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Preface

Why is there an Internet Supplement?

This Internet Supplement has three purposes: First, it is intended to main-
tain a list of corrections for errors found after the book has been published.
Second, it is intended to provide supporting details, such as proofs, for ma-
terial in the book. Third, it is intended to provide supplementary material
related to the subject of the book. Needless to say, prior to publication of
the book no corrections will appear.

As indicated in the Preface to the book, in order to avoid excessive
length, material was deleted from the book and placed in this Internet Sup-
plement. The first choice for cutting was the more technical material. Thus,
the Internet Supplement contains many proofs for theorems in the book.
Specifically, missing proofs for results stated in the book are contained here
in Chapter 1 (all but Section 1.4), Section 5.3 and Chapters 6-8.

It was also considered necessary to cut some entire discussions. Hence
the book also contains supplementary material related to, but going beyond,
what is in the book. Such material is contained here in Section 1.4, Chapters
2-5 (all but Section 5.3) and Chapter 9.

In addition to making corrections as errors are discovered, the Internet
Supplement provides an opportunity to add other material after the book
has been published. We would like to add additional material on the spaces
E and F', going beyond the brief introduction in Chapter 15 of the book.

Organization

We now indicate how the Internet Supplement is organized.
Chapter 1 here complements Chapter 3 of the book on the framework
for stochastic-process limits. Sections 1.2 and 1.3 provide proofs for the
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Prohorov metric properties and the Skorohod representation theorem from
Section 3.2 of the book. Section 1.4 explains the adjective “weak” in “weak
convergence” from a Banach-space perspective. Finally, Section 1.5 gives
proofs of the continuous-mapping theorems and the Lipschitz-mapping the-
orem in Section 3.4 of the book.

Chapter 2 here complements Chapter 4 of the book on basic stochastic-
process limits. Section 2.2 complements Section 4.3 of the book on Donsker’s
theorem by providing an introduction to strong approximations and their
application to establish rates of convergence in the setting of Donsker’s the-
orem, using the Prohorov metric on the space of probability measures P
on the function space D. Section 2.3 complements Section 4.4 of the book
on Brownian limits with weak dependence by presenting FCLT’s exploiting
Markov, regenerative and martingale structure. Section 2.4 complements
Section 4.5 in the book on convergence to stable Lévy motion by discussing
FCLT’s in the framework of double sequences (or triangular arrays) of ran-
dom variables; with an IID assumption, the scaled partial sums converge
to general Lévy processes. Finally, Section 2.5 complements Section 4.6 of
the book on strong dependence by showing that the linear-process repre-
sentation in equation (6.6) of the book arises naturally in the framework of
time-series models.

Chapter 3 here complements Chapter 13 of the book on useful functions
that preserve convergence by showing how pointwise convergence in R is
preserved under mappings. Section 3.2 shows that in some settings pointwise
convergence directly implies uniform convergence over bounded intervals.
As a consequence, an ordinary strong law of large numbers (SLLN) directly
implies the more general functional strong law of large numbers (FSLLN).
The remaining sections in Chapter 3 discuss the preservation of pointwise
convergence under the supremum, inverse and composition maps. With the
inverse map, attention is focused on counting processes, with and without
centering.

Chapter 4 here complements Sections 5.9 and 10.4.4 of the book by dis-
cussing another application of stochastic-process limits to simulation. Sec-
tions 5.9 and 10.4.4 of the book show how heavy-traffic stochastic-process
limits for queues can be used to help plan queueing simulations. In partic-
ular, they determine the approximate required simulation run length, as a
function of model parameters, in order to achieve desired statistical preci-
sion. Drawing upon and extending Glynn and Whitt (1992a), Chapter 4
shows how FCLT’s and the continuous-mapping approach can be used to
establish general criteria for sequential stopping rules for simulations to be
asymptotically valid.



Chapter 5 here complements Chapters 5, 8 and 9 of the book on single-
server queues. Section 5.2 here discusses general reflected-Lévy-process ap-
proximations for queues that arise when there is a sequence of queueing
models with net-input processes satisfying the FCLT’s discussed here in
Section 2.4. Section 5.3 here provides the proof of Theorem 8.3.1 in the
book, which establishes a FCLT for the cumulative busy time of a single
on-off source. Finally, following Puhalskii (1994), Section 5.4 here shows
how the continuous-mapping approach with the inverse map and nonlinear
centering in Theorem 13.7.4 of the book can be used to convert stochastic-
process limits for arrival, departure and queue-length processes into asso-
ciated stochastic-process limits for waiting-time and workload processes in
quite general queueing models.

Chapters 6, 7 and 8 here provide proofs for theorems in Chapters 12,
13 and 14, respectively, in the book. The numbering within the chapters
here closely parallels the numbering within the corresponding chapter in the
book, so the desired proof here should be easy to find. In addition, there is
an extra section in Chapter 8 here on queueing networks. Drawing on and
extending Kella and Whitt (1996), Section 8.9 establishes general conditions
for a multidimensional reflected process to have a limiting stationary version.

Chapter 9 here continues the study of useful functions begun in Chapter
13 of the book. In particular, drawing upon and extending Mandelbaum
and Massey (1995), Chapter 9 here studies convergence preservation of the
supremum, (one-sided, one-dimensional) reflection and inverse maps with
nonlinear centering. Under regularity conditions, the limit for the scaled
functions after applying these maps can be identified with an appropriate
“directional” derivative of the map.

Finally, Chapter 10 here is intended to contain corrections for errors
found after the book has been published.
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Chapter 1

Fundamentals

1.1. Introduction

In this chapter we present material supplementing the book on fundamental
topics. In Sections 1.2 and 1.3 we give detailed proofs of the Prohorov metric
properties and the Skorohod representation theorem, stated in Theorems
3.2.1 and 3.2.2 of the book. In Section 1.4 we explain the adjective “weak”
in weak convergence from a Banach-space perspective. In Section 1.5 we
provide proofs of the continuous mapping theorems, stated in Section 3.4 of
the book.

1.2. The Prohorov Metric

In this section we prove Theorem 3.2.1 in the book, establishing that the
Prohorov (1956) metric is indeed a metric inducing weak convergence P, =
P.
Recall that we are considering probability measures on a separable metric
space (S,m). In that setting, P, = P if
lim [ fdP, = / fdpP (2.1)
S S

n—oo

for all functions f in C(S), the space of all continuous bounded real-valued
functions on S. Recall that the Prohorov metric 7 is defined on the space
P = P(S) of all probability measures on the separable metric space (S, m)
by

w(P, P) =inf{e > 0: Pi(4A) < Po(A°)+¢ forall AeB(S)}, (2.2)

1



2 CHAPTER 1. FUNDAMENTALS

for P, P, € P(S), where A€ is the open e-neighborhood of A, i.e.,
A°={ye S:m(z,y) <e forsome ze€ A}. (2.3)
Here is the result that we wish to prove:

Theorem 1.2.1. (the Prohorov metric on P) For any separable metric
space (S,m), the function m on P(S) in (2.2) is a separable metric. There
is convergence (P, P) — 0 in P(S) if and only if P, = P, as defined in
(2.1). Moreover, in (2.2) it suffices to let the sets A be closed.

To carry out the proof, we show that weak convergence F,, = P implies
uniform convergence of integrals [ gdP, for an appropriate class of functions
g.

Consider a class G real-valued functions on S. We say that G is uniformly
bounded if

sup {lg(z)[} < oo .
g€g,zeS

We say that G is equicontinuous at z if, for all € > 0, there is a § > 0 such
that

sup [g(z) — g(y)| < € when d(z,y) <6 .

9€g

We say that G is equicontinuous if it is equicontinuous at all z € S.

Lemma 1.1. (uniform convergence for a class of integrals) Suppose that
P, = P on a separable metric space (S,m). Let G be a uniformly bounded
class of measurable real-valued functions on S that is equicontinuous at all
x € E°. If P(E) =0, then

sup| [ gdP, — /gdP| —0 as n— 0. (2.4)
9€g

Proof. If (2.4) were to fail, then there must exist ¢ > 0 and a sequence
{gn : n > 1} of functions in G for which | [ g,dP, — [ gndP| > € infinitely
often. We will show that cannot happen. Given P,, = P, we can apply the
Skorohod representation theorem to construct S-valued random elements
X, and X with probability laws P, and P such that X,, - X w.p.1. By
the almost-sure equicontinuity of G with respect to P,

sup |gn(Xn) —gn(X)| =0 w.p.l.
n



1.2. THE PROHOROV METRIC 3

By the uniform-boundedness condition and the bounded convergence theo-
rem,

sup |Egn(X,) — Egn(X)| < E [sup lgn (Xn) — gn(X)\] —0 as n— oo
n n

or, equivalently,

sup /gndPn—/gndP‘ —0 as n—o0.
n
Since that is a contradiction, (2.4) must actually hold. =
We now define a generalization of the Prohorov metric on the space P(S)
of all probability measures on (S, m). We define a family of metrics indexed

by the scalar v; the standard Prohorov metric is the special case with v = 1.
For any Py, P, € P(S) and v > 0, let

7y (P, P2) = inf{e > 0: Pi(F) < Py(F€) +ye for all closed F in S},
(2.5)
where F* is the open e-neighborhood of F, as in (2.3).
Here is our main result.

Theorem 1.1. (generalized Prohorov metric) Let (S, m) be a separable met-
ric space. For each v > 0, (P(S),ny) for my in (2.5) is a separable metric
space. The definition is unchanged if the closed sets F in (2.5) are re-
placed by general measurable sets A. There is convergence 7y (Py,P) — 0
as n — oo if and only if P, = P.

In preparation for the proof, we first establish some preliminary results.
We first show that n (P>, P,) = m,(P;,P2). For that purpose, use the
following elementary lemma. Recall that A~ is the closure of the set A.

Lemma 1.2. For any subset A of S and a > 0,
A" =85— (58— AY)*. (2.6)

Lemma 1.3. If Pi(F) < Py(F*) + S for all closed F for o, > 0, then
Py(F) < P (F®) + B for all closed F.
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Proof. Since F* is open, S — F® is closed. Under the condition,
P (S —F*) < P((S—F*)*)+8,

so that
Py(S — (S — F)®) < Py (F®) + 8 .

By Lemma 1.2, F = S — (§ — F*)“. hence
Py(F) = P(S = (S —F)*) < A(F*)+ (. =

We now show that closed sets and measurable sets are interchangeable
in (2.5).

Lemma 1.4. (closed sets suffice) For any constants a > 0 and 3 > 0, the
inequality Py (A) < Py(A%) + B holds for all A € S if and only if it holds for
all A =F, where F is closed.

Proof. One direction is immediate. For the nontrivial direction, given any
measurable set A, choose a sequence of closed sets {F), : n > 1} such that
F, C Fpq1 and F,, 1+ A. Then F% T F¢, Pi(F,) 1 Pi(A) and Py(F%) 1
P,(A%). Hence we have Pi(A) < Py(A®) + @ when we have Pi(F,) <
Py(F¥)+pforalln. =

Proof of Theorem 1.1. Lemma 1.3 establishes the symmetry property.
if m, (P, P>) = 0, then P(F) = P»(F) for each closed subset F. Since the
closed sets form a determining class, P, = P». To establish the triangle
inequality, suppose that 7, (P, P») < €1 < my(P1, P2) + 6 and 7, (P, P3) <
€2 < my(Ps, P3) 4 0 for some § > 0. Then for any closed F,

Pl(F) PQ(FCI) + Y€1
P((F) ) + e

P3(F42) + (e + e2)

INIA DA

so that
Ty (P, P3) < €1 + €2 < my(Py, Po) 4 my (P2, P3) 4+ 26 .

Since § was arbitrary, the triangle inequality is established, completing the
proof of the metric property.

If w,(P,, P) — 0, then for any € > 0 there exists ng such that P,(F) <
P(F¢) + e for all closed F' and n > ng. Hence

limsup P, (F) < P(F€) + e .

n—oo
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However, F€ | F as €| 0, so that P(F¢) | P(F) as € ] 0. Hence,

7

limsup P, (F) < P(F

n—oo

~—

which implies P, = P by Theorem 11.3.1 in the book.
Next we show that ., (P,,P) — 0 if P, = P. For each A € S, define

ga(z) =1 —e tm(z, A)]" . (2.7)

Notice that Ia(z) < ga(z) < Ixe<(z) for all z, where Ip is the indicator
function of the set B. Moreover,

lga(z) — ga(y)] < € M m(z, A) —m(y, A)| < e 'm(z,y)

for all A, so that the class of all such g4 defined in (2.7) is uniformly bounded
and equicontinuous. By Lemma 1.1,

A, = sup /gAdPn—/gAdP‘ -0 as n— 0.
A€eS
Then
P(A%) > / gadP > / 9AdP, — Ay > Py(4) — A,
so that
P,(A) < P(A°)+e¢
when A, < e.

Finally, we want to show that (P(S), ) is separable. For that purpose,
let Sy be a countable dense subset of (S, m), which exists because we have
assumed that (S, m) is separable. We will show that the countable family
of rational-valued probability measures with finite support in Sy are dense
in P(S).

Given any P; € P(S) and any ¢ > 0, we show how to construct P
with finite support in Sy such that P,(A4) < Py(A€) for all A € S, so that
7y (P1, P2) < e. Let the sequence {z, : n > 1} enumerate the elements of
So- We construct a partition of S containing subset of e-balls about points
in Syp. We start by letting C; = By, (z1,€). For Ci,...,C, given, let k, 1
be the index of the first point from {z, : n > 0} not contained in U}, C;.
Then let
6) - U?:l CZ .

Let k1 = 1. Now let P, attach mass P;(Cy) to point zj, (in Cy) for n >
1. To give P, finite support, stop when P;(U¥_;C;) > 1 — ve and let P,

Cnt+1 = Bn (xknﬂ )
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assign the mass Py (U5, C;) to z1. Hence Po({z1}) = P1(C1) + P1(Up5 , C)-
Now consider an arbitrary measurable set A. Note that C; C A whenever
ANC; # ¢. Since {C;} is a partition of S,

9] k
Pl(A) = ZPI(Am CZ) < Zpl(Aﬂ Cz) + ye < PQ(AC) +ve. =
i=1 =1

1.3. The Skorohod Representation Theorem

In this section we prove the Skorohod representation theorem, Theorem 3.2.2
in the book. We restate it here:

Theorem 1.3.1. (Skorohod representation theorem) If X,, = X in a sepa-
rable metric space (S,m), then there exist other random elements of (S, m),
Xn,n > 1, and X, defined on a common underlying probability space, such
that

= d = d

X, ix,n>1, X4x

and
P(lim X, =X)=1.
n—oo

We start by giving an elementary proof for the case in which the space S
is the real line. Then we give Skorohod’s (1956) original proof for the case
in which S is a complete separable metric space. Finally, we give a proof for
general separable metric spaces due to Wichura (1970). Dudley (1968) first
showed that the completeness condition is not needed.

1.3.1. Proof for the Real Line

Suppose that S = R. Then we can characterize the probability laws of X
and X,,, n > 1, by their cumulative distribution functions (cdf’s), i.e.,

Ft)=P(X <t), teR. (3.1)

For any cdf F, let F' be its right-continuous inverse, defined as in Chapter
I by
F7't) =inf{s: F(s) >t}, 0<t<1. (3.2)

The representation is achieved by letting € = [0,1] with Lebesgue mea-
sure (the uniform probability distribution), X (w) = F!(w) and X, (w) =
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F,(w), n > 1, with an arbitary definition for w = 0 and w = 1. The proof

is based on the following four basic lemmas, the first two of which have been
discussed in Sections 1.3 and 1.4 of the book.

Lemma 1.5. If F is a cdf on R and U is a random wvariable uniformly
distributed on [0,1], then F~Y(U) is a random variable with cdf F.

Lemma 1.6. (weak convergence criterion in terms of cdf’s) Let X and X,
be real-valued random variables with cdf’s F and F,, forn > 1. Then X, =
X as n — oo if and only if F,(t) — F(t) as n — oo for all t that are
continuity points of F.

Lemma 1.7. Let F and F,, n > 1, be cdf’s on R. Then F,(t) — F(t)
as n — oo for all t € R that are continuity points of F if and only if
F,Y(t) = F~(t) for allt € (0,1) that are continuity points of F~'.

Lemma 1.8. For any cdf F on R, the set of discontinuities of F~! in (3.2)
is at most countably infinite.

1.3.2. Proof for Complete Separable Metric Sspaces

The proof of Theorem 1.3.1 will be based on constructing a special family
of subsets of (S,m) and relating these subsets to associated subintervals of
the interval [0,1). The length of the subinterval in [0,1) (probability with
respect to Lebesgue measure) will match the probability of the correspond-
ing subset of S. The proof is a combination of Lemma 1.9 below, which
shows the existence of the subsets with the required properties, and Lemma
1.10 below, which shows how to exploit such subsets to establish the Skoro-
hod representation. Lemma 1.9 uses the separability; Lemma 1.10 uses the
completeness.

A partition of a set A is a collection of disjoint subsets of A whose union is
A. A nested family of countable partitions of a set A is a collection of subsets
A, ..., of A indexed by k-tuples of positive integers such that {A4; : i > 1}
is a partition of A and {A; . i, : %k41 > 1} is a partition of A;, _;, for
all k > 1 and (41,...,%) € Nﬁ_. We allow A;, .., to be empty for some
(1,...,1k). For each z € A, there is one and only one sequence {iy : k > 1}
such that z € A4;,  ;, for all k.

Example 1.1. Suppose that S = RT. We can obtain a nested family of
countably partitions of S by letting A; be [i —1,%) and A;, . ;. be the set of
all positive numbers with decimal expansion beginning (i; —1).(i3 — 1), (i3 —
1),...,(ix — 1). Let Aiy =0 if ij > 10 for any j > 2. =
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We say that the radius of a set A in S is less than r, and write rad(A) < r
if A C By, (z,r) for some z € S, where By, (z,r) is the open ball of radius r
about z in (S, m). As before, let 9A be the boundary of A.

Lemma 1.9. If P is a probability measure on a separable metric space
(S,m), then there exists a nested family of countably partitions {S;,, . i, }
of S such that, for all k and (i1, ...,1),

(i) rad(Siy,.i) <27 (3.3)
and

(ii) P(0Si,..i,) =0 . (3.4)

Proof. Since (S,m) is a separable metric space, there exists a countable
dense subset, which we can express as a sequence {z; : i > 1}. For each k,
we can choose an 7y such that 2=*+1) < . < 2% and

P(0By,(zi,r,)) =0 forall i, (3.5)

because there are at most countably many (r,4) such that P(0B,,(z;, 1) >
0). Now write

Df = Bm(xi,rk) — U;_:lle(.’IIj, ’I"k) (36)
and
Sityis = D, VD7, NN DE . (3.7)
Since
Siryoin © DY C B (i, k) € Bm(wiy,27) (3.8)
(3-3) holds. Since .
an - U;ZlaBm(LEj,’f'k) (3.9)
and
8S;,,..i, COD} U---UADE C UK UP 0B(z,1y) (3.10)

(3.5) implies that (3.4) holds. =

Lemma 1.10. Suppose that Py is a probability measure on a complete met-
ric space (S,m) with a nested family of countable partitions {S;, . ;. } sat-
isfying (3.3) and (3.4). If P, = Py as n — oo on (S,m), then there exist
X, n>0, defined on [0, 1] with Lebesque measure, denoted by P, such that
P)?le =PFP,, n>0, and

P ( lim X, = )”(0) —1. (3.11)

n—oQ
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Proof. We construct nested sequences of countably partitions of [0, 1) cor-
responding to the given nested sequence {S;, .. ;, } of (S,m). For n >0, we
construct subintervals Ij} ;= corresponding to X,. We make each subin-
terval closed on the left and open on the right. Let I7 = [0, P,(S1)) and

=Y PulS;), > PulSy)|, i>1. (3.12)

Let {I}} ;. ., ‘ik+1 > 1} be a countable partition of subintervals of I7 ;.
I 17 = an, by), then
ik+171 ik-‘,—l
I’i”i,...,ik_;’_l = an + Z Pn(SiI;---aik;j)’ an + Z Pn(Szla’Zkaj) : (313)
j=1 j=1

The length of each subinterval I} . is the probability P,(S;,...q,). Now
from each nonempty subset S, . ; we choose one point z;, . ; . For each
n > 0 and k > 1, we define functions z£ : [0,1) — S by letting z£(w) =
Tiy,..ip for w € I} . . By the nested partition property and (3.3),
m(zk (w), zFt (W) < 27F forall j, k,n (3.14)

and w € [0,1). Since (S,m) is a complete metric space, (3.14) implies that
there is z,, € S for all n > 0 such that

m(zf (W), T, (w)) =0 as k— 0. (3.15)
We let X, = z,, on [0,1) for n > 0. Since P, = Py as n — oo, P,(4) —
Py(A) as n — oo for all A for which Py(0A) = 0 by Theorem 11.3.1 of
the book. Hence, P,(S;,, i) = Po(Si;,..i,) by (3.4). Consequently, the
length of the intervals Il . converge to the length of the intervals Iz-o1
as m — o0o. Since

m(Xn(w), Xo) < m(Xn(w),z5(w)) +m(zh (), o§(w))

= n
+m(zf(w), Xo(w))
< 275D 4 m(af (w), 76 (W) (3.16)
for all w in the interior of Izol,---,ik’
lim m(X,(w), Xo(w)) < 27¢1 (3.17)

n—oo
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Since k is arbitrary, we must have X, (w) — Xo(w) as n — oo for all but at
most countably many w € [0, 00).

It remains to show that X, has the probability law P, for n > 0. Tt
suffices to show that P(X, € A) = P,(A) for each A such that P,(8A) =

0. Let A be such a set. Let AF be the union of the sets Sit,..ir such
that S;; .5, € A and let A’* be the union of the sets Sir,...i, such that
Siy,in NA# ¢. Then A¥ C A C A™ and, by construction above,
P(X, € AF) = P,(4%*) and P(X, € A'*)=P,(4"%). (3.18)
Now let
Ct={zec 8 :m(z04) <27} . (3.19)

Then A* — A¥ C C* | 9A as k — oco. Since P,(0A) = 0 by assumption,
P,(C*) ] 0 as k — oco. Hence

P(X, € A)= klggop()?n € Ak) = kli)rgoPn(Ak) =P, (A). =  (3.20)

1.3.3. Proof for Separable Metric Spaces

We now do the proof of Theorem 1.3.1 without assuming completeness.
Start by letting P, be the probability distribution of X, on § for n > 0.
Let the underlying probability space be the product space Q = S with
elements w = {s; : k£ > 0}. Let X, be the coordinate mapping, e.g.,
X,({sx : k> 0}) = s,, n > 0. To quickly get the idea, first suppose that
P,({s}) =1 for all n > 0. In this special case we can let the probability
measure P on Q be the product measure P = §; X ds X ---, where §; is the
Dirac measure assigning probability 1 to the point s € S. Then P assigns
probability 1 to the sequence {s, : n > 0} where s, = s for all n. Since
P(X, =s) =1 for all n,

P(X, =Xy, forall n)=P (ﬂgo:(){f(n = s}) =1. (3.21)

To continue to develop the idea of the approach, now suppose that each
probability measure F,,, n > 0, concentrates all probability on a common
finite subset of S. Thus it suffices to assume that S is finite. For a sequence
{kn : n > 1} with k,, — 0o as n — oo to be defined later, let

Uy = mn:ank{)Zvn = XO} . (3.22)

(Note that we have a strong form of convergence on Uy.) Also let {Q, : n >
1} be a sequence of probability measures on S to be defined later. Now let
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P; ; be the product measure
o
Pis =108 x [[ Pisn > (3.23)
n=1

where P, ,, is a probability measure on S defined by

] Qn if 0Lk, <y

Then let P; be a mixture of the probabilities P;s in (3.23) with respect to
Py, in particular,

Pl =" R({s})P; - (3.25)

SES
Next let {wy : £ > 1} and {g : kK > 0} be sequences of numbers with

00 k
we >0, > wpg=1, =0, g=Y» wj<l, 1<k<oo. (3.26)
k=1 j=1

Then let P be a mixture of the probabilities P} in (3.25) using the weights
wj in (3.26), i.e.,

o0
P=) wPj. (3.27)
j=1

We will show that this construction does the job with an appropriate choice
of the sequences {ky : n > 1} and {Q, : n > 1}. (The weights wy, in (3.26)
can be arbitrary subject to the conditions in (3.26).)

Note that P;, in (3.23) attaches positive probability only to sets of se-
quences {s; : n > 0} such that s, = s for all but a finite number of n (those
n for which 0 < k,, < j). Thus even though S* is uncountably infinite, P; ,
has finite support. Since S is finite, P in (3.25) also has finite support. All
sequences {s, : m > 0} in S*° with positive P-measure have s, = s for all
sufficiently large n for some s.

By (3.23), Pjs(Xo = s) = 1. Thus, by (3.25) and (3.27), P(Xo = 5) =

P;(X'O = s) = Py({s}) for all s € S. Hence PXO_1 = P, or, equivalently,
X0 2 x,.

Next P; (X, = s) = Pjsn({s}) for n > 1. Note that P;,(Uy) = 1
for j < k, where Uy is given in (3.22), so that Pj(Uy) = 1if j < k and
P(Uyg) > qk. Since g — 1 as k — oo by (3.26), X,, — Xo as n — oo almost
uniformly on € with respect to P, i.e., for any € > 0, there exists a subset
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Uy of S with P(U;) > 1 — € such that X, converges uniformly to X, as
n — oo on Ug. (In our finite-state-space setting, we actually have X, = X
on Uy, for all n such that k, > ko by (3.22) and (3.26).) For e given, choose
k so that ¢ > 1 —e. By Egoroff’s theorem, p. 89 of Halmos (1956), that
implies that
P ( lim X, = 5(0) 1. (3.28)
n—0oQ

The difficult part is to obtain X, 4 X, for n > 1. The construction
above yields

P(X, =3) =qg, Po({s}) + (1 — qx,)Qn({s}) forall n. (3.29)

We now choose the sequences {k, : n > 1} and {Qg : k > 1} to achieve
PX; ! = P, for all n. Note that (3.29) is equivalent to

Qn({sh) = Palfs]) + 722 (Pal{s) ~ Po({s}) (3:30)

n

provided k, < co. If k,, = oo, then g, = 1, so that we must have P,({s}) =
Py({s}), and then any Q,({s}) will do.

Thus, let
Qksm) = P+ {5 (Bs) - R, 63
Mpy = lsneing(k,s,n) , (3.32)
kn, = sup{j >0:m;, >0} (3.33)
and
Qn({s}) = Q(kn,s,n) for k, <oo. (3.34)

Note that mg, > 0, so that k, < oo is well defined in (3.33). Note that
Y oses Q(k,s,m) =1 for all k, 0 < k < oo, and Q(ky,s,n) > 0 by (3.32)
and (3.33). Thus, under (3.31)—(3.34), @, is a probability measure on S
satisfying (3.29) provided that k,, < occ.

Since ), Q(k,s,n) = 1, we must have 0 < Q(k, s,n) < 1 for Q(k, s,n)
in (3.31). Since gy — 1 as k — o0, qx/(1 — qx) — oo as k — oo. Hence, we
must have P,({s}) = Py({s}) for all n if k, = oo, under which (3.29) has
been shown to hold for any probability measure Q.

We now show that k, — oo as n — oo. Since P,({s}) — Py({s})
as n — oo for each s, Q(k,s,n) — Py({s}) as n — oo for each s and &,
1 < k < oo. This, together with the fact that Q(k,s,n) > 0 if Py({s}) =0,
implies that Q(k,s,n) is ultimately nonnegative for all sufficiently large
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n depending upon k. Thus, for each k, there is an index my such that
Q(k,s,n) > 0, and thus my, > 0, for all n > ny. Since my, > 0 implies
kn, > k, we can conclude that, for all n > ng, k, > k. Hence, k, — oo as
n — 0.

We now turn to the general case: We now assume that S is a separable
metric space. We start by constructing a finite collection of subsets ap-
propriately approximating S. This step is a minor modification of Lemma,
1.9.

Lemma 1.11. If P is a probability measure on separable metric space (S, m),
then for any 6, e > 0 there exist disjoint subsets S;, ..z of S, 1 <i; < ig-,
1 < j <k, such that, for all k and (iy, ..., i), (3.3) holds for 2% < §, (3.4)
holds and ) )

P Uy Uty Siie) > 1€ (3.35)
Proof. We use the construction in Lemma 1.9. Choose i} such that P(S;U
e USp) >1— €271; choose 4} such that

P(Siy 1 U+ US; ) >1—P(Si)e27? (3.36)
for all i1, 1 <4y < if; choose 4}, such that

P(Si,..i;a U US; >1—P(Si,,..i,)e2 7 (3.37)

1,...,ij,i;-+1)
for all (i1, ...,4;) < (éf,...,4}). Stop at k with 27% < 4, so that (3.3) holds.
Then

P(Up i Uiy Siiy ) > 1—e@ T+ 27F) > 1—c, (3.38)
so that (3.35) holds. =

We now return to the proof of the theorem. Let {d; : £ > 1} and
{ek : k > 1} be sequences of positive numbers such that §; — 0, ¢ — 0 and
Y pe €k < 0o. For each k, let {Cy ;: 0 < j < ny} be the finite collection of
subsets S;, .. ;, in Lemma 1.11 constructed with respect to Py, where § and
e for k are required to be ¢, and €. Let Cpo = S — U;-lilC’k,j. By (3.35),
Py(C0) < €.

With X, the coordinate projections on S as before, instead of (3.22),
let

Uk = Nnekon sk {m(Xn, Xo) < 05, } (3.39)



14 CHAPTER 1. FUNDAMENTALS

where d,, = 0. (The separability of (S,n) is used to have {m(X,,Xy) <
0k, } and thus Uy be measurable.) Given that k, — 0o as n — oo, X, — Xo
uniformly on Ug. To apply Egoroff’s theorem, we will need to show that
P(Ug) = 1 as k — oc.

Let II; be the collection of sets Cy;, 1 < j < ng, and let IIj = S.
We now modify the finite-state-space proof above, letting C}, ; play the role
of s. Let the weights wy and their partial sums gy be defined by (3.26).
Paralleling (3.31)—(3.34), for 0 < k < o0, let

QU,Cin) = PuO)+ 12 (Pa(O) = R(C)),  (3.40)
Mgn = CI’Iéll'?k{Q(k’ C, ’I’L)} ’ (341)
kn = sup{j >0:m;, >0} (3.42)
and
Qn(C) = QUkn, C,) - (3.43)

Since P,(C) — Py(C) as n — oo for all C € Iy, k, — oo as n — oo by the
same argument as before.
Paralleling (3.23), let P; ¢ be the product measure

o0
Pjs =65 % [[ Pism » (3.44)
n=1

where P;, ;, is a probability measure on S defined by

Qn if 0<k,<j
Pj,s,n = Pn('|Ckn,s) if ] < kn < 00 (345)
O if k,=o00,

where P,,(:|Cj,,s) is the conditional probability measure with Cj s being
the element of Il containing s € S. Note that Pj,, in (3.45) has three
possibilities instead of only the two in (3.24). Unlike the case of finite S,
Pj s in (3.44) does not have finite support, but if s € Cj,, ;, then P;, has
support on the set of sequences {s,, : n > 0} such that s,, € Cj, ; for all but
finitely many 7, in particular, for all n such that k, > j. On this subset of
sequences, m(X,, Xo) < dk,, for all n such that &k, > j.
Paralleling (3.25), let

Pl(4) = /S Py(ds)Pys(4) (3.46)
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The integral in (3.46) is well defined since P;,(A) is a measurable function
on S for each A a cylinder set with finite base in the o-field on S°°; see pp.
74-76 of Neveu (1965). Note that P]'- has support on the set of sequences
{sn : n > 0} such that s, € Cy,; for all but finitely many n, for some i.
Thus

Pj(m(Xn, Xo) < 6k,) 21— P(Cr,0) >1— ¢, - (3.47)

Paralleling (3.27), let

o
P=> w;P}. (3.48)

As before, the construction yields PX'(; 1 — Py. The probability distribution
of X, is
o1 _ J @ 2Xcen,, Pr(IC)P(C) + (1 — gk, )@n if Ky < o0
PX, = kn )
B if k,=o00.
(3.49)
For n such that k, < oo, let

Celly

Combining (3.40), (3.49) and (3.50), we see that PX, ' = P, if k, < co. On
the other hand, as before, if k,, = oo, then we are forced to have P,(C) =
Py(C) for all C € IIy, for any k > 1, but that implies that P,, = Py. (We can
apply the reasoning in the proof of Lemma 1.10 using (3.18) and (3.19).)

Finally, it remains to show that P(Uy) — 1 as k — oo for Uy in (3.39).
However,

k
P(Uy) = ij ' (Uk) > Z Pj(Uy)
o0
> Zwk 1= €| =1 as k—oo, (3.51)
j=1 j=k
since, for j < k < ky,,
o
1 - Pj(U;) < Py (U2Cl0) <> e, (3.52)
=k

because P},s assigns probability 1 to product sets in which all coordinates
are in common sets Cj j.
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1.4. The “Weak” in Weak Convergence

This section is devoted, not to a proof of a theorem, but to an expanation
of a term — the adjective “weak” in “weak convergence.” The term “weak”
can be understood from a Banach-space perspective.

The starting point is the definition of convergence P, = P;i.e., P, = P,
if

lim [ fdP,= [ fdP (4.1)

for all functions f in C(S), the space of all continuous bounded real-valued
functions on S.

The space C(S) of continuous bounded real-valued functions & on S used
in definition (4.1) is a Banach space (a complete normed linear topological
space) with the uniform norm

Al = sup |h(s)] -
sES

The adjoint or conjugate space of C(S), the space of all continuous linear
real-valued functions L on C(S), denoted by C*(S), turns out to be the
space Z(S) of all finite signed measures y on S, defined via

o) = [ hau

e.g., see pp. 262, 419 of Dunford and Schwartz (1958) or Chapter 9 of
Simmons (1963).

The adjoint space B* of any Banach space B is itself a Banach space
with the norm

IL]l = sup{|[L(®)]| : b€ B, |b]] <1} .

Since B* is a Banach space, one can consider its adjoint space B**. There
is a natural embedding of B in B** so that we can regard B as a subset of
B**. (Just let Ly(f) = f(b) for b € B and f € B*.) When B = B**| B is
said to be reflezive. However, C(S) is reflexive only when S is finite. So, in
our setting with infinite S, C(S) is a proper subset of C**(S).

Instead of the topology induced on a Banach space B by its norm, it is
sometimes of interest to consider a weaker topology on B called the weak
topology, which is the weakest topology such that all the functions in B*
remain continuous; i.e., b, — b in B with the weak topology if and only if
L(b,) — L(b) for all L in B*. Furthermore, on the adjoint space B* one can
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also consider a still weaker topology called the weak* topology, which is the
weakest topology such that all the functions in B, regarded as a subset of
B**, remain continuous. Thus the weak* topology on Z(S) = C*(S) rela-
tivized to the subset P(S) is what is characterized by (4.1). (The discussion
also implies that the weak topology on Z(S) is stronger than the weak*
topology on Z(S), so the terminology “weak convergence” is something of
a misnomer. From this Banach-space perspective, we should actually call
weak convergence P, = P weak* convergence.) =

1.5. Continuous-Mapping Theorems

In this section we supplement the discussion of the continuous-mapping
approach in Section 3.4 of the book by providing proofs for the unproved
theorems. We first prove the Lipschitz mapping theorem, which comes from
Whitt (1974).

1.5.1. Proof of the Lipschitz Mapping Theorem

We now prove the Lipschitz mapping theorem, Theorem 2.4.2 in the book.
First suppose that (S,m) is a separable metric space and B = S. Then
we can employ the Strassen representation theorem, Theorem 11.3.5 in the
book. It is elementary that the Lipschitz property is inherited by the in-
probability distance p: Given P(m(X,Y) > §) < d, the Lipschitz property
of g implies that P(m/(g(X),9(Y)) > Ké) < 6, so that p(g(X),g(Y)) <
(K VvV 1)p(X,Y). By the Strassen representation theorem, for X,Y and
positive € given, we can find X , Y on a common probability space so that
X 4 X, Y 4 Y and
p(X,Y) < n(X,Y) +e€.

Hence,

and
p(9(X),9(Y)) < (K V1)p(X,Y) < (K V1)(x(X,Y) +e) .

