 7.84 7.49 8.39

±0.040 ±0.034 –
V ar(Q) 72.8 62.3 91.0

±0.59 ±0.47 –
E[N ] 105.7 105.6 106.0

±0.049 ±0.040 –
E[W |S] 0.077 0.073 0.082

±0.00038 ±0.00034 –
V ar(W |S) 0.0068 0.0057 0.0087

±0.000053 ±0.000041 –
E[W |A] 0.084 0.077 0.096

±0.00035 ±0.00025 –
V ar(W |A) 0.0046 0.0038 0.0062

±0.000045 ±0.000031 –
P (W ≤ 0.1|S) 0.662 0.674 0.651

±0.0017 ±0.0018 –
P (W ≤ 0.1|A) 0.663 0.703 0.607

±0.0013 ±0.0015 –
P (W ≤ 0.2|S) 0.906 0.928 0.874

±0.0013 ±0.00098 –
P (W ≤ 0.2|A) 0.930 0.952 0.889

±0.0013 ±0.00086 –

Table 12: A comparison of approximations with simulation estimates of steady-state perfor-
mance measures in models with uniform service-time and abandon-time distributions. The
specific model is in M/GI/100/200 + U(0, 2), where the abandon-time distribution is uniform
on the interval (0, 2). models with two different service-time distributions having common
mean 1: U(0, 2) and U(0.5, 1.5), both having mean 1.0. The models have common arrival rate
λ = 102, mean service time µ−1 = 1, number of servers s = 100, number of extra waiting
spaces r = 200 and U(0, 2) abandon-time distribution with mean 1.0. The half-width of the
95% confidence interval is given for each simulation estimate. The common approximations
based on the M/M/100/200 + M(n) model are also displayed.
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M/GI/100/200 + U(0.5, 1.5) model with mean time to abandon = 1.0
service-time distribution

Perf. Meas. U(0, 2) U(0.5, 1.5) approx.
P (W = 0) 0.0438 0.0296 0.0776

±0.0014 ±0.0010 –
P (A) 0.0225 0.0215 0.0254

±0.00022 ±0.00026 –
E[Q] 38.2 39.7 35.1

±0.20 ±0.17 –
V ar(Q) 381.7 339.9 416.7

±3.4 ±3.3 –
E[N ] 137.9 139.5 134.5

±0.21 ±0.17 –
E[W |S] 0.370 0.386 0.340

±0.0019 ±0.0015 –
V ar(W |S) 0.0331 0.0290 0.0379

±0.00033 ±0.00030 –
E[W |A] 0.558 0.553 0.504

±0.00023 ±0.00017 –
V ar(W |A) 0.0023 0.0019 0.0060

±0.000024 ±0.000010 –
P (W ≤ 0.2|S) 0.202 0.165 0.267

±0.0043 ±0.0033 –
P (W ≤ 0.2|A) 0.000 0.000 0.000

– – –
P (W ≤ 0.4|S) 0.499 0.460 0.549

±0.0023 ±0.0034 –
P (W ≤ 0.4|A) 0.000 0.000 0.000

– – –

Table 13: A comparison of approximations with simulation estimates of steady-state perfor-
mance measures in models with uniform service-time and abandon-time distributions. The
specific model is in M/GI/100/200 + U(0.5, 1.5), where the abandon-time distribution is uni-
form on the interval (0.5, 1.5). models with two different service-time distributions having
common mean 1: U(0, 2) and U(0.5, 1.5), both having mean 1.0. The models have common
arrival rate λ = 102, mean service time µ−1 = 1, number of servers s = 100, number of
extra waiting spaces r = 200 and U(0.5, 1.5) abandon-time distribution with mean 1.0. The
half-width of the 95% confidence interval is given for each simulation estimate. The common
approximations based on the M/M/100/200 + M(n) model are also displayed.
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Figure 8: The approximate abandonment rate αj = h(j/λ) for the customer j positions from
the end of the queue in the M/GI/s/r + U(0, 2) model with λ = 100 and uniform U(0, 2)
abandon time having mean 1.

model are determined by Brandt and Brandt (2002). See Figure 11 in Mandelbaum and

Zeltyn (2004) for exact abandonment rates for different distributions.

8. Other Examples

In this section we present some additional tables. These tables originally were in the main

paper, but were deleted to meet space limitations.