Since € was arbitrary, we have the desired conclusion.
Now we consider the general case, for which we argue directly. Let B be
the subset for which P(Y € B) = 1. The Lipschitz property implies that

Bng ' (A’ Cg (A9 in S for §<¢/K
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and any A € §'. Hence,

m(g(X),9(Y))
=inf{e>0:P(g(X) € A) < e+ P(g(Y) € A°) for all A€ S’}

—inf{e>0:P(X eg (4 ))<6+P(Y€g_1(A6)) for all A € S'}
<inf{e>0: P(X €g7'(4) e+ P(Y € BNg ' (4)) forall A€ §'}
<inf{e>0: P(X €g7'(4) e+ P(Y € g7 (4)") forall A€ '}

<inf{e>0: P(X € 4) <e+P(Y € A%) forall A€ S}
<(AVE)R(X,Y). =

Example 1.5.1. The advantage of the Prohorov metric on P(R). Even on
the real line R, the Prohorov metric is useful to establish rate of convergence
results, because the Lipschitz mapping theorem does not apply to two other
metrics commonly used. On P(R) one often uses the Lévy metric A, which
is defined just as the Prohorov metric 7 in (2.2) except that only sets of the
form A = (—o0, z] are used. The uniform metric for cdf’s is also sometimes
used; i.e.,

| F1 — Fol| = p(Pr, P2) = sup{(|P1(A) — P(A)] : A = (—o0, 2]},

where Fj(z) = P((—o0,z]). The uniform-cdf metric 4 also induces weak
convergence at limiting probability measures without atoms. However, the
Lipschitz theorem is not valid for A and u. To see that, for n > 1, let

P(X,=2j)=PY,=2j+1)=1/n for 1<j<n,
and let g : R — R be defined by
g(t) =sin(nz/2) for teR.
Clearly, g is Lipschitz with Lipschitz constant 1, but
A(Xn, Yn) < p(Xn, Yn) = 1/,

while
P(g(X,) =0) = P(g9(Yn) € {—-1,1}) =1 forall n,

so that

1(9(X2),9(Yn)) > Mg(X,),9(Yy)) =1/2 forall n .
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Given a bound with the Prohorov metric 7 in P(R), we can obtain
corresponding bounds with the metrics A and p. First we use the inequality
A < 7. In many cases we can relate A and y: When a probability measure
P; on R has a Lipschitz cdf F; with Lipschitz constant c, i.e., when

|F1(t1) — Fi(t2)| < clty — 12|,
then we have the ordering

W(PLP) < (1+ AP, Py) forall PyeP(R) . = (5.1)

1.5.2. Proof of the Continuous-Mapping Theorems

We now turn to Theorem 3.4.3 of the book, following Billingsley (1968,
Section 5), which we restate here. Let Disc(g) be the set of discontinuity
points of the function g.

Theorem 1.5.1. (continuous-mapping theorem) If X,, = X in (S, m) and
g:(S,m) — (S",m') is measurable with P(X € Disc(g)) = 0, then g(X,) =
9(X)-

We first establish the measurability of Disc(g) (even if g is not measur-
able).

Lemma 1.5.1. (measurability of the set of discontinuity points) For g :
(S,m) — (S',m'), Disc(g) € S.
Proof. For any y,z € S with m/(g(y),g(z)) > € and € > 0, let
Acs(y,z) ={z € S :m(z,y) <0 and m(z,z) < d} .
Then the complement is
csy,2) ={z € S:m(z,y) > d or m(z,2) >4} .

It is easy to see that A¢ 5(y, z) is closed, so that A, s(y, z) is open, as neces-

sarily is
A5 = U UAE,g(y,z) .
y oz

Since

Disc(g) = | () 4es »
€ 4

where € and 0 run over the positive rationals, Disc(g) is a Gg,, implying
that Disc(g) € S. =
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Proof of Theorem 1.5.1. By Theorem 11.3.4 (iii) in the book, it suffices
to show that o
m Plg(X,) € F) < P(g(X) € F)

n—oo
for each closed subset F' € §'. Given that X,, = X, we have

lim P(g(X,) € F) = lim P(Xneg_l(F))

n—0o0 n—o0

< lim P(X,eg '(F))

< P(Xeg '(F)).

However, P(X € g }(F)~) = P(X € g }(F)) because P(Disc(g)) = 0 and
g '(F)” Cg '(F)UDisc(g). =

Finally, we treat Theorem 3.4.4 of the book, involving a sequence of
measurable mappings:

Theorem 1.5.2. (generalized continuous-mapping theorem) Let g and gy,
n > 1, be measurable functions mapping (S, m) into (S',m'). Let the range
(S',m') be separable. Let E be the set of x in S such that g,(z,) — g(z)
fails for some sequence {x, : n > 1} with z,, —» z in S. If X, = X in
(S,m) and P(X € E) =0, then g,(X,,) = g(X) in (S',m’).

Here we need to assume that the range is a separable metric space. Again
we follow Billingsley (1968, Section 5).

Lemma 1.5.2. (measurability of the bad set) Suppose that gn, n > 1, and g
are measurable functions from a metric space (S,m) into a separable metric
space (S',m'). Let E be the set of x in S such that g,(z,) — g(z) fails for
some sequence {x, : n > 1} with m(xy,z) — 0 as n — oo. Then E is a
measurable subset of S.

Proof. Let B, be the set of z in S such that m/(g(x), gi(y)) > € for some
y with m(z,y) < §. Note that

E =UcNg Nig>1 Uik Besi (5.2)

where € and 0 range over the positive rationals. We would be done if we
could conclude that B s; is measurable, but we do not know that. Note
that B, 5; is decreasing in e. Hence (5.2) remains true if B 5; is replaced by
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B, 3,5, It thus suffices to show that, for all (e, §,4), there are sets Cc5; € S
such that
Besi € Cesi C Bejasyi - (5.3)

Since (S’,m’') is separable, we can find a sequence {uy : kK > 1} dense in S’
Let Acx = {z : m'(g(z),ux) < €¢/4} and note that Ay € S and S = UgA .
Then (5.3) holds if

Cesi = Up(Ack N Jesik) 5

where J, 5, is the set of = such that m'(g;(y),g(z)) > € for some pair of
points y, z in S with m(z,y) < 6, m(z,2) < § and z € A . It is not difficult
to see that J¢;, , is closed, so that Je 4 is open and Cesi €S m

Proof of Theorem 1.5.2. By Lemma 1.5.2, £ € §. From Theorem 11.3.4
(iv) in the book, it suffices to show that

P(g(X) € G) < lim P(gn(Xn) € G)

n—oo

for every open G in S’. If x € E¢ and g(z) € G, then there must exist k and
d such that g;(y) € G if i > k and m(z,y) < 4, so that z € T¢, the interior
of T}, where

Ty, = Nizkg; ' (G) .

Consequently,
9'(G) C EU Ups T -
Since P(X € E) = 0 and T C Ty, ,, for any given € there is a k such that
P(X cg M @) < P(X € UTY) < P(X €TY) +¢
for k > ko. Since X,, = X and Ty C g,,1(G) for n >k,

P(XeT?) < lim P(X,eT?)< lim P(X,€g,;} (@) .

n—oo n—oo

Since € was arbitrary, the proof is completed by combining these two strings
of inequalities. =

The continuous-mapping approach to stochastic-process limits leads us
to focus on the underlying sample paths of the stochastic processes. Thus
the continuous-mapping approach is a sample-path method. In recent years,
probabilists have tended to favor sample-path methods over more traditional
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analytic methods, because they are less removed from the phenomenon un-
der study. However, the two approaches often can be fruitfully combined.

Many traditional analytic results are based on transforms, such as the
characteristic function (version of the Fourier transform), probability gen-
erating function (or z transform) and the Laplace transform, as can be seen
from Feller (1971). Fortunately, the analytic approach has been applied with
great success over the years to yield explicit expressions for many probabil-
ity distributions of interest in the form of transforms. That is true for many
of the limit processes that we will consider. Thus we can use previous an-
alytic results to obtain explicit transforms for approximating distributions.
We then can apply numerical transform inversion to compute the probabil-
ity distribution itself; e.g., see Abate and Whitt (1992a, 1995), Choudhury,
Lucantoni and Whitt (1994) and Abate, Choudhury and Whitt (1999).

For example, as shown in Section 8.5 of the book and Section 5.2 here,
the heavy-traffic limit for a queue with heavy-tailed distributions is often
a reflection of a stable Levy motion or more general Levy process with-
out negative jumps. These limit processes are somewhat complicated, but
fortunately the analytic approach has shown that the steady-state distri-
bution has a relatively simple expression via its Laplace transform, which
is known as the generalized Pollaczek-Khintchine transform. Thus we can
calculate the steady-state distribution of the limit process by applying nu-
merical transform inversion.



Chapter 2

Stochastic-Process Limits

2.1. Introduction

Chapters 4 and 7 of the book present a panorama of stochastic-process limits.
In this chapter we present even more material. In Section 2.2 we present an
introduction to strong approximations and the rates of convergence in the
setting of Donsker’s theorem that they imply using the Prohorov metric. In
Section 2.3 we present additional Brownian limits under weak dependence;
here we focus on Markov and regenerative structure.

In Section 2.4 we briefly discuss the convergence to general Lévy pro-
cesses that holds when we have a sequence of random walks (based on a
double sequence of random walk steps). Finally, in Section 2.5 we point out
that the linear-process representation assumed with strong dependence in
Sections 4.6 and 4.7 of the book arises naturally from modelling when we
take a time-series perspective.

2.2. Strong Approximations and Rates of Convergence

In Sections 1.4 and 4.3 of the book we noted that the CLT and FCLT are
invariance principles, meaning that the same limits occur in great generality.
In the IID case we only need the summands X, to have finite variance.
However, the quality of the approximation for any given n is affected by the
distribution of X,,. Indeed, that is obvious for the CLT: If X, AN (0,0?),
then the limit can be replaced by equality in distribution. Moreover, the
closer the distribution of X, is to the normal distribution, the better the

23
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normal approximation for the scaled partial sum should be. More generally,
the advantage of extra structure in the distribution of X, can be seen from
more refined results giving bounds on the rate of convergence and asymptotic
expansions. We review some of these results in this section.

2.2.1. Rates of Convergence in the CLT

A bound on the rate of convergence in the basic CLT, given a finite third
absolute moment of a summand, is provided by the Berry-Esseen theorem;

see p. 542 of Feller (1971). To state it, we use the uniform metric on cdf’s,
defined by
|F1 — F3|| = sup |Fi(z) — Fa(x)| - (2.1)
T

As before, let ® be the standard normal cdf.

Theorem 2.2.1. (Berry-Esseen theorem) Let {X,} be a sequence of IID
random variables with EX1 = 0, E[X?] = 0? and E[|X1|3] = §3 < co. Then

| F, — ®|| < 383/0%/n forall n,
where Fy(z) = P((no?)?(X1 + - + X,,) < ).

Theorem 2.2.1 implies that for given n and 02, the bound on the distances
decreases as the third absolute moment d3 decreases. We now describe the
Edgeworth expansion, which shows how further regularity conditions can
improve the quality of the normal approximation; see p. 535 of Feller (1971).
We also get convergence of pdf’s.

Theorem 2.2.2. (Edgeworth expansion) If, in addition to the assump-
tions of Theorem 2.2.1 above, moments E[X}] exist for 3 < k < r and
|Elexp(itX1)|” is integrable for some v > 1, then (no?) Y2(X1 4 -+ + X,)
has a pdf f, for all n and

,
fulz) =n(@)[1+ > n~*2D2P(z) + o(n=72)/2)]
k=3
as n — oo, uniformly in x, where n is the standard normal pdf and Py(x) is
a real polynomial depending on the first kK moments of X1, with the property
that Py(x) = 0 if the first k moments of X1 agree with those of the standard
normal distribution.

Note that the rate of convergence in Theorem 2.2.2 is O(n~'/2) if E[X}] #
0, but is O(n™!) or better if E[X}] = 0. When E[X}] # 0, the refinement
provided by the second term can be useful.
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2.2.2. Rates of Convergence in the FCLT

We now turn to Donsker’s FCLT. From the Lipschitz mapping theorem,
Theorem 3.4.2 in the book, we can deduce a bound on the rate of convergence
in the CLT from a bound on a rate of convergence in the FCLT. Hence, we
can see in advance that the rate of convergence in the FCLT, given a finite
third absolute moment, can be no better than the O(n~'/2) bound provided
by the Berry-Esseen theorem. In fact, the best possible bound for the FCLT,
under an even stronger regularity condition, is somewhat worse, being larger
by a factor of logn. From a practical perspective, though, the difference is
not great.

We now give the final rate-of-convergence result, expressed in terms of
the Prohorov metric 7 from Section 3.2 of the book; see (2.2) here. For this
application, it is convenient to let the underlying function space be the set
Dg = Dg([0,1],R) of functions in D = D([0, 1], R) with discontinuities only
at rational points in the domain [0, 1], endowed with the uniform metric ||- [|;
we refer to the space as (Dg,U). The space (Dg,U) is a separable metric
space and the stochastic processes considered here all have sample paths in
this space. Thus, the Prohorov metric 7 is defined on the space P((Dg,U)),
the space of all probability measures on (Dg,U). Since

d]M1 (.Tl,:L‘Q) < dJl (.Tl,:L‘Q) < ||:E1 — :L‘QH for T1,T2 € D s

the result also holds for the spaces (D,dy,) and (D, dpy, ).
The following combines Theorems 1.16 and 1.17 in Csorgé and Horvath
(1993).

Theorem 2.2.3. (bounds on the rate of convergence in Donsker’s FCLT)
Let {X,,} be a sequence of IID random variables with EX,, = 0 and E[X?] =
o?. If, in addition, E[exp(tX1)] < oo for t in a neighborhood of the origin,
then there exist positive constants C7 and Cy such that

Cilogn/v/n < m(Sy,0B) < Cylogn/v/n (2.2)

for all n, where 7 is the Prohorov metric on the space P((Dg,U)), B is
standard Brownian motion and S,(t) = n_l/QSLntJ, 0 <t <1. If, instead,
only E[|X1|P < oo for some p > 2, then there is a constant C such that

7(Sp,0B) < Cn~(P=2)/2(p+1) (2.3)

for all n. Moreover, for any sequence {a,} with a, — 00 as n — oo, there
is a random variable X1 with E[|X;|P] < oo such that

Im a,n®~ 220t )7(S, oB) = oo . (2.4)
n—0o0
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The lower bound in (2.2) and the limit in (2.4) show that the upper
bounds in Theorem 2.2.3 are indeed best possible. Note that the rate
O(logn/y/n) in (2.2) exceeds the Berry-Esseen bound O(1/+/n) by a fac-
tor of logn. We regard that difference as negligible.

However, there is a big difference between the bounds in (2.3) and in
Theorem 2.2.2. When there is only a finite third absolute moment, we have
(2.3) with p = 3, which only yields the rate O(n~'/8). For finite p* moment
with p > 2, (2.3) gives a rate that can be substantially worse than O(n~1/2),
while Theorem 2.2.2 gives rates that can be much better than O(n~'/?). Tt
should be recognized that the conditions are quite different though.

By the Lipschitz mapping theorem, Theorem 3.4.2 of the book, the rate
of convergence in Theorem 2.2.3 is inherited by Lipschitz functions. For
real-valued Lipschitz functions, we then can obtain bounds on the uniform
metric for cdf’s.

Corollary 2.2.1. (bounds on the uniform metric for cdf’s of the images of
real-valued Lipschitz maps) Suppose that g : (Dg,U) — R is a Lipschitz
function and that g(B) has a bounded pdf. If the conditions of Theorem
2.2.3 hold with Eexp(tX1) < oo for t in a neighborhood of the origin, then
there is a positive constant C' such that

sup|P(9(S1) < ) = P(g(0B) < 2)| < Clogn/Vn (2.5)

for allm > 1.

We can apply Corollary 2.2.1 to obtain a bound on the rate of conver-
gence in the CLT; we use the projection map m1(z) = z(1), which is easily
seen to be Lipschitz. However, the bound is not as good as provided by the
Berry-Esseen theorem, so the bound may no longer be best possible when
we consider the image measure associated with a single Lipschitz map.

We can also apply Theorem 2.2.3 to establish bounds on the rate of
convergence in heavy-traffic FCLTs for queues. We illustrate by stating a
result for the queueing model in Section 1.6. We use the fact that the two-
sided reflection map ¢x : D — D is Lipschitz; see Theorem 13.10.1. An
early result of this kind is Kennedy (1973). That served as motivation for
the Lipschitz mapping theorem in Whitt (1974).

Corollary 2.2.2. (bounds on the rate of convergence in a heavy-traffic

stochastic-process limit for queues) Consider the queueing model in Sec-

tion 2.3 of the book with IID inputs Vi, with mean m, and variance o2.



2.2. STRONG APPROXIMATIONS AND RATES OF CONVERGENCE27

If, in addition, K, = n'/?K and p, = my, + mn /2 for all n and with
Elexp(tV1)] < oo for some t > 0, then there ezists a constant C such that

(W, px (0B —me)) < Clogn/n/? |

where W, is the scaled workload process in equation (2.3.6) of the book and
¢k is the two-sided reflection map.

2.2.3. Strong Approximations

Theorem 2.2.3 can be extablished by applying strong approzimations. Like
the Skorohod and Strassen representation theorems in Chapters 3 and 11 of
the book, strong approximations are special constructions of random objects
on the same underlying probability space, often called couplings; see Lindvall
(1992).

We start by stating the Komlés, Major and Tusnddy (1975, 1976) strong
approximation theorems for partial sums of IID random variables; see Chap-
ter 2 of Csorgd and Révész (1981) and Chapter 1 of Csorgd and Horvith
(1993). See Philipp and Stout (1975) for extensions to the weakly depen-
dent case and Einmahl (1989) for extensions to the multivariate case. See
Csorg6 and Horvath (1993) for strong approximations of renewal processes
and random sums. For applications of strong approximations to queues, see
Zhang et al. (1990), Horvath (1990), Glynn and Whitt (1991a,b) and Chen
and Mandelbaum

Theorem 2.2.4. (strong approximation with finite moment generating func-
tion) Let {X,, : n > 1} be a sequence of IID random variables with EX; = 0,
EX? = 1 and Ee"™ < oo for t in a neighborhood of the origin. Let
Sp, =Xi+---+X,, n>1, with S = 0. Then there exists a standard
Brownian motion B = {B(t) : t > 0} such that, for all real  and every
n>1,

P ( max |S; — B(k)| > Cilogn + x) < Che™7 (2.6)
1<k<n

where C1, Cy and X are positive constants depending upon the distribution
Qf)(y

As a consequence of Theorem 2.2.4, we can deduce that
Sp—B(n) =0(logn) as n—oo w.p.l; (2.7)
i.e., there is a constant C' such that

P(|S, —B(n)| > Clogn infinitely often) =0 . (2.8)
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Note that (2.8) follows from (2.6) by substituting C'logn for z in (2.6) for
suitably large C’ and then applying the Borel-Cantelli theorem.

We now relax the extra condition on the tail of the ccdf P(|X1| > t), at
the expenses of obtaining a slower rate.

Theorem 2.2.5. (strong approximation with p'" moment) Let {X,, : n >
1} be a sequence of IID random variables with EX; = 0, EX? = 1 and
E|X1|P < oo for somep > 2. Let S, = X1 +---+ X, n > 1, with Sy = 0.
Then there exists a standard Brownian motion B such that

n~?|S, —B(n)| -0 w.p.l (2.9)

To apply Theorems 2.2.4 and 2.2.5 to establish Theorem 2.2.3, we need
to relate Brownian motion B to the associated processes

B, (t) =n~'/*B(|nt]), Bi(t) =B(lnt]/n), By(t) =n""/’B(nt)

for 0 <t < 1. By the self-similarity property, B 4 B? and B} 4 B2 for all
n > 1. We can relate B2 to B by bounding the fluctuations of Brownian
motion. The following is Lemma 1.1.1 of Csorgé and Révész (1981).

Theorem 2.2.6. (uniform bound on the fluctuations of Brownian motion)
For any € > 0, there exists a constant C = C(e) such that

P(0<§3¥—h0ilslgh |B(t+s)—B(t)| > vVh) < (CT/h)exp(—v?/(2+¢€)) (2.10)

for all positive v, T, and h, 0 < h <T.

Theorem 2.2.6 can be applied to determine the precise modulus of con-
tinuity of Brownian sample paths (originally determined by Lévy); see The-
orem 1.1 of Csorg6 and Révész (1981).

Theorem 2.2.7. (modulus of continuity of Brownian paths) If B is Brow-
nian motion, then

B t)— B
lim  sup sup [B(s +) (s)]

h—0  o<s<1 o<t<h  4/2hlogh~!

From Theorem 2.2.7, we see that the sample paths of Brownian motion
are continuous but not differentiable; the largest increment of length h is
almost surely of order O(1/2hlog h—1). We can also apply Theorem 2.2.6 to
determine the following bound on the in-probability distance p(B,B2) and
the Prohorov distance (B, B} ), where 7 is defined on the space P((C,U)).

=1 wp.l.
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Corollary 2.2.3. There exists a constant Cy such that

W(B,B}L) < p(B,Bi) < Ci1y/logn/n

for all n > 1.

Proof. The first inequality holds because B 4 B2 and m < p. For the
second inequality, let v = /clogn for ¢ > 4 in (2.10). Then the right hand
side of (2.10) for T' = 1 becomes C'n~ (119 for § > 0 and constant C'. =

Partial proof of Theorem 2.2.3. For the upper bound in (2.1), let
x = C3logn in (2.6) to obtain

m(Sn, By) < p(Sn, By) < Clogn/vn .

Then use the triangle inequality with Corollary 2.2.3. =

Theorem 2.2.4 can be applied to obtain a strong approximation for a
Lévy process, i.e., a random element of D with stationary and independent
increments; see Corollary 5.5 on p. 359 of Ethier and Kurtz (1986).

Theorem 2.2.8. (strong approximation for a Lévy process) Let {L(t) : t >
0} be a real-valued Lévy process. Assume that

EetM < o (2.11)

for all o with |a| < ag for some ay > 0. Then there ezist versions of the
Lévy process L and a standard Brownian motion B on a common probability
space such that

|L(t) — mt — oB(t)| = O(logt) as t— o0 w.p.1, (2.12)
where m = EL(1) and 0? = Var L(1).

A precursor to the strong approximation theorems, of interest in its own
right, is the Skorohod (1961) embedding theorem; see p. 88 of Csorgd and
Révész (1981).

Theorem 2.2.9. (Skorohod embedding theorem) Let {X,, : n > 1} be a
sequence of IID real-valued random variables with EX; = 0 and EX? = 1.
Let S, = X1+---+ X, n>1, with So = 0. There exists a probability space
supporting a standard Brownian motion B and a sequence {T}, : n > 1} of
nonnegative IID random variables such that
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(i) BTy +---Tp):n>1} 2 {S,:n>1} in R®;

(i) {Th +---+ T, : n > 1} is a sequence of stopping times, i.e., the
event {T1 + --- + T, < t} is contained in the o-field generated by
{B(s): 0 < s <t} forallt>0;

(iii) ET, = 1;
(iv) ETF < oo if, in addition, EX** < oo for positive integer k.
As a consequence of Theorem 2.2.9,

(028 >0} S {n"V2B(T) + -+ + Typyy) : £ > 0}
L (BT 4+ Tyyy) : > 0} .
By the FSLLN,

sup [n”NTL + -+ Tipt)) —t[ =0 wp.l,
0<t<u
so that Donsker’s theorem again is a consequence. Rate of convergence
results follow too.

2.3. Weak Dependence from Regenerative Structure

This section is a sequel to Section 4.4 in the book, in which we showed
that many Brownian limits still hold for random walks {S,, : n > 0} when
the IID condition on the sequence of steps {X, : n > 1} is relaxed, with
the finite-second-moment condition EX?2 < oo remaining in place. We now
obtain results for stochastic-processes with regenerative structure.

This new setting allows us to abandon the assumption of stationarity
and obtain explicit expressions for the asymptotic variance o2, defined by

o2 = lim VL(S") .
n—oo n

(3.1)

For a stationary sequence {X, }, the asymptotic variance has the represen-
tation

oo

2 _
o =Var X, +2ZCOU(X1,X1+k) . (3.2)

k=1
We now obtain more explicit representations for the asymptotic variance in
terms of basic model elements.
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2.3.1. Discrete-Time Markov Chains

We start by stating results for finite-state Markov chains. We first consider
discrete-time chains and then we consider continuous-time chains. After-
wards, we state results for general regenerative processes, which cover more
general Markov processes and nonMarkov processes. The first result for
DTMC’s extends Theorem 4.4.2 in the book. An important point is that
an explicit expression can be given for the asymptotic variance 2. It is ex-
pressible as a function of the fundamental matrix of the DTMC. The most
effective way to calculate the asymptotic variance is usually to solve a system
of equations, collectively known as the Poisson equation.

Let P be the transition matrix of an irreducible k-state DTMC and let
IT be a matrix with each row being the steady-state vector w. (We will work
with row vectors; let A’ be the transpose of a matrix A, so that the column
vector associated with a row vector z is z'.) Then the fundamental matriz
of the DTMC is

Z=(I-P+1I)7'; (3.3)

see pp. 75, 100 of Kemeny and Snell (1960). (The matrix I — P + II is
nonsingular.)

Theorem 2.3.1. (FCLT for a DTMC with explicit asymptotic variance)
Let {Yy, : n > 1} be an irreducible k-state DTMC and let X, = f(Y,) for a
real-valued function f. Then the FCLT
S,=0B in (D,J1), (3.4)
where B is standard Brownian motion and
Sn(t) =n"'2(S|py — mnt), t>0, (3.5)
holds with

k
m= Zﬂ'zf(z) )
i=1

k k
ot =2) ()~ m)mZig(FG) = m) = Yo m(f (@) — ), (36)

=1

m the steady-state vector and Z = (Z; ) the fundamental matriz in (3.3).
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As a quick sanity check on (3.6), note that in the IID case we have
P=A, Z =1 and, from (3.6),

k
o = m(fE) —m)?,
=1

as we should.

It is significant that we can calculate m, m, Z and o2 in Theorem 2.3.1
by solving the Poisson equation(s). We state both row-vector and column-
vector versions. Let 1 = (1,...,1) be a vector of 1’s and 0 = (0,...,0) be a
vector of 0’s.

Theorem 2.3.2. (Poisson equations for a DTMC) Consider an irreducible
finite-state DTMC with transition matriz P. The row-vector version of the

Poisson equation
z(I-P)=y (3.7

has a solution z for given y if and only if y1* = 0. All solutions to (3.7) are
of the form
z=yZ+ (217 .

The column-vector version of the Poisson equation
(I —P)zt =4 (3.8)

has a solution x' for given y' if and only if my' = 0. All solutions to (3.8)
are of the form
ot = Zyt + (rzh)1 .

Proof. We consider only the row-vector form. Clearly y1¢ = 0 is necessary,
because (I — P)1! = 0'. Given (3.7),

(I —-P+1)=y+ (z1)7,
but I — P + II is nonsingular with inverse Z, so that
t=yZ+ (217 Z = yZ + (z1Y)7
sincenZ =27. =

Theorem 2.3.3. (Poisson equations for the steady-state vector and the
asymptotic variance of a DTMC) For an irreducible finite-state DTMC, the
steady-state vector m is the unique solution x to the Poisson equation (3.7)
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with y = (0,...,0) and z1' = 1. The asymptotic variance can be expressed
as

k
o =2 wi(f(i) —m)
i=1
where m 1is the mean and x solves the Poisson equation (3.7) with

yi=(f(1) —m)m, 1<i<k.

2.3.2. Continuous-Time Markov Chains

We now turn to the continuous-time processes. There are analogs of the
DTMC results in Theorems 2.3.1-2.3.3 for CTMC’s. Let {(Y(¢) : t > 0} be
an irreducible k-state CTMC. Then the limit is for the integral

S(t) = /Ot F(Y(s))ds, £>0.
The associated normalized processes in D are
Sn(t) =n~"?(S(nt) —mnt), t>0. (3.9)
Given transition matrices P(t) = (P, ;(t)), where
Fij(t) = P(Y(#) = jlY(0) = i) ,
the infinitesimal generator matriz of the CTMC is Q = (Q;,;) where

Q= ltif(r)l(P(t) —1I)

and the fundamental matriz is Z = (Z; j) where

Zi,j = /O (]Di’j(t) — ﬂj)dt

and
Z=(M-Q)~' -1 (3.10)

see Kemeny and Snell (1961) and Whitt (1992). A CTMC model is usually
specified by giving the infinitesimal generator matrix ). For an irreducible
finite-state CTMC, the steady-state vector 7 is the unique vector with sum
1 that satisfies

7Q =0.
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Paralleling (3.1) and (3.2) above, the asymptotic variance in this continuous-

time framework is
o0
oﬂzthﬂgﬁD:2/ r(t)dt ,
0

t—00

where 7(t) is the (auto) covariance function, i.e.,

r(t) = E[X(0)X(1)] — (E[X(0)])*

for X(t) = f(Y(t)), t > 0.
The following is the continuous-time analog of Theorem 2.3.1.

Theorem 2.3.4. (FCLT for a CTMC with explicit asymptotic variance)
Let {Y(t) : t > 0} be an irreducible k-state CTMC, and let X (t) = f(Y (¢))
for a real-valued function f. Then the FCLT (3.4) holds for S, in (3.9)
with m the steady-state mean and o the asymptotic variance, which can be
expressed as

ko k
=220 SOmZ10)
1 =1
where Z is the fundamental matriz in (3.10).

We can calculate 7, m, Z and o2 by solving Poisson equations for
CTMC’s; see Whitt (1992). The following is the continuous-time analog
of Theorem 2.3.2.

Theorem 2.3.5. (Poisson equations for a CTMC) Consider an irreducible
finite-state CTMC with infinitesimal generator matriz Q). The row-vector
version of the Poisson equation

zQ =1y (3.11)

has a solution z for given y if and only if y1' = 0. All solutions to (3.11)
are of the form
r=—yZ+ (z1%)7

The column-vector version of the Poisson equation
Qz' =y’

has a solution z' for given y' if and only if my* = 0. All solutions are of the
form
ot = —Zy" + (rah)1t .
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The following is the continuous-time analog of Theorem 2.3.3.

Theorem 2.3.6. (Poisson equations for the steady-state vector and the
asymptotic variance of a CTMC) For an irreducible finite-state CTMC, the
steady-state vector 7 is the unique solution = to the Poisson equation (3.11)
with y = (0,...,0) and z1' = 1. The asymptotic variance can be expressed

as
k
2
g :2§ xifia
=1

where x is the unique solution to the Poisson equation (3.11) with

k
yi = (fi—m)m;  and sz =0.
im1

and m s the mean.

We can also obtain even more explicit expressions for the asymptotic
variance in Markov chains with additional structure. For example, suppose
that the CTMC {Y'(¢) : ¢ > 0} is a birth-and-death processes on the inte-
gers {0,1,...,n} with positive birth rates A;, death rates p; and stationary

probabilities
T = ToAoAL "+ Aimt ) (3.12)
Hipeg -
If the process is irreducible, then the process must be reflecting at 0 and
n; ie., A, = po = 0.) The following is Proposition 1 of Whitt (1992).
Corresponding results for diffusion processes are also stated there.

Theorem 2.3.7. (asymptotic variance of a birth-and-death process) Sup-
pose that X(t) = f(Y (t)), where f is a real-valued function and {Y(t) :
t > 0} is an irreducible birth-and-death process on the integers {0,1,...,n}
with birth rates \; and death rates ;. Then the asymptotic variance can be
expressed as

Il
-~
I
<)

n—1 7
o? =2 (Nm)~! [Z(f(i) - m)m]
Jj=0 ]

for m the mean and 7 in (3.12) above.

We now state a corollary of Theorem 2.3.7 for an elementary queueing
model — the M/M/1 queue. The queue-length process in an M/M/1 queue
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is a birth-and-death process with A; = A and p; = p when positive. The
following would properly be a corollary to Theorem 2.3.7 except for the fact
that the state space is infinite. Extensions to countably infinite and more
general state spaces are covered by the results for regenerative processes
below.

Corollary 2.3.1. (asymptotic variance for the queue-length process in the
M/M/1 queue) For the queue-length (number in system) process in the
M/M/1 queue with traffic intensity p = A\/p < 1, the asymptotic variance is

o2 — 2p(1 + p)
(1-p)*

The (1 — p)* term in the denominator of (3.13) shows that very long
simulation runs are required to directly estimate the steady-state mean of the
queue-length process by the sample mean when p is close to its upper limit
1. That insight is important for related models for which we do not already
know the steady-state distribution, so that simulation is actually needed.
We discuss applications of stochastic-process limits to obtain insights about
simulation in Section 5.9 of the book.

For a birth-and-death process it is also possible, and usually preferable,
to recursively solve the Poisson equation, see Remarks 1, 2 and 5 of Whitt
(1992). For more on Poisson equations, see Glynn (1994) and Glynn and
Meyn (1996).

(3.13)

2.3.3. Regenerative FCLT

Donsker’s theorem itself applies quite directly when we have regenerative
structure, as in the case of DTMC’s and CTMC’s in Theorem 2.3.1 and
2.3.4 above. For this discussion, we use the classical definition of regenera-
tive process, meaning that the process splits into IID cycles; see p. 125 of
Asmussen (1987). We will present the result in continuous time, following
Glynn and Whitt (1993), but corresponding results hold in discrete time, as
in Glynn and Whitt (1987). An earlier related Markov chain FCLT is due
to Maigret (1978).

Consider a stochastic process {Y(¢) : t > 0} with general state space
and a measurable real-valued function f on that state space. We assume
that the stochastic process {Y (¢) : ¢ > 0} is regenerative with respect to
regeneration times 7; satisfying

0<To<Ty <+
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with T_; = 0. We focus on the associated cumulative process

t
C(t) = / F(V(s))ds, t>0, (3.14)
0
and consider the associated normalized processes
Cn(t) = n V2(C(nt) — mnt), t>0 (3.15)

where m is a real number yet to be specified. The key random variables
associated with the regenerative cycles are

T = Ti—Ti1,
Xo= Xim) = [ () -mldu,
Zi = Zim) = 0212' /Os[f(Y(Ti_l—i—u))—m]du . (3.16)

By regenerative structure we mean that the three-tuples (7;, X;, Z;) are
IID for ¢ > 1. We also assume that E1; < oo and

t
/ |f(Y(s))|ds < oo w.p.1 foreach ¢,
0

which implies that the cumulative process has continuous sample paths

w.p.1.
The general idea is that the cumulative process C in (3.14) is approxi-
mately equal to a random sum. In particular,

C(t) = Sy + Ra(t) + Re(t), t>0,

where
Spn=X1+---Xn, n2>1,

for X; in (3.16) with Sy =0, N = {N(¢) : t > 0} is the (possibly delayed)
renewal counting process associated with the regeneration times, i.e.,

N(t)=max{i:T; <t}, t>0,

and R; = {R;(t) : t > 0} are remainder processes, defined by

min{¢,Tp}
Rit) = /0 F(Y(s))ds (3.17)
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and ]
Ro(t) = / FY(8))ds, > 0. (3.18)
Ty
Since ET; < o0, we have

t IN@t) > A=1/Em, as t—o0 w.p.l. (3.19)

Under (3.19), FCLTs for partial sums tend to extend to random sums, as
we see in Chapter 13 of the book. The major difficulty here is treating the
two remainder terms in (3.17). Since |R;(t)| < Zp, the first remainder term
in (3.17) is easily dispensed with in limit theorems. The second remainder
term is more complicated; the key bound is

|Ra(t)| < Zngy41, t20.
Then we observe that {Ra(t) : ¢ > 0} is tight without space scaling. Thus,

after space scaling, it is asymptotically neglible.

Theorem 2.3.8. (FCLT for regenerative processes) With the regenerative
structure above, there is convergence in distribution

C.=0oB in (D,J;)

for C,, in (3.15) and B standard BM if and only if there is a constant m
such that
EX;(m) =0, EX;(m)’>< o0

and
t?P(Z1(m) >t) -0 as t— 0. (3.20)
for X1(m) and Zi(m) in (3.16). Then the asymptotic variance is
o2 = EX,(m)? .

A sufficient condition for the regularity condition (3.20) is EZ;(m)?*t¢ <
oo for some € > 0. (A finite second moment is not enough. We remark that
condition (3.20) does not appear in the ordinary CLT; see Glynn and Whitt
(1993, 2000).) The role of the regularity condition (3.20) can be understood
from the following lemma.

Lemma 2.3.1. (condition for the scaled maximum to be asymptotically
negligible) Let {Z; : i > 1} be a sequence of IID real-valued random variables
and let ¥ : Ry — R4 be a function such that 1 (t) — oo as t — oco. Then

p(n) lrél%ﬁ{\Zz\}ﬁo as m— oo
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if and only if
tP(|Z1] > ep(t)) >0 as t—o0 forall e>0. (3.21)

Proof. Let M, = max{|Z;| : 1 <i < n} and F(t) = P(|Z,| <t),t>0.
Note that 1(n) 1M, = 0 if and only if, for all € > 0, P(1)(n) "1 M,, > €) — 0
as n — oo. However,
P(M, > ep(n)) <6
if and only if
P(My) < etp(n)) > 14,

where
P(My <ep(n)) = Flep(n))"

= (1-n"'n(l-F(ep(n)"

= (1—n e (ep(n)"

- 1 as n—oo (3.22)
if and only if

nF(ep(n)) -0 as n— oo

or, equivalently, (3.21). =

Corollary 2.3.2. If the conditions of Lemma 2.3.1 hold with 1 (t) = t* for
a > 0, then condition (3.21) is equivalent to

tYeP(|Z ) >t) >0 as t— oc.

Proof. Under the assumption, condition (3.21) becomes
tP(|Z1| > €t*) -0 as t—o0o0 forall e€>0,
which first is equivalent to
e*(e “)P(|Z1] > (e 1))
and then is equivalent to
€*tP(|Z1|) >t*) -0 as t— oo forall €>0,

which in turn is equivalent to the stated result. =

A general application of Theorem 2.3.8 is to obtain a FCLT for the count-
ing processes associated with a batch Markovian arrival process (BMAP) as
in Lucantoni (1993) or, equivalently, the virtual Markovian point process
in Neuts (1989). An explicit formula for the variance of the number of ar-
rivals in [0,%] in a BMAP, from which the asymptotic variance easily can be
obtained, is given on p. 284 of Neuts (1989).
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2.3.4. Martingale FCLT

Martingale FCLTs are versatile tools for many applications. We have stated
one martingale FCLT in Theorem 4.4.4 of the book, but there are others. We
conclude this section by stating another. It is Theorem 18.1 of Billingsley
(1999).