The first table, Table 14, repeats Table 3 in the main paper. It presents additional evidence

for the performance of the algorithm when the service times are exponential, complementing

Tables 2-4 in the main paper. Table 14 here describes results for the M/M/100/200+LN(4, 4)

model, having arrival rate λ = 102, IID exponential service times with mean µ−1 = 1, s = 100

servers, r = 200 extra waiting spaces (designed to make blocking negligible) and a lognormal

LN(4, 4) abandon-time distribution with mean 4 and SCV = 4, and thus variance 64. Table
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Figure 9: The approximate total abandonment rate δk when there are k customers in the queue
in the M/GI/s/r+U(0, 2) model with λ = 100 and uniform U(0, 2) abandon time having mean
1.
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Figure 10: The approximate abandonment rate αj = h(j/λ) for the customer j positions from
the end of the queue in the M/GI/s/r+U(0.5, 1.5) model with λ = 100 and uniform U(0.5, 1.5)
abandon time having mean 1.
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Figure 11: The approximate total abandonment rate δk when there are k customers in the
queue in the M/GI/s/r + U(0.5, 1.5) model with λ = 100 and uniform U(0.5, 1.5) abandon
time having mean 1.
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Figure 12: The approximate abandonment rate αj = h(j/λ) for the customer j positions from
the end of the queue in the M/GI/s/r+LN(4, 4) model with λ = 100 and lognormal LN(4, 4)
abandon time having mean 4 and SCV = 4 and thus variance 64.

14 is similar to Table 3 in the main paper, but it has a more variable abandon-time distri-

bution. Again, we see that the approximation performs well. This more-variable lognormal

abandon-time distribution turns out to produce steady-state performance very close to that

of an exponential abandon-time distribution with the same mean, as can be seen from Table

14, even though the lognormal hazard function is zero at the origin. We gain a better under-

standing when we plot the approximate abandonment rates αj and δk in Figures 12 and 13.

We make an explicit comparison with the exponential distribution in Figure 14. We see that

δk is indeed quite close for these two distributions, even though the tail behavior is of course

wildly different.

The next two tables, Tables 15 and 16, describe the performance of the overall algorithm,

complementing the results displayed in Section 6 of the main paper. Paralleling Tables 1 and

4 in the main paper, Table 15 below describes the performance of the M/E2/100/200 + E2
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model, mean time to abandon = 4.0
M/M/100/200 + LN(4, 4) M/M/100/200 + M

Performance Measure sim. approx. exact
P (W = 0) 0.210 0.212 0.226

±0.0019 – –
P (A) 0.0349 0.0353 0.0364

±0.00030 – –
E[Q] 14.90 14.61 14.84

±0.095 – –
V ar(Q) 187.0 180.1 214.5

±1.37 – –
E[N ] 113.3 113.0 113.1

±0.023 – –
E[W |S] 0.1446 0.1419 0.1455

±0.00091 – –
V ar(W |S) 0.0175 0.0169 0.0207

±0.00013 – –
E[W |A] 0.1878 0.1786 0.1429

±0.00048 – –
V ar(W |A) 0.0105 0.0105 0.0137

±0.000048 – –
P (W ≤ 0.1|S) 0.444 0.449 0.469

±0.0025 – –
P (W ≤ 0.1|A) 0.212 0.248 0.449

±0.0010 – –
P (W ≤ 0.2|S) 0.680 0.687 0.687

±0.0028 – –
P (W ≤ 0.2|A) 0.602 0.632 0.737

±0.0023 – –

Table 14: A comparison of approximations for steady-state performance measures with simu-
lations in the M/M/100/200+LN(4, 4) model, which has exponential service times and mean
abandon time 4. The lognormal abandon-time distribution has squared coefficient of variation
4.0 and thus variance 64.0. The two models have common arrival rate λ = 102, mean service
time µ−1 = 1, number of servers s = 100, number of extra waiting spaces r = 200 and mean
time to abandon 4.0. The half-width of the 95% confidence interval is given for each simulation
estimate. The exact results are shown for the corresponding M/M/100/200 + M model.
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Figure 13: The approximate total abandonment rate δk when there are k customers in the
queue in the M/GI/s/r+LN(4, 4) model with λ = 100 and lognormal LN(4, 4) abandon time
having mean 4 and SCV = 4 and thus variance 64.
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Figure 14: A comparison of two abandon-time distributions: the approximate total abandon-
ment rate δk when there are k customers in the queue in the M/GI/s/r + GI model with
λ = 100 and two different abandon-time distributions having mean 4: lognormal LN(4, 4) and
exponential M(4). Both have mean 4, but LN(4, 4) has SCV = 4 and thus variance 64.
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model, mean time to abandon = 0.25
M/E2/100/200 + E2 M/M/100/200 + M

Performance Measure sim. approx. numerical exact numerical
P (W = 0) 0.461 0.491 0.594

±0.0015 – –
P (A) 0.053 0.056 0.064

±0.00029 – –
E[Q] 3.07 2.84 1.62

±0.014 – –
E[N ] 99.7 99.1 97.1

±0.027 – –
E[W |S] 0.0284 0.0263 0.0148

±0.00012 – –
E[W |A] 0.0603 0.0547 0.0321

±0.00009 – –
P (W ≤ 0.05|S) 0.747 0.768 0.883

±0.0012 – –
P (W ≤ 0.05|A) 0.440 0.510 0.783

±0.0011 – –
P (W ≤ 0.1|S) 0.931 0.936 0.980

±0.00048 – –
P (W ≤ 0.1|A) 0.865 0.886 0.972

±0.00066 – –

Table 15: A comparison of steady-state performance measures in the M/E2/100/200 + E2

and M/M/100/200 + M model with mean time to abandon = 0.25. The two models have
common arrival rate λ = 102, mean service time µ−1 = 1, number of servers s = 100, number
of extra waiting spaces r = 200 and mean time to abandon 0.25. Both simulation estimates
and numerical results are shown for the Erlang model. The half-width of the 95% confidence
interval is given for each simulation estimate.

model. Before, in Tables 1 and 4 of the main paper, the mean abandon time was 1 and 4,

respectively, which is equal to the mean service time and greater than the mean service time.

Now we consider the case in which the mean abandon time is less than a mean service time.

Specifically, the model has arrival rate λ = 102, mean service time µ−1 = 1, s = 100 servers,

r = 200 extra waiting spaces and mean time to abandon 0.25.

Next, Table 16 describes steady-state performance in the M/GI/100/200 + M model with

mean time to abandon = 1.0 and different service-time distributions. Paralleling Tables 5 and

6 in the main paper, the service-time distributions considered here are E2, M and LN(1, 1),

all with mean 1. As in Tables 5 and 6 in the main paper, we see that the performance does

not depend greatly upon the service-time distribution beyond its mean.
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M/GI/100/200 + M model with mean time to abandon = 1.0
service-time distribution

Perf. Meas. E2 M LN(1, 1) approx., exact for M service
P (W = 0) 0.390 0.409 0.397 0.408

±0.0017 ±0.0013 ±0.0020 –
P (A) 0.0477 0.0497 0.0489 0.0499

±0.00027 ±0.00020 ±0.00025 –
E[Q] 4.87 5.07 4.99 5.09

±0.025 ±0.024 ±0.031 –
V ar(Q) 38.3 44.4 41.4 44.6

±0.28 ±0.30 ±0.33 –
E[N ] 102.0 102.0 102.0 102.0

±0.039 ±0.036 ±0.051 –
E[W |S] 0.0471 0.0489 0.0481 0.0490

±0.00023 ±0.00023 ±0.00030 –
V ar(W |S) 0.00354 0.00418 0.0039 0.0042

±0.000023 ±0.000027 ±0.000030 –
E[W |A] 0.0605 0.0665 0.0635 0.0666

±0.00023 ±0.00021 ±0.00021 –
V ar(W |A) 0.00252 0.00312 0.00283 0.0031

±0.000023 ±0.000018 ±0.000019 –
P (W ≤ 0.1|S) 0.813 0.799 0.806 0.799

±0.0012 ±0.0012 ±0.0015 –
P (W ≤ 0.1|A) 0.805 0.768 0.786 0.767

±0.0015 ±0.0013 ±0.0013 –
P (W ≤ 0.2|S) 0.977 0.965 0.970 0.964

±0.00040 ±0.00057 ±0.00053 –
P (W ≤ 0.2|A) 0.983 0.971 0.977 0.970

±0.00044 ±0.00054 ±0.00040 –

Table 16: A comparison of simulation estimates of steady-state performance measures in
M/GI/100/200 + M models with three different service-time distributions having common
mean 1: E2 with SCV = 0.5, M with SCV = 1 and LN(1, 1) with SCV = 1. The models
have common arrival rate λ = 102, mean service time µ−1 = 1, number of servers s = 100,
number of extra waiting spaces r = 200 and M abandon-time distribution with mean 1.0. The
half-width of the 95% confidence interval is given for each simulation estimate. The common
approximations based on the M/M/100/200 + M(n) model are also displayed.
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9. More on Calculating Performance Measures

In this final section we supplement Section 8 of the main paper by including some addi-

tional material on calculating steady-state performance measures. First, in Subsection 9.1 we

indicate a few basic performance measures we can calculate from the steady-state distribution

of the number of customers in the system. Then in Subsection 9.2 we indicate how to calcu-

late the steady-state response-time distribution and its moments. (The response time is the

waiting time plus the service time.) Finally, in Subsection ?? we indicate how to calculate the

waiting-time distribution for an arbitrary entering customer and its moments by combining

corresponding results for those entering customers that are served and those entering customers

that abandon.