We start with the double sequence {X,,; : n > 1,7 > 1} and an associated
double sequence of o-fields {F, ) : n > 1,k > 1}. We assume that X,
is a martingale difference with respect to these o-fields, i.e., X, 1 is F, k-
measurable and

EXpk|Fok-1]=0 forall n and k.
Suppose that EXfl,k < 00 and put
Vak = E[X7 | Frp-1] - (3.23)

Note that V, ;, being a conditional expectation, is a random variable. If
the martingale is originally defined only for 1 < k < k,, let X, ;, = 0 and
Foj = Fnp, for k > n. Assume that > 22, X, and Y 72 V;, x converge
w.p.1 for each n.

Theorem 2.3.9. (martingale FCLT) If, in addition to the assumptions

above,
[nt]
Z Vo = ot as n— oo forevery t>0 (3.24)
k=1

with Vi, 1 in (3.23) and the Lindeberg condition

[nt)
ZE[Xz,kI{\Xn,HZf}] -0 as n— o
k=1
holds for every t > 0 and € > 0, then
S, =dB in D,
where o is determined by (3.24),
[nt)
Sn(t) = ZXn,ka t>0,
k=1
and B is standard Brownian motion.

Generalizations and other variations of Theorem 2.3.9 are contained on
p. 339 of Ethier and Kurtz (1986) and Jacod and Shiryaev (1987).
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2.4. Double Sequences and Lévy Limits

We have seen that there are only a few possible limits for normalized partial-
sum processes with weak dependence when we work in the framework of a
single sequence {X,, : n > 1}. In addition to the Brownian motion limits
discussed in Sections 4.3 and 4.4 of the book, there are the stable Lévy
motion limits discussed in Sections 4.5 and 4.7 of the book. However, there
are many more possible limits for normalized partial-sum processes with
weak dependence when we work in the framework of a double sequence
{Xpnr:n>1k>1}. We give a brief account in this section.

Throughout this section we assume that the sequence {X,; : £ > 1}
is IID for each n, so that we are in a classic well-studied setting; e.g., see
Gnedenko and Kolmogorov (1968) and Feller (1971). Since there is a dif-
ferent sequence for each n, we can incorporate multiplicative and additive
normalization constants directly in the variables X, ;. Hence we focus on
the partial sums

Sun = Xni 4+ + Xnn (4.1)

without further normalization and the associated random functions in D
defined by

Sn(t) = Snnt]; t>0. (4.2)

The class of limits processes in FCLTs for S,, now are all Lévy processes.
As indicated in Section 4.5 of the book, a Lévy process L = {L(t) : t > 0} is
a stochastic process with sample paths in D = D([0, 00),R), L(0) = 0 and
stationary and independent increments. Brownian motion and stable Lévy
motion are important examples of Lévy processes, but there are many more;
see Bertoin (1996) and Jacod and Shiryaev (1987).

The distribution of L(¢) for any ¢ is an infinitely divisible distribution.
A probability distribution is infinitely divisible if for each n it is the n-fold
convolution of another probability distribution; i.e., a random variable X
has an infinitely divisible distribution if, for all n, there are IID random
variables X1,..., X, (depending upon X and n) such that

X<X ++X,.

Lévy processes and infinitely divisible distributions are characterized by
their characteristic functions. In particular, the one-dimensional marginal
distribution of every Lévy process has characteristic function

Eeilt) = ((0)
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where the Lévy ezponent 1(6) can be expressed as

0.2 2 o0
$(0) = ibf — Tg + / (exp(ifz) — 1 — i0h(z))p(dz) . (4.3)

—0oQ

with b being the centering coefficient, 0? > 0 is the Gaussian coefficient,
i the Lévy measure and h a truncation function. There is quite a lot of
freedom in the choice of the truncation function h. Following Jacod and
Shiryaev (1987, pp. 75) we assume that the truncation function has compact
support, is bounded and coincides with z in a neighborhood of the origin.
To characterize convergence, we also want h to be continuous. A truncation
function with all these properties is

T, 0<z<1
2—z, 1<zx<2

h(z) = —z, —-1<z<0 (4.4)
24z, -2<z<L0
0, |z|>2.

Other truncation functions are considered in the literature. Changing the
truncation function h typically changes the centering coefficient b, but does
not change the Gaussian coefficient 02 or the Lévy measure pu. The Lévy
measure has support on R — {0}; it is a bonafide measure with

/_00 min{1, 2%} p(dz) < oo . (4.5)

Given a specific truncation function, such as h in (4.4), there is a one-to-
one correspondence between Lévy processes, infinitely distributions and the
triple of characteristics (b, 02, u) appearing in (4.3), with 02 > 0 and y being
a measure on R — {0} satisfying (4.5).

Brownian motion is the special Lévy process with null Lévy measure, i.e.,
p(A) = 0 for all measurable subsets A. NonGaussian stable Lévy motions
with index « are the special cases with 02 = 0 and

cte=0ta) >0,
p(dz) = (4.6)
{ ¢ |z 0H), 2z <0,

for nonnegative constants ¢™ and ¢, where ¢ + ¢~ > 0. From (4.6), we
see that the power-tail structure of a stable law is manifested very strongly
in the Lévy measure. While the stable law S, (o, 8, 1) has the power-tail
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asymptotics in equations 4.5.12 and 4.5.13 in the book, the corresponding
Lévy measure has simple power densities on (0,00) and (—o0,0). A stable
Lévy motion is totally skewed to the right, so that g = 1, (left, so that
B = —1) if and only if ¢~ =0 (¢* = 0).

The Lévy measure u characterizes the possible jumps of the Lévy process.
Indeed, the jump process of the Lévy process is a Poisson random measure
on R x R with intensity u(dz)dt; i.e., the number of jumps in the Lévy
process falling in any spatial subinterval [a, b] during time subinterval [c, d]
for a < band 0 < ¢ < d has a Poisson distribution with mean p([a, b])|d —c|.
As a simple consequence, if the Lévy measure p has support in R*, then the
Lévy process has no negative jumps. Thus we know that the totally skewed
stable Lévy motion with 5 =1 (and thus ¢~ = 0 in (4.6)) has sample paths
without negative jumps.

A complication with Lévy processes is the large (in general, infinite)
number of very small jumps. For any ¢ > 0, a Lévy process has only finitely
many jumps of at least size ¢ in any finite interval w.p.1. However, for any
¢ > 0, it can have infinitely many jumps of absolute size less than or equal
to ¢ in any finite interval. This large number of small jumps is compensated
for by deterministic drift built into the final integral in (4.3), in particular,
this drift occurs in the region that the truncation function h is positive.
Thus the true process drift is the sum of the drift b and the drift associated
with h. In general, the total drift may be infinite, which explains why the
representation (4.3) does not separate out all the drift.

It is possible to decompose a Lévy process into the independent sum of
component Lévy processes by decomposing the exponent 1(8) in (4.3) into
separate pieces; see Theorem 1 of p. 13 of Bertoin (1996) and its proof. The
first component Lévy process Li has Lévy exponent

o
11(0) = ibd — ——
2
and is Brownian motion with drift coefficient b and diffusion coefficient o2.
The second component Lévy process Lo has exponent

$2(6) = /| e (i02) ()

and is a compound Poisson process, with jumps of absolute size at least 2,
having Poisson intensity A2 = pu((—o0, —2]) + u((2,0)) < co and jump size
probability distribution u(dz)/A2 on (—o0,—2) U (2,00). The complicated
component is the third one. The third component Lévy process L3 has
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exponent
2
va(6) = [ (exp(ib) ~ 1~ ibh(o)u(do)
-2
It can be shown to be a pure jump martingale with jumps of absolute size
at most 2. It includes some deterministic drift to compensate for the jumps.
In summary, we can write

P(0) = 1(0) + 2(0) + 3(0)

and .
L:L1+L2+L3a

where Ly, Lo and L3 are the independent Lévy processes with exponents
11, P9 and 13 defined above.

If an infinitely divisible distribution has finite moments, these moments
can be derived by differentiating the characteristic function. For example,
if E|L(1)| < oo, then

/ o0
EL(1) = v 50) = b-l—/ [ — h(z)p(dz) , (4.7

— 00

where, because of the definition of the truncation function h, the integrand
is nonzero only in (—oo, —1] U [1, 00).

An important point is that the class of infinitely divisible distributions
is remarkably large. An indication is the fact that infinitely divisible distri-
butions are characterized by the triples (b, 02, 11), where u is a measure on
R — {0} satisfying (4.5). Two Lévy processes with triples (b1,0%, 1) and
(b2, 02, us) reduce to the same process if and only if by = by, 07 = 02 and
p1(A) = po(A) for all measurable sets A C R. Nevertheless, infinitely di-
visible distributions may seem very special. However, over the years, many
common distributions have been shown to be infinitely divisible. For ex-
ample, lognormal distributions, Weibull distributions with ccdf’s e~ (*/4)°
for ¢ < 1, Pareto distributions, and all mixtures of exponential distribu-
tions are infinitely divisible; see Thorin (1977a,b), p. 452 of Feller (1971),
Bondesson (1992) and Abate and Whitt (1996). (The Weibull and Pareto
distributions actually are mixtures of exponential distributions so infinite
divisibility follows from that structure.) Moreover, the class of infinitely
divisible distributions is easily seen to be closed under convolutions.

We now consider convergence in distribution of partial sums to infinitely
divisible distributions and Lévy processes. First note that each infinitely
divisible distribution can serve as a limit, because if X is infinitely divisible
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then there is a sequence of sequences { Xy, j, : & > 1} of IID random variables

such that X < Sy, for all n by the definition of infinite divisibility.
The following characterization of all possible limits is a consequence of
Theorem 2, p. 303, of Feller (1971) and Theorem 2.7 of Skorohod (1957).

Theorem 2.4.1. (Lévy process FCLT for double sequences) Let {X,; :
k > 1} be a sequence of IID random wvariables for each n and let Sy, and
Sn be defined as in (4.1) and (4.2). If

Spn=>72 1 R,
then Z has an infinitely divisible distribution and
S,=L in D([0,00),J1) ,
where L is the Lévy process with L(1) iz

Necessary and sufficient conditions for the FCLT with convergence to a
specific Lévy process are consequences of Theorems 2.35, 2.52 and 3.4 of pp.
362, 368 and 373 of Jacod and Shiryaev (1987). (The partial sum process
is both a semimartingale and a process with independent increments (PII)
but not a process with stationary independent increments (PIIS).)

Theorem 2.4.2. (criteria for the Lévy-process FCLT) Let {X, ; : k > 1}
be a sequence of IID random variables for each n, with {X, 1 : n > 1} being
infinitesimal, i.e.,

lim P(|X,1|>¢€) =0 forall €e>0. (4.8)
n—oQ
Then
S,=L in D([0,00),R,J1) (4.9)

for Sy, in (4.2), where L is a Lévy process with characteristics (b,o?, ), if
and only if

() lim nBh(Xn1]=b, (4.10)
(i) lim nVar[h(Xnu)] = o? (4.11)
(i) Jim nElg(60)) = [ glohuldo) (4.12)

for the truncation function h and all continuous bounded real-valued func-
tions g on R with g(x) = 0 in a neighborhood of 0 and g(x) — y, —o0 <
y < 00, as T — *oo.
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Note that h(z) = z for |z| < 1, so that conditions (i) and (i7) above
correspond closely to convergence of the scaled means and variances.

Theorem 2.4.2 provides a large class of initial FCLT’s to use with the
continuous-mapping approach. We have only stated the classical results.
Jacod and Shiryaev (1987) go much further, generalizing the characteristics
of a Lévy process to define characteristics for semimartingales, allowing for
nonstationarity. They also establish conditions for FCLT's in which processes
with independent increments converge to other processes with independent
increments (Chapter VII), semimartingales converge to processes with inde-
pendent increments (Chapter VIII) and semimartingales converge to other
semimartingales (Chapter IX), all expressed via the process characteristics.
Actually verifying these conditions may not be straightforward, however.

2.5. Linear Models

In this section we discuss the linear-process representation in equation 4.6.6
of the book that was critical for obtaining the FCLT with strong dependence.
The linear-process representation expresses the basic summands X, as

oo
X, = Zajyn_j, n>1, (5.1)
=0

where {Y,, : —00 < n < oo} is a two-sided sequence of IID random variables
with EY,, = 0 and EY,? = 1, and {a; : j > 0} is a sequence of (deterministic,
finite) constants with

o
Z a? < 00. (5.2)
j=0

We now show that the linear-process representation can arise naturally
from modeling. First, however, it is important to repeat our earlier dis-
claimer. It is important to realize that the stochastic-process limits with
strong dependence characterized by (5.1) are less universal. Many other
forms of strong dependence are possible. And, if the dependence does not
approximately correspond to a linear process, then there may appear a very
different limit process or there may even be no stochastic-process limit at
all.

Nevertheless, the linear-process representation is very natural. It pro-
vides a useful concrete model of strong dependence with an associated FCLT.
To explain how linear models can arise, we describe some time-series models.
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In particular, we show how the Gaussian linear process arises from a funda-
mental time-series model. We especially want to show how the Gaussian lin-
ear process with strong dependence arises from the fractional autoregressive
integrated moving average (FARIMA) model; e.g., see Section 2.5 of Beran
(1994) and Sections 7.12 and 7.13 of Samorodnitsky and Taqqu (1994).

The starting point is the autoregressive moving average (ARMA (p,q))
process, where p and ¢ are nonnegative integers. To define the ARMA (p, q)
process, let B be the backshift operator, defined by BX,, = X,,_1, so that
differences can be expressed as X, — X, 1 = (1— B)X,, and (X, — X,,—1) —
(Xn_1— Xn_2) = (1 - B)?X,. Let ¢ and 3 be polynomials of degree p and
q, respectively, of the form

p
Pz)=1-) ¢;7
7j=1

and .
j=1
where 2 is a complex variable and ¢1, ..., ¢p, 91, ...,1)4 are real coeflicients.

As regularity conditions, assume that the equations ¢(z) = 0 and (z) =0
have no common roots and that all solutions of the equation ¢(z) = 0 fall
outside the unit disk {z : [z| < 1}. An ARMA (p, q) process is defined to be
the stationary solution to the equation

P(B)Xn = (B)Y, (5:3)

where {Y,, : n > 1} is a sequence of IID N (0, 1) random variables; e.g., see
Chapter 3 of Box, Jenkins and Reinsel (1994). In this setting, the sequence
{Y,} is called the innovation process. Note that the exponential smoothing
in Example 1.4.2 in the book is an ARMA(1,0) process.

Theorem 2.5.1. (the ARMA process) Under the regularity conditions above,
the system of ARMA (p,q) equations (5.3) has a unique solution of the form

o
X, = ijYn_]-, n>1, (5.4)
=0

with real constant coefficients w; satisfying |w;| < 89 for all sufficiently large
3, for some §, 0 < § < 1. The coefficients w; in (5.4) are the coefficients of
the power series ¥(z)/d(z).
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Note that the coefficients w; in the linear-process representation are
available via their generating function 9 (z)/¢(z). Given the polynomials 1
and ¢, we can thus calculate the coefficients w; by numerically inverting the
generating function; see Abate and Whitt (1992b).

Also note that the coefficients w; in (5.4) decay exponentially fast, so
that an ARMA process only exhibits weak dependence. To obtain strong
dependence, we need the coefficients w; in (5.4) to decay more slowly. We
achieve that by considering fractional differencing. We do so by introducing
a generalization of the ARIMA model. If instead {X,,} is the solution of the
equation

¢(B)(1 — B)*X,, = (B)Yn , (5.5)

where d is a nonnegative integer and {Y,,} is again a sequence of IID N(0,1)
random variables, then { X} is said to be an ARIMA (p, d, q) process, which
was introduced by Box and Jenkins (1970); see Chapter 4 of Box, Jenkins
and Reinsel (1994).

The FARIMA process is a generalization of the ARIMA process to frac-
tional differencing. The FARIMA generalization of ARIMA was introduced
by Granger and Joyeux (1980) and Hosking (1981). The FARIMA model
with strong dependence depends on a parameter triple (p, ¢, d), where p and
q are nonnegative integers and 0 < d < 1/2. (There also are FARIMA mod-
els with —1/2 < d < 0, but we will not consider them.) Given (p, q), there
are p + q further parameters.

For any real number d, we define the fractional difference operator

1-Br=Y (1) s

k=0

where

d\ _ d! _ I'(d+1)
(k) Ckld—k)! T(k+1)I'(d-k+1)
with I'(z) the gamma function. A stationary process {X,} that satisfies
(5.5) for positive integers p and ¢ and for 0 < d < 1/2 is a FARIMA (p, d, q)
process. (Values of d with —1/2 < d < 0 are also possible, but we are
primarily interested in the range 0 < d < 1/2.)

Theorem 2.5.2. (the FARIMA process) Under the regularity conditions
above, including 0 < d < 1/2, the system of FARIMA (p,d,q) equations
(5.5) has a unique solution of the form

o
X, = Zann_j, n>1,
j=0
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which converges almost surely, where

J
a; = Z wibj_i(—d)
=0

with {w;} being the sequence of constant coefficients in (5.4) and

L'(j+d) L
TG +1) T’

bj(—d) = as j — 00.

As a consequence,

.d—1 .
aj ~ aj as J — oo,

where

J
a=> wi/T(d)

=0
for w; in (5.4), and

rj = Cov(X1, X14j) ~ ri?2? 1t as j o o0,

g(m) — $2(d—1) + (1 + $)2(d—1) . (md—l _ (1 + $)d_1)2 .

where

for

The point of this discussion has been to show that a linear process of
the form (5.1) and (5.2), with

Var(S,) =n*"L(n) as n— oo, (5.6)

where L(t) is a slowly varying function and H > 1/2, arises naturally from
the FARIMA (p,d,q) model with 0 < d < 1/2. In the FARIMA case the
linear process is also a Gaussian process, but the key relations in Theo-
rems 2.5.1 and 2.5.2 here hold for stationary sequences with finite second
moments. We also remark that the parameters H and d are related by
1
d=H — -.
2
It is also significant that the FARIMA model provides a natural frame-
work to exploit the strong dependence in order to make predictions; see
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Beran (1994) for a full account of statistics for strongly dependent, light-
tailed processes. We only make a few remarks.

In applications, we may have a stochastic sequence {X,} that we are
willing to regard as a zero-mean stationary sequence with Var(X,) < oo.
We can examine the variance Var(Sy). If we find that

Var(Sy) ~cen®? as n— oo

for 1/2 < H < 1, then we have the Joseph effect. That can be checked by
looking for a linear relationship after taking logarithms; i. e.,

log(Var(Sy,)) ~ log(c) + 2H log(n) .

We then can invoke Theorem 4.6.1 in the book, without directly verifying
the linear-process representation in (5.1) and without identifying the weights
a; in (5.1), to support the approximation (in distribution)

{(en®)7128 1y 1t > 0} = {Zp(t) : t > 0}, (5.7)

where Zp is standard FBM. Note that we obtain a parsimonious approxima-
tion, depending only on the two parameters ¢ and H. Attention naturally
focuses on ways to estimate the parameters ¢ and H. That can be done
simply from a plot of log Var(S,) as a function of logn; see Beran (1994).

It is important to remember that the justification of approximation (5.7)
from Theorem 4.6.1 in the book actually depends on the linear-process rep-
resentation. However, we can directly justify the approximation equation
4.6.13 in the book. by checking that the finite-dimensional distributions are
approximately Gaussian and that the covariance function is approximately
the covariance function of FBM in equation 4.6.13 in the book. The limit
theorem explains why the FBM approximation may be appropriate.

We conclude by remarking that there is again a time-series motivation
for considering the linear-process representation in the case of heavy tails
plus dependence, discussed in Section 4.7 of the book. Specifically, there
is a time-series motivation for the linear-process representation in equation
4.7.1 of the book, where the innovation variables Y,, have heavy tails, just
as there was for the light-tailed case in Section 4.6 of the book, because
there are analogs of the ARMA, ARIMA and FARIMA processes with stable
innovations; i.e., there are analogs of Theorems 2.5.1 and 2.5.2 here for the
case in which the innovation process {Y,} is a sequence of IID random
variables with a stable law S, (0,3, ) for 0 < a < 2; see Sections 7.12 and
7.13 of Samorodnitsky and Taqgqu (1994).



Chapter 3

Preservation of Pointwise
Convergence

3.1. Introduction

With the continuous-mapping approach to stochastic-process limits, we are
concerned about limits z,, — z and fp(zn) — f(z) for a sequences of func-
tions {z,, : n > 1} in D and f,, f : D — D; see Section 3.5 and Chapter
13 in the book. However, in many applications we actually are interested in
the pointwise limits

z(t)/Pp(t) v in R as t— o0 (1.1)
and
f@)(@)/p(t) »n in R as t— o0 (1.2)

for single functions x € D and f : D — D, where ¢ is a suitable scaling
function. In particular, we may want to show that the pointwise limit (1.1)
implies the associated pointwise limit (1.2) and identify the limit 7.

It is significant that we often can obtain such limits in R as consequences
of function-space limits by setting

ys(t) = z(st)/P(s), s>0. (1.3)

As a regularity condition, we will assume that the scaling function ¢ is a
homeomorphism of Ry, i.e., ¢ € A(R;). That implies that ¢(0) = 0, ¢ is
increasing and ¢(t) — oo as t — oo. If we can show that

ys—y in D as s— o0 (1.4)

o1
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for y, in (1.3), where 1 ¢ Disc(y), then we can apply the projection map m;
taking z into z(1) to obtain

ys(1) = z(s)/o(s) > y(l) in R as s— oo, (1.5)

which implies the desired convergence in (1.1) and identifies the limit ~y in
(1.1) as y(1) in (1.5). Moreover, if we can show that

f(x)(t)/p(t) = gi(y:) foreach t>0, (1.6)

where g;,9 : D — R and

9s(ys) > gly) in R (1.7)

whenever y; — y in D, then we can obtain (1.2) from (1.4) as well, and we
identify the limit 7 in (1.2) as g(y)-

For example, this reasoning applies to the supremum function: f(z)(t) =
z(t) for t > 0. Then g(y) = gs(y) = f(y)(1) = yT(1) for all y € D and
s > 0. As a consequence, the limit in (1.2) holds with n = g(y) = y'(1).

Even though many pointwise limits for single functions can be subsumed
as special cases of function-space limits, it is interesting to consider what
can be obtained directly without resorting to the function-space construction
in (1.3). In particular, it is natural to ask how pointwise limits for single
functions are preserved under the composition, supremum, and inverse maps.
We investigate that question in this chapter.

For queues and related applied probability models, this convergence-
preservation issue for single sample paths corresponds to sample-path anal-
ysis, which is commonly associated with the fundamental relations (conser-
vation laws) L = AW and Arrivals See Time Averages (ASTA); see El-Taha
and Stidham (1999); see the chapter notes at the end of the chapter.

3.2. From Pointwise to Uniform Convergence

Clearly, the pointwise limit in (1.1) is more elementary than the function-
space limit (1.4) but, surprisingly, (1.4) is not much stronger than (1.1).
Indeed, under minor regularity conditions, (1.1) actually implies (1.4). Re-
call that ¢ in A(R;) is regularly varying with index p > 0, denoted by
¢ € R(p), if

o(tz)/Pp(t) — 2P as t— oo (2.1)

for all z > 0; see Appendix A at the end of the book.



3.2. FROM POINTWISE TO UNIFORM CONVERGENCE 53

Theorem 3.2.1. (from pointwise to uniform convergence) Let z € D and
¢ € A(Ry) with ¢ € R(p) for p > 0. If the limit (1.1) holds in R, then

lys —yllr =0 as s—oo0 foreach T >0 (2.2)

for ys in (1.3) and
y(t) =~t*, t>0.

Proof. Under the conditions, for any € > 0, there is a ¢y such that
|z(t)/p(t) —v| <€ forall t>t. (2.3)

and an sg such that

o(st)
ORI

see Theorem A.5 in Appendix A in the book. For ¢ < #y/s,

<e forall s> sp; (2.4)

0<t<T

s(0) — y(H)] < lya(0)] + [y(e)] < 120 4 (—) L @)

which is less than e for all sufficiently large s, say s > s1 > sg. Since

w®) -y = 53 (S0 ) wr (20 -) . o)

$(st) \ ¢(s) (st)
for s > sq,
) R EICO NI O z(st) _
lys =yl < +t2t5;{ o(50) ‘qs(s) Rsarey ”‘}
< e+ (v +ee+ TP, (27)

which can be made arbitrarily small with an appropriate choice of €. =
For the special case in which ¢(¢) = ¢, condition (1.1) corresponds to a
strong law of large numbers (SLLN) for a stochastic process, while the con-
clusion (2.2) corresponds to a functional strong law of large numbers (FS-
LLN). The following corollary is Theorem 4 from Glynn and Whitt (1988).

Corollary 3.2.1. (from a SLLN to a FSLLN) Let {X(t) : t > 0} be a
real-valued stochastic process and let

X, (t)=n"'X(nt), t>0, n>1. (2.8)
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If a SLLN holds, i.e., if
t1X(t) >y wplinRast— oo, (2.9)
then a FSLLN holds, i.e.,
|X, —vellr =0 wp.lin D(0,T],R) as n— oo (2.10)

for all T > 0.

3.3. Supremum

In this section we consider the supremum map. The following elementary
convergence-preservation result is referred to as the “fundamental lemma, of
maxima” in Section 2.5 of El-Taha and Stidham (1999).

Proposition 3.3.1. (preservation of pointwise convergence for the supre-
mum) Suppose that x € D([0,00),R), ¢ is an increasing real-valued function
on Ry with ¢(t) — oo ast — oo. If z(t)/d(t) — v > 0 as t — oo, then
1 (t)/p(t) = v as t — oco.

Proof. Under the condition, for any € > 0, there exists #y such that

(v —e)¢(t) < z(t) < (v +€)o(t)

for all ¢ > ty. Hence,

(v = €)p(t) <2'(t) <a'(to) V (7 + €)(t)

for all ¢t > ty9. Since v > 0 and ¢(t) — oo, there is t; > ¢y such that
zT(tg) < (v + €)p(t) for all t > t;. Thus, for t > ¢,

B 2T~ <e.

Under the conditions of Theorem 3.2.1, if v > 0, then we can apply
the continuous mapping theorem to deduce that z'(t)/¢(t) — v as t — oo;
i.e., the conclusion of Proposition (3.3.1) holds by virtue of Theorems 3.2.1
here and 13.4.1 in the book. However, Theorem 3.2.1 here has the extra
assumption that ¢ is regularly varying.

Paralleling Proposition (3.3.1), we can also establish a pointwise-convergence
result for supremum with centering for a single function.
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Proposition 3.3.2. (preservation of pointwise convergence with centering
for the supremum) Suppose that ¢ is an increasing real-valued function such
that ¢(t) — oo and ¢(t)/t — 0 ast — oco. If

o) x(t) —M] =y as t— oo (3.1)
for A >0, then
d®) " HzT(t) = M] =y as t— . (3.2)

Proof. Under condition (3.1), for any € > 0, there exists ¢ such that

At — ¢(t) (v —€) < z(t) < Xt + B(t) (7 +€)
for all ¢ > ¢3. Then

Xt —¢(t) (v —€) < zT(t) < 2'(to) V (At + (1) (v +¢)).-

However, since A > 0 and ¢(t)/t — 0, there is a #; > # such that zT(ty) <
At + ¢(t)(y + €) for all ¢ > ¢;. Hence

() 2T (t) = M] —y] <€
for all ¢ > t1, so that (3.2) holds. =

3.4. Counting Functions

We now turn to counting functions, as in Section 13.8 of the book. A count-
ing function is defined in terms of a sequence {s, : n > 0} of nondecreasing
nonnegative real numbers with sg = 0. We can think of s, as the partial
sum

Sp=xz1+ -+ xTp, N>1, (4.1)

by simply writing z; = s; — s;—1, ¢ > 1. The associated counting function
{c(t) : t > 0} is defined by

ct)=max{k>0:s,<t}, t>0. (4.2)

To have c(t) finite for all £ > 0, we assume that s, — oo as n — oo.

To establish limits for counting functions, we use two scaling functions.
We again let the scaling functions be elements of A(R;). Note that if ¢ €
A(Ry ), then ¢(0) = 0 and ¢ is strictly increasing. Also, ¢ necessarily has an
inverse ¢! with ¢po ¢~ = ¢! 0 ¢ = e. Moreover, (¢1 0 ¢po) ! = ¢51 ° qul
for two homeomorphisms ¢ and ¢,.

The basis for positive results is the basic inverse relation in Lemma 13.8.1
of the book, which we restate here:
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Lemma 3.4.1. (basic inverse relation) For any nonnegative integer n and
nonnegative real number t,

Sn <t ifand only if c(t) >n. (4.3)

The relation between the limits for s, as n — oo and c¢(t) as t — oo
follows easily from the following bounds, which are of independent interest.
Let | x| be the greatest integer less than or equal to z and let [z] be the least
integer greater than or equal to z. One-sided bounds are obtained below by
either setting € = 1 or setting d = oco. Let 1/0 = oo and 1/00 = 0.

Lemma 3.4.2. (one-sided bounds) Suppose that ¢1, ¢ € A(R;),0<e<1
and 0 < § < oo.

(a) If

l—ef%((:)))<1+5 for all t > to, (4.4)

then

1 < #1(sn) <

775 < &) ST forall n2no=[6 (Aik)(A+ )] (45)

(b) If
l1—e< 212((?)) <1446 forall n>ng, (4.6)
then (e(t)
¢2 c(t 1
b)) —1-e (47)
and

po(c®) +1) o 1
¢1(t) 144

(4.8)

for all ¢ > tg = [ (d2(to)(1 +6))]. Moreover, there is a sequence of times
{tx} such that t; — oo as k — oo and

pole(t)) - 1
PR W (4.9)

for all ¢ > tg.
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Proof. (a) If (4.4) holds, then
ni(t) = |63 ($1(8)(1 — )] < e(t) < [y (d1(t)(1+ )] = ma(?)
for all t > ¢, and, by Lemma 3.4.1,
Spy(t) ST < Spyp forall >t (4.10)
Let t; and t3 be functions of n defined by
ti(n) = ¢ (¢2(n)/(1 —€)) and ta(n) = ¢1 " (¢2(n)/(1+9)),

and note that n1(t1(n)) = ne(t2(n)) = n for all n. Hence, for all n > ny =
|—§b2_1(¢1 (to)(l + 6))-|, we have tl(no) 2 tQ(n()) Z t() and, by (4.10),

tQ(n) < 3n2(t2(n)) =8p = Snl(tl(n)) S t]_ (n)

or, equivalently,

2) (15— 1) < di(oa) = o) < o) (1 1)

which implies (4.5).
(b) If (4.6) holds, then

t1(n) = ¢ (d2(n) (1 — €)) < sn < b7 (d2(n)(1+6)) = Ta(n)

for all n > ny and, by Lemma 3.4.1,

c(ti(n)) <n <c(ty(n)) forall n>nyg. (4.11)
Let 11 and 7o be functions of ¢ defined by

1(t) = [¢3 ' (¢1(0)/(L—€)] and 7a(t) = [¢5 " (¢1(8)/(1 +6))]
and note that
ta(fia(t)) <t < H (i (1)) -
Hence, by (4.11),

fig(t) < eft2(Ra(?))) < et) < e(t1(n(?))) < (?)

and
¢y ($1(8)/(1+6)) =1 <ct) < b3 (¢ ()/(1 —¢))
for all t > tg = ¢ (d2(n0)(1 + 4)), because 71 (ty) > fia(to) = no, which
implies (4.7) and (4.8) by the reasoning for part (a). For (4.9), choose the
sequence {t;} so that ¢y *(¢1(tx)/(1 + 0)) is an integer. Then we have the
lower bound c(tx) > ¢5 *(¢1(tx)/(1 + 6)) for all k, which implies (4.9). =
We now apply Lemma 3.4.2 to characterize the asymptotic behavior.
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Theorem 3.4.1. (implications for pointwise convergence) Suppose that ¢1,
P2 € A(Ry) and 0 < X < 0.
(a) If ¢a(c(t))/#1(t) — A as t — oo, then ¢1(sn)/¢p2(n) — A7" asn —

00.
(b) If ¢1(sn)/dp2(n) — A1 as n — oo, then
tl_i>—m pa(c(t))/pr(t) = A. (4.12)
(c) If, in addition to the condition for (b), either
pa(c(t) + 1) — da(c(t))
5@ -0 as t— o (4.13)
" daln+ 1)
2( 1
2 () —1 as n— oo, (4.14)

then ¢2(c(t))/d1(t) = A as t — 0.
(d) If $1(sp)/d2(n) — 0 as n — oo and either

i Gl +1) —da(ct)) _ (4.15)

t—00 ¢1 (t)

or
lim ¢a(n)

then ¢o(c(t))/d1(t) — o0 ast — oco.

Proof. (a) First suppose that 0 < A < co. Then incorporate A into ¢ (t)
by dividing by A. The condition implies that for all appropriate ¢ and §
there exists ¢y such that (4.4) holds. By Lemma 3.4.2(a), (4.5) holds. Since
€ and § are arbitrary in (4.5), it implies the desired conclusion. To treat
the cases A = 0 and A = oo, use the one-sided bounds in Lemma 3.4.2.
For example, if ¢a(c(t))/¢1(t) — 0 as t — oo, then for all positive € and ¢
there exists to such that ¢o(c(t))/ep1(t)) < 1+ § for all ¢ > #;. By Lemma
3.4.2(a), €p1(sp)/d2(n) > 1/(1+46) for all n > ny. Since € can be arbitrarily
small, ¢1(sp)/p2(n) — oo as n — oc.

(b) Reason as in (a) using (4.6), (4.7) and (4.9).

(c) Use (4.8), (4.13) and (4.14), noting that

L galeld) £ 1)~ alelt) _ dole(®)) _ 1
e 7D STowm Si-e 0
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and
P2(c(t))
Pa(c(t) +1)(1 +¢)

(d) Reason as in (c), using (4.15) and

balelt) _ 1
¢1 (t) —1—¢€
(4.16) with (4.17) and (4.18). =

<

(4.18)

Remark 3.4.1. Note that ¢o(c(t))/¢1(t) — X as t — oo if and only if
ba(c(py (1)) /t — X as t — oo; i.e., the spatial normalization ¢ (t) is equiv-
alent to the standard normalizing function e after making a time transfor-
mation by ¢~1. =

Example 3.4.1. The need for an extra condition. To see that an extra
condition is needed in Theorem 3.4.1(c), let s, = n for all n, so that c(t) =
|t] for all t. Also let ¢ (t) = ¢o(t) = e for all t. Then ¢1(s,)/P2(n) = 1 for
all n, while

$o(c(t)) /¢ (t) = e,
which has limit supremum 1 and limit infimum e~!. Also note that neither
(4.13) nor (4.14) is satisfied.

Example 3.4.2. The extra conditions are not necessary. To see that the
specific extra conditions in Theorem 3.4.1(c) are not necessary, let s, = e”
for all n, so that c(t) = | logt|. Let ¢2(t) = e’ and ¢1(t) = ¢ for all . Then
1(8n)/¢p2(n) =1 for all n and

dalclt) _ ellst
M) ot
but ¢o(n + 1)/pa(n) = e for all n and
¢2(C(t) + 1) — QSQ(C(t)) (e — 1)@[108275]

= —e—1 as t—=o00. =
¢1(2) t
A special case of interest is when the homeomorphisms are of the form
d(t) = tP for p > 0. Of course, the case of greatest interest is p = 1; then
we have simple averages.

—+1 as t— oo,

Corollary 3.4.1. (the special case of powers) Suppose that 0 < p < oo and
0 < A< 0. The following are equivalent:

(i) c(t)/tP - X as t— oo,
(ii) (c(t))YP/t = AP as t — oo,
(iii) sp/n'’? - X"V /p as n— oo,

(iv) (sp)P/n = A"t as n— oo.
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Proof. Apply Theorem 3.4.1 with ¢2(t) = ¢ and ¢ (¢) = P to relate (i) and
(iv). Note that (4.14) holds. To relate (i) and (ii), note that (c(t))'/?/t =
(c(t)/t?)'/P| and similarly for (iii) and (iv).m

We used the property that ¢(z/y) = ¢(z)/¢(y) for ¢(z) = 2P in Corol-
lary 3.4.1. The following classic lemma shows that this does not hold more
generally.

Lemma 3.4.3. A homeomorphism ¢ of Ry satisfies ¢p(zy) = ¢(z)d(y) for
all nonnegative x and y if and only if ¢(t) = t* for some p > 0.

Proof. The sufficiency is immediate. For the necessity, suppose that
d(zy) = ¢(x)p(y) for all nonnegative z and y. If we let ¥(z) = log ¢(e”),
then ¥(z + y) = ¥(z) + ¢¥(y) for all real z and y. It is well known and
easy to see that i (z) = px for some real number p, which implies that
P(z) = e¥l082) — ePlogz — 4P Since ¢ is strictly increasing, we must have
p>0. =

The Corollary to Theorem 3.4.1 is useful because it enables us to replace

¢2(c(1))/d1(t) and ¢1(sn)/d2(n) by c(t)/¢5" ($1(1)) and sy/d7 " (¢2(n)) re-

spectively. The following lemma shows that we can do this more generally.