9.1. Associated Rates and Steady-State Probabilities

Given the steady-state distribution of the number of customers in the system, we can calcu-

late associated rates and steady-state probabilities (which correspond to long-run proportions):

First, the steady-state probability that all servers are busy at an arbitrary time is

P (AllBusy) =
j=s+r∑

j=s

pj (9.1)

Next, the probability that the waiting room is full at an arbitrary time is

P (Full) = ps+r . (9.2)

Letting x ∧ y denote min{x, y}, the expected number of busy servers at an arbitrary time

is

E[Busy] ≡ E[N ∧ s] =
j=s−1∑

j=1

jpj + P (AllBusy)s . (9.3)

The throughput, say θ, is the rate of service completions; it is

θ = E[Busy]µ . (9.4)

9.2. The Response Time

In the paper we considered W , the steady-state waiting time until beginning service for a

customer that enters the system, for the approximating M/M/s/r + M(n) model. We now

consider the steady-state response time for a customer that enters the system, which is the

waiting time plus the service time. Let T be a response time for a customer that enters the
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system. Equivalently, T is the time spent in the system. As with the waiting time, we must

be careful to differentiate between customers that eventually are served and customers that

eventually abandon. For customers who abandon, T = W , so we do not consider that case.

Here we only consider customers who are served.

We first compute the expectation of T for served customers; i.e., we compute E[T ; S] =

E[T1{S}], where S is the event that the customer is eventually served, 1B is the indicator

function of the event B (1B(ω) = 1 if ω ∈ B, and 1B(ω) = 0 otherwise). The calculation

if much like the calculation for waiting times. We exploit the fact that the service time is

independent of the waiting time. We also exploit the approximations developed in Section

7.2 of the main paper. In particular, just as in the main paper, we draw heavily on the

approximations in (7.10) and (7.11).

Using properties of the exponential distribution, we obtain

E[T ; S] =

(
s−1∑

k=0

pa
k

)
1
µ

+
r−1∑

k=0

pa
s+kΓk+1


 1

µ
+

k+1∑

j=1

mk+1,j


 (9.5)

and

E[T 2; S] =

(
s−1∑

k=0

pa
k

)
2
µ2

+
r−1∑

k=0

pa
s+kΓk+1(Vk+1 + M2

k+1) (9.6)

where

Vk+1 ≡ 1
µ2

+
k+1∑

j=1

m2
k+1,j (9.7)

and

Mk+1 ≡ 1
µ

+
k+1∑

j=1

mk+1,j . (9.8)

Then the first and second moments of the conditional time to complete service given that

service is completed are

E(T |S) =
E[T ;S]
P (S)

and E(T 2|S) =
E[T 2;S]

P (S)
. (9.9)

The conditional variance and standard deviation are then

V ar(T |S) ≡ E(T 2|S)− (E(T |S))2 (9.10)

and

SD(T |S) ≡
√

V ar(T |S) . (9.11)

We now characterize the response-time distribution via its Laplace transform. Then we

can apply numerical transform inversion to calculate the distribution itself. For that purpose,
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let t̂(z) ≡ E[e−zT 1{S}] be the Laplace transform of T for served customers (Laplace-Stieltjes

Transform of its cdf).

Paralleling (9.5), we have

t̂s(z) ≡ E[e−zT 1{S}] =

(
s−1∑

k=0

pa
k

)(
µ

µ + z

)
+

r−1∑

k=0

pa
s+kΓk+1d̂k+1(z) , (9.12)

where

d̂k+1(z) ≡
(

µ

µ + z

)
Πk+1

j=1

(
m−1

k+1,j

m−1
k+1,j + z

)
. (9.13)

We can now easily calculate the cumulative distribution function (cdf) by numerical trans-

form inversion. We obtain the cdf P (T ≤ t; S) for any desired t by numerically inverting

its Laplace transform t̂(z)/z, e.g., by using the Fourier-series method described in Abate and

Whitt (1995). The associated conditional response-time cdf is

P (T ≤ t|S) =
P (T ≤ t; S)

P (S)
. (9.14)
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