Lemma 3.4.4. Suppose that ¢ € A(R,), a, = oo and a, /b, — 1 as n —
co. If there is a ty such that log $(e') is uniformly continuous in (ty,00),
then ¢(an)/P(bn) — 1 as n — oo.

Proof. Since a, — oo and a,/b, — 1 as n — oo, loga, — logb, — 0,
log a,, — oo and logb,, — oo as n — oco. If log(¢(e?)) is uniformly continuous
in (tg,00), then

log ¢(e'°8 *") — log (€'*8 ") = log ¢(an) — log ¢(by)
= log(¢(an)/d(by)) >0 as n — oo,

so that ¢(ap)/d(by) > 1asn —oo. =
The following Corollary to Lemma 3.4.4 indicates how Lemma 3.4.4 can
be applied in our context.

Corollary 3.4.2. If ¢o(c(t))/P1(t) = X as t — oo, where ¢1, ¢a € A(Ry)
and log ¢5 * (et) is uniformly continuous in (ty, 00) for some to, then c(t)/dy * (Ap1(t)) —
1 ast— o0.

Remark 3.4.2. Lemma 3.4.4 implies Corollary 3.4.1 because log ¢(ef) =
log A + pt when ¢(t) = AtP. Another function covered by Lemma 3.4.4 is
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#(t) = alogbt; then log $(e')) = loga + log(logb + t). However, log ¢(e') =
loga + be' when ¢(t) = ae’, so that the uniform continuity does not hold
when ¢(t) = aeb’. =

The following result is also useful to characterize the normalizing func-
tions.

Lemma 3.4.5. Suppose that ¢ € A(Ry), 0 < A < o0 and a, — o0 as
n — oo. If there is a ty such that log ¢(e!) is uniformly continuous in
(to,00), then

lim ‘
n—od

Proof. Recall that if a function ¢ is uniformly continuous in (¢, ), then
sup{|v(t +z) —(t)| : t > to} < o0
for any positive . Since

log Aa,, — loga,, =log X\ ,

i—m {|log ¢(e°87*) —log p(e)[} = i—m {l1log ¢(Aan) — log ¢(an)|}
= i_m {llog(¢(Aan)/d(an))| < o0,

which implies the desired conclusion.m

We are thinking of {s,, : » > 1} being the points in a point process sample
path, so it is natural to assume that {s,} is nondecreasing. However, we
could start with a general sequence of real numbers {¢,, : n > 1} and obtain
{sn} as the successive maxima, i.e.,

sp=th =max{ty :0<k<n}, n>1, (4.19)

where t9p = 0. A similar result holds for ¢(¢). The following result closely
parallel Proposition 3.3.1.

Proposition 3.4.1. Suppose that ¢1, ¢o € A(R}) and 0 < XA < 0. If
é1(tn)/p2(n) = A7t as n — oo, then ¢1(sp)/P2(n) = At asn — oo for sy

in (4.19).



62 CHAPTER 3. PRESERVATION OF POINTWISE CONVERGENCE

Proof. First assume that 0 < A < oco. Given the assumed convergence,
for all € > 0, there is an ng such that

¢1 " (p2(n) /A1 +€)) <t < ¢7H(d2(n)/A(1 —¢)) forall n>ny,
which implies
¢1 " (¢2(n)/A(1+€)) < sp < max{sn,, ¢7 " (¢2(n)/A(1—€))} forall n > no.
Let ny be such that
¢1 " (P2(n)/A(L —€)) > sng -
Then, for all n > ny,

1 (;Sl(sn) 1
NI+ = doln) S Mi—e)

which implies the conclusion. For A = 0 and A = oo use associated one-sided
inequalities. =

3.5. Counting Functions with Centering

We now turn to counting functions with centering. Due to the results for the
inverse map with centering in Section 13.7 of the book, Theorem 13.8.2 in
the book yields FCLTs for stochastic counting processes with centering given
FCLTs for associated sequences of nondecreasing nonnegative random vari-
ables with centering, by an application of the continuous mapping theorem.
We now show that we can also exploit the monotonicity to obtain ordinary
CLTs for stochastic counting processes from associated ordinary CLTs for
sequences of nondecreasing nonnegative random variables. The resulting
CLT for stochastic counting process is the same as can be obtained from the
FCLT by projection, but the condition is weaker. In both cases, we rely on
an existing limit rather than specific stochastic assumptions. For this pur-
pose, let {S, : n > 0} be a sequence of nondecreasing nonnegative random
variables with Sy = 0 and let {C(¢) : ¢t > 0} be the associated stochastic
counting process, defined as before by

C(t)=max{k>0:S,<t}, t>0. (5.1)

We again use regularly varying functions.
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Theorem 3.5.1. (CLT equivalence) Suppose that m > 0 and 9 € R(p) for
0<p<1. Then

Pp(n) Sy —mm]=L in R as n— oo, (5.2)

where {Sp, : n > 0} is a sequence of nondecreasing nonnegative random
variables with Sy = 0 if and only if

YO —m ] = —m L in R as n— oo, (5.3)
where {C(t) : t > 0} is the associated stochastic counting process.

We obtain Theorem 3.5.1 from a more general theorem which allows
more general scalings, which are of value when analyzing nonstationary point
processes.

Theorem 3.5.2. (CLT implications with more general scaling functions)
Suppose that ¢1, ¢ € ARy ), ¢ € C4 and

Y)Yt +zp(t) -1 as t— (5.4)

for all .

(a) If

X(t) = () [g2(CM) —41(t)] > L in R as n—oo, (55)
then

Y (n) = ¢(¢2(n)) " [$1(Sn) — ¢2(n)] = ~L in R as n—oo. (5.6)

(b) If (5.6) above holds, then there exists an increasing sequence of posi-
tive real numbers {t,, : n > 1} with t,, — co as n — oo such that X (t,) = L
for X(t) in (5.5) above.

(¢) If, in addition to (5.6) above,

[p2(n+ 1) — ¢2(n)]/¢(p2(n)) =1 as n— o0 (5.7)

and

P($a(n +1))/P(¢2(n)) =1 as n— oo, (5.8)
then (5.5) above holds.

We first apply Theorem 3.5.2 to prove Theorem 3.5.1.
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Proof of Theorem 3.5.1. We apply Theorem 3.5.2 with ¢,(t) = mit,
¢2(t) =t and 1 € R(p) for 0 < p < 1. It is easy to see that 1) satisfies (5.4):
For any z, there is a ty such that

P((1 = e)t) <Pt +a1p(t)) < p((1 = e)t) (5.9)
for all ¢ > t¢, from which it follows that
1’ (1) 1\’
(i) <wotom < (=) (>:10)

for all suitably large t. We also apply the regular variation property to
deduce that (¢ (t)) in (5.5) has the asymptotic form

P(P1(t)) = Y(mt) ~mPp(t) as t— oo . (5.11)

Thus (5.2) is equivalent to (5.6) with the limit in (5.2) changed to m?”L.
Similarly, (5.3) is equivalent to (5.5) with the limit in (5.3) changed to
—m™!L. Thus the form of the limits in (5.2) and (5.3) follow from (5.5) and
(5.6). Finally, it remains to observe that the assumptions in Theorem 3.5.1
imply that conditions (5.7) and (5.8) hold. =

We now turn to the proof of Theorem 3.5.2. For that purpose, we use a
basic lemma about cumulative distribution functions (cdf’s).

Lemma 3.5.1. Let F,,, n > 0, be cdf’s. The following are equivalent:

(i) For each t € Disc(Fy)¢, Fy(tn) — Fo(t) as n — oo for some sequence
{tn : m > 1} with t,, — t.

(ii) F, = Fy; i.e., for each t € Disc(Fy)¢, F,(t) = Fo(t) as n — oo.

(i7i) For each t € Disc(Fy)¢ and all sequences {t, : n > 1} with t,, — t
as n — oo, Fy(ty) — Fy(t) as n — oc.

Proof. Clearly (iii)—(ii)—(i), so it suffices to show that (i)—(iii). Let
t € Disc(Fp)¢. Then, for any € > 0, there exists § > 0 such that

F()(t) —e< F()(t — 6) < F()(t) < F()(t + 6) < F()(t) + €. (5.12)

Since Fj is nondecreasing, it has at most countably many discontinuities.
Let ¢/, t" € Disc(Fp)© be such that t — ¢ < t' <t <t < t+ 4. Given
(i), there exist sequences {t/, : n > 1} and {t! : n > 1} such that ¢, — ¢/,
tr — ", F,(th) — Fo(t') and F,(t!) — Fo(t") as n — oo. Let {t, : n > 1}
be any sequence such that ¢, — ¢ as n — oo. Hence, there is an ng such
that

Fo(t —68) < Fp(ty) < Fp(ty) < Fu(th) < Fo(t + ) (5.13)
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for all n > ng. Combining (5.12) and (5.13), we see that
Fo(t) — e < Fp(tn) < Fo(t) +€. = (5.14)

Proof of Theorem 3.5.2. (a) Suppose that (5.5) holds. Then
Fi(z—)=P(X(t)<z) > P(L<z)=F(z) as t— 0 (5.15)
for each z € Disc(F)¢. However,
Fy(z—) = P(¢2(C(t) < $1(t) + z9(41(2)))
= P(C(t) < ¢3 " (1(2) + 2((1)))
so that, by Lemma 3.4.1, Fy(z) = P(Sy(; > t) for any ¢ such that

n(t) = d3 ' (41(t) + 29p(41(2))) (5.16)

is an integer. For such ¢,

Fy(z=) = P((¢2(n(t)) " [$1(Snr) — P2(n(t)] > —z(t)) (5.17)

where

z(t) = —[¢1(t) — d2(n(2))]/9(¢2(n(?)))
= ap(d1(8)/P(¢1 (1) +29p(¢1(2))) > & as t—=o00 (5.18)
by (5.16) and (5.4). Note that, for each positive integer n, we can find %,

such that n(t,) = n, because ¢, ¢ and 1) are nondecreasing and continuous,
and n(t) — oo as t — oco. Hence

Gn(zn) = P(9($2(n)) " [$1(S) — $2(n)] < zn) = Fy, (zn) (5.19)

where =, = z(t,) = = as n — oo. Since z € Disc(F)¢, Fy, (z,) — F(z) as
n — co. By Lemma 3.5.1, G, = F, so that Y(n) = —L.
(b) Let the cdf G, be defined by (5.19). Then

Gu(x) = P(Sn > ¢1 " (¢2(n) — 23($2(n)))) = P(A(ta) < n)
for
tn = ¢1 " (¢2(n) — 2(g2(n))) (5-20)
by Lemma 3.4.1. Thus, for F; in (5.15) and t, in (5.20), Fy, (z,—) = Gp(z)
for
Tn = [$2(n) — d1(tn)]/¥(1(tn))
= atp(da(n))/P(¢2(n) — z9p(d2(n)) > = as n—oo (5.21)
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by (5.20) and (5.4). Hence, if G,(z) — F(z) for x € Disc(F)¢, then
F;, (zn) = F(z) as n — oo. By Lemma 3.5.1, F; = F, so that X(¢,) = L.

(c) For any ¢, let n be such that ¢, < ¢t < t,41 for ¢, in (5.20). Since
C(t,) < C(t) < C(tp=1), it suffices to show that C(t,) and C(t,+1) have
the same limits with the normalization. It suffices to show that

$($1(tn1)) " [B2(C(tn)) — b1 (tns1)] = L, (5.22)
which in turn holds if

(1 (tn1)) /(1 (tn)) = 1 (5.23)

and
[f1(tnt1) — @1(tn)] /(1 (tn)) = as n— o0. (5.24)

By (5.4) and (5.20), (5.23) is equivalent to (5.8). By (5.20) and (5.23),
(5.24) is equivalent to (5.7): Applying (5.20) and dividing numerator and
denominator by ¥ (¢2(n)), we see that (5.21) becomes A,, /By, where

Bn = (¢2(n) — z¢(¢2(n))) /¢(¢2(n)) > 1 as n— oo (5.25)
by (5.4) and
An = [pa(n+ 1) — zp(d2(n + 1)) — da(n) + z¢p(¢2(n)]/¢(¢2(n))  (5.26)
by (5.8) and (5.7). =

Example 3.5.1. It is possible that only subsequences converge. To see that
we can have X (t,) = L as n — oo in Theorem 3.5.2 (b) without X (¢) = L
as t — oo for X (t) in (5.5), let ¢ () = ¢, ¢2(t) = t2 and 9 (t) =1 for ¢t > 0.
Then (5.4) and (5.8) hold, but (5.7) does not:

Po(n+1) —do(n)  (n+1)? —n?

G () = 3 —0. (5.27)
Let P(L =0) =1 and let S,, = n?, so that
PY(2(n)) Hp1(Sn) — 2(n)] =0=—~L w.p.1 for all n. (5.28)
However, C(t) = /[t] and ¢o(C(t)) = [t], so that
P(d1 (1) [B2(C(1) — p1 ()] = [¢) — 1, (5.29)

from which we see that

lim X(¢)=-1<0= lim X(#)

t—o0 t—o0

for X(¢) in (5.5). =



3.5. COUNTING FUNCTIONS WITH CENTERING 67

A major theme here is obtaining probabilistic limits directly from deter-
ministic limits. Thus it is natural to ask if there is a deterministic analog
of Theorem 3.5.2 that implies Theorem 3.5.2. We show that there is. In
particular, the following result implies parts (a) and (c) of Theorem 3.5.2.

Theorem 3.5.3. (deterministic analog of Theorem 3.5.2) Let ¢1, ¢o €
A(Ry) and let ¥ be a continuous positive real-valued function on [0,00)
for which (5.4) holds

(a) If

() = (1) ba(e(t) — ()] @ in R as t—oo, (5.30)
then

y(n) = P($a(n)) ' [¢1(sn) — d2(n)] = —a in R as n—oo. (5.31)

. (b) If, in addition to (5.31) here, (5.7) and (5.8) above hold, then (5.30)
here holds.

Proof. (a) If (5.30) holds, then for all ¢ > 0 there exists ¢y such that
a—e<z(t) <a+eforall t >ty. Given that z(t) < a + ¢,

$3 1 (1(8) + (@ — €)p(¢1 (1) < c(t) < by (1 (D) + (@ + (A1 (1)) - (5.32)
Let ¢ be such that
n(t) = g3 (d1(t) + (@ + )y(¢1 (1)) (5.33)
is an integer. By Lemma 3.4.1,
Sn(t) >t - (5.34)
Given (5.34),
y(n(t)) = (2 (n(1)) ' [$1(sn(r) — $2(n(1))] > —a(t) (5.35)
where

o(t) $1(t) — ¢a(n(t)) —(a+ €)pp(d1(2))

= - —(a+e€) (5.36
PEm®) 0+t opie@) | B39
by (5.4), so that y(n(t)) > —(a + 2¢) for all ¢ > ¢; > . Since for each
positive integer n, we can find ¢ such that n(t) = n, there is an ng such that
y(n) > —(a + 2¢) for all n > ny. Similarly, from the lower bound in (5.32),
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we can conclude that y(t) < —(a — 2¢) for all n > n;. Since € was arbitrary,
the proof is complete.

(b) For any € > 0, there exists ng such that —a —e < y(n) < —a + € for
n > ng. As a consequence,

1 (d2(n) — (a+€)p(¢2(n)) < sn < d1*($2(n) — (@ — e)(¢2(n))) (5.37)

for all n > ng. Now let

tn = ¢7 " (d2(n) — (o — )ip(g2(n))) - (5.38)

By Lemma 3.4.1,
c(tn) >n (5.39)

and

¢2(c(tn)) — ¢1(tn)
P(d1(tn))
s $2(n) — ¢i(tn)
B 1/)(¢1 (tn))
(a — €)1h(¢2(n))
P(p2(n) — (= €)p(h2(n)))

for n > n1 > ng by (5.4). We now want to show that there is ¢y such that
z(t) > a — 3¢ for all t > ty. Consider t with ¢, <t < t,+1. Notice that

> o — 2 (5.40)

$2(c(tn)) — d1(tns1) < da(c(t)) — ¢1(2) < da(cltni1)) — ¢1(tn)) . (5.41)
Since (5.41) holds, (5.40), (5.7) and (5.8) imply that there is ¢y such that
z(t) > a — 3e for t > . Similarly, using the lower bound in (5.37), we can

deduce that for any € > 0 there exists ¢y such that z(t) < a + 3e for ¢ > to.
Since € was arbitrary, the proof is complete. =

3.6. Composition
We now turn to the composition map. We first state a preliminary lemma.
Lemma 3.6.1. If ¢ € R(p) with p > 0, and t~%y(t) — u > 0, then

o(y(£))/¢(@?) = P as t— 0. (6.1)
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Proof. For any € > 0, there is ¢y such that t9(u —€) < y(t) < t9(u + €).
Since ¢ is regularly varying with index p,

Bt . Pt e)
) R S (7)

<(u+ep

and

Proposition 3.6.1. Suppose that ¢ € R(p) with p > 0. If

) Xt)=>U and t7Y({t)=>pu in R, (6.2)
then

o)X (Y(t) = pPU in R. (6.3)
Proof. Since the limit g4 in (6.2) is deterministic, we have the joint limit
()" X(1),t7'Y (t) = (Uyp) in R?. (6.4)
Use the Skorohod representation theorem to replace convergence in distri-
bution in (6.4) with convergence w.p.1 (for special versions). By Lemma

3.6.1, p(Y'(1))/¢(t) — uP. Then

X(Y(1)  H¥(1) X (D)
o - e s MU (6.5)

Finally, (6.5) implies (6.3). =

Proposition 3.6.2. Suppose that ¢ € R(p) with 0 <p < 1. If
d) X () — M, Y () —pt] = (U, V) in R (6.6)

then
d®)TUX(Y (1) — Mut] = pPU + XV in R?. (6.7)
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Proof. From (6.6) the regular variation condition, we have t 'Y (t) = u
and ¢(Y (t))/¢(t) — pP as t — oo. Now replace convergence in distribution
by convergence w.p.1 for special versions. Then

(Y (1) X(Y(1) =AY (#)  AV(F) — Aut
¢(t) P(Y (2) ¢(t)

which implies (6.7). =

There are two difficulties with Propositions (3.6.1) and (3.6.2) for ap-
plications. An obvious difficulty is that we may actually need the stronger
conclusions giving limits in D in applications. The other difficulty is that
it may be difficult to obtain the conditions. The joint limit in (6.6) holds if
the component limits hold in R when X (¢) and Y (¢) are independent, but
in most applications X (¢) and Y (¢) are actually dependent. A critical step
then is to establish condition (6.6).

To illustrate, we may start with the sequence {(A,,B,) : n > 1} of
ordered pairs of nonnegative random variables. We may be able to determine
that

— pPU + AV w.p.last— oo,
(6.8)

é(n) A, —n\ B, —np~ = (U,V') as n—oo in R (6.9
and be interested in the asymptotic behavior of A¢(y), where
C(t) =max{k>1:Bp<t}, t>0. (6.10)
From the second component of (6.9), we can determine that
B(t) O ) — pt] = —pHV (6.11)

from Theorem 3.5.1. However, we have difficulty directly expressing the
joint limits of

d(n) (A, —nX) as n—oo and H(t)7C(t) —ut] as t— oco.
(6.12)
The extension of (6.9) in D offers a resolution. We can hopefully extend
(6.9) to

(A,,B,) = (U,V) in D? (6.13)
where
An(t) = ¢(n) ' [Apy — Ant]
B,(t) = ¢(n) '[Bpuy —p 'ni
(u@),va) £ @, v). (6.14)
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From (6.13), we can get
(An,Bn,Cp) = (U, V,— iV o e) (6.15)

where

C.(t) = ¢(n)~L[C(nt) — unt] . (6.16)

We can then apply the composition map in D. In particular, letting

®,(t) =n"'C(nt) (6.17)
and
Xn = ¢(n)71[AC(nt) - A/,L’I’Lt] ’ (618)
we obtain
X,=A,0o®,+uC,=>Uole+uC in D (6.19)

under regularity conditions, by Theorem 13.3.2 in the book. As a conse-
quence,

¢(n) Acm) — Aun] = U(A) + uC(1) in R, (6.20)

assuming that P(1 € Disc(U o de + uC)) = 0.
Alternative approaches have been developed for dealing with this prob-
lem directly, starting with the Anscombe (1952, 1953) condition, see Gut

(1988), but those conditions are essentially equivalent to A, = U with
P(UeC)=1.

3.7. Chapter Notes

The main results in this chapter are so basic that they no doubt have a long
history, but we are unable to trace that history beyond our own work. Much
related material, with emphasis on the classical case of partial sums of i.i.d.
random variables, appears in Gut (1988).

We have primarily drawn upon Glynn and Whitt (1986, 1988) and
Massey and Whitt (1994). Those papers contain further applications to
queues related to the conservation law L = AW. El-Taha and Stidham
(1999) is closely related from that perspective. El-Taha and Stidham demon-
strate the far-reaching implications possible from pointwise limits for single
functions (sample-path analysis). Baccelli and Bremaud (1994) provide an
alternative treatment of many of the same topics in the context of stationary
processes. An overview of L = AW appears in Whitt (1991, 1992).
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The strengthening of pointwise convergence to uniform convergence in
Theorem 3.2.1 extends Theorem 4 of Glynn and Whitt (1988), which was
in the form of Corollary 3.2.1. For the case ¢(t) = t, Proposition 3.3.1 is
implication (iii)—(v) in Theorem 2(b) of Glynn and Whitt (1986). The
more general version appears in Section 2.5 of El-Taha and Stidham (1999).

Theorem 3.5.1 here extends Theorem 4.2 of Massey and Whitt (1994)
by allowing the space scaling function i to be regularly varying instead of
a simple power. Lemma 3.5.1 is an improved statement of Lemma 4.1 of
Massey and Whitt (1994). The deterministic basis for Theorem 3.5.2 in
Theorem 3.5.3 is new here.

An extensive treatment of the composition map and convergence in dis-
tribution under a random time change appears in Gut (1988). The first few
sections there provide useful perspective. A related result is the conservation

law Y = AX in El-Taha and Stidham (1999).



Chapter 4

An Application to Simulation

4.1. Introduction

In Sections 5.9 and 10.4.4 of the book we showed how heavy-traffic stochastic-
process limits for queues can be used to help plan queueing simulations. In
this chapter we discuss another application of stochastic-process limits to
simulation. We draw on Glynn and Whitt (1992a). In Section 4.2 we show
how stochastic-process limits and the continuous-mapping approach can be
used to determine general criteria for sequential stopping rules to be asymp-
totically valid.

Yet another application of stochastic-process limits and the continuous-
mapping approach to simulation is contained in Glynn and Whitt (1992b).
Glynn and Whitt (1992b) shows how stochastic-process limits and the continuous-
mapping approach can be exploited to determine the asymptotic efficiency
of simulation estimators. These two applications can be applied to queueing
simulations, but they are not limited to queueing simulations.

4.2. Sequential Stopping Rules for Simulations

In this section, following Glynn and Whitt (1992a), we show how FCLTs
and the continuous-mapping approach can be used to establish general con-
ditions for the asymptotic validity of sequential stopping rules for stochastic
simulations. The general conditions are expressed in terms of FCLTs and
FWLLNs. The conditions allow the possibility of limit processes with dis-
continuous sample paths, but usually the limit process will be related to

73
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Brownian motion, and thus have continuous sample paths. We use the com-
position and inverse maps to demonstrate the asymptotic validity.

The goal is to estimate a deterministic parameter o € R¥. We start with
an RF-valued stochastic process Y = {Y'(t) : t > 0} called the estimation
process. We think of Y (¢) as being the estimate of « based on a simula-
tion with runlength t. The results also apply to statistical estimation more
generally, but we are especially concerned with simulation.

With simulation, a common problem is to estimate a steady-state mean
vector .. The simulation may be used to generate a stochastic process X =
{X(t) : t > 0}, where X (t) = X(oco) in R* as t — co. We may then want
to estimate the steady-state mean a = EX(c0) = [EX'(0),..., EX*(c0)]
by the sample mean

Y(t)=t! /tX(s)ds, t>0. (2.1)
0

That is a common way for the estimation process Y to arise, but not the
only way.

The simulator must select a runlength ¢. The runlength can be selected
either in advance or sequentially while the simulation is in process. The
principal disadvantage of selecting the runlength in advance is that the pos-
terior precision of the estimator may not be appropriate. Since the volume
of the confidence set (the width of a confidence interval in one dimension)
is unknown in advance, the volume may be too large to be of practical
use (meaning that the preassigned runlength was too small) or too small
(meaning that computational resources were wasted in refining the estima-
tor beyond the level of accuracy required).

We are interested in sequential procedures in which we let the simulation
run until the volume of a confidence set achieves a prescribed value. That
avoids the problems associated with preassigned runlengths, but new diffi-
culties are introduced because the runlength is now randomly determined.
The first difficulty is that we no longer have direct control of the amount of
simulation time to be generated or the amount of computer time to be ex-
pended. Consequently, the runlength may turn out to be much longer than
we want. On the other hand, it is possible that the runlength may turn
out to be inappropriately short. This creates certain statistical difficulties
that can compromise the accuracy of such procedures. For example, it is
known that in many statistical settings, the point estimator and the variance
estimator are positvely correlated. Since the volume of a confidence set is
typially determined by the variance estimator, this suggests that the confi-
dence set volume will tend to be small when the point estimator is small.
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Consequently, the resulting sequential procedure will tend to terminate early
in situations in which the point estimator is too small, leading to possibly
significant coverage problems for the confidence sets. Nevertheless, sequen-
tial stopping rules are of interest because of the possiblity of automatically
obtaining prescribed precision.

Various sequential stopping rules for simulation estimators have been
proposed and investigated empirically. Among these are sequential proce-
dures involving: batch means in Law and Carson (1979) and Law and Kelton
(1982), regenerative simulation in Fishman (1977) and Lavenberg and Sauer
(1977) and spectral methods in Heidelberger and Welch (1981a, b, 1983); see
pages 81, 92, 97 and 103 of Bratley, Fox and Schrage (1987) for an overview.
Unfortunately, however, the empirical evidence is not entirely encouraging.
Evidently, care must be taken in the design and implementation of sequen-
tial procedures to avoid inappropriate early termination. On the positive
side, the sequential procedures do tend to perform well when the run lengths
are relatively long, which is achieved in part by having a suitably small pre-
cribed volume for the confidence set. The observed good performance with
small prescribed confidence set volumes is consistent with the asymptotic
theory to be developed below. The asymptotic theory for general simu-
lation estimators below is in turn consistent with the classical asymptotic
theory associated with the sample mean of i.i.d. random variables; we cite
references below.

4.2.1. The Mathematical Framework

To start, we assume that the estimation process Y satisfies a CLT, i.e.,
dB)[Y(t)—a]=>TL in RF as t— oo, (2.2)

where I is a nonsingular & x k scaling matrix and ¢(¢) is a real-valued scaling
function with ¢(t) — oo as t — co. The common case for ¢ is 4(t) = t'/2, in
which case the limit L in (2.2) typically is N (0, I), a standard normal random
vector with the identity matrix I as its covariance matrix, but we want to
allow for other possibilities. With heavy-tailed probability distributions or
long-range dependence, we might have ¢(t) = ¢” for v < 1/2 or, more
generally, ¢ regularly varying with index y. The treatment here generalizes
Glynn and Whitt (1992a) by allowing regularly varying scaling functions
instead of simple powers.
As a consequence of (2.2),

Y(t)=>a in R¥ as t—o0. (2.3)
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The limit (2.3) says that the estimation process is weakly consistent. Of
course, weak consistency is a minimal requirement.

We assume that the confidence sets are all based on a bounded measur-
able subset A of R¥ with m(A) > 0, where m is Lebesgue measure on R¥.
To obtain approximate 100(1 — §)% confidence sets for a, we assume that

P(LeA)=1-6 and P(L€dA) =0, (2.4)

where L is the limiting random variable in (2.2) and JA is the boundary of
the set A, i.e., 0A = A~ — A°, where A~ and A? are the closure and interior
of A. Given that we know A and T', we can let the confidence set be

Ct)=Y(t)—¢(t)TA, (2.5)
where
z+QA={z € R® : there exists y € A such that z = z + Qy}.

The confidence set C(t) in (2.5) clearly depends on t. When the runlength
t is specified in advance, the confidence set is asymptotically valid, in the
sense of the following proposition.

Proposition 4.2.1. If (2.2) and (2.4) hold, then
PlaeC(t) -1—-6 as t— oo

for C(t) in (2.5).

Proof. Since I' is nonsingular,
PlaeC(t)) = P(T™'o(t)(Y (1) —a) € 4)

but
I o) (Y(t) —a) =T 'TL=L as t— oo
by (2.2). Since (2.4) holds,
P '¢t)(Y(t) —a) € A) = P(LEA) =1—-6§ as t— oo

by Theorem 11.3.4 (v) in the book. =

Of course, in applications the scaling matrix I' is typically unknown, so
that it too must be estimated. We assume that there is an estimator I'(¢)
that is weakly consistent, i.e.,

I'(#)=T in R as t—o0. (2.6)
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Given an estimator I'(¢), t > 0, we can form approximate confidence sets
based on I'(t). For that purpose, let

Ct)=Y(t) —o(t)T(t)A . (2.7)
We now extend Proposition 4.2.1 to include I'(¢) instead of T'.

Proposition 4.2.2. If, in addition to the assumptions of Proposition 4.2.1
above, (2.6) holds, then

PlaeC(t) -1—-d as t— o0

for C(t) in (2.7).

Proof. By (2.2) above and Theorem 11.4.5 in the book,
(T(t),p(t)(Y(t) —a)) = (I',TL) as t— 0.

Then noting that matrix inversion is continuous at all nonsingular limits, we
can deduce that I'(¢) is nonsingular, and thus invertible, for all sufficiently
large ¢ and then apply the continuous mapping theorem to obtain

D) ') (Y(t) —a) = T7'TL as t— oco.

The rest of the proof is the same as the last part of the proof of Proposition
421. =
We now use the confidence set C(t) in (2.7) to define sequential stopping
rules. Recall that, for a generic (measurable) set B C R¥, m(B) denotes
the k-dimensional volume (Lebesgue measure) of the set. Of course, when
k =1 and B is an interval, m(B) is just the length of the interval. We first
consider the case in which the procedure terminates when the k' root of
the volume of the confidence region C(t) drops below a prescribed level e.
[Tt is natural to use the k' root, because m(cB)Y* = em(B)Y/* for a scalar
c.] We call such a procedure an absolute-precision sequential stopping rule.
For such a rule, the time T'(¢) at which the simulation terminates execution
is defined by
T(e) = inf{t > 0: m(C(t))/* < ¢} . (2.8)

Actually, this stopping rule needs to be modified, because T'(¢) in (2.8) can
terminate much too early if the estimator I'(¢) is badly behaved for small
t. To see this, suppose that P(I'(1) = 0, m(C(t)) =1,0<t<1)=1. In
this case, T'(€) = 1 for € < 1, so C(T'(¢)) = Y(1) for € < 1. Hence, in this
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example, P(a € C(T'(€))) = P(a = Y(1)) for € < 1. Hence convergence of
the coverage probability of the region C(T'(¢)) to the nominal level 1 — ¢
does not occur when we let € | 0.

In order for the asymptotic theory to be relevant to the sequential stop-
ping problem, it is necessary that T'(e¢) — oo as € | 0. In other words,
small values of the precision constant ¢ need to correspond to large val-
ues of simulation time. We can force the termination time to behave in
this way if we inflate the volume m(C(t)) slightly. Let a(t) be a strictly
positive function that decreases monotonically to 0 as ¢ — oo and satisfies
a(t) = o(¢(t)) as t — oo, where ¢ is the scaling function in the CLT
(2.2). Then set

Ti(€) = inf{t > 0: m(Ct)"* +a(t) < €}. (2.9)
Note that
Ti(e) >t1(e) =inf{t >0:a(t) <e} 00 as €elO0. (2.10)

Thus the early termination associated with T(e) in (2.8) is prevented by
incorporating the deterministic function a(t) in 77 (¢) in (2.9). For practical
purposes, it remains to determine appropriate functions a(t), though.

An alternative to the absolute-precision sequential stopping rule in (2.9)
is a relative-precision sequential stopping rule. The basic idea here is that
the simulation should terminate when the k'™ root of the volume of the
confidence region is less than an €' fraction of the norm of the parameter
a, denoted by |||, under the additional condition that ||| > 0. Since Y (¢)
is an estimator for «, this suggests replacing T} (¢) with

To(e) = inf{t > 0: m(C(1)* + a(t) < Y (@)|} . (2.11)

The question now is: When are these sequentially stopping rules asymp-
totically valid? That is, when can we conclude that

PlaeC(T(e))) >1—-36 as €l0 (2.12)

for T'(€) being T (€) in (2.9) or T5(e) in (2.11)7

It turns out that, unlike in Propositions 4.2.1 and 4.2.2, the assumed
convergence in (2.2) and (2.6) is not enough to achieve asymptotic validility
for the sequential stopping rules. That is for the same reason that CLTs
involving random time change require extra conditions. However, we do
obtain asymptotic validity if we replace the ordinary CLT in (2.2) by a
FCLT and if we replace the ordinary WLLN in (2.6) by a SLLN or FWLLN.
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(Recall that the SLLN implies a FSLLN by Corollary 3.2.1 in Chapter 3
here, which in turn implies a FWLLN, so that the SLLN is the stronger
condition.)

For that purpose, we form scaled processes indexed by € in the function
space D((0,00),RF). We work with time domain (0, o) instead of [0, c0) in
order to avoid having to deal with possible singularities in the estimation
process Y at the origin ¢t = 0. For example, such singularities occur in the
special case in (2.1). Recall that z,, — z in D((0, 00), R%) if the restrictions
converge in D([ty,11],R?) for all ty,t; with 0 <ty < t; < co.

Given the estimation process Y, the associated scaled estimation pro-
cesses are

Y (t) = 4 H[Y(t)e) —a], t>0. (2.13)

For the results below we need to assume that the scaling function ¢ in (2.13)
is regularly varying with index 7, denoted by ¢ € R(7); see Appendix A in
the book. We also assume that ¢ is a homeomorphism of RT, which implies
that ¢(0) = 0 and ¢ is strictly increasing.

4.2.2. The Absolute-Precision Sequential Estimator

We first state a result for the absolute-precision sequential estimator 77 (e)
in (2.9).

Theorem 4.2.1. Let D = D((0,00),R¥) be endowed with the W My or any
other Skorohod topology. Suppose that

Y.=TZ in D as €l0, (2.14)

for Y in (2.13), where (2.4) holds with L = Z(1), P(t € Disc(Z)) = 0
for all t, ¢ is a homeomorphism of Ry, ¢ € R(y) for v > 0, and T is
nonsingular. If, in addition,

T'(t) T wpl in R as t— oo, (2.15)
then ast — oo or as el 0
(a) $)[m(C(1)'/* + a(t)] = m(T AV wp.1,
(b) €d(Ti(e)) — m(TA)/* w.p.1,
(¢) e'm(C(Ti(e))* =1 wp.1,

(d) € Y (Ty(e)) — a] = m(TA)"Y*TZ(1) in RF,
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(e) P(aw € C(T1(€))) = 1 — ¢ (asymptotic validity).

In our proof of Theorem 4.2.1, we use the following lemma, which shows
the scaling implications for the limit process Z from having the FCLT in
(2.14) hold with the regularly varying scaling function ¢ in (2.13). The
result is a consequence of Theorem 5.2.1 in the book, but we give a direct
proof here.

Lemma 4.2.1. If the FCLT (2.14) holds with ¢ € R(y), v > 0, for ¢ in
(2.13), then

{Z(ct) : t >0} L {cZ(t) : ¢ > 0} (2.16)

for any ¢ > 0.

Proof. Note that Y.oce = Z oce as € | 0. On the other hand,

-1
Y. oce= %Ye/cic_7z as €l0, (2.17)

using the regular variation to get ¢(e=1)/¢p(c/et) — ¢ as € | 0 for every
¢ > 0; see Appendix A in the book. =

Proof of Theorem 4.2.1. (a) Let
V(t) =m(Ct)/* +a(t), t>0. (2.18)

By the spatial invariance and scaling properties of Lebesgue measure m on
RF,
m(CH))* = m(Y(t) - ¢(t)"'T(t)A)/*
m(=¢(t) 'T(#)4)/* = ¢(t) "m(T(1)A)/*. (2.19)

Since A is a bounded set, I'(¢) A is contained in a bounded set for all suffi-
ciently large t w.p.1. Thus, we can apply the bounded convergence theorem
to deduce that

m(D(t)A)* —» m(TA)Y* wplas t— 0. (2.20)

Since T is nonsingular, m(A) > 0 and a(t) = o(¢(t)"!) as t — oo, (2.18)
and (2.20) imply that

)V (t) » mTA)Y* >0 wplas t— oco. (2.21)
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(b) By the definition of T}(e) in (2.9), V(T1(e) — 1) > € and there exists a

random variable Z(e) with 0 < Z(e) < 1 such that V(Ti(e) + Z(e€)) < e.

(Note that V(¢) is not necessarily monotone.) By (2.21) and the fact that

Ti(e) = oo w.p.l as el 0,

lim sup e(T} (€)) < limsup ¢(T1(e))V (T1(e) — 1) = m(TA)V* wp.1
el0 €l0

(2.22)

and

lini inf (T3 (€)) > nm¢ inf $(T3(e))(V (T3 (€)) + Z()) = m(T AV w.p.l.

(2.23)

(c) Note that

m(C(T1(e))/* = ¢(T1(€)) " m(T (T1(€)) 4)/* (2.24)

and recall that m(T'(¢)A) — m(T'A) w.p.1 as t — oo, so that m(['(7T1(€)) —
m(TA) w.p.1 as € | 0. By (b), e 1¢(Ti(€)) — m(T'A) /%, Hence

e 'm(C(TO)NF = P(Ti(e) T m(T(T1(e)A)*
— m(CA) YEmTA)* =1 wpl as el (2-25)

(d) From the assumed FCLT (2.14), Z, = I'Z in D((0,00),M>) as € | 0,
where

Z(t) =Y p1e-1t) =€ "(Y(o (e ) —a), t>0. (2.26)
Now form the deterministic function
)
— . 2.2
vlt) = Gy 1>0 (227)

Since ¢ is a homeomorphism of R, , the inverse ¢! exists and is itself
an homeomorphism of R,. Moreover, since ¢ € R(7), o' € R(y~!) by
Theorem 1.5.12 of Bingham, Goldie and Tengels (1989). Hence

P, e/’ in D as €l0. (2.28)

We can apply the continuous-mapping theorem with the composition map
taking D x D into D with (2.26)—(2.28), using Theorem 13.2.3 in the book,
to conclude that

Z. =>TZoe'/ in (D,M,) as el 0, (2.29)
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where
ZL(t) = (Zeo ) (t) = € Y (¢ e ) —a), t>0. (2.30)
Finally, we can apply the continuous-mapping theorem with the composition
map taking D((0,00),R¥) x R into R*¥ with (2.30), invoking Proposition
13.2.1 in the book and part (b) here, to obtain
€Y (Ty(€) — ) = Z! (ed(T1(€)) = T'(Zoe/)(m(TA)V*) in RF, (2.31)
where
(Z o /7 (m(TA)/*¥) = Z(m(T A)/*) L m(T A)~*Z(1) (2.32)

by Lemma 4.2.1.
(e) Note that

P(a

m

C(T1(e) = P(Y (Ti(e) — o € §(T1(€)) "' T(T1(c))A)
= P(D(T1(e)) ™' ¢(T1(e))[Y1(T1(€)) — o] € A, det(T(T1(e)) # 0)
P(Y(T1(€)) — a € ¢(T1(€)) "' T(T1(€)) A; det(T(Ti(e)) = 0§2.33)

+

Since Ti(e) — oo w.p.l and I'({) — T w.p.1, where I' is nonsingular,
P(det(T'(T1(€))) = 0) — 0 as € } 0, so that the second term on the right in
(2.33) is negligible. On the other hand, for the first term,

L(T1(e)) "' $(T1(e))[Y (T1(€)) — @] = T(T1(e)) ™ eh(T1(e))e [V (T1(e) — o]
= I 'm(DA) Y m(CA)~VFIZ(1) = Z(1) (2.34)
by parts (b) and (d). Hence, combining (2.33) and (2.34), we get
Pla e C(Ti(e))) = P(Z(1) e A)=1—-9, (2.35)

because (2.4) holds with L = Z(1). =

4.2.3. The Relative-Precision Sequential Estimator

We now state the analogous result for the relative-precision sequential esti-
mator T5(e) in (2.11). Note that T5(e) behaves asymptotically like 77 (||||€),
as one would expect. In addition to the conditions in Theorem 4.2.2, we re-
quire that Y () - a w.p.1 as ¢ — oco. This is a reasonable condition, but it
does not follow form the FCLT (2.14).
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Theorem 4.2.2. In addition to the conditions of Theorem 4.2.1, suppose
that
Y(t) > a wpl in R as t— o0,

where ||a|| > 0. Then ast — oo and € = 0
(a) $()[m(C())'/* +a®)/IY @)l = el m(TA)/* w.p.1,
(0) e¢(Ta(e)) = llall tm(T A" wp.1,
(¢) e 'm(C(Ta(e))/* = |l wp.1,
(d) Y (T5(9) — o] = [lalm(TA)~/FTZ(1) in RE
(e) P(a € C(Tz(€))) — 1 — 6 (asymptotic validity).

Since the proof of Theorem 4.2.2 closely parallels the proof of Theorem
4.2.1, we omit the proof of Theorem 4.2.2.

4.2.4. Analogs Based on a FWLLN

There are analogs of Theorems 4.2.1 and 4.2.2, where the SLLN for I'(¢) in
(2.15) is replaced by the weaker condition of a FWLLN. The w.p.1 limits
in parts (a)—(c) of Theorems 4.2.1 and 4.2.2 are then replaced by FWLLNs
and the CLT in (d) becomes a FCLT. Since the two results are similar, we
only state the analog of Theorem 4.2.1.

Now we also generalize the framework by allowing a family of estimation
processes indexed by e. We start with processes {Y(¢) : ¢ > 0} and {T'(¢) :
t > 0} for each € > 0. Then instead of (2.7), (2.9) and (2.13), let

Ce(t) = Ye(t) — p(t)Le(t)A,
T = inf{t>0:m(C.(t)/* +a(t) < €},
Y (t) = (e DYi(t/e) —al, t>0. (236)

Then the limit will be for the following processes: For that purpose, we
define the following random elements of D:

T.(t) = Te(t/e), t>0,

Ul = ¢l Hm(Celt/e)*,

Ut = eni(l/tdle 1)),

Uh) = < 'm(CelTicle/H)",

Z(t) = e [YTicle/t) — . (2.37)
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Theorem 4.2.3. Let the topology on D be one of W My, SMy, WM, SM,
W Ji or SJi throughout. Suppose that the assumptions of Theorem 4.2.1
hold, except that (2.13) is replaced by (2.36) and condition (2.15) is replaced

by
I.=T1 in D¥ as €0, (2.38)

for T¢ in (2.37) and 1(t) = (1,...,1) for all t > 0. Then
(r,ul,u3,ud z,)= (I, ut, U2, U3, 2") in D™ as ¢lO,

(2.39)
for (UL, U2, U2, Z) in (2.37), where
U'(t) = t7'm(TA)YE, U%t) = t1/7(TA)/*
Us(t) = t' and Z'(t) = m(@A)VFTZ@E/) . (2.40)
Moreowver,
P(a € C(Tie(e))) = 1 — 0 (asymptotic validity) . (2.41)

In preparation for the proof of Theorem 4.2.3, we prove a lemma.

Lemma 4.2.2. If z; € D([a,b],R) for i = 1,2, where z1(t), z2(t) > ¢ >0
for all t, then
ly1 = goll < 72|21 — 22

for yi(t) = 1/xi(t), a <t <b.

Proof. Note that

_ @) —m @] 2y .
= @ Jwa(g)] = ¢ 1720 -

Corollary 4.2.1. If z; € D([a,b],R), z;i(t) > ¢ > 0, and y;(t) = 1/z;(t),
a<t<b,i=1,2 then

d(y1,y2) < (¢ V 1)d(z1,z2)

ly1(t) — ya(?)]

where d is one of the Ji, M1 or My metrics.

Proof. To illustrate, we do the J; case:
—  inf _ _
d(y1,y2) fnf{llyr —y2 o AV [[A —el}}

. f —2 . -
inf {2z — 22 0 A V A = ell}

IN

IN

(c2Vv1)d(zy,z2) . =
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Proof of Theorem 4.2.3. First since the limit I'1 in (2.38) is determin-
istic, the two limits in (2.38) and (2.14) hold jointly (where Y, is defined
by (2.36) instead of (2.13)), by virtue of Theorem 11.4.5 in the book. Given
those limits, we can apply the Skorohod representation theorem, as e¢ | 0
through an arbitrary sequence, to replace the convergence in distribution by
special versions converging w.p.1. Let the special versions be represented by
the same notation. Since 1 € C, the convergence T'¢ — I'1 in D((0, 00), RY)
is equivalent to uniform convergence over bounded intervals. Then, as in
the proof of Theorem 4.2.1 (a), apply the bounded convergence theorem to
get m(T(t/€) A)YF — m(TA)/* w.p.1 uniformly for t € [to,t1] for any #o, 1
with 0 < t9 < #1 < oo. This yields w.p.1 convergence in D((0,00),R) for the
special versions. Since ¢(t/€) a (t/e) — 0 as € | 0 uniformly in ¢ for ¢ > ¢,
we obtain

P(t/e)Ve(t/e) = m(TA)Y* as €l0 (2.42)

uniformly in [tg,#;] for the special versions. Since a(t/e) = o(¢p(t/e)71),
(2.42) implies that
B(t/)m(Ce(t/e)/* - m(TA)YE as €—0 (2.43)
uniformly in [to,;]. However, since ¢ € R(7), ¢(e71)/d(t/e) =t as e 0
uniformly on [tg,¢1], by Theorem A.5 in Appendix A of the book. Thus,
(e )Ve(t/e) = t™Tm(TA)/* (2.44)
and
(e Hm(Ce(t/e))M* -t ImT AV, as €0 (2.45)

uniformly in [to,¢1], again for the special versions, which implies the FCLT
conclusion for Ul in D((0,00),R). Turning to U2, we will show for the
special versions that

eTic(1/tp(e™t)) = inf{s >0: (e )Vi(s/e) <t '}
= inf{s>0:¢(e )V (s/e)"! >t}
inf{s > 0: s"m(CA)~Y* > ¢}
= YT (TA)V* (2.46)

1

uniformly in [tg,?1]. In the first line of (2.46), without loss of generality,
we can replace ¢(e"1)Vc(s/e) by max{¢(e~1)Vc(s/e), (2t1)~'}. Then we can
invoke Corollary 4.2.1 above to show that the third line follows from (2.44).
For U2, apply the continuous-mapping theorem with the composition map,
using Theorem 13.2.3 in the book and (2.43) and (2.46) here, to get

</f>((-:_1)m(C’€(T1€(1/1&(1)(6_1))))1/’c -t as €e—0 (2.47)
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uniformly in [tg,¢;] or, equivalently,
e m(Ce(Tre(e/)))*F 5171 as e—0 (2.48)

uniformly in [¢p,¢1]. Next, for Z., apply the composition map again with
the FCLT in (2.14) and the limit for U? in (2.48) and part (b) to get

Zye1)-1 = Z in D((0,00),RF) as €0 (2.49)

where
Z'(t) = TZ(tY/"m(TCA)Y %) £ (T A) VT Z )

and the topology is the same as for (2.14). Clearly, Z, — Z' in D((0, 00), R¥)
as well. Finally, for (2.41), apply the projection map for ¢ = 1 with the result
Z. — Z' just established. Then use the argument for Theorem 4.2.1 (). =

4.2.5. Examples

We conclude this section by giving several examples. We illustrate how the
theorems can be applied by discussing a few specific estimation settings.
These examples show that FCLT requirement for the estimation process
Y in (2.14) is a mild hypothesis that is satisfied in virtually all practical
contexts. However, some work may be required to establish the SLLN or
FWLLN for the estimators I'(¢) of the scaling matrix I'. Our last example
shows that we cannot instead use weak consistency of I'(¢).

Example 4.2.1. (Sample mean of IID random variables). Suppose that «
can be represented as &« = EX for some real-valued r.v. X. For example,
a might correspond to the expected number of customers served in a queue
over the time interval [0,7]. Then « can be estimated by generating i.i.d.

replicates X1, Xo,... of the r.v. X; the resulting estimator for « is then
the sample mean X,, = n ! » 1 Xi. The corresponding estimation process

is Y (t) = X|;), where [t] is the greatest integer less than ¢ and Xy = 0.
If EX? < oo, then Donsker’s theorem, Theorem 4.3.2 in the book, asserts
that the FCLT in (2.14) holds with ¢(e~') = ¢~ /? in (2.13), T’ = o, where
0% = var X, and Z(t) = B(t)/t, where B is Brownian motion. Note that
Z(1) =4 N(0,1). The typical choice for the set A in this setting is the interval
[—2(6), z(8)], where z(6) is chosen to satisfy P(N(0,1) < z(6)} = 1—4§/2.
Of course, it is well known that

1 _
r, = Z(XZ - X,)? — 0o w.p.las n— 0. (2.50)
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Suppose that 02 > 0. Setting ['(t) = T4}, we have the strong consistency re-
quired by Theorems 4.2.1 and 4.2.2. Hence both the absolute-precision and
relative-precision stopping rules T} (e) and T»(e€) are asymptotically valid for
this example when the precision-constant € shrinks to 0. In this setting, The-
orems 4.2.1 and 4.2.2 reproduce the classical results of Chow and Robbins
(1965), Starr (1966) and Nadas (1969); see Chapter 7 of Siegmund (1985)
and Section 8.8 of Wetherill and Glazebrook (1986). (See Anscombe (1952,
1953) for related earlier work.) Implementation considerations are discussed
in Law, Kelton and Koenig (1981).

Example 4.2.2. (The sample mean of IID random vectors). Now we con-
sider the case in which a can be represented as a = EX, where X is
RF-valued. Assume that E|X||> < co. As in Example 4.2.1, we can es-
timate o via the sample mean X, = n™1Y " | X;, where X,’s are i.i.d.
copies of X. Setting Y'(t) = X|;, we obtain the FCLT (2.14) from the
k-dimensional version of Donsker’s theorem, Theorem 4.3.5 in the book,
where now Z(t) = B(t)/t, B is k-dimensional standard Brownian motion
(composed of k independent one-dimensional standard Brownian motions)
and I'T? is the covariance matrix C' of X. We assume that C is positive
definite. Note that Z(1) = B(1) =4 N(0,1I), where I is the identity ma-
trix. In this k-dimensional setting, we can assume that A is the k-sphere
{z: ||z|]| < w(d)}, where w(d) is chosen so that

P{IN(,D)|I* < w?(9)} = P{X; <w?(8)} =1-10, (2.51)
with X,? being a chi-squared r.v. with k degrees of freedom. Let
1 n
Cn =~ > XX} - X, X, (2.52)
i=1

(writing all k-vectors as column vectors). Then C, — C a.s. as n — 0.
Let T',, be obtained by taking the Cholesky factorization of C,, so that
[, is a lower triangular matrix such that C,, = T',[',; see pages 164 and
165 of Bratley, Fox and Schrage (1987). It follows that I', — I’ w.p.1 as
n — 00, since Cholesky factors are continuous at positive definite matrices.
Setting I'(t) = I'|¢|, we again have the strong consistency required by Tho-
erems 4.2.1 and 4.2.2. Thus we have proved that the absolute-precision and
relative-precision stopping rules T} (e) and T»(e€) are asymptotically valid for
sequential stopping of multiple performance measure stochastic simulations.
In this setting, Theorems 4.2.1 and 4.2.2 reproduce results by Gleser (1965),
Albert (1966) and Srivastava (1967); see Section 5.5 of Govindarajulu (1987).
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Example 4.2.3. (Functions of sample means). Let X be an RF-valued
random vector and let 4 = EX. Suppose that « can be represented as
a = g(p) for some (known) real-valued function g : R¥ — R. An example
of this occurs in the ratio estimation setting, in which k£ = 2 and g(z,y) =
z/y. Because the steady state of a regenerative stochastic process can be
expressed as a ratio of two means, this estimation setting subsumes that
of regenerative steady-state simulation. Of course, this observation lies at
the heart of the regenerative method of steady-state simulation; see, for
example, Crane and Lemoine (1977).

In this nonlinear setting, we estimate o via Y (t) = g(X ;) ), where X;; are
i.i.d. random vectors as in Example 4.2.2. Suppose that E||X||?> < oo and
that g is continuously differentiable in a neighborhood of y. In addition, we
require that Vg(u) # 0 and that the covariance matrix C' of X is positive
definite. Then Theorem 3 of Glynn and Whitt (1992b) implies that the
FCLT in (2.14) holds with ¢(¢™!) = e71/2) Z(t) = B(t)/t and T = ¢ as in
Example 4.2.1, but with

o = (Vg(u)'CVyg(u)'/* .
Let C), be defined as in Example 4.2.2 and note that
[Vg(Y (t))'Cyy V(Y (t)]Y/? - o wp.last — co.

Hence we have the strong consistency required for the application of Tho-
erems 4.2.1 and 4.2.2. As a consequence, we are assured that the stopping
rules 7T (e) and T»(e) are again asymptotically valid in this estimation set-
ting. In particular, in the regenerative simulation setting, we recover the
asymptotic theory developed by Lavenberg and Sauer (1977).

Example 4.2.4. (The jackknife). Consider the estimation problem of Ex-
ample 4.2.3 in which our goal is to estimate @ = g(u), where u can be
expressed as ¢ = EX and g is real-valued. One practical difficulty with
the estimator suggested in Example 4.2.3 is that it tends to be significantly
affected by bias problems induced by the presence of the nonlinearity in g.
One way to address the small-sample bias problem that this nonlinearity

creates is to jackknife the estimator. Specifically, let a(n) = g(X,,) and, for
1<i<n,let

_ 1 & _
Xin = ZXj, ai(n) = g(Xin) ,
Jj=1

n—14%
J#i
ai(n) = na(n)—(n—1)ai(n) . (2.53)
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Then the estimator Y,, = n=! 3" | &(n) is the jackknife estimator of c.
Let Y(t) = Y|;. It is shown in Glynn and Heidelberger (1989) that if
E| X|> < oo and g is twice continuously differentiable in a neighborhood
of u, then the FCLT in (2.14) holds where o and Z(t) are as in Example
4.2.3. Since the form of the FCLT is the same as for Example 4.2.3, the
jackknife has the same asymptotic efficiency as the estimator of Example
4.2.3. However, as argued in Miller (1964, 1974), the jackknife estimator
typically possesses superior small-sample bias properties.

Two estimators for the scaling constant o = [Vg(r)!CVg(u)]'/? are pos-
sible. One approach is to use the estimator o (t) = [Vg(Y (£))*C|y Vg (Y (t))]'/?
suggested in Example 4.2.3. Theorem 4(i) of Glynn and Heidelberger (1989)
shows that Y (f) — a w.p.1 as ¢ — oo, under the conditions stated here.
Since C,, — C w.p.1, it follows that o(t) — o w.p.1 as ¢t — oo. Hence
sequential stopping procedures based on the jackknife point estimator and
the “variance” estimator o?(t) are asymptotically valid by Theorems 4.2.1
and 4.2.2, provided that o2 > 0.

An alternative estimator for the scaling constant ¢ is given by the jack-
knife variance estimator o;(%):
| 1/2

o;(t) = 0] Y@l -y @) : (2.54)
i=1

Although it is known that 0(t) = 02 as t — oo under suitable regularity
conditions, we need convergence w.p.l in order to satisfy the hypothesis of
Theorems 4.2.1 and 4.2.3. However, Theorem 4 of Glynn and Whitt (1992a)
establishes the following result.

Theorem 4.2.4. If g is continuously differentiable in a neighborhood of u
and E|X|? < oo, then

o2(t) = 02 = Vg(u)'C Vg(p) w.p.1 ast — oo (2.55)

for 0%(t) in (2.54). Thus the sequential stopping rules T (e) and Ty(€) may
be applied to jackknife point estimators in conjunction with the jackknifed
variance estimator o(t).

Example 4.2.5. (A steady-state mean). Suppose that our goal is to es-
timate the steady-state mean vector o of an RF-valued stochastic process
X ={X(t) : t > 0}. We assume that X satisfies an FCLT, namely,

X.=TB in D((0,00),R¥) as €]0 (2.56)
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where

t/e

0

X (t)y=et ( X (s)ds — ta) , t>0. (2.57)

and B is a standard RF-valued Brownian motion. It is easily shown that
(2.56) implies that

Y(t)=t1 /OtX(s)ds =a as t—oo. (2.58)

Hence (2.56) implies that the centering vector o appearing there is indeed
the steady-state mean of X. Another easy consequence of (2.56) is that the
FCLT (2.14) holds with ¢(e~!) = ¢~/2 and Z(t) = B(t)/t.

It turns out that (2.56) is typically satisfied for most “real-world” steady-
state simulations. In particular, a great variety of different assumptions on
the structure of the process X give rise to FCLTs of the form (2.56); see
Section 4.4 in the book and Section 2.3 here.

The primary difficulty in applying Theorems 4.2.1-4.2.3 arises in the
construction of a process I'(t) such that I'(t) — T w.p.1 as ¢ — oo or
T'e = T'l in D(0,00) as € | 0. Since I'T? is the covariance matrix of the
limiting Brownian motion, this is equivalent to the construction of a strongly
consistent estimator C(t) for the time-average covariance matriz C = TT?
of X. In general, this is known to be a challenging problem.

Suppose that X is regenerative, with regeneration times 0 = 79 < 7 <
T9 < ---. Suppose that E(fTI2 | X (s) — a(ds)? < oo and that E(ro —71) < 00.

T

Let N(t) = max{n > 0: 7, <t}. Then it is easily proved that

N
o =+ 2_; / )~ Y @)X () - Y(e)ds (2.59)

is strongly consistent for C, where C = I'T? and T is the scaling matrix
appearing in (2.56). Thus when X is regenerative, the sequential stopping
rules 77 (€) and T5(e) are asymptotically valid. Of course, when X is scalar,
we already established this result in Example 4.2.3.

For nonregenerative processes, less is known about the strong consistency
of estimators C(t) for the steady-state covariance matrix. However, Glynn
and Iglehart (1988) and Damerdji (1991, 1994) have recently used strong
approximation techniques to establish strong consistency for a broad class of
estimators for C. Thus Theorems 4.2.1 and 4.2.2 prove that these estimators
do indeed lead to asymptotically valid sequential procedures.



4.2. SEQUENTIAL STOPPING RULES FOR SIMULATIONS 91

Our theory for this example provides theoretical support complementing
previous work by Fishman (1977), Law and Carson (1979) and Law and
Kelton (1982). They develop specific empirically based sequential stopping
rules for steady-state simulations.

Example 4.2.6. (Kiefer- Wolfowitz stochastic approzimation). This exam-
ple is interesting, in part, because it illustrates that the FCLT (2.14) can
hold for the estimator with a subcanonical convergence rate; in particular,
here ¢(e~') = ¢~'/3. For other examples of noncanonical estimator conver-
gence rates, see Fox and Glynn (1989) and Sections 5 and 6 of Glynn and
Whitt (1992b). Suppose that we are given a real-valued smooth function
B3(0), which can be represented as §(0) = EZ(#). Assume that our goal is
to compute the parameter a = §* minimizing 8. If 8 is scalar, we can apply
the following Kiefer-Wolfowitz stochastic approximation algorithm:

Ot = On — cnXnit s (2.60)
where {c, : n > 0} is a sequence of (deterministic) nonnegative constants,

P(XTH—I € A|00aX05 s 79n7 Xn) =
P([Z(00 + hnt1) — Z(00 — hnt1]/2hnir € A),  (2.61)

Z(0o+ hpt1) and Z(0g — hy41) are generated independently of one another
and {h, : n > 1} is another sequence of deterministic constants. Suppose
that ¢, = en ' and h, = hn" /3, ¢, b > 0. Let Y(t) = 6|y)- For this
problem, Ruppert (1982) showed that under suitable regularity conditions,
the FCLT in (2.14) holds for Y in (2.13) with (e ™) = e /3, T = k, Z(t) =
t~"B(t?>"*1), B is a standard Brownian motion, b = ¢f"(6*), n = b — 5/6,
k? = c20%/(2n + 1)(4h?) and o? = 2var Z(0*).

The construction of a strongly consistent estimator for I' = k involves
more work. For some directions on how to obtain such an estimator, see
page 189 of Venter (1967).

Example 4.2.7. (Robbins-Monro stochastic approzimation). As in Exam-
ple 4.2.6, suppose that our goal is to estimate the minimizer 6* of a smooth
function 8: R — R. However, we assume here that we can represent the
derivative 3 as an expectation; that is, there exists a process Z(0) such
that §'(6) = EZ(). [In Example 4.2.6 we assumed only that the function
values (@) could be represented as expectations.] To calculate 6* in this
setting, we can use the Robbins-Monro stochastic approximation algorithm,
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which is based on (2.60), where {c, : n > 0} is sequence of (deterministic)
nonnegative constants and

P(Xns1 € Alfo, Xo, - .-, 00, Xn) = P(Z(6,) € A). (2.62)

Suppose that our estimator is Y () = 0|;) and ¢, = en~t with ¢ > 0.
Then Ruppert (1982) showed that under suitable regularity hypotheses, the
FCLT in (2.14) holds for Y, in (2.13) with ¢(e™!) = ¢ V2, T = &, Z(t) =
t~(DEOB2P+) D = ¢f8'(0*) — 1, k% = 20%(2D + 1)1, 02 = var Z(6*)
and B is a standard Brownian motion.

Construction of a strongly consistent estimator for I' = x follows from
results established by Venter (1967). When this estimator is used, the se-
quential stopping rule T (€) reduces to one studied by McLeish (1976).

Example 4.2.8. (The Hill estimator). The framework of Theorems 4.2.1-
4.2.3 has been made quite general, so that there can be many applications.
One intended application is to estimation problems associated with heavy-
tailed probability distributions and long-range dependence. If we use the
direct (naive) estimators, e.g., the time average for the steady-state mean,
then we anticipate that the FCLT in (2.14) will typically hold with ¢ in
(2.13) satisfying ¢(e 1)/e /2 — 0 as € | 0. A common case would by
d(e™l) =€V or p € R(7y) for 0 < v < 1/2. A major new difficulty, however,
is that now the scaling exponent -y is typically unknown.

Thus, attention naturally shifts to estimating the scaling parameter +.
Estimating the parameter v is challenging even from observations of i.i.d.
random variables. One approach is via the Hill estimator. Recent results of
Resnick and Starica (1997) show that Theorems 4.2.1-4.2.3 can be applied.

The setting is a sequence {X,, : n > 1} of i.i.d. positive random variables
hoaving cdf F, where F¢ =1 — F € R(—a) for a > 0, i.e.

Fe(tz)JF(t) = 7% as t— 0. (2.63)

The goal is to estimate the tail index a. For n given, let X(;) be the ith
largest among the first n. The Hill estimator based on the k upper order
statistics is
- X()
Hipn=k"1) log (72) . (2.64)
; X(k+1)
The Hill estimator is known to be consistent if & = k(n) satisfies k(n) — oo

and k(n)/n — 0 as n — oo. Given a specific function k(n), the Hill estimator
is a single sequence of random variables {Hy(,), : n > 1}. Resnick and
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Starica (1997) show that the Hill estimator also satisfies a FCLT. To state
it, let
Yn(t) = kant],n’ t> 0 ) (265)

where [z] is the least integer greater than or equal to z. The FCLT states
that, under regularity conditions, including k(n) — oo and k(n)/n — 0,

Em)[Y,—a"1]=>a'Z in D as n— oo, (2.66)

with Z(t) = t"'B(t), where B is standard Brownian motion. Notice that
here we use the more general framework in (2.36) in which there is a family
of estimation processes indexed by € > 0. (Here we have used n — oo
instead of € | 0.)

Also notice that in this special case the scaling matrix ' in (2.14) is
just a~!. So, with Y,, in (2.65), we estimate o and I' simultaneously. As a
consequence of the FCLT in (2.66), we have the associated FWLLN

Y,=>a 'l in D as n— o (2.67)

needed in Theorem 4.2.3. It is also known that Y,,(¢) = o~ ! w.p.l asn — oo
under regularity conditions.

Given the FCLT in (2.66) and the FWLLN in (2.67), the conditions of
Theorem 4.2.3 are satisfied. Hence sequential stopping rules are asymptoti-
cally valid for the Hill estimator too.

Example 4.2.9. (Sample mean with infinite variance). One can also es-
timate a mean by the sample mean of i.i.d. random variables when the
random variables X; have finite mean but infinite variance. As in Example
4.2.1, the estimation process can be Y (t) = XLtJ’ where X, = 0, although it
is often better to use alternative robust estimators such as trimmed means
or to estimate other quantities such as the median. Under regularity con-
ditions, FCLT (2.14) is valid with ¢ € R(1 — a~!) for some o, 1 < a < 2,
where ¢ is the scaling function in (2.13). The topology on D can be the J;
topology. The limit process Z(t) is then t~1S,(t), where {S,(t) : t > 0} is
a stable process of index «, which depends on two parameters in addition
to a: a scale parameter ¢ and a skewness parameter 4, —1 < # < 1. Un-
fortunately, in order to form confidence sets we need to estimate the scaling
function ¢ and the parameters o and g.

Suppose that we consider the special case in which X; is nonnegative
and is assumed to have an asymptotic power tail, i.e.

Ft) = P(X > 1) ~ At™® as t— o0 (2.68)
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for positive constants A and «, 1 < @ < 2. Under condition (2.68), the
FCLT (2.14) holds with ¢(e™!) = ¢~(1=* ") and limit process I'Z(¢) where
Z(t) is a stable process with index «, scale 0 = 1 and skewness 1. Hence,
in this special case it suffices to estimate only the two parameters o and I'.

Suppose that &, is an estimate of o with the property that
(67" —alog(e!) -0 w.pl as €l0. (2.69)

€

Given (2.69),

$le ) /ple V) = (18 e (ma) (2.70)

and
log[p(e ) /p(e )] = (@t —a ) log(e ™)) 0 w.pl as €el0, (2.71)

so that
de N /pler) =1 as €l0 (2.72)

and the FOLT (2.14) holds with the estimator ¢(e~1) = e~(1=8") uged in
place of the scaling function ¢(e ') = e (1=a™1)_ Hence it only remains to
estimate the scale parameter I'. Given that (2.68) holds, the scale parameter
is

L= (A/Ay)"™ (2.73)
for A in (2.68) and

1«

Ag = ( /0 g sinwd:v)_l = T —ajcos(ral3] (2.74)

Hence it suffices to estimate the asymptotic constant A in (2.68). We can
estimate in various ways if we estimate the cdf in (2.68) by the empirical
cdf.

Hence, under regularity conditions, the sequential stopping rules will
again be asymptotically valid. However, in this situation it is often much
better to use different (robust) estimators for the mean or to estimate dif-
ferent quantities, such as the median or other percentiles.

Example 4.2.10. (A counterezample for weak consistency). Since the SLLN
or FWLLN for I'(¢) is relatively difficult to establish, it is natural to ask if
the weak consistency I'(t) = I" as ¢ — oo in (2.6) might not be enough to
ensure asymptotic validity of the sequential stopping rules.

Unfortunately, however, weak consistency of I'(¢) is not enough. The
difficulty is in establishing the in-probability analog of Theorem 4.2.1 (b).



4.2. SEQUENTIAL STOPPING RULES FOR SIMULATIONS 95

We now give a direct counterexample. Consider Example 4.2.1 and the
process I'(t) defined there. Let N be a unit rate Poisson process independent
of {X; : 4 > 1} and let T1,T5,... be the jump times of the process N.
Suppose that

. L'(t), t¢ U, [Tn, T, +1/n),
F = (2.75)
0, te Up [Tn, Tn + 1/n).

Then

PEO#T0) = P (1€ [Tvo Tro + 375 )

(
< P(t—Tywy<e) +P (N(t) < %) (2.76)

for € arbitrary. Letting ¢ — oo, we find that limsup,_, . P(I'(¢) < I'(¢)) =
1 —exp(—e) (recall that the equilibrium age distribution of N is exponential
with mean 1). Since € was arbitrary, it follows that P(I'(¢) # I'(t)) — 0 as
t — 0o. Then it is evident that T'(t) = o as t — oo, since ['(t) = o w.p.1
as t — oo.

Now, in the setting of Example 4.2.1 using I'(t),

Ti(e) = inf{t >0:2(d) (@ + a(t)) < 6} . (2.77)
Vi

Put a(t) = 1/t. Then clearly z(8)(T'(s)/\/s +1/s) > 2z(6)/t and s < t, so
T1(2(0)/t) > t. On the other hand, f‘(TN(t)+1) =0, so Ty (z(6) /t) < TN(t)+1-
By the SLLN, t'Ty()11 — 1 w.p.l as t — oo. Hence Ti(2(8)/t) ~ t
w.p.1 as t — oo. Thus the stopping rule is asymptotically independent of
the scaling constant I'. As a consequence, formation of asymptotically valid
confidence intervals is impossible. In fact, even the asymptotic scaling of
the rule is incorrect. It is well known that for estimation problems of the
type described in Example 4.2.1, the amount of simulation time required to
obtain an absolute precision of order € is of order e~2, whereas the stopping

rule T} (¢) based on I'(t) in (2.75) yields a termination time of order e~
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Chapter 5

Heavy-Traffic Limits for
Queues

5.1. Introduction

In this chapter we include additional material on heavy-traffic limits for
queues. The first two sections below supplement Chapter 8 in the book; the
final section supplements Chapter 9 in the book.

In particular, Section 5.2 discusses general Lévy approximations for
queues, obtained by considering a sequence of queueing models, exploiting
the FCLT in Section 2.4 above and the continuous-mapping approach. Then
Section 5.3 provides the missing proof to Theorem 8.3.1 in the book. Finally,
Section 5.4, drawing upon Puhalskii (1994), shows how heavy-traffic limits
for arrival, queue-length and departure processes can be used to establish
associated limits for waiting-time and workload processes in single-server
queues.

5.2. General Lévy Approximations

The Brownian and stable-Lévy approximations for queues in Chapters 5 and
8 in the book are robust approximations: The same approximation, charac-
terized by only a few parameters, serves as an approximation for a large class
of queueing models. We obtain the Brownian (stable-Lévy) approximation
with light-tailed (heavy-tailed) distributions.

97
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We can obtain a larger, more flexible, class of approximating processes
if we consider stochastic-process limits based on a sequence of queueing
models, where the input processes are allowed to change with the sequence
index. Of course, we also can obtain the previous limit processes in this
more general framework, but we can obtain new limit processes as well,
which may be useful for applications.

Closely paralleling the previous sections, we can apply the continuous-
mapping approach with the reflection map and a Lévy-process FCLT for
double sequences in Theorem 2.4.1 here to obtain a stochastic-process limit
for workload processes associated with a sequence of queueing models. When
we allow the input processes to change in the limit, we can obtain stochastic-
process limits without requiring heavy traffic.

As noted in Section 2.4, we obtain a large class of limit processes from the
stochastic-process limits for partial sums from double sequences of random
variables, with the variables in each sequence being IID. Indeed, the limit
process for the net inputs can be an arbitrary Lévy process {L(t) : ¢ > 0}.
Of course, in applications it remains to determine the appropriate Lévy
process. Since the Lévy process has stationary and independent increments,
it suffices to specify the distribution of the random variable L(1), which
must be infinitely divisible. From (4.3) in Section 2.4, it suffices to specify
the triple (b,02, ), where b is the centering constant, o2 is the Gaussian
coefficient and p is the Lévy measure. These limiting characteristics can
be specified in approximations by exploiting the asymptotic relations in
equations (4.10) — (4.12) in Section 2.4.

For applications, it is significant that there is a large class of reflected
Lévy processes that are remarkably tractable. In particular, a reflected
Lévy process, constructed from a one-sided reflection, is tractable if the
associated Lévy process has no negative jumps. For example, the steady-
state distribution can be characterized by its Laplace transform, which is
often called the generalized Pollaczek-Khintchine transform, because the
Pollaczek-Khintchine transform of the steady-state distribution of the work-
load process in the M/G/1 queue is a special case.

The original charachterization of the steady-state distribution of a re-
flected Lévy process for the case with no negative jumps is due to Zolotarev
(1964); also see Section 24 of Takécs (1967), Bingham (1975) and Kella and
Whitt (1992b), especially Section 4(a). The short martingale proof in Kella
and Whitt (1992b) is convenient.

When a Lévy process L has no negative jumps, the Lévy measure u
concentrates on (0,00) and the bilateral Laplace-Stieltjes transform of L(1)
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is well defined, with Laplace exponent
Y(s) = logEe M)

= —bs+ 5t /Ooo(exp(—sw) — 1+ sh(z))p(dz) . (2.1)

An important special case is a subordinator (totally skewed stable Lévy
motion with = 1 plus a negative drift, which is just (2.1) without the
second Brownian term. Storage models with such Lévy net-input processes
are analyzed directly in Chapter 4 of Prabhu (1998). With (2.1), we can
conveniently characterize the Laplace transform of the steady-state distri-
bution. The following is a generalization of Theorems 5.8.2 and 8.5.2 in the
book.

Theorem 5.2.1. (generalized Pollaczek-Khintchine transform) Let {¢x (L)(t) :
t > 0} be a reflected Lévy process, where ¢k is the two-sided reflection map,
EL(1) <0, L has no negative jumps and L has Laplace exponent 1 in (2.1).

(a) If K = oo, then

lim P(¢x(L)(t) < 2) = Hz) , (2.2)

t—00

where H s a proper cdf with Laplace-Stieltjes transform

h(s) = /000 e **dH(x) = s;b;i())) , (2.3)

and v is the Laplace exponent in (2.1).
(b) If K < oo, then

Jim P (L) (1) < 2) = 0<z<K,  (24)

for H in (2.2).

Example 5.2.1. The special case of the M/G/1 queue. The workload in
unfinished service time in the M/G/1 queue is a reflected Lévy process. If
V is a service time and A is the arrival rate, then the Laplace exponent of
the compound-Poisson net-input process is

P(s) = s — A(1 — Elexp(—sV)]) .
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Example 5.2.2. The gamma process. A possible subordinator is the gamma
process, which can be expressed via the Laplace exponent

0o —z/
P(s) = /0 (e %% — l)e - ndx = —log(1+ ns)

for constant 7; e.g., see p. 111 of Prabhu (1998). (The centering func-
tion is not needed in this case.) If we add a constant negative drift to the
gamma process then we obtain a Lévy process with negative drift but with-
out negative jumps, having Laplace exponent 1(s) = bs — log(1 + ns). If
b > 7, then EL(1) < 0 and we can apply Theorem 5.2.1. In this case,
the steady-state ccdf H¢ is easy to compute from its Laplace transform
H¢(s) =[1 — h(s)]/s by numerical inversion. The gamma process is a Lévy
process without Brownian component; i.e., b = 02 = 0. The Lévy measure
has density u(dz) = z~le=®/", z > 0. We can approximate the gamma
process by a compound Poisson process by restricting u to [e,00) for some
e > 0. u

For other properties of Lévy processes without negative jumps, see Takacs
(1967), Samorodnitsky and Taqqu (1994), Bertoin (1996) and Prabhu (1998).
For a numerical inversion algorithm to calculate first-passage probabilities,
see Rogers (2000).

5.3. A Fluid Queue Fed by On-Off Sources

This section is devoted to proving Theorem 8.3.1 in the book, which estab-
lishes a FCLT for the cumulative busy time of a single on-off source.

We first restate the theorem. Recall that By, ; is the i*h busy period and
I, ; is the ith idle period in the n'" model, in the sequence of models under
consideration. Let

[nt]

0771 Z(Bn,z - mB,n)
i=1

[nt)
L(t) = ¢' ) (Ini—mr)
=1

Nn(t) = Cgl[];[n(nt)_')/nnt]
B! (1) = ¢, [Bn(nt) —&umnt], >0, (3.1)

v}
3
—
=

Il

where again |nt| is the integer part of nt,
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We think of mp, in (3.1) as the mean busy period, EB, ;, and mr, as
the mean idle period, EI, ;, in the case {(By i, In;) : i > 1} is a stationary
sequence for each n, but in general that is not required.

Theorem 5.3.1. (FCLT for the cumulative busy time) If
(Bn,In) = (B,I) in (D, M;)? (3.3)

for B, and I, in (3.1), ¢, = 00, ¢p/n — 0, mp, — mp, mry, — mr, with
0<mp+mr <o, sothat &, — & with 0 <€ <1 and vy, = v > 0 for &,
and yp, in (3.2), and

P(Disc(B) N Disc(I) = ¢) =1, (3.4)
then
(B,,I,,N,,B") = (B,I,N,B') in (D,M;)*, (3.5)
for N, B! in (3.1) and
N() = —[B(yt) +I(v1)]
B'(t) = (1-¢B(yt) —£L(vt) - (3.6)

The possibility of the limit processes having discontinuous sample paths
makes the required argument more complicated than what it might other-
wise be. To make that clear, before presenting an argument that works, we
present two false starts.

5.3.1. Two False Starts

For the first false start, note that the cumulative busy-time process can be
bounded above and below by random sums by

Np(nt) Nn(nt )+1

;! Z By <cpt Z Bni, (3.7)

so let us start by trying to find limits for the outer terms in (3.7). We
apply the continuous mapping theorem with addition (Section 12.7 in the
book) and the inverse map (Sections 13.7 and 13.8 in the book) to get, first,
B, + 1, = B +1Iand then N,, = N jointly.

As a consequence, we get T,, = ye, where

T,(t) =n"'N,(nt), t>0. (3.8)
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Then we try to treat the term on the left in (3.7) by writing

Np(nt)
Cﬁl Z Bn,i_mn,Z'Ynnt
=1
i N,y (nt)
= ¢ XZJB—m 0 = =2 i (e [Na () — yant])
= B(yt) —ma(y[B(1t) + I(1t)]) = (1 = )B(yt) —&X(vt).  (3.9)

This argument works fine if P(B € C) = 1, but not otherwise. This ar-
gument is not valid here because we need to apply addition when the limit
processes B o ye and —y(B o ye + I o ye) typically have common disconti-
nuities of opposite sign. (If they had the same sign, then we could apply
Theorem 12.7.3 in the book.) Hence we need to find a different approach.

For our second false start, instead of (3.7), we find different bounds for
the cumulative busy-time process, in particular, note that

Np(nt)+1 Ny (nt)
Bln(t) S 07;1 1_§n Z an £n Z Inz

Np(nt)+1 Nn(nt)
< Gt A=&) Y. Bui—mn1) =& Y. (Ini—mnp)
L =1 =1
+c;1mn,1
Np(nt) Np(nt)+1

B'In(t) > 07:1 1_§n Z an fn Z Inz

Np(nt) Nyp(nt)+1

n (1 - §n) Z (Bn,i - mn,l) —&n Z (In,i - mn,2)

i=1 =1

vV
O
L

-1
—Cp Mp2-

Note that the deterministic terms c;,'m, 1 and ¢, 'my, 2 are asymptotically
negligible. Thus, let the asymptotically bounding processes be

Np(nt)+1 Ny (nt)
B%(t) = CEI (1-¢&n) Z (Bn,i - mn,l) —&n Z (In,i - mn,z)
i=1 i=1

(3.10)
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and
Ny (nt) Ny (nt)+1
Bi;(t) = CV_Ll (1-¢&) Z (Bn,i —min,1) — &n Z (In;i — Mn,2)
=1 =1
(3.11)
Also let
N, N, 1
) = o) ey = Nalnt) 1 (3.12)
n t
and
N.L(t) = ¢, [Np(nt) +1 —y,nt], t>0. (3.13)

As before, we apply the continuous mapping theorem with the addition and
the inverse map to get, first B, + I, = B + I and then N, = N and
N/, = N, all jointly. Given N,, = N and N/, = N we obtain T, = ~e
and T/ = 7e by multiplying by c¢,/n. Applying the composition map, we
obtain

Bl!=(1-¢,)B,oT), —&1,0T, =B (3.14)

and
Biz =(1=&)ByoTy —&,1,0T;, = B, (3.15)

again jointly with the other limits. Hence we are close to obtaining (3.5).
However, even though (B, BY) = (B/,B’) and B}, < B/, < B%, we cannot
deduce that B/, = B’ in (D, M;).

5.3.2. The Proof

We can deduce that B], = B’ in the weaker Skorohod M topology by this
reasoning, though, by virtue of Corollary 12.11.4 in the book, from which
we can deduce convergence of the finite-dimensional distributions. To get
the desired M; limit, it thus suffices to apply Theorem 12.5.1 (iv) in the
book and control the oscillations as in equation (12.5.3) of the book. To do
so, we introduce a slightly different approximation. Let

NE(nt) Nl(nt)
B?L(t) = C’r_),l (1 - &n) Z (BTL,Z - mnl) - gn Z (In,z - mn,Z) ’
i=1 i=1

(3.16)
where NB(t) and N/.(t) = N,(t) are the number of complete busy periods
and idle periods by time ¢. Reasoning as with (3.14) and (3.15) we can
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deduce that BE = B'. However, we can make a stronger connection between
B} and B,,. Note that

NI(t) = No(t) < NB(t) < N, (t) + 1

= n =

and
B%0S,=B,0S, and B%oS' =B,o0S!
where
Sn(t) =n 7o ne)s  Sh(t) = n_lT7I7.,LntJ )
Tn,0 = 0,
Tak =Bpi+Ini+--+Bup+Ing, k>1,
and

'
Tok = Tnk + Bn,k—Ha kE>0.

Moreover B¢ is piecewise-constant and B, is piecewise linear in each of the
intervals [n =17, k, nilr;z,k] and [nilT,'hk, n~ 17, k+1]. Hence we can relate the
oscillation of B,, to those of BZ.

First, we can apply the Skorohod representation theorem to replace con-
vergence in distribution by convergence w.p.1. We obtain B¢ — B’ w.p.1
for new versions of these processes. From the specific structure above, we
can construct the corresponding special version of B/, associated with B2.
(It is the piecewise-linear interpolation of the piecewise-constant function.)
Since B¢ — B', S;, — 7 !e and S/, — 7~ le for the new versions, we can
deduce that B/ () — B'(¢) w.p.1 for each continuity point ¢ of B’. (We also
got this part from the convergence of B!, and BZ.) Let w;, be the M; oscil-
lation function over the interval [0, 7], where T is chosen to be a continuity
point of B, i.e.,

ws(z,0) = sup {lz(t2) — [z(t1), z(t3)]I}
OV(t—0)<t1<t2<t3<(t+0)AT

where [z(t1), z(t3)] is the line segment connecting z(¢1) and z(¢2). From the
properties above, we can deduce that

ws (By,, 8) < ws(By,20)
for all suitably large n. Since B¢ — B’, we deduce that

lim lim ws(B%,0) =0, (3.17)

0 nsoo
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which implies the same limit with B? replaced by B!, in (3.17). By the
characterization of M; convergence in Theorem 12.5.1 (iv) in the book, we
get B, - B’ w.p.1 (in D, M) for the special versions and thus B!, = B’
for the original versions. This can be done jointly with the other processes,
so that we get (3.5).

5.4. From Queue Lengths to Waiting Times

In this section, following Puhalskii (1994), we show how the continuous-
mapping approach with the inverse map and nonlinear centering term, The-
orem 13.7.4 in the book, can be used to convert limits for arrival, departure
and queue-length processes into associated limits for waiting-time and work-
load processes in quite general queueing models. The nonlinear centering
enables us to capture nonstationary phenomena.

5.4.1. The Setting

The setting is a family of queueing models indexed by n. Suppose that
all arrivals eventually get served and then depart, so that the queue length
(number of customers in the system) at time ¢ is just the initial queue length
plus the arrivals minus the departures, i.e.,

Qn(t) = Qn(o) + An(t) - Dn(t)a t>0, (4'1)

where @, (t) is the queue length at time ¢, A, (t) is the number of arrivals in
the interval [0, t], and D,,(¢) is the number of departures in the interval [0, ¢,
all in model n. To treat customer waiting times (but not the workload), we
need to make assumptions about the service mechanism. In particular, we
assume that the customers are served one at a time in order of their arrival.
Thus, we are again in the setting of the standard single-server queue. Let
Ay (t) count the new arrivals, and let D, (t) counts all departures, including
those customers originally in the system at time 0. Note that {A4,,(¢) : ¢ > 0}
and {D,(t) : t > 0} are counting processes. As a regularity condition, we
assume that A,(0) = D,(0) = 0.

5.4.2. The Inverse Map with Nonlinear Centering

We can use the inverse map to define related quantities of interest. Let Ay, 4
be the arrival time of the k" arriving customer, D,, i, the departure time of
the k™" arriving customer and L, (t) the workload facing the server at time
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t, not counting arrivals after time ¢ (the virtual waiting time), all in model
n. Then

Apr = inf{s>0:A4,(s) > (k-1"},
D,r = inf{s>0:D,(s) > (Qu(0) +k—1)"},
L,(t) = inf{s>0:Dy(s) > Qn(0) + A,(t)} (4.2)

for K > 1 and t > 0, where (z)* = max{z,0}.

Let W, be the waiting time for arriving customer k£ to begin service
and let W;l,k be the waiting time until customer k& completes service. Then,
under the assumptions about the service mechanism above,

Wn,k = [Dn,kfl - An,k]+ ’ (43)
and
Wik = Dog— Ak, k21, (4.4)

Suppose that the time scaling is already incorporated in the models
indexed by n. We assume that functional weak laws of large numbers
(FWLLNSs) holds with additional space scaling by n and that FCLTs hold
with additional space scaling by c¢,, after centering. Thus, let

Xn(t) = n_an(t),
Y.t) = nlA, (),
Qn(t) = n_lQn(t)a
X,(t) = e (Xn —X),
Y, (t) = Cp (Y:vn - Y)a
Qn(t) = Cn(Qn - CI)a t>0 (4 5)
We assume that
(X0, Y0, Qn) = (x,,9) in (D*,WM)) (4.6)

where x,y € D4, q € D and, by (4.1),

alt) = a(0) +y(t) —x(t), ¢>0. (4.7)

We will also impose smoothness conditions on x and y. In addition, we
assume that ¢, — oo and

(X0, Y0, Q) = (X,Y,Q) in (D3 WM). (4.8)
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As a consequence of (4.1) and (4.5)—(4.8),
Q(t) — Q(0) = A(t) —D(t) for t>0. (4.9)

Given the FWLLN (4.6) and the FCLT (4.8), we want to establish related
limits for appropriately scaled versions of the random variables A, x, Dy, x,
Ln(t), Wnx, and W, in (4.2)-(4.4). For that purpose, let

]jn(t) = Dn,LntJ7 An(t) = An,LntJa Ln(t) = Ln(t) (410)

and
Wo(t) = Wi ny and Win(t) =W, |, >0, (4.11)

We now form the final scaled random elements of D. Let

U,(t) = CH(XEI _x_l),
Vit) = (Y, -y Y,
A,(t) = cn(An — y_l),
D,(t) = cn(f)n —x oz),
Lo(t) = cn(Lp—x ' o),
Wi(t) = cn(Wn—(x oz —y 1),
W.(t) = co(W,—(xlozy—y 1Y), t>0. (4.12)

We now state the theorem.

Theorem 5.4.1. (FCLT for the workload and waiting time given a FCLT
for arrivals, departures and queue length) Suppose that the limit (4.8) holds
for X, Y., Q in (4.5), where ¢, — o0, x,y € A and are absolutely

continuous with continuous positive derivatives x, y, and P(X(0) = 0) =
P(Y(0) =0) = 1. Then, jointly with (4.8),

(U,, Vi, A,,Dy) = (U, V,A,D) (4.13)
in (D*,WMy) for Uy, Vi, A, and D, in (4.12), where

—Xox!

U= _—\{oy_1

and .
Xox™ 1
po —Xex em+QO1 o g1ge, (4.15)

xoxloz
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where e(t) =t for t > 0. If, in addition,
P(Disc(X ox ! oz) N Disc(Y)=¢) =1 (4.16)

for
2= a(0)l+y (4.17)

then, jointly with (4.8) and (4.13),
L,=L (4.18)
for Ly, in (4.12), where

_ —1
L= Xox o+ Y +Q01 (4.19)

Xox lozy

If, in addition,
P(Disc(A) N Disc(D)=¢) =1, (4.20)

then, jointly with (4.8), (4.13) and (4.18),
(W,,W,)= (D—A,D—A) (4.21)
in (D?,W M) for W, and W', in (4.12).

In preparation for the proof, we now restate Theorem 13.7.4 from the
book. Recall that Dy is the subset of all nondecreasing nonnegative functions
in D. Recall that D, is the subset of all functions in D([0, 00), R) that are
unbounded above and satisfy z(0) > 0.

The following is Puhalskii’s (1994) result extended to allow discontinuous
limits.

Theorem 5.4.2. Suppose that x, € Dy, y, € D4, ¢, — 00,
cn(Tn — zyyp —y) = (u,v) in D XD (4.22)

with one of the Ji, My or My topologies, where u(0) = 0, u has no positive
jJumps if the topology is Ji,

Disc(uoz™ ! oy) N Disc(v) = ¢ , (4.23)

y € Cy and z is absolutely continuous with a continuous positive derivative

z, then

_ -1
cn(zy oyn —a oy) » 2oL Y p D (4.24)

zox loy

with the same topology.
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Proof of Theorem 5.4.1. We start by applying the Skorohod represen-
tation theorem to replace convergence in distribution by convergence w.p.1.
For simplicity, we do not introduce new notation for these special versions
of the random functions converging w.p.1. Thus consider a single sample
path for which the limit (4.8) holds. Now we can apply the determinis-
tic convergence-preservation results. From (4.2)—(4.11), we see that we can
represent ﬁn, An and f;n in terms of Xn and Yn via the inverse map

A,(t) = inf{s>0:A4,(s) > |nt] —1)}
= inf{s >0:Y,(s) > (|nt] —1)/n}
= (Y 'o&)(t), t>0, (4.25)
where
&a(t) = (Int] —=1)T/n, >0, (4.26)
D,(t) = inf{s>0:D,(s) > (Qn(0) + |nt] —1)*}
= inf{s > 0:X,(s) > {Qn(0) + [nt] —1)*/n}
= (X 'ol)(), t>0, (4.27)
where
() = (Qn(0) + |nt] — 1)t /n, t>0, (4.28)
and
Ln,(t) = inf{s>0:D,(s) > Qn(0) + Ap(nt)}
= inf{s > 0:X(s) > Qu(0) + Y, (1)}
= [X,' 0 (Qu(0)1+Yy)](#), t>0 (4.29)
where 1(t) =1, t > 0. Given (4.3)-(4.27),
Wn(t) = [(f)n © gn)(t) - An(t)]+a t>0, (430)
for &, in (4.26) and
W, (t) = (D, — A,)(t), t>0. (4.31)

We now return to the proof of (4.13). First, for the inverse processes X; !
and Y,j 1. we apply Theorem 13.7.2 from the book. Given those two limits,
we treat A, and D, by applying the composition result, Theorem 12.3.1.
Alternatively, we directly apply Theorem 5.4.2 above, noting that &, — e,
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Cn — 21, cu(&y, —e) — 0 and ¢, (¢, — 21) = Q( 0)1. To treat L, we
again apply Theorem 12.3.1 or Theorem 5.4.2 above, using the fact that
Q.(0 )1+Y = 29 and ¢, (Qn(0)1+Y, —29) = Y+Q(0)1 in D. Finally, to
treat W,, and W , we use the subtraction map. We first apply subtraction
directly to W, in (4.31). Since &, = e, we can conclude that Wy, has the
same limit as W';,. =

Remark 5.4.1. If Theorem 5.4.1 holds for stationary models, thenx =y =
Ae, and q = q(0)1. Suppose in addition that q(0) = 0. By (4.9), if we cannot
conclude that the limit processes almost surely have continuous paths, then
we should anticipate X, Y and Q can have common discontinuities. Then

U=-)2'Xoxle (4.32)

and
V=A=-2'Yo)le. (4.33)

Condition (4.16) then becomes
P(Disc(X)N Disc(Y)=¢) =1 (4.34)
and
D=XH4Y-X+Q0)1)=)"'Q. (4.35)

Then the centering terms in (4.21) become
xtoz—y l=Xle-Ale=0 (4.36)
and

D-A = A H{(Y-X+QO1)+Xx'oXoxle
A HQ+XoAle).

5.4.3. An Application to Central-Server Models

Following Puhalskii (1994), we illustrate how Theorem 5.4.1 can be applied
by considering a limit for a central-server model. Central-server models
were originally introduced to model the contention among programs for the
processor and input-output devices in a multiprogrammed computer system;
e.g., see Section 3.4.2 of Lavenberg and Sauer (1983). The specific model
we consider is a closed queueing network with n + 1 single-server queues,
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one of which is called the central-server queue while the others are called
peripheral queues. There are n customers (jobs) in the network, one for
each peripheral queue. Each customer has a designated distinct peripheral
queue. Each customer circulates between the central-server queue and its
own designated peripheral queue. The customers are served one at a time in
order of arrival at the central-server queue. The service times are assumed
to be mutually independent exponential random variables. (That ensures
that the closed network has a product-form steady-state distribution.) Let
the mean service time at each peripheral queue be A™', and let the mean
service time at the central-server queue be (nu)~L.

Since only one customer receives service at each peripheral queue, there
is no contention there. Thus, each customer enters service at its peripheral
immediately upon arrival. Consequently, the (n + 1)-queue model is equiv-
alent to a 2-queue model, with one queue being the central-server queue
and the other queue being an infinite-server queue. Moreover, the number
of customers at the central-server queue evolves as a birth-and-death pro-
cess with state-dependent transition rates. Let @, () denote the number of
customers at the central-server queue at time ¢, as a function of n. When
Qn(t) = k, the birth (arrival) rate is (n — k) and the death (service) rate
is nu. Hence the steady-state distribution is easy to calculate.

However, it is also of interest to consider limits as n — oo in order to
better understand the behavior of such systems with fast central servers and
many customers. First a FLLN is quite elementary. For that purpose, let
Ay (t) and D, (t) count the numbers of arrivals and departures, respectively,
at the central-server queue in the interval [0,¢]. Then form the scaled pro-
cesses Xp, Y, and Q,, as in (4.5). Tt is then relatively elementary to show
that, if Q,(0) = q(0), 0 < ¢(0) < 1, then the FWLLN in (4.6) holds here
with

t
x(t) = ut, ()= [ [L-a(s)ds (4.37)
0
and q satisfying the ordinary differential equation
. d
at) =2 =M1 -a) —n. (4.38)

Kogan, Lipster and Smorodinskii (1986) then established the following re-
sult; also see Chapter 8, Section 3, of Liptser and Shiryaev (1989) and
Puhalskii (1994).

Theorem 5.4.3. (FCLT for the central-server model) If
Vn[Qn(0) — ¢(0)] = Q(0) in R, (4.39)
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then the joint limit (4.8) holds with

X(t) = ViBa(t) , (4.40)

t t
Y(t) = /0 /A = q(5)dB (5) — A /0 Q(s)ds (4.41)
and
Q) = Q) + X(t) - Y(8), £>0. (4.42)

The limit process Q can be expressed as the solution to
t
Q=0 - A [ Qs
0
t
+ [ VA= a@)aBi(s) - ViBa(t). (443
0

We can now combine Theorems 5.4.1 and 5.4.3 to obtain associated limits
for the scaled versions of A, D, L, in (4.10) and W,, and W/, in (4.11), as
stated in Theorem 5.4.1. Theorem 5.4.1 is genuinely helpful here, because
these limits are not so easy to obtain directly.

Theorem 5.4.1 has also been applied by Mandelbaum, Massey, Reiman
and Stolyar (1999).



Chapter 6

The Space D

6.1. Introduction

This chapter contains proofs omitted from Chapter 12 of the book, with the
same title. For convenience, the theorems are restated here. The section
and theorem numbers parallel Chapter 12 of the book, so the proofs should
be easy to find.

Here is how the present chapter is organized: We start in Section 6.2 by
discussing regularity properties of the function space D. A key property,
which we frequently use, is the fact that any function in D can be approx-
imated uniformly closely by piecewise-constant functions with only finitely
many discontinuities.

In Section 6.3 we introduce the strong and weak versions of the M,
topology on D([0,T],R¥), referred to as SM; and W M;, and establish basic
properties. We also discuss the relation among the nonuniform Skorohod
topologies on D. In Section 6.4 we discuss local uniform convergence at
continuity points and relate it to oscillation functions used to characterize
different forms of convergence.

In Section 6.5 we provide several different alternative characterizations
of SM; and W M; convergence. Some involve parametric representations of
the completed graphs and others involve oscillation functions. It is signifi-
cant that there are forms of the oscillation-function characterizations that
involve considering one function argument ¢ at a time. Consequently, the
examples in Figure 11.2 of the book tend to be more than illustrative: The
topologies are characterized by the local behavior in the neighborhood of
single discontinuities.

In Section 6.6 we discuss conditions that allow us to strengthen the
mode of convergence from W M; to SM;. The key condition is to have the

113
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coordinate limit functions have no common discontinuities. In Section 6.7
we study how SM; convergence in D([0,T],R¥) can be characterized by
associated limits of mappings.

In Section 6.8 we exhibit a complete metric topologically equivalent to
the incomplete metric inducing the SM; topology introduced earlier. As
with the J; metric dj, in equation (3.2) of Section 3.3 in the book, the
natural M; metric is incomplete, but there exists a topologically equivalent
complete metric, so that D with the SM; topology is Polish (metrizable as
a complete separable metric space).

In Section 6.9 we discuss extensions of the SM; and W M; topologies
on D([0,T],RX) to corresponding spaces of functions with noncompact do-
mains. The principal example of such a noncompact domain is the interval
[0,00), but (0,00) and (—o0,00) also arise.

In Section 6.10 we introduce the strong and weak versions of the M>
topology, denoted by SMy and W Ms. In Section 6.11 we provide alternative
characterizations of these topologies and discuss additional properties.

Finally, in Section 6.12 we discuss characterizations of compact subsets
of D using oscillation functions. These characterizations are useful because
they lead to characterizations of tightness for sequences of probability mea-
sures on D, which is a principal way to establish weak convergence of the
probability measures; see Section 11.6 of the book.

6.2. Regularity Properties of D

Recall that D = D*¥ = D([0,T],R*) is the set of all RF-valued functions
z = (z',...,z%) on [0, 7] that are right continuous at all ¢ € [0,7") and have
left limits at all ¢ € (0,7T):

We use superscripts to designate coordinate functions, so that subscripts
can index different functions in D. For example, z2 denotes the second
coordinate function in D([0,T],R!) of z3 = (x3,...,z%) in D([0,T],R¥),
where z3 is the third element of the sequence {z, : n > 1}. Let C be the
subset of continuous functions in D.

Let || - || be the maximum (or /o) norm on R¥ and the uniform norm on
D; ie., for each b= (b',...,b*) € RF, let

_ i
bl = max ' (21)

and, for each z = (z',...,z*) € D([0,T],R¥), let

|zl = sup [lz(t)|| = sup max |z (¢)] . (2.2)
0<t<T o<t<T 1<i<k
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The maximum norm on R¥ in (2.1) is topologically equivalent to the [, norm

k 1/p
[18ll, = (Z(bi)”) :

i=1

For p = 2, the I, norm is the Euclidean (or l3) norm. For p = 1, the [,
norm is the sum ( or /1) norm. The uniform norm on D induces the uniform
metric on D.

We first discuss regularity properties of D due to the existence of limits.
Let Disc(z) be the set of discontinuities of z, i.e.,

Disc(z) ={t € (0,T]: z(t—) # z(t)} (2.3)
and let Disc(z, €) be the set of discontinuities of magnitude at least €, i.e.,
Disc(z,e) = {t € (0,T): ||z(t—) — z(t)]| > €} . (2.4)

The following is a key regularity property of D.

Theorem 6.2.1. (the number of discontinuities of a given size) For each
x € D and € > 0, Disc(z,€) is a finite subset of [0,T).

Proof. We will show that Disc(x,e) being infinite contradicts the exis-
tence of limits from the left and right. If Disc(z, €) were infinite, then there
would exist ¢ € [0,7] and a sequence {t, : n > 1} with ¢, € Disc(z, €) for all
nandt, | tort, T tasn — oco. Suppose that t,, | t; the other case is treated
in the same way. Since t,, € Disc(z,€), we must have ||z(t,—) — z(t,)|| > €
for all n. Hence, there must exist another sequence {t!, : n > 1} such that
tn > ty, > typ1 >t > t for all n and ||z(t,) — z(t;,)|| > €/2 for all n.
However, that contradicts the existence of limits from the right at ¢t. =

Corollary 6.2.1. (the number of discontinuities) For each € D, Disc(x)
is either finite or countably infinite.

Proof. Note that
oo
Disc(z) = U Disc(z,n™ 1) . =
n=1

We say that a function x in D is piecewise-constant if there are finitely
many time points ¢; such that 0 =ty <t; <+  <tp—1 <t =T and z is
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constant on the intervals [t;_1,%;), 1 <i <m — 1, and [t;;,—1,T]- Let D, be
the subset of piecewise-constant functions in D. Let v(z; A) be the modulus
of continuity of the function z over the set A, defined by

v(z; A) = . StugA{llw(tl) — z(ta2)|} (2.5)

for A C [0,T]. The following is a second important regularity property of
D.

Theorem 6.2.2. (approximation by piecewise-constant functions) For each
z € D and € > 0, there exists . € D, such that |z — z.|| < e.

Proof. We show how to construct z.. Given z and ¢, construct the subset
Disc(z,€), which is finite by Theorem 6.2.1. Due to the existence of limits,
for each t € Disc(z,e) we can find t; = t1(¢) and to = to(t) such that
b1 <t <ty v(z,[t1,t)) <e€ v(z,[t,t2]) <€

Disc(z,e) N [t1,t) = ¢ and Disc(z,e) N (t,t2] = ¢.

For each t € Disc(z,¢), let these points ¢, ¢1(¢) and t3(¢) all belong to
Disc(z.); let zo(t') = z(t—) for t' € (t1,t) and let z.(t') = z(t) for t € [t,t2).
Now let

=0,71—- | (), t2(t)) .

t€ Disc(z,e)

The set A is a finite union of closed intervals. Consider any one of these
intervals, say [a,b]. If v(z;[a,b]) < €, then it suffices to let z.(t) = z(t) for
any t € [a, b], and not add any points to Disc(z.). Suppose that v(z; [a,b]) >
e. For each t € [a,b], since t € Disc(z,€)¢, it is possible to find an interval
(t1(t),t2(t)), [a, ta(t)) or (t1(2), b] containing ¢ such that v(z, (t1(¢), t2(t)) < e.
(The intervals [a, t) and (¢, b] are open in the relative topology on [a, b]. Thus
the collection of all these subintervals form an open cover of [a,b].) Since
[a, b] is compact, there is a finite collection of these intervals covering [a, b];
i.e., there are points

a<ti<ty <<t <tm<b

for m > 1 such that [a,t1), (¢],12), (t5,t3),---, (th,_1,tm), (ti,,b] are in the
finite collection. Necessarily, t; < ¢; for all i. It suffices to choose t € (¢}, ;)
for each i, 1 < i < m, and let t]! € Disc(z.). We can let z.(t]) = z(t!) for

each such ¢/. We have thus constructed z. € D, with ||z — z.|| <e. =
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6.3. Strong and Weak M; Topologies

6.3.1. Definitions

We start by making some definitions, repeating what is in the book. The
strong and weak topologies will be based on different notions of a segment
in R¥. For a = (a',...,a*), b= (b',...,b%) € R*, let [a,b] be the standard
segment, i.e.,

[a,b] ={aa+ (1 —a)b: 0 < a<1} (3.1)

and let [[a, b]] be the product segment, i.e.,

[[a,b]] = [af,b]] = [a!,b'] x - - x [a¥,bF] , (3.2)

T <

7

where the one-dimensional segment [a?, b’] coincides with the closed interval
[a® A b, a' V b, with ¢ A d = min{c,d} and ¢V d = max{c,d} for c,d € R.
Note that [a,b] and [[a,b]] are both subsets of R¥. If a = b, then [a,b] =
[[a,b]] = {a} = {b}; if a* # b’ for one and only one i, then [a,b] = [[a, b]].
If a # b, then [a,b] is always a one-dimensional line in R*, while [[a, b]] is
a j-dimensional subset, where j is the number of coordinates ¢ for which
a # b. Always, [a,b] C [[a, b]].

We now define completed graphs of the functions: For z € D, let the
(standard) thin graph of z be

Iy = {(z,t) e R¥ x[0,T]: z € [x(t—),z(t)]}, (3.3)
where z(0—) = z(0) and let the thick graph of z be

G, = {(z1t) e R x[0,T] P2 € [[w(t—),x(t)]]}
{(2,t) € R¥ x [0,T] : 2" € [z"(t—),z*(t)] for each i} (3.4)

for 1 < i < k. Since [a,b] C [[a,b]] for all a,b € R¥, T, C G, for each .

We now define order relations on the graphs I'; and G,. We say that
(zl’tl) S (Z?,tQ) if either (1) tl < t2 or (ii) t1 = tQ and |:I?i(t1—) - Z“ S
|z*(t1—) — 24| for all 5. The relation < induces a total order on I';, and a
partial order on G.

It is also convenient to look at the ranges of the functions. Let the thin
range of z be the projection of I'; onto R, i.e.,

p(Ty) = {z € RF : (2,t) €T, for some te[0,T]} (3.5)
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and let the thick range of x be the projection of G, onto RF, i.e.,
p(Gy) ={z €R* : (2,t) € G, forsome t€[0,T]} . (3.6)

Note that (z,t) € 'y (G;) for some ¢ if and only if z € p(I'y) (p(Gz)). Thus
a pair (z,t) cannot be in a graph of z if z is not in the corresponding range.

We now define strong (standard) and weak parametric representations
based on these two kinds of graphs. A strong parametric representation of
is a continuous nondecreasing function (u,r) mapping [0,1] onto I';. A weak
parametric representation of z is a continuous nondecreasing function (u,r)
mapping [0,1] into G, such that r(0) =0, (1) = T and u(1) = z(T). (For
the parametric representation, “nondecreasing” is with respect to the usual
order on the domain [0, 1] and the order on the graphs defined above.) Here it
is understood that u = (u!,...,u*) € C([0,1],R¥) is the spatial part of the
parametric representation, while » € C([0,1],[0,77]) is the time (domain)
part. Let II;(z) and II,(z) be the sets of strong and weak parametric
representations of z, respectively. For real-valued functions z, let II(z) =
,(z) = I, (x). Note that (u,r) € I, (x) if and only if (u’,r) € II(z*) for
1 <<k,

We use the parametric representations to characterize the strong and
weak M topologies. As in (2.1) and (2.2), let || - || denote the supremum
norms in R¥ and D. We use the definition ||-|| in (2.2) also for the R*-valued
functions u and r on [0, 1].

Now, for any z1,z2 € D, let

ds(z1,22) = inf  {[lug —us|| V|1 — 72} (3.7)
(uj,rj)€ls(x;)
j=1,2
and
dy(z1,22) = inf {Jur — ua|| V ||r1 — 72|} - (3.8)
(uj,rj) €y (z5)
=12

Note that ||u; —usg||V||r1 —72|| can also be written as ||(u1,7r1) — (u2,72)||, due
to definitions (2.1) and (2.2). Of course, when the range is R, ds = dy, = dpr,
for djy, defined in equation (3.4) in Section 3.3 of the book.

We say that z,, — z in D for a sequence or net {z,} in the SM; (W M)
topology if ds(zn,z) = 0 (dy(zn,z) — 0) as n — oco. We start with the
following basic result.

6.3.2. Metric Properties

Theorem 6.3.1. (metric inducing SM;) ds is a metric on D.
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Proof. Only the triangle inequality is difficult. By Lemma 6.3.2 below,
for any € > 0, a common parametric representation (us,r3) € II;(x3) can be
used to obtain

llur —us|| V ||r1 — r3|| < ds(z1,23) + €

and

|lug — us|| V ||re — r3|| < ds(z1,z3) +€

for some (uy,r1) € (1) and (ug,r2) € Ils(z2). Hence
ds(z1,z2) < ||lur —ue|| V||r1 — r2|| < ds(z1,z3) + ds(x3,22) + 2€ .

Since € was arbitrary, the proof is complete. =

To prove Theorem 6.3.1, we use finite approximations to the graphs I';.
We first define an order-consistent distance between a graph and a finite
subset. We use the notion of a finite ordered subset.

Definition 6.3.1. (order-consistent distance) For x € D, let A be a finite
ordered subset of the ordered graph (U'z, <), i.e., for some m > 1, A contains
m+ 1 points (2;,t;) from 'y such that

(2(0),0) = (20,t0) < (21,t1) <+ < (2m,tm) = (2(T),T) . (3.9)

The order-consistent distance between A and Ty is

~

d(A,T') = sup{||(z,1) — (zi,20)[| V (2, 2) = (zit 1t} (3.10)

where the supremum is over all (z;,t;) € A, 1 <i<m—1, and all (z,t) € T
such that

(zi,ts) < (2,1) < (Zig1,tit1)

using the order on the graph. =

We now show that finite ordered subsets A can be chosen to make

~

d(A,T,) arbitrarily small.

Lemma 6.3.1. (finite approximations to graphs) For anyz € D and € >0,
there exists a finite ordered subset A of T'y such that d(A,T';) < € for d in
(3.10).
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Proof. First put finitely many points (z(¢;),%;) in A to meet the require-
ment on the domain [0,77], i.e., to have 0 = t; < ta < -+ < t;, = T with
tiv1 —t; < €. We add additional points to account for the spatial com-
ponent. For each ¢t € Disc(z,¢€), choose the points (z(t—),t), (z(t),t) and
finitely many points on the segment [(z(t—),t), (z(t),t)] such that the dis-
tance between successive points is less than e. Since z has left and right
limits everywhere, there are open neighborhoods (t1,t) and (t,t2) of each
t € Disc(zx,€) such that

sup{||z(t') — z(t")]| : t1 <t' <t <t} <e

and
sup{||lz(t') —z(")|| : t <t <t" <t} <e€.

We thus can choose one more point, if needed, in each of the sets I'; N [R’C X
(t1,t)] and T, N [RF x (¢,12)] to achieve the desired property over each open
interval (¢1,t2) in [0,7]. The complement of the union of these finitely may
open intervals in [0,7] is a compact subset of [0,7]. Knowing that (i) all
remaining discontinuities are of magnitude less than € and (ii) limits exist
everywhere from the left and right, we can conclude that there is a closed
interval of positive length about each point in the compact set, where z
oscillates by less than ¢, i.e., sup{||z(t') — z(t")|| < €, where ¢/, t" are points
in the interval. However, by the compactness, only finitely many of these
closed intervals cover the compact set. We add points (z(t),t) to A to ensure
that there is at least one point (z,t) for which ¢ is in one of these closed
intervals. By this construction, A is finite and d(4,Ty) <e. =

To complete the proof of Theorem 6.3.1, we need the following result,
which we prove by applying Lemma 6.3.1.

Lemma 6.3.2. (flexibility in choice of parametric representations) For any
z1,29 € D, (u1,71) € ls(x1) and € > 0, it is possible to find (ug,72) €
IIs(z2) such that

llur — uo|| V ||r1 — r2|| < ds(z1,z2) + € -

Proof. For z1,z2 € D and e given, choose (u},7]) € II;(z1) and (uh,r)) €
IIs(x2) such that

luf —us|| V|7t — ol < ds(z1,22) +€/4 . (3.11)

Next apply Lemma 6.3.1 to find a finite ordered subsets A; C I'y, such that

~

d(A1,T;,) < €/4. Next find a finite subset S of [0, 1] of the same cardinality
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as A; such that (u)(s),r](s)) € Ay for each s € S]. Let S; be another finite
subset of [0, 1] of the same cardinality as A; such that (ui(s),r1(s)) € A; for
each s € Si. Let A be a homeomorphism of [0, 1] such that A maps S; onto
S7. Let (ug,7m2) = (uh oA, rh0X), where o is the composition map. Trivially,
by (3.11),

luf o X —uh o A|| V|[ri o A =10 A|| < ds(x1,72) +€/4 .
Hence, it suffices to show that
lug —uy o A V|[r1 — 7} o A|| < 3e/4 . (3.12)

First there is equality u1(s) = u{(A(s)) by construction at each s € Si.
However, since d(A1,T';) < €/4, (3.12) holds: For each s € [0, 1], there is
s; € S1 such that s; < s < s;41 and

Jut(s) — uf A < Jlua(s) — wr(sa)|| + [lua(si) — uh (A(sq))
Hluy(A(si)) — uh (A(s))]| < €/2. m

We will show that the metric ds induces the standard M; topology de-
fined by Skorohod (1956); see Theorem 6.5.1. Since IIs(z) C II,(z) for all z,
we have dy(z1,x2) < ds(x1,x2) for all z1,x9, so that the W M; topology is
indeed weaker than the SM; topology. However, we show below in Example
12.3.2 of the book that dy, in (3.8) is not a metric when k& > 1.

For z1,z9 € D([0,T],R¥), let d, be a metric inducing the product topol-
ogy, defined by o

dp(z1,29) = [max, d(z},z%) (3.13)

for z; = (mjl,,a:f) and j = 1,2. (Note that d; = dy, = dp when the
functions are real valued, in which case we use the notation d.) It is an
easy consequence of (3.8), (3.13) and the second representation in (3.4) that
the WM, topology is stronger than the product topology, i.e., d,(z1,z2) <
dy(z1,29) for all z1,z9 € D. In Section 6.5 we will show that actually the
W M; and product topologies coincide.

Example 12.3.1 of the book shows that SM; is strictly stronger than
WM.

We now relate the metrics dp;, = ds and dj, for dj, in equation 3.2 of
Section 3.3 in the book.

Theorem 6.3.2. (comparison of J; and M; metrics) For each 1,22 € D,

ds(.’l,'l,.’L'Q) S d]l(.’L'l,.’L'Q) .
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Proof. For any z;,29 € D and A € A, we show how to define parametric
representations (uj,r;) in IIi(z;) for j = 1,2 such that

luy —ug|| V|lry = rof| = [lzr 0 A=z VI[A —ef . (3.14)
If, for any € > 0, we first choose A € A so that
|10 A —zo|| VA —e]| < dyj (z1,22) + €,
the associated parametric representation yield
ds(z1,m2) < ||ur —ue|| V [|r1 — r2|| < dj (z1,22) + €.
Since € is arbitrary, that will complete the proof. Suppose that
tn € Disc(z1,x2) = Disc(z1) U Disc(zz), n>1,

where t,, is ordered (indexed) first by the norm of the jump and then the
location, with values closer to 0 occurring first. Associate with each time
point t, a closed subinterval [an,b,] in (0,1) such that the subintervals are
ordered, i.e., if t; < t; < t; are three points in Disc(z1,z2), then a; <
b; < aj < bj < ap < bg. Then let ro(s) = t, for ap, < s < by. Ift ¢
Disc(zy,z2) but t,, |t as ngy — oo for t,, € Disc(z1,z2), then let ro(s) =
limy,, ;00 r2(an, ). Similarly, if ¢ ¢ Disc(zi,22) but t,, 1t as ny — oo
for t,, € Disc(z1,2), then let ro(s) = limy,, o0 r2(by, ). Finally, let ry(s)
be defined by linear interpolation in all remaining gaps. This makes 7o
continuous and nondecreasing. Having defined 79, let r1 = Ao 79, ui(s) =
(z1 0o7r1)(s) and ua(s) = (xz2 or2)(s) for all s, except s € (ap,b,) for some
n. Within each subinterval (ay,b,), let u; and uy be defined by linear
interpolation from their values at the endpoints a,, and b,,. This construction
makes (uj,rj) € Ils(z;) for j = 1,2 and yields (3.14), thus completing the
proof. =

6.3.3. Properties of Parametric Representations

We conclude this section by further discussing strong parametric represen-
tations. For x € D, t € Disc(z) and (u,r) € IIs(z), there exists a unique
pair of points s = s_(¢,z) and s; = sy(t,z) such that s_ < sy and
Pt = [s_, 54 e

(i) r(s) < tfor s < s_ (3.15)

(ii) r(s) =t for s < s < sy

(iii) (s) > ¢ for s > sy .



6.3. STRONG AND WEAK M, TOPOLOGIES 123

We will exploit the fact that a parametric representation (u,r) in II;(z)
is jump consistent: for each t € Disc(z) and pair s_ = s_(t,z) < sy =
s4(t,z) such that (3.15) holds, there is a continuous nondecreasing function
B¢ mapping [0, 1] onto [0, 1] such that

u(s):ﬁt(s_s_ )u(s+)+[1—ﬁt<s_3_ )]u(s_) for s_<s<s,y.

Sy — S— Sy — S—
(3.16)

Condition (3.16) means that u is defined within jumps by interpolation from
the definition at the endpoints s_ and s, consistently over all coordinates.
In particular, suppose that ¢ € Disc(z?). (Since t € Disc(z), we must have
t € Disc(z') for some coordinate i.) Suppose that z*(t—) < z*(t). Then we
can let

_uf(s) —ui(so)
) = i) (s )
We see that (3.16) and (3.17) are consistent in that

a6 = (22 e+ - (S5 ) [wen ey

Sy — S— S4 — S—

(3.17)

for B; in (3.17). For another coordinate j, (3.16) and (3.17) imply that

_ () _ i , i i _

u!(s) = u (s) —u (87) u! (s4+) + Y (54) Y () u(s=) . (3.19)
u'(sy) — u(s-) u'(sy) —u(s-)

It is possible that ¢ ¢ Disc(z’), in which case u/(s) = w/(s_) = u?(s) for
all 5, s_ < s <s5.

We can further characterize the behavior of a strong parametric represen-
tation at a discontinuity point. For z € D, t € Disc(z) and (u,r) € IIs(z),

there exists a unique set of four points s_ = s_(t,z) < s = s’ (t,z) <
s, =&\ (t,2) < sy = sy(t,z) such that (3.15) holds and
(i) u(s) = u(s-) for s_ <s <",
(ii) for each i, either u’(s_) < u’(s) < u’(sy),
or u'(s_) > u'(s) > u'(sy) for &' < s <,
(iii) u(s) = u(sy) for s/, <s < sy . (3.20)

Let Dy be the subset of D containing functions all of whose jumps occur
in only one coordinate, i.e., the set of z such that, for each ¢t € Disc(z) there
exists one and only one i = i(t) such that ¢ € Disc(z"). (The coordinate 4
may depend on t.)

Lemma 6.3.3. (strong and weak parametric representations coincide on
Dy) For each x € Dy, Tli(x) = ().
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Proof. Since II;(z) C II,(z), we need to show that (u,r) € IL,(z) is in
II,(z) for z in D). Pick any ¢ € Disc(z) and let i be the coordinate of z
with a jump at £. We can then define the §; needed for (3.16) using (3.17).
Since u/(s) = u/(s_) = u/(sy) for all j with j # i, (3.19) and (3.16) are
then satisfied. =

Corollary. For each x € D([0,T],R!), Hs(x) = Iy (z).

We now show that parametric representations are preserved under linear
functions of the coordinates when z € II;(z). That is not true in IT,(z).

Lemma 6.3.4. (linear functions of parametric representations) If (u,r) €
I, (z), then (qu,r) € I4(nz) for any n € RE.

Proof. By the Corollary to Lemma 6.3.3, II;(nz) = IL,(nz). Hence, it
suffices to show that (nu,r) € II,(nz). It is clear that (nu,r) is continuous
and nondecreasing. For t € Disc(nz), necessarily ¢t € Disc(z). (We could
have t € Disc(z) but t ¢ Disc(nz), but that does not concern us.) By
(3.16), when r(s) = t,

(s = (22 Youtes) + 1 (225 ) e )

S+ — S— S — S—

which completes the proof. =

6.4. Local Uniform Convergence at Continuity Points

In this section we provide alternative characterizations of local uniform con-
vergence at continuity points of a limit function. The nonuniform Skorohod
topologies on D all imply local uniform convergence at continuity points of
a limit function. They differ by their behavior at discontinuity points.

We start by defining two basic uniform-distance functions. For x1,z9 €
D,te€[0,T] and 6 > 0, let

u(z1, T2,t,0) = sup {llz1(t1) — z2(t)l} (4.1)
OV(t—8)<t1 <(t+6)AT

v(z1,2,1,0) = sup {llz1(t) — 22}, (42)
OV(t*J)Sh,tQS(t—}—&)/\T

We also define an oscillation function. For x € D, t € [0,T] and § > 0, let

v(x,1,6) = sup {llz(t1) = z(@2)1l} - (4.3)
OV(t—08)<t1 <ta <(t+0)AT
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We next define oscillation functions that we will use with the M; topolo-
gies. They use the distance ||z — A|| between a point z and a subset A in
R¥ defined in equation 5.3 in Section 11.5 of the book. The SM; and W M,
topologies use the standard and product segments in (3.1) and (3.2). For
each z € D, t € [0,T] and ¢ > 0, let

ws(z,t,6) = sup {llz(t2) — [=(t1), z(t3)]]| (4.4)
0v(t76)§t1 <t2 <t3§(t—|—(5)/\T

and

Wy (,t,0) = sup {llz(t2) — [[z(t1), z(@)]]ll  (4.5)
0V (t—0)<t1 <ta<tz<(t+0)AT

We now turn to the My topology, which we will be studying in Sections
6.10 and 6.11. We define two uniform-distance functions. We use w as
opposed to w to denote an Ms uniform-distance function. Just as with the
M;j topologies, the SMs and W M5 topologies use the standard and product
segments in (3.1) and (3.2). For z1, z2 € D, let

Ws (21, T2,t,6) = sup {llzr (1) = [w2(t=), m2(O)]I1}  (4.6)
OV (t—8)<t1 <(t+8)AT

W (T1, 22,1, 0) = sup {llz1 (t1) = [[z2(t=), @]} (4.7)
OV (t—08)<t1 <(t4+0)AT

It is easy to establish the following relations among the uniform-distance
and oscillation functions.

Lemma 6.4.1. (inequalities for uniform-distance and oscillation functions)
For all z,z, € D, t € [0,T] and 6 > 0,

w(Zy, z,t,0) <v(ry,z,t,0) < ulzy,z,t,0) +v(x,t,d) ,

ww(xn,t, (5) < ’u}s(l‘n,t, (5) < ﬁ(wn,t, 6) < 2v($na$ata5) + 6(33’7:75) ,
Wy (T, X, t,0) < Ws(Tpy, 2, 8,0) < v(Tp, 2, t,0) < 2Wy(zy, z,t,0) + 0(x, t,0) .

Since the Mj-oscillation functions wg(zy,t,d) and wy(zy,t,d) do not
contain the limit z, their convergence to 0 as n — oo and then § | 0
does not directly imply local uniform convergence at a continuity point of a
prospective limit function z.

We relate convergence of ws(z)n,t,d) and wy(zn,t,d) to 0 as n — oo
and ¢ | 0 to local uniform convergence by requiring pointwise convergence
in a neighborhood of ¢; see (vi) in Theorem 6.4.1 below.
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Theorem 6.4.1. (characterizations of local uniform convergence at conti-
nuity points) If t € Disc(z), then the following are equivalent:

(7) lim lim u(zy,,7,t,6) =0, (4.8)
0 pooo

(12) lim lim v(z,,z,t,6) =0, (4.9)
0 nooo

(ii5)  lim lim ws(zp,z,t,6) =0, (4.10)
0 psoo

(iv)  lim lim wy(z,,z,t,6) =0, (4.11)
0 oo

(v) z,(t1) — z(t1) for all t1 in a dense subset of a meighborhood of t
(including 0 if t =0 or T if t =T) and

lim lim wg(zy,,t,6) =0,
N0 nooo o(@n: 15 0)

(vi) zn(t1) — x(t1) for all t; in a dense subset of a neighborhood of t
(including 0 if t =0 or T if t =T) and

lim lim wy(z,,t,0) =0 . (4.12)

0 psoo

Proof. By Lemma 6.4.1, we have the implications (i) <> (ii) <> (iii) > (iv)
and (ii) — (v) — (vi). Hence it suffices to show that (vi) — (i), which we
now do. For z,t ¢ Disc(z) and € > 0 given, choose § > 0 so that 9(z,t,d) <
€, which is possible since ¢ ¢ Disc(z). Also let ¢ be sufficiently small so that
zn(t)) = z(t)) as n — oo for all ¢} in a dense subset of [0V (t—4), (t+6) AT].
Note that we can treat 0 and T directly. For t; € (0V(¢t—6), TA(t+0)) given,
choose 11, t) so that 0V (t—4) <t} <t1 <ty < (t+0)AT and z,(t;) — z(t})
asn — oo for j = 1,2. Then choose ng so that ||z, (t')—z(t")|| < € for t” = 0,
T, t| and t, and wy,(zy,t,8) < € for n > ng. Then, for n > ny,

lln (t1) — z(t1)] [z (t1) = 2o (@) + za(t)) — (@) + |2(t]) — z(t1)]]
[z (t1) — zn(t1)] + 26
l2n (1) = [[2n(t1), 20 )] + llzn (1) — 2 (t5)]] + 2e
Wy (T, T, 6) + ”xn(t,l) - -Tn(tl2)|| + 2e
l2n (1) — (@)l + llz(t1) — (&)

+ [|z(ty) — za(t3)]| + 3€ < 6e .

IANIA INIA DA
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It remains to consider ¢ = 0 and ¢t = T'. The reasoning is the same for these
two cases, so we consider only ¢ = 0. For ¢ = 0, note that

[ (t1) =2 (E1) || < ll2n (1) =20 (0)[ 4[| (0) = 2(0) || +[|(0) —x(#) ]| . (4.13)

The third term in (4.13) can be made small using the right continuity of z at
0; the second term in (4.13) can be made small by the assumed convergence
at 0; the first term in (4.13) can be made small by (4.12). =

We now show that local uniform convergence at all points in a compact
interval implies uniform convergence over the compact interval.

Lemma 6.4.2. (local uniform convergence everywhere in a compact inter-
val) If (4.8) holds for all t € [a,b], then

lim lim sup {llzn(t) —z@)||} =0 .
N0 nsoo 0V(a—8)<t<(b+8)AT

Proof. By (4.8), for all € > 0 and t € [a, ], there exists §(¢) such that

lim u(zy,z,t,0(t) <e.

n—oo

For each ¢, there is thus uniform asymptotic closeness in the intervals (0 V
(t —4(t)), (t + d(t)) AT). However, these intervals form an open cover of
the interval [a,b]. Since [a,b] is compact, there is a finite subcover. Hence,
there is a ¢’ > 0 such that

lim sup {llzn(t) —x(@®)[|} <e.
n—oo 0V(a—d"])<t<(b+0")AT

Since € was arbitrary, this implies the desired conclusion. =

6.5. Alternative Characterizations of M; Convergence

We now give alternative characterizations of SM; and W M; convergence.

6.5.1. SM,; Convergence

We first establish alternative characterizations of SM; convergence or, equiv-
alently, ds-convergence. One characterization is a minor variant of the orig-
inal one involving an oscillation function established by Skorohod (1956).
Another one — (v) below — involves only the local behavior of the functions.
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It helps us establish sufficient conditions to have dy((zn,yn), (z,y)) — 0
in D([0,T),R¥*!) when dy(z,,z) — 0 in D([0,T],R*) and ds(yn,y) — 0
in D([0,T],R'); see Section 6.6. For the SM; topology, we define another
oscillation function. For any x1,z9 € D and § > 0, let

ws(z,0) = sup ws(x,t,0) , (5.1)
0<t<T

for wg(z,t,0) in (4.4).
The following main result is proved in the book. It only remains to prove
the supporting lemmas, which we do here.

Theorem 6.5.1. (characterizations of SM; convergence) The following are
equivalent characterizations of convergence x, — x as n — oo in (D, SM):

(i) For any (u,r) € Il4(x), there exists (up,rn) € s(zy,), n > 1, such
that
lun —ul| V|rn—7|| >0 as n—oo. (5.2)

(i) There ezist (u,r) € Ils(z) and (up, ) € s(zy) for n > 1 such that
(5.2) holds.

(iii) ds(zpn,z) = 0 as n — oo; i.e., for all € > 0 and all sufficiently large
n, there exist (u,r) € ly(z) and (up,ry) € Us(z,) such that

|, — wl| V||rn — 7] <€ .

() zn(t) = x(t) as n — oo for each t in a dense subset of [0,T] including
0 and T, and o
%iﬁ)l nlgilo ws(Tp,d) =0 (5.3)
for ws(z,0) in (5.1) and ws(x,t,06) in (4.4).
(v) 2o (T) — x(T) as n — oo; for each t & Disc(x),

lim lim v(xn,z,t,0) =0 (5.4)

0 nooo

for v(z1,z2,t,0) in (4.2); and, for each t € Disc(x),

lim lim ws(zy,t,6) =0 (5.5)

010 nooo

for wg(x,t,0) in (4.4).
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(vi) For all € > 0, , there exist integers m and ny, a finite ordered subset
A of Ty of cardinality m as in (3.9) and, for all n > ng, finite or-
dered subsets A, of I';, of cardinality m such that, for all n > nq,
d(A,T;) <€, d(A,,Ty,) <€ for d in (3.10) and d*(A, A,) < €, where

d* (A, An) = max {[|(zi,t:) = (2ni tni)|| © (2i,8i) € A, (2nistn;i) € An}.
(5.6)

In preparation for the proof of Theorem 6.5.1, we establish some pre-
liminary results. We first show that SM; convergence implies local uniform
convergence at all continuity points.

Lemma 6.5.1. (local uniform convergence) If ds(z,,z) — 0 as n — oo,
then (4.9) holds for each t ¢ Disc(x).

Proof. For z, t € Disc(z)® and € > 0 given, choose § > 0 so that ||z(t') —
z(t)|| < € for [t —#'| < §. Then choose ng > 4, (un,r,) € Is(z,) and
(u,r) € II4(x) such that

[un —wl| V [lrn — 7]l < (5 A €)/4

for all n > ng. Let s1, so, s3 be such that r(s1) =t — §/2, r(s2) = t and
r(s3) =t+6/2. Then ry(s1) <t < /4 and r,(s3) >t + 6/4 for all n > ny.
Hence, for all ¢’ € (t—3/4,t+8/4) and n > ng there exists sp, s1 < s, < 83,
such that (un(sn),n(sn)) = (zn(t'),t). Hence,

lzn(t) = z(#)] [un(sn) — u(s2)ll + llz(t) — = ("]
< lun(sn) = ulsn)ll + [[u(sn) —uls2)ll + €
< (0A€)/2+2¢<3e. =

We next relate the modulus w; applied to £ and the modulus applied to
corresponding points on the graph I';. The following lemma is established
in the proof of Skorohod’s (1956) 2.4.1.

Lemma 6.5.2. (extending the modulus from a function to its graph) If
(2:1,t1), (ZQ,tQ), (2’3,t3) e I'y with 0V (t — (5) <t <ta <ty < (t + (5) AT,
then ||ze — [z1, z3]|| < ws(z,d).
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Proof. Suppose that wg(z,0) = e. It suffices to show: (i) that |[zo —
[21,23]|| < e when [|z5 — [21,23]|| < '€, [|25 — [21, 23]|| < € and 22 € [23, 2]
and (ii) that ||zo — [21,23]|| < € when |[zg —[21, 23][| < €, [l22 — [27, 23] < €
and z1 € [2],2]]. For (i), note that there exist 2’, 2’ € [21,23] such that
|25 — 2'|| < € and ||z4 — 2"|| < e. Also there exists o, 0 < o < 1 such that
zo = azh+ (1 —«a)zy. Hence ||z2 — (@2’ + (1 — @)2")|| < €, which implies that

lz2 = [, 2"]Il < ll22 — [21, 28]l < €.

For (ii), note first that there exist 2’ € [z],z3] and 2" € [z, z3] such that
llze — 2/|| < € and ||z9 — 2”|| < e. Hence, for any z € [2/,2"], ||z2 — 2| < e.
The desired z lies on the intersection of [21, z3] and [2/, 2”"]. That implies the
desired conclusion. =

Lemma 6.5.3. (asymptotic negligibility of the modulus) For any x € D,
ws(z,8) L 0 as § | 0.

Proof. For any € > 0, choose z. € D, such that ||z — z.|| < €/2, which is
always possible by Theorem 6.2.2. Note that, for any § > 0,

ws(z,0) < wy(ze,d) + 2|z — x| ,
so that
ws(z,0) < wg(xe, ) + €.

Let 1 be the minimum distance between successive discontinuities in z..
Since wy(z¢,d) = 0 when § <7, ws(z,d) < e whend <7. =

Proof of Theorem 6.5.1. Contained in the book. =

6.5.2. W M; Convergence

We now establish an analog of Theorem 6.5.1 for the W M; topology. Several
alternative characterizations of W M; convergence will follow directly from
Theorem 6.5.1 because we will show that convergence z,, — = as n — oo in
W M, is equivalent to d,(zy,z) — 0. To treat the WM, topology, we define
another oscillation function. Let

Wy (z,0) = sup wy(z,t,0) (5.7)
0<t<T
for wy,(z,t,0) in (4.5). Recall that wy,(z,t,0) in (4.5) is the same as ws(z, t, §)
in (4.4) except it has the product segment [[z(¢1),z(t3)]] in (3.2) instead of
the standard segment [z(¢1), z(t3)] in (3.1).
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Paralleling Definition 6.3.1, let an ordered subset A of G, of cardinality
m be such that (3.9) holds, but now with the order being the order on G,.
Paralleling (3.10), let the order-consistent distance between A and G5 be

~

d(A, Gz) = sup{]|(z, 1) = (21 t2) | V [|(2, 1) = (zis1, tiga)I] : (2,8) € G} (5.8)

with the supremum being over all (z,t) € G5 such that (z;,t;) < (2,t) <
(Zi+1,ti+1) for all i, 1 S ) S m — 1.

Theorem 6.5.2. (characterizations of W M; convergence) The following
are equivalent characterizations of z, — x asn — oo in (D, WM;):

(i) dy(zn,x) = 0 as n — oo.
(it) dp(zp,z) — 0 as n — oco.

(i1i) xn(t) — z(t) as n — oo for each t in a dense subset of [0,T) including
0 and T, and
lim lim wy(z,,d) =0 . (5.9)

0 nooo

(iv) zp(T) — z(T') as n — oo; for each t ¢ Disc(z),

lim lLim ov(z,,z,t,6) =0 (5.10)

0 pooo

for v(zp,x,t,0) in (4.2); and, for each t € Disc(z),

lim lim wy(zn,t,0) =0 (5.11)

0 nooo

for wy,(zy,t,8) in (4.5).

(v) for all € > 0 and all n sufficiently large, there exist finite ordered
subsets A of Gy (in general depending on n) and A, of G4, of common
cardinality such that d(A,Gy) < €, d(An,Gy,) < € and d*(A, Ap) < €
for d in (5.8) and d* in (5.6).

Proof. (i)—(ii). Since dp < d, (1)—(ii) is immediate.

(ii)¢>(iii). The implication (iii)—(ii) is immediate, so we show (ii)—(iii).
By Lemma 6.5.1, z%,(t) — z*(t) as n — oo for each t € Disc(z*), 1 <i < k.
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That implies that z,(t) — z(t) as n — oo for each ¢ € Disc(z)¢. From
Theorem 6.5.1, dy(zy,z) = 0 as n — oo also implies that

lim Bim Lo§) =
b, el ) =0

for each i, 1 <4 <k, but that directly implies (5.9), because

|20 (t2) = {[zn(t1), 2 (t3)]]]| = max 25 (t2) = [, (1), 2 (B3]l 5 (512)
so that .
Wy (T, 0) = lrgfgckws(a:%,é) . (5.13)

(iii)4>(iv). The equivalence between (iii) and (iv) holds by the same reason-
ing used to establish the equivalence of (iv) and (v) in Theorem 6.5.1.
(iii)—(v). The proof of (iii)—(v) parallels the proof of (iv)—(vi) in Theorem
6.5.1, but requires some modifications. Paralleling the previous beginning,
for € > 0 given, find 7 < €/16 and ng such that wy,(z,,n) < €/32 for n > ny.
However, we do not next directly construct A € G,. Instead, just as with
the SM; topology, we first construct the finite set A of I'; as before with
the properties in the proof of Theorem 6.5.1. We denote this subset A’ to
distinguish it from the desired subset A of G;. As before, for all t; € SN A’,
let ny > ng be such that ||z, (t;) — z(t;)|| < €/32 for all 4, 1 <3 < k, and
all n > ny. We now want to construct the ordered subset A4, in G, . For
t € S, the construction is as before: (zp ;,t,:) = (25 (i), t;). Next suppose
that (?7) holds. Then (z,r,tn ) and (2n r4j+1;tnr+j+1) have been defined
with respect to A’. We insert points into A4,, from G, appropriately spaced
in between the two points. By construction specified before (but using the
product segments),

||[[(xn (tr);tr), ($n(tr+j+1)a tr+j+1)]]
—[[((tr), tr), (@(Errjt1)s trgjr )]l < €/32 (5.14)

and

T (tr)s tr), (@t s 1)y trvjr)]] = [[(2(E), 8), (2(2), DN < €/32. (5.15)

To simplify the discussion, suppose that z'(t—) < z*(t) for all i. (This
is without loss of generality after redefining the order.) Consider an ar-
bitrary nondecreasing (in the order on G, ) continuous curve in G, from
(20> tng) 10 (Znrtjats tnrrjr1)- Let (25, 11,1, .4 1) be the first point on this
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curve for which the i*! coordinate first reaches sz + ¢/4 for some i. Given
(Zn,r+ks tng+k)s let (2n r4k+1, tnro+1) be the next point on the curve at which
the i*! coordinate first reaches zfl’Hk + ¢/4 for some i. Since z*(t—) < z'(t)
for all ¢ and since wy,(z,,n) < €/32, no coordinate of the curve in G, can
decrease by more than €¢/32 over any subinterval, and thus from one points
to the next in A,. Continue in this manner for at most finitely many steps
until the end point (25,r+j+1,%n,r+j+1) is reached. The distance between
successive points is €/4, while the distance between the last point inserted
and (Znr4j+1,tnr+j+1) i less than e/4. Delete the first and last point in-
serted, so that all distances between successive points are between €/4 and
€/2. In general, the number of inserted points is some finite number, not
necessarily equal to j. These points are ordered, since they lie on the non-
decreasing continuous curve through G, . For each t € Disc(z,€/2), let Ay,
contain these specified points. This construction yields d(4,,Gy,) < €/2.
For t € Disc(z,€/2), let A contain the points already constructed in A’. It
remains to construct the points in A for ¢t € Disc(x, €/2). For this purpose,
we use the points in A4,, associated with . Again, to simplify the discussion,
suppose that z*(t—) < z(t) for all i. With this ordering, we let

Zrpp = 2 (0) V max 2 0y A2t ()

for each k and 4. This definition guarantees that the points (z,1,t) belong
to G, and are ordered. Moreover, J(A, G;) < e. Finally, we must have
d*(A, A,,) < €, because otherwise the condition wy,(z,,n) < €/32 would be
violated.

(v)—(i). Suppose that the conditions in (v) hold and let € > 0 be given.
Construct the finite subsets A and A,, with the specified properties. Let
(u,r) and (up,T,) be arbitrary parametric representations of G, and G,
such that there are points s; in S C [0,1] such that both (u(s;),7(si)) =
(zi,ti) € A and (un(s;),rn(si)) = (2ni tni) € An. Since A and A, are
ordered subsets of G, and G, , respectively that construction is possible.
Finally, for any s, 0 < s < 1, there is s; € S such that s; < s < s;41 and

[[un(s) — u(s)|| V [lrn(s) — r(s)[| < [[(un(s),n(s)) — (un(s:), ra(si))ll
+[[(un (80), 0 (83)) — w(si), m(sa)|] + | (ulsi),7(s:)) — u(s),r(s)]l
< d(An,Gy,) +d* (A, Ap) +d(A,Gy) < 3c. =

6.6. Strengthening the Mode of Convergence

Section 12.6 of the book applies the characterizations of M; convergence in
previouis sections to establish conditions under which the mode of conver-
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gence can be strengthened: We find conditions under which W M; conver-
gence can be replaced by SM; convergence. Most of the material appears
in the book.

We use the following Lemma.

Lemma 6.6.1. (modulus bound for (z,,y,)) For z, € D([0,T],R¥), y,,y €
D([0,T],R!), t € [0,T] and § > 0,

ws((xnayn)atad) < 'ws(mnata 5) + 2U(yn,y,t,5) -

Proof. For (t —0)VO<t; <to<tz<(t+9I)AT,

(@, yn)(t2) = [(@n,yn) (1), (20, yn) (E3)]]
< (@, yn) (t2) — [(@n(t1),y(2)), (2 (t3), y(2))]]
+ (lyn (1) = @IV llya(ts) — y(@)])
< lon(t2) = [on(t1), an(@3)]1 V llyn(t2) — y(@)]]
+ (lya (1) =@V llyn(ts) — y(@)])
< lzn(t2) = [2n(t1), zn(@3)]ll + 20(yn, y,1,6) . =

Theorem 6.6.1. (extending SM; convergence to product spaces) Suppose
that ds(z,,z) — 0 in D([0,T],R*) and ds(yn,y) — 0 in D([0,T],R!) as
n — oo. If

Disc(xz) N Disc(y) = ¢.

then
ds((%n, yn), (z,y)) = 0 in D([0,T],R*") as n — oo.

The proof is in the book.

6.7. Characterizing Convergence with Mappings

In this section we focus on alternative characterizations of SM; convergence
using mappings.

6.7.1. Linear Functions of the Coordinates

The strong topology SM; differs from the weak topology W M; by the be-
havior of linear functions of the coordinates. Example ?? shows that linear
functions of the coordinates are not continuous in the product topology
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(there (z} — z2) /4 (2! — 2?) as n — o0), but they are in the strong topol-
ogy, as we now show. Note that there is no subscript on d on the left in
(7.1) below because nz is real valued.

Theorem 6.7.1. (Lipschitz property of linear functions of the coordinate
functions) For any z1, zo € D([0,T],R¥) and n € R¥,

d(nzy,nxe) < ([0l Vv 1)ds (1, z2) - (7.1)

Proof. Pick an arbitrary e > 0 and choose (uj,r;) € II;(z;) for j = 1,2
such that

lur — gV |lre —raf| < ds(z1,22) + €,
which is possible by the definition (3.7). Because nu; € II(nz;) for j = 1,2,
by Lemma 6.3.4,

< lmur —nual| V ||r1 — o]
< ey = el V lur — uz|l[nl|
< (lInll v 1)(ds(z1,22) +¢) .

d(nzh 77332)

Since € was arbitrary, (7.1) is established. =

We now obtain a sufficient condition for addition to be continuous on
(D,ds)* (D, ds), which is analogous to the J; result in Theorem 4.1 of Whitt
(1980).

Corollary 6.7.1. (SM;-continuity of addition) If ds(xy,z) — 0 and ds(yn,y) —
0 in D([0,T],R¥) and

Disc(z) N Disc(y) = ¢,

then
ds(zn + yn,z +y) = 0 in D([0,T],RF).

Proof. First apply Theorem 6.6.1 to get ds((zn,yn),(z,y)) — 0 in
D([0,T),R?*). Then apply Theorem 6.7.1. =

Remark 6.7.1. Measurability of addition. The measurability of addition
on (D,ds) x (D,ds) holds because the Borel o-field coincides with the Kol-
mogorov o-field. It also follows from part of the proof of Theorem 4.1 of
Whitt (1980). =
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In Theorem 6.7.1 we showed that linear functions of the coordinates are
Lipschitz in the SM; metric. We now apply Theorem 6.5.1 to show that
convergence in the SM; topology is characterized by convergence of all such
linear functions of the coordinates.

Theorem 6.7.2. (characterization of SM; convergence by convergence of
all linear functions) There is convergence z,, — = in D([0,T],RF) as n — oo
in the SM; topology if and only if nz, — nx in D([0,T],R') as n — oo in
the M, topology for all n € RE.

Proof. One direction is covered by Theorem 6.7.1. Suppose that =, A =
as n — oo in SMj. Then apply part (v) of Theorem 6.5.1 to deduce that
nTy, /4 nr as n — oo for some 1. Note that ||a|| > 0 for a € R* if and only
if [na| > 0 in R for some n € R¥. Also, ||a — A|| > 0 for A C R* if and only
if [na — nA| > 0 in R for some n € R¥, where nA = {nb:bec A}. =

We can get convergence of sums under more general conditions than in
Corollary 6.7.1. It suffices to have the jumps of z* and 3’ have common sign
for all . We can express this property by the condition

(z*(t) — 2’ (t=)) (v*(t) — y'(t—)) = 0 (7.2)
forallt, 0 <t<T,andalli, 1 <1<k

Theorem 6.7.3. (continuity of addition at limits with jumps of common
sign) If , — z and y, — y in D([0,T],R¥, SM;) and if condition (7.2)
above holds, then

Tn+yn = x+y in D(0,T],RF, SM) .
Proof. The proof is in the book.

6.7.2. Visits to Strips

In Sections (2.2.7)—(2.2.13) of Skorohod (1956), convenient characterizations
of convergence in each topology are given for real-valued functions. We can
apply Theorem 6.7.2 to develop associated characterizations for R¥-valued
functions. For each z € D([0,T],R!), 0 < t; < to < T and, for each a < b

in R, let vfl’f’tz (z) be the number of visits to the strip [a,b] on the interval
[t1,t2]; i.e., vfl’?tz (z) = k if it is possible to find k (but not k + 1) points ¢
such that ¢; <t} < ... <t} <ty such that either

z(t1) € [a,b], z(t)) & [a,b], z(ty) € [a,b],...,
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‘T(tl) ¢ [aa b]a "I"(tll) € [a,b], 'T(tl2) ¢ [aa b]a

We say that = € D([0,T],R) has a local mazimum (minimum) value at
t relative to (t1,t2) in (0,T) if ¢, < t < t9 and either

(1) sup{z(s) :t1 <s <t} <z(t) (inf{z(s):t; <s<t2}>z(t))
(ii) sup{z(s) :t;1 <s<to} <z(t—) (inf{z(s):t1 <s<ty)}>z(t—)).

We say that z has a local mazimum (minimum) value at t if it has a local
maximum (minimum) value at ¢ relative to some interval (t1,t2) with ¢; <
t < t9. We call local maximum and minimum values local eztreme values.

Lemma 6.7.1. (local extreme values) Any x € D([0,T],R) has at most
countably many local extreme values.

Proof. For each n, let {t, ;} be a finite collection of points in [0, T'], includ-
ing 0 and T'. Let {¢,;} be a subcollection of {¢,1,:} for each n and let the
minimum distance between points in {t¢,;} be €,, where ¢, | 0 as n = oo.
Note that there is one local maximum value and one local minimum value
of z relative to the interval endpoints in each interval [t,, ;,ty ;+1), where ¢, ;
and t, ;.1 are successive points in {t,, ;}. Hence the total number of extreme
values of z relative to {t,;} is countably infinite. Next note that any ex-
treme value of z is contained in this set. To see this, suppose that b is an
extreme value of z at ¢ relative to the interval (¢1,%2). Then, for sufficiently
large n, there is an interval (¢, ;,%n i+1) such that ¢1 <t,; <t <tp;r1 < to,
so that b is an extreme value of z within (¢, ;,t,41). =

If b is not a local extreme value of z, then z crosses level b whenever x
hits b; i.e., if b is not a local extreme value and if z(t) = b or z(t—) = b, then
for every t1, to with t; < ¢ < t9 there exist ¢}, t) with t; < ¢}, t) < t3 such
that z(#}) < b and z(t}) > b. This property implies the following lemma.

Lemma 6.7.2. Consider an interval [ti,t2] with 0 < t; < to < T. If
z(t;) & {a,b} for i =1,2 and a,b are not local extreme values of x, then x

crosses one of the levels a and b at each of the U?f?tQ (z) wvisits to the strip
[a,b] in [t1,t].
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Theorem 6.7.4. (characterization of SM; convergence in terms of conver-
gence of number of visits to strips) There is convergence dgs(zy,,z) — 0 as
n — oo in D([0,T],R*) if and only if

b b
Ugf,tz (nzn) — Ug;,tz (nz) as n — o0

for all n € R¥, all points t1,t2 € {T} U Disc(x)¢ with t; < t2 and almost all
a, b with respect to Lebesgue measure.

Proof. By Theorem 6.7.2, it suffices to establish the result for R-valued
functions. First, suppose that =, — z as n — oo in D([0,T],R, M7). Sup-
pose that a and b are not local extreme values of z. Let t1,ty € Disc(z)°
and suppose that z(t1),z(t2) € {a,b}. Then, for sufficiently large n, by

Lemma 6.7.2, v?;?b (zn) = v?l’?tz (x). Since there are at most countably many

“bad” a,b for any z, vf{?b (xn) — ,U;’?tz (z) for almost all a,b with respect to
Lebesgue measure. On the other hand, suppose that 'ufl’f’t? (zn) — vf{f’h (z)
for all ¢1,t2 € Disc(z)® and for almost all a,b. We will show that char-
acterization (v) of SM; convergence in Theorem 6.5.1 holds. For z,¢ and
e > 0 given, find 1 such that v(z, [t — n,t)) < €/2 and v(z,[t,t + 7n]) < €/2.
First suppose that ¢t € Disc(z)¢. Then vf{f’h (z) = 0 for t1, to € Disc(x)S,
t—n <ty <t<ty<t+nandall (a,b) witha < z(t)—€/2 < z(t)+¢/2 < b.
By assumption, for all suitably large n, ’Ug'l' ,bt; () = 0 for some a/,b’ with

z(t) —e<d <z(t)—e/2<z(t) +e/2 <V <z(t)+e€.

By the argument above, we can show that, for a time interval before t, x,
and z are first in a neighborhood of z(t—) and then leave. Afterwards, z,
and z enter the neighborhood of z(t) and stay there for a short interval after
t. To see this, let ¢; and ¢ be as above and then find a1, b1, a2, by such that

z(t—) —e<ar <z(t—)—€/2, z(t—) +€/2 < by < z(t) + ¢
z(t) —e<ag <z(t) —€/2, z(t) +€/2 < by < z(t) + €,
U?ll,;gl (zn) — v?ll’;gl (z) =1 and Uff,’tl;z (zn) — vff,;f? (z) = 1. that implies that
(T, z,1,0) < €for § < min{|t—t1],|t—t2|}. Next suppose that t € Disc(z).
Let t1, t2 be as above. Find a1, b1, ag, by such that
z(t—) —e<a <z(t—) —€¢/2 <z(t—) +€/2 < by < z(t—) + €,

z(t) —e<ap < z(t) —e/2 < z(t) + €/2 < b < z(t) + €,
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vfll”tb; (xn) — Ufll,;:b; (z) = 1 and U?f’ff (zn) — ")?12,’7:1)22 (z) = 1. It remains to

show that z,, cannot fluctuate significantly between z(t—) and z(t). To be
definite, suppose that z(t—) < z(t) and suppose that € < z(t) —z(¢t—). Then
for almost all a,b with

z(t—) +e/2<a<b<z(t)—€/2,

U?f?tz(xn) — 'Ufl’?b (z) =2 as n— oc.
That implies that ws(zy, z,t,d) = 0 as n — oo for § < min{|t; —¢|, |t — 12|},
which completes the proof. =

6.8. Topological Completeness

In this section we exhibit a complete metric topologically equivalent to the
incomplete metric dy in (3.7) inducing the SM; topology. Since a prod-
uct metric defined as in (3.13) inherits the completeness of the component
metrics, we also succeed in constructing complete metrics inducing the as-
sociated product topology. We make no use of the complete metrics beyond
showing that the topology is topologically complete. Another approach to
topological completeness would be to show that D is homeomorphic to a G
subset of a complete metric space, as noted in Section 11.2 of the book.

In our construction of complete metrics, we follow the argument used by
Prohorov (1956, Appendix 1) to show that the J; topology is topologically
complete; we incorporate an oscillation function into the metric. For M,
we use ws(z,d) in (5.1). Since wg(z,d) — 0 as § — 0 for each z € D, we
need to appropriately “inflate” differences for small §. For this purpose, let

ws(z,e?), z<0
ws(z,2) = (8.1)
wg(z,1), z>1.

Since wg(x,d) is nondecreasing in §, Ws(x, z) is nondecreasing in z. Note
that ws(z,z) as a function of z has the form of a cumulative distribution
function (cdf) of a finite measure. On such cdf’s, the Lévy metric A is known
to be a complete metric inducing the topology of pointwise convergence at
all continuity points of the limit; i.e.,

AP, Fy) =inf{e >0: Fo(x —€) —e < Fi(z) < Fo(z +€) +€} . (8.2)

The Helly selection theorem, p. 267 of Feller (1971), can be used to show
that the metric A is complete.
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Thus, our new metric is
dy (1, w2) = dy(w1,32) + A(ibs (1, ), Bs (2, )) - (8.3)

Theorem 6.8.1. (a complete SM; metric) The metric ds on D in (8.3) is
complete and topologically equivalent to ds.

Proof. To show topological equivalence of ds and dg, it suffices to show
that (s (zn, ), Ws(z,-)) — 0 as n — oo whenever dy(zp,z) — 0 asn — co.
However, if ds(x,,z) — 0 as n — oo, then ws(zy,d) = ws(z,d) as n — oo
at all § which are continuity points of ws(z,d). (See Lemma 6.8.1 below.)
That in turn implies that ws(z,,2) — ws(z,2) as n — oo for all z which
are continuity points of wy(z,z). However, such convergence is equivalent
to convergence under . Next, suppose that a sequence {z,} is fundamental
under dy, i.e., dy(zm,z,) — 0 as m,n — co. It follows that {z,(t) : 0 <
t < T,n > 1} is compact. Hence, there exists a countable dense set N of
[0, 7], including 0 and T, and a subsequence {zy, } such that z,, (t) = z(t)
as ny — oo for all t € N, where x is some RF-valued function on [0,7]. At
the same time, since X is known to be a complete metric, there must exist a
distribution function F' such that
nlggo ANws(zp,-),F) =0,
which implies that

lim lim wy(z,,8) =0.
=0 nooo

However, Theorem ?? and Corollary ?? imply that there exists z € D
(with Z not necessarily x) such that ds(z,,,z) — 0 as n; — oco. Since
ds(zp,T) < dy(zpn,zn,) + ds(zn,,Z) and ds(2m,z,) — 0 as m,n — oo,
ds(rn,Z) >0asn —o00. =

To complete the proof of Theorem 6.8.1, we need the following lemma.

Lemma 6.8.1. (continuity of SM; modulus) If ds(zy,,z) — 0 as n — oo,

then ws(zy,d) — ws(x,d) as n — oo for each § that is a continuity point of
wg(z, 9).

Proof. Let 0 be a continuity point of ws(x,d). Then, for each ¢; > 0,
there is €5 > 0 such that ws(z,d —e2) > ws(z,0) —€1. For §, €1 and e given,
it is possible to choose continuity points t, t1, t2 and t3 of = such that

(t—=0)VO<t1 <ta<tg<(t+I)AT (8.4)



6.8. TOPOLOGICAL COMPLETENESS 141

and
lz(t2) — [z(t1), z(t3)]|] = ws(z,d — €2) — €1 > ws(z,d) — 2€7 -

Since ds(zn,z) = 0 as n — 00, z,(t;) — z(t;) as n — oo for 7 = 1,2,3.
Hence, there exists ng such that, for all n > ny,

||£I,‘n(t2) - [:L'n(tl)axn(t3)]|| > ’LUg(LE,(S) — 3eo .
However,
Ws(Tn,6) = [|zn(t2) — [2n(t1), Tn(ts)]]] ,

so that wg(zp,d) > ws(z,d) — 3e2. Since e can be made arbitrarily small,

lim wg(zp,d) > ws(z,0) . (8.5)

n—0o0

We now establish an inequality in the other direction. Since § is a continuity
point of ws(z,d), for any €; > 0 there exists eo > 0 so that wy(z,d + €3) <
ws(z,0) + €1. We can choose ty, tp1, the and t,3 so that

(tn_d)voftnl Sitpo <tpg < (tn+6)/\T
and
|Zn(tn2) — [Tn(tn1), Tn(tn3)]l| = ws(Zn, ) — €2

for all n. There thus exists a subsequence {n} such that t,, — t and
tnyi — tj, 7 = 1,2,3, (8.4) holds and ||z, (tn,;) — 2|l = 0 as ng — oo.
Moreover, since = and z,, n > 1, are right-continuous for all n, we can have
t1, t2 and t3 be continuity points of z with

(t—(0+e) Vo<t <tg<t3<(t+ ([0 +e))AT.

Then ||z, (tn,;) — z(t;)|| = 0 as ny — oco. Hence, there is ng such that, for
all ng > ny,

[z(t2) — [z(t1), z(@)3)]ll = ||Zn, (tny2) = [Tny (Eng1)s Ty, (Eny3)] ]| — €2
> wy(Tp,0) — 2 . (8.6)
However,
ws(z,0) + €1 = ws(z, 0 + €2) > [la(t2) — [z(t1), z(E3)]]] - (8.7)

Combining (8.6) and (8.7), we obtain

ws(w,(s) > ws($n,5) —€1— 2€ .
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Since €; and €2 can be made arbitrarily small,

lim ws(zp,d) < ws(z,d) . (8.8)

n—o0

Combining (8.5) and (8.8) completes the proof. =

6.9. NonCompact Domains

It is often convenient to consider the function space D([0,00), R¥) with do-
main [0, c0) instead of [0,7]. More generally, we may consider the function
space D(I,RF), where I is a subinterval of the real line. Common cases
besides [0, 00) are (0,00) and (—o0,00) = R.

Given the function space D(I,RF) for any subinterval I, we define con-
vergence z, — = with some topology to be convergence in D([a, b], R¥) with
that same topology for the restrictions of x, and = to the compact inter-
val [a,b] for all points a and b that are elements of I and either boundary
points of I or are continuity points of the limit function z. For example, for
I = [c,d) with —o0 < ¢ < d < 00, we include a = ¢ but exclude b = d; for
I = [c,d], we include both ¢ and d.

For simplicity, we henceforth consider only the special case in which
I =[0,00). In that setting, we can equivalently define convergence z,, — x
as n — oo in D([0,00), R¥) with some topology to be convergence z, — =
as n — oo in D([0,1],R¥) with that topology for the restrictions of z,, and z
to [0, ¢] for ¢ = #;, for each #j in some sequence {tx} with ¢ — oo as k — oo,
where {t;} can depend on z. It suffices to let t; be continuity points of the
limit function z; for the J; topology, see Lindvall (1973),

Whitt (1980) and Jacod and Shiryaev (1987). We will discuss only
the SM; topology here, but the discussion applies to the other nonuniform
topologies as well. We also will omit most proofs.

As a first step, we consider the case of closed bounded intervals [t1, t2].
The space D([t1,1], RF) is essentially the same as (homeomorphic to) the
space D([0,T],R*) already studied, but we want to look at the behavior
as we change the interval [t1,t2]. For [t3,t4] C [t1,t2], we consider the

restriction of = in D([t1,t2], R¥) to [t3,t4], defined by
Tty * D([tl, tg], Rk) — D([t?,, t4], Rk)

with 7, 4, (2)(t) = z(t) for t3 < t < t4. Let di; 4, be the metric ds on
D([t1,t2], RF). We want to relate the distance dy, 4, (21, z2) and convergence
di, to(Zn,z) = 0 as n — oo for different domains. We first state a result
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enabling us to go from the domains [t1, ;] and [t9, t3] to [t1,t3] when ¢; <
1o < t3.

Lemma 6.9.1. (metric bounds) For 0 < t; < ty < t3 and z1, 2 €
D([t1,t3], RF),

di, 13 (71, 2) < dyy 1, (T1,T2) V dpy 15 (71, T2) -

We now observe that there is an equivalence of convergence provided
that the internal boundary point is a continuity point of the limit function.

Lemma 6.9.2. For 0 < t; < t3 < t3 and z, ©, € D([t1,t3],RF), with
to € Disc(x)®, diy ty(xn,z) = 0 as n — oo if and only if dy, 1,(zn,z) = 0
and dy, 4,(zn,z) = 0 as n — oo.

For z € D([0,T],RF) and 0 < t; < tp < T, let 7, 4, : D([0,T],RF) —

D([t1,t2],R¥) be the restriction map, defined by 4, 4,(z)(s) = z(s), t; <
s < to.

Corollary 6.9.1. (continuity of restriction maps) If £, — = as n — oo in
D([0,T),RE, SM1) and if t1,t2 € Disc(z)¢, then

Tty to(Tn) = Ty 1, (T) as n— 00 in D([tl,tg],Rk,SMl) ;

Let ¢ : D([0,00),R¥) — D([0,], R¥) be the restriction map with ry(z)(s) =
z(s), 0 < s < t. Suppose that f : D([0,00),RF) — D([0,00),R¥) and
ft : D([0,1],R¥) — D([0,t],R*) for ¢ > 0 are functions with

fi(re(z)) = re(f ()
for all z € D([0,00),R¥) and all ¢ > 0. We then call the functions f;
restrictions of the function f.

Theorem 6.9.1. (continuity from continuous restrictions) Suppose that f :
D([0,00),R¥) — D([0,00),R') has continuous restrictions f; with some
topology for all t > 0. Then f itself is continuous in that topology.

Proof. Suppose that z, — = as n — oo in the specified topology. That
means that r, (z,) — 7, (x) as n — oo for some sequence {t,,} with
tm — 00, possibly depending on z. Since f has continuous restrictions,

Tt (f(Tn)) = ft (Tt (T0)) = fr, (1t (2)) =11, (f(2))

as n — oo for all m, which implies that f(z,) — f(z) as n — oo in the
specified topology. =
No more material has been deleted from Section 12.9 of the book.
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6.10. Strong and Weak M; Topologies

We now define strong and weak versions of Skorohod’s Ms topology. In
Section 6.11 we will show that it is possible to define the My topologies by a
minor modification of the definitions in Section 6.3, in particular, by simply
using parametric representations in which only r is nondecreasing instead of
(u,7), but now we will use Skorohod’s (1956) original approach, and relate
it to the Hausdorff metric on the space of graphs.

The weak topology will be defined just like the strong, except it will use
the thick graphs G, instead of the thin graphs I';. In particular, let

ps(T1,72) = sup inf  {||(z1,t1) — (22, 82)||} (10.1)
(21,t1)€Tz, (22,t2)€lz,

and

pw(T1,72) = sup inf  {]|(z1,t1) — (22,%2)]|} - (10.2)
(21,t1)EGzy (22,t2)€Gz,

Following Skorohod (1956), we say that z, — = as n — oo for a sequence
or net {z,} in the strong M, topology, denoted by SMy if ps(zp,z) — 0
as n — oo. Paralleling that, we say that x, — = as n — oo in the weak
M, topology, denoted by W Mo, if py(zy,z) — 0 as n — oo. We say that
Ty, — T as n — oo in the product topology if us(z%, z*) — 0 (or equivalently
(28, 2%) — 0) as n — oo for each 4, 1 <4 < k.

We can also generate the SMy and W Ms topologies using the Hausdorff
metric in equation 5.2 of Section 11.5 in the book. As in equation (5.4) in
Section 11.5 of the book, for z1,x9 € D,

ms(21,22) = mu(Lay, ay) = ps(21,22) V ps(22, 71) (10.3)
M (21, 22) = MA(Gay, Goy) = pu(T1,22) V piw (22, 71) (10.4)
and
_ i
mp(z1,22) = [max. ms (2, zh) . (10.5)

We will show that the metric m, induces the SM; topology.

That will imply that the metric m,, induces the associated product topol-
ogy. However, it turns out that the metric m,, does not induce the W M,
topology. We will show that the W My topology coincides with the prod-
uct topology, so that the Hausdorff metric can be used to define the W M,
topology via m,, in (10.5).
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Closely paralleling the d or M metrics, we have m,, < mg on D([0,T], R¥)
and my = my, = ms on D([0,T],R!). Just as with d, we use m without sub-
script when the functions are real valued. Example ??, which showed that
W M; is strictly weaker than SM; also shows that W Ms is strictly weaker
than SMs. Example ?? shows that the SMs topology is strictly weaker than
the SM; topology.

Note that ps in (10.1) is not symmetric in its two arguments. Example
12.10.1 of the book shows that if us(x, z,) — 0 as n — oo, we need not have
ps(zn,z) = 0 as n — oco.

6.10.1. The Hausdorff Metric Induces the SM; Topology

We now show that m induces the SM; topology.

Theorem 6.10.1. (the Hausdorff metric m, induces the SM> topology)
If ps(zp,z) — 0 as n — oo, then us(r,z,) — 0 as n — oc. Hence,
Us(Zn, ) = 0 as n — oo if and only if ms(xy,z) = 0 as n — oo.

Proof. Our proof will exploit lemmas below. Suppose that pg(z,,z) — 0
but ps(z,z,) /4 0 as n — oco. Since ps(z,zy,) 4 0, there exists (z,t) € 'y
for which it is not possible to find (z,,t,) € I'y, for n > 1 such that
(2n,tn) — (2,t) as n — oo, but that contradicts Lemma 6.10.4 below. =

In order to complete the proof of Theorem 6.10.1, we prove the following
four lemmas.

Lemma 6.10.1. Suppose that ps(xn,z) — 0 as n — oo. If (zn,tn) € I'y,
forn > 1, then there ezists a subsequence {(zn, ,tn, )} with (zp,,tn,) — (2,1t)
as ng — oo for some (z,t) € I'y. Moreover, the limits of all convergent
subsequences must be in ['y,.

Proof. Suppose that us(z,,z) — 0 as n — oo and consider any sequence
{(zn,tn)} with (z,t,) € 'y, for n > 1. By the definition of yg, there must
exist (z},,t) € 'y such that ||(zn,t,) — (25, th)]| = 0 as n — oo. Since I'y is
compact, there exists a convergent subsequence of the sequence {(z/,,t)};

n»'n
i.e., there exists {(zy,,t,,)} such that (2, ,t, ) — (2,t) for some (2,1) €
I';. By the triangle inequality, we must also have (zp,,tn,) — (z,t) as
ny — oo. Finally, suppose (2, ,1y,) is an arbitrary convergent subsequence
of {(zn,tn)}. By the argument above, there exists (z,t) € I'; such that a
subsequence (znkj,tnkj) — (2,1) as ny; — oo. This implies that (z,¢) must

be the limit of the convergent subsequence {(zn,,tn,)}. =
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Lemma 6.10.2. Suppose that ps(z,,z) — 0 as n — oo, t & Disc(z) and
(2n,t) €Ty, forn>1. Then z, — z(t) as n — oo.

Proof. By Lemma 6.10.1, there is a subsequence (z,,t) — (z,t) € 'y,
but z = z(t) for (z,t) € I'; because t ¢ Disc(z). Since all convergent
subsequences must have the same limit, z, - z = z(t) asn — co. =

Corollary 6.10.1. If t ¢ Disc(x) and ps(zn,z) — 0 as n — oo, then
T, (t) = z(t) and z,(t—) — z(t) in R* as n — oo.

Lemma 6.10.3. If us(zn,z) = 0 asn — oo and (z,t) € 'y, then for any 1,
1 <i <k, there exist (2n,tn) € Ty, forn > 1 such that |28, —2'|V|t,—t| — 0.

Proof. The conclusion follows from Corollary 6.10.1 if ¢ ¢ Disc(z), so
suppose that t € Disc(z). Then z belongs to the segment [z(t—),z(t)].
First choose t,, > t with ¢/, & Disc(z) for all m and t,, | t as m — oo.
By Lemma 6.10.2, there exist (2, ,,,tp,) € Ty, such that z, , — z(t;,) as
n — oo. Next choose ¢/ < t with t!' & Disc(z) for all m and ¢, 1t as

m — oo. By Lemma 6.10.2 again, there exist (zp, ,,;,) € I'z, such that
!

Zmn — T(tp,) as n — oo. The diagonal sequences (2, ,1,) and (zp ,tp)

thus belong to Ty, and satisfy t;, | ¢, t;, T ¢, z;,, — z(t) and 2, ,, — z(t—)
as n — 0o. Since I';i is a continuous real-valued curve, every value in the
segment [z ., zn"] is realized for some ¢ with ¢ <t/ < t;. Hence, for
any (z,t) € Ty, there exists (2, ") € Ty, such that (2% ") — (2%,t) as
n—00. =m

Lemma 6.10.4. If us(zp,z) — 0 as n — oo and (z,t) € Ty, then there
exist (zp,tn) € L'y, for n > 1 such that ||(zn,tn) — (2,t)|| = 0 as n — oo.

Proof. If ¢t € Disc(z), then we can take (z,(t),t) € 'y, or (z,(t—),t) €
Iy, by Corollary 6.10.1. Hence it suffices to assume that ¢t € Disc(z).
Then, by the first part of the proof of Lemma 6.10.3, it suffices to consider
(2,t) with z # z(t) and z # z(t—). For at least one coordinate i, either
Ti(t—) < z < z*(t) or z*(t) > z > x'(t). Consider one such coordinate.
By Lemma 6.10.3, there is (2,,t,) € 'y, such that t, — ¢ and 2} — 2° as
n — 0o. Moreover, since ps(zy,z) — 0, given (2p,t,) € I'y, , we must have
(2,t1) € T'y such that ||z, — z.|| V [t, — ¢, — 0. Since t, — t, we must
also have t/, — t. Since 2z — z* and ', contains the line joining (z(t—), 1)
and (z(t),t), we must have z/, — z as well, which implies that z, — z,
establishing the desired conclusion. =
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6.10.2. WM, is the Product Topology

We now observe that m, induces the W M» topology.

Theorem 6.10.2. (W M, is the product topology) piy(Zn,z) — 0 as n —
oo for py in (10.2) if and only if mpy(zn,x) — 0 as n — oo for my in
(10.5), so that the W My topology on D([0,T],R¥) coincides with the product
topology.

Proof. First, if py(zn, ) — 0 as n — oo, then uy,(z,z¢) — 0 for each
i, but pg,(zh, ') = ps(zh,x?), so that pg(z?,zt) — 0 and my(z,,z) — 0
by Theorem 6.10.1. Conversely, suppose that mp(z,,z) — 0 as n — oo.
Lemma 6.10.1 implies that U, >1I';: is compact for each ¢, 1 < i < k. That
in turn implies that U,>1 Gy, is compact. Hence, if (z,,1t,) € G, for n > 1,
then every subsequence necessarily has a convergent subsubsequence. To
have piy(zn, z) # 0, we must have a subsequence of {(z,,t,)} converge to a
limit not in G;. We will show that is not possible. Consider (z,,t,) € Gy,
n > 1. Since t,, € [0,T] for all n, there exists a subsequence (2, ,%,,) such
that ¢,, — ¢ for somet, 0 < ¢ < T. Since m,(zy,z) — 0asn — oo, thereis a

subsequence {(znkj ,tn, )} such that zflk — 2' for some z* where (2*,t) € T'ji.
J

Moreover, there are such subsequences for all 4, 1 < ¢ < k, so that z}z — 2
for all 4 along the final subsequence. Moreover, (2%,t) € T',: for all i, but
this implies that (z,t) € G;. Hence every subsequence of (zj,t,) has a
convergent subsubsequence and every convergent subsequence of {(z,,%,)}
has limit (z,t) € G,. That implies that ., (zp,z) >0asn —oco. =

6.11. Alternative Characterizations of M, Convergence

We now give alternative characterizations of the SM; and W M topologies.

6.11.1. M, Parametric Representations

We first observe that the SMs and W M, topologies can be defined just
like the SMy, and W M; topologies in Section 6.3. For this purpose, we
say that a strong My (SMs) parametric representation of x is a continuous
function (u,r) mapping [0, 1] onto I'; such that r is nondecreasing. A weak
My (W Ms) parametric representation of x is a continuous function map-
ping [0,1] into G, such that r is nondecreasing with r(0) = 0, (1) = T
and u(1) = z(T). The corresponding M; parametric representations are
nondecreasing using the order defined on the graphs I'; and G in Section
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2. In contrast, only the component function r is nondecreasing in the M,
parametric representations. Let I, o(z) and IL, 2(z) be the sets of all SM;
and W My parametric representations of z.

Paralleling (3.7) and (3.8), define the distance functions

ds’g(.fcl,l‘g) = 1nf {||u1 - UQH \Y ||’)"1 — ‘1“2”} (111)
(uj,rj)€ll, o(2))
j=1,2
and
dw’g(iL‘l,.’Bg) = inf {||u1 — ’u,2|| \Y ||7"1 — 7‘2”} . (11.2)

(ujrj)€ly o(z;)
j=1,2

We then can say that z, — = as n — oo for a sequence or net {z,}
if dso(zp,z) — 0 or dya(zy,z) = 0 as n — oo. A difficulty with this
approach, just as for the WM; topology, is that neither dso nor dy 2 is a
metric.

6.11.2. SM, Convergence

We now establish the equivalence of several alternative characterizations
of convergence in the SMs topology. To have a characterization involving
the local behavior of the functions, we use the uniform-distance function
Wy(x,T2,t,0) in (4.6). We also use the related uniform-distance functions

Ws(z1,T2,0) = sup w(z1,zo,t,0d) . (11.3)

0<t<T
Wg (21, 22,1, 0) = ||lz1(t) — [22((t — 6) V 0), z2((t + &) AT)]]| (11.4)
Wy (r1,22,0) = sup wj(z1,T2,t,0) . (11.5)

0<t<T

We now define new oscillation functions. The first is

3 (w,,0) = sup{|l2(t) — [w(t), 2(E)]I} | (11.6)
where the supremum is over
OV(t—0)<t1 <[0V(t—10)]+6/2 and [TA(t+06)]—0/2 <ta < (t+I)AT.

The second is
w;(z,0) = sup wi(z,t,0) . (11.7)
0<t<T
The uniform-distance function wi(zi,z2,6) in (11.5) and the oscillation
function w}(z,d) in (11.7) were originally used by Skorohod (1956).
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As before, T need not be a continuity point of z in D([0,7],R¥). Un-
like for the M; topology, we can have z, — z in (D, My) without having
zn(T) — z(T).

Let v(z, A) represent the oscillation of z over the set A as in (2.5).

Theorem 6.11.1. (characterizations of SMy convergence) The following
are equivalent characterizations of ©,, — x as n — oo in (D, SMy):

(i) ds2(xn,x) = 0 as n — oo for dso in (11.1); i.e., for any € > 0 and
n sufficiently large, there ezist (u,r) € I 2(z) and (up,rn) € s 2(zn)
such that ||up — ul| V ||rn — 7] <e.

(ii) ms(xn,z) — 0 as n — oo for the metric mg in (10.3).
(#i) ps(xn,x) — 0 as n — oo for ps in (10.1).
(iv) Given ws(z1,T2,d) defined in (11.3),
:%iigl n@ Ws(Tp,z,0) =0 . (11.8)
(v) For eacht, 0 <t<T,

lim lim ws(zy,,,t,0) =0 (11.9)

0 nsoo

for ws(xz1,x2,t,8) in (4.6).

(vi) For all ¢ > 0 and all n sufficiently large, there exist finite ordered
subsets A of Ty and A, of Tz, , as in (3.9) where (z1,t1) < (29,t2) if
t1 < to, of the same cardinality such that J(A,I‘w) <€, J(An,I‘wn) <e
and d*(A, A,) < € for d in (3.10) and d* in (5.6).

(vii) Given w}(z1,x2,d) defined in (11.5),
lim lim @} (zp,z,6) =0 .

0 nooo

(viii) x,(t) = z(t) as n — oo for each t in a dense subset of [0,T] including
0 and o
lim lim @}(z,,6) =0 (11.10)

00 noo

for wi(z, ) in (11.7).
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Proof. We already have shown the equivalence (ii)< (iii) in Theorem 11.10.1.
(i)—(ii). Suppose that (i) holds with € and n given. Since the parametric
representations in II; o(2) map onto the graph T'y, for any (z,,t,) € Ty,
we can find s € [0,1] such that (un(s),mn(s)) = (zn,tn). For that s,
(u(s),r(s)) = (z,t) for some (z,t) € I', and

1(zn, tn) = (2, D) < lun —ull V]lr — 7| <e. (11.11)

By the same reasoning, for any (z,t) € I';, there exists (z,,t,) € 'y, such
that (11.11) holds.

(ii))—(v). For z, ¢t and € given, find § such that v(z,[t — §,t)) < €/2 and
v(z,[t,t + J)) < €/2 for v in (2.5). Then apply (ii) to find ng such that
ms(zn,z) < n = (e Ad)/2 for n > ng. Then, for each ¢’ with 0V (t — ) <
t' < (t+mn) AT, there must exist (z,t) € T'y such that

[z (),t) — (D) <n for n>mng.
Since |t —t| < [t —t'| + |t/ — t] <21 < 4,
1(z,%) = [z(t=), z(D)]]| <€/2 .
Consequently, for n > ng,
lzn(t) — [2(t=),2@)]ll <n+e/2 <e.

Since t' was arbitrary,
wy(Tp, Z,t,0) < €.

(v)4>(iv). Characterization (iv) clearly implies (v), so that it suffices to
show that (v) implies (iv). We will show that if (iv) fails, then so does (v).
Hence suppose that (iv) does not hold. Then there must exist ¢ > 0, such
that for any 6 > 0 there is a subsequence {ny} such that n; — oo and
Ws(Tn,,x,0) > € for all ng. Hence, there is an associated sequence t¢,, such
that

Ws (T, T, tny,,0) > €/2

for all ny. However, {¢,, } has a convergent subsequence {tnkj } with tny, =

as ny; — oo for some t. Note that, if z, € [z(tn—),z(tn)] for all n, where
t, — t, and if z, — z, then necessarily z € [z(t—), z(t)]. Hence,

u‘)s(:vnkj,:v,t,%) >€/2

for all sufficiently large ng;. That implies that (11.9) does not hold, so that
(v) fails.
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(iv)—(vi). We construct the desired finite subsets A of I'; and A,, of T,
by considering two kinds of points in I';. For € > 0 given, we let A contain
at least one point (z,t) for each ¢ € Disc(z,€/2). The other points have ¢ €
Disc(z)¢. We first construct A for ¢ outside a finite union of neighborhoods
of points in Disc(z,€e/2). We then construct A, and finally we complete
the definition of A by adding appropriate points (z,t) for ¢ € Disc(z,¢€/2),
which depend on A,. Thus the set A ultimately depends upon A, and thus
upon z, and n.

Let t(A) denote the set of ¢ for which there is at least one pair (z,1)
from I'; in A. We first identify ¢(A). We include Disc(x,€/2) in t(A). Use
(11.8) to find an 1 and an ng such that wy(z,,z,n) < €¢/4 for all n > nyg.
Let t; < --- < t;, be the ordered set of points in Disc(z,€e/2) — {T'}; let
to = 0 and t;,41 = T. Use the existence of left and right limits for x
to identify points, for 1 < ¢ < m, points ¢, and ¢/ in Disc(z)¢ such that
ti o <t <ty <] <ty |ti—t] <mn, |t =t <mn, vzt t) < €/4
and v(z, [t;,t]]) < €/4 for v(z, B) in (2.5). We include these points ¢, and
t; in t(A). We also include in A points ¢; and ¢;, ; from Disc(x)® such
that tg = 0 < t§ < t, t, < t,01 < tmy1 = T, v(,[0,17]) < €/4 and
v(z, [t,41,T]) < €/4. We also include the points 0 and T in ¢(A). Moreover,
we include the points (z(t}),t;), (z(¢]),t]), ((0),0) and (z(T),T) in A
itself. (Except possibly for T, these are the only possibilities since ¢, ¢/,
0 € Disc(z)¢.) We next define A for ¢ in the compact set

m

C= [OaT] - U(tgat'lil) - [Oatg) - (t;n—kl’T] : (11'12)
=1

The set C'is a finite union of the closed intervals [t],#} ], 0 <4 < m—1. For
each t in C not a boundary point of one of these subintervals, it is possible to
find ¢ and ¢” in the same subinterval as ¢ such that ¢’ <t <", [t—¢'| < n/4,
|t —t"| < n/4 and v(z,[t',t"]) < €/2. (Recall that C C Disc(z,€/2)¢.) For
the boundary points ¢} and ¢/, include intervals (Z;,¢}] and [¢/,t}) with the
same properties; these intervals are open in the relative topology on C. Also
include intervals [0,¢*) and (¢,7] with the same properties; these intervals
again are open in the relative topology on C. These open intervals form an
open cover of C. Since C is compact, there exists a finite subcover. We
let ¢(A) contain one point ¢ in Disc(z)® from each subinterval in the finite
subcover; we also put (z(t),t) into A. Let the set A be ordered according to
the time points; i.e., (z1,t1) < (22,t2) if 1 < 2. So far, A contains points

(z(t),t) for t € Disc(z), including the boundary points ¢; and ¢; of C. We
have completed the definition of ¢(A), which includes Disc(z,€/2). If {t;} is
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the ordered set of points in ¢(A), then the construction above implies that
|ti+1 —t;| < n for all i (where 1 has been chosen so that ws(zn,z,n) < €/4).

We now construct the set A,. By Theorem 11.4.1, condition (11.8)
implies that z,(t) — z(t) for each ¢t € Disc(x)¢. For each t € t(A4) —
Disc(z,¢/2), let t € t(Ay) and (zn(t),t) € A,. Since each such ¢ belongs to
Disc(x)¢, there is ny > ng such that ||z, (t) — z(t)|| < ¢/4 for all t € t(A) —
Disc(z,€e/2) and for all n > n;. Hence we have established d*(4,A,) <
€/4 for n > ny over C (outside the neighborhoods of Disc(z,€/2)). We
complete the definition of A, by adding finitely many points (z,%) for ¢ in
the open interval (¢}, t!') where ¢} and ¢!/ are the adjacent points in ¢(A) to ¢; €
Disc(z,€/2). We also do this for the interval (¢;,,,,7T] if T' € Disc(x,€/2).
We do this for all ¢; € Disc(z,e/2) so that overall d(A,,T,, ) < €/2. This
is always possible by Lemma 6.3.1. We next complete the definition of A
by including a point (z,%;) for each point (z,t) in A, with ¢ € (¢,¢). This
ensures that A, and A have the same cardinality. Since d(4,,T;,) < €/2,
w3($n, z, 77) < 6/4a

lzn(t:) — 2(t)l < €/4, lzn(t) — z(t)]l < e€/4,
l2(t:) — z(ti—)ll <e/4 and |z(t]) —=(t:)]| <e/4

for n > n, we can choose points in A so that d*(4,,A) < €/2 for n > n;
and d(A,T,) < ¢, which completes the proof.
(vi)—(i). Suppose that € is given and the sets A and A,, in (vi) have points
(zi,t;) and (zp4,tni), 0 < i < m, where tp = 0 and t¢,, = T. Construct
arbitrary parametric representations of (u,r) of z and (uy,r,) of z, such

that
r(i/m) =t;, wu(i/m) =2z
and
rn(i/m) =tni, un(i/m) =2z, .

Since d*(4,,A) <,

omax {[r(i/m) —rn(i/m)| V [[u(i/m) —un(i/m)||} <e .

Since J(A, I';) < € and cZ(An, I';,) < € too, by the triangle inequality,
[ — 7ol V [lun —ull < 3e .

(iv)«>(vii). Suppose that 0 < ¢ < T. If z is constant in the intervals
(0V (t—20),t) and [t, (t + 26) AT), then

[0V (' = 0)),z((t' +0) AT)] = [z(t—), =(t)]
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for all ' with 0V (¢t —d) <t' < (t+ &) AT. Consequently, in that situation

sup {llzn(®) = [2(0V (' = 8)),z((t' + 0) AT}
oV (t—08)<t! <(t+0)AT
= sup {llzn(®) = [=(t=), z@)]I} - (11.13)

OV(t—8)<t! <(t+0)AT

Thus if z is piecewise constant with the distance between successive discon-
tinuities at least 4, then w}(zy,z,d/2) = ws(xn,z,d/2). Hence, for € given
suppose that we can choose 7 to make w;(zy,z,n) < €/3. Then approximate
z by z. € D, such that |z — z.|| < ¢/3. For that z, let @ be the minimum
distance between successive discontinuities. Then, for § < n A (a/2),

Wy (Tn, T, 0) Wy (Tn,y Tey 8) +€/3
Ws(Tp, T, 0) + €/3

Ws(Tn,z,n) +2¢/3 <e€. (11.14)

IN N IA

Alternatively, for e given, suppose that we can choose 7 to make W} (z,,z,n) <
€/3. Following the same reasoning,

Ws(Tn, Te, 0) + €/3

Wy (Tn,y Tey 0) +€/3
Wy (Tn,z,n) +2€¢/3 < €. (11.15)

'u_)s(iL'n,.’E,(5)

VAN VANVAN

Hence (iv) is equivalent to (vii).

(ii)—(viii). By Theorem 11.4.1 and (ii)«>(v), (ii) implies that z,(t) — z(?)
for each t € Disc(z)¢. It remains to show that (ii)—(11.10). For € > 0
given, first pick a piecewise-constant z. such that ||z — z.|| < e/4, which is
possible by Lemma 6.3.1. Let v be the Rf-valued function with v*(¢) = 1,
0<t<T,1<i<k. Then z.— (¢/4)y < z < z. + (¢/4)7, i.e.,

zc(t) —€e/4 < z(t) < z.(t) +€/4 for 0<t<T.
Let the (o, 3)-neighborhood of z € D be

Nog(z) = {[[z(t) —av,z(t) + ar]] x [0V (E = B),(t + B) AT]: 0 <t <T} .

(11.16)
Thus, z € N¢js0(zc) and z. € Ny 0(z). Now let @ be the minimum distance
between successive discontinuities in z., or to 0 or 7" for the leftmost and
rightmost discontinuity points. Given (ii), choose ng so that mg(zn,z) =
M < n < (eANa)/4 for n > ng. Then z,, € Nyye/sy(Tc). Suppose that
{ti : 1 < i < m — 1} is the set of discontinuities of z., with t; = 0 and
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tm = T. By the construction above, the open intervals (¢; — 7,t; + ) are
disjoint, 1 <7 < m — 1. Now let § = 2n. Hence, if t' € (t; — n,t; +n) for
t; € Disc(z.), then

titn <t'=6 <t'—6/2 <ti—m <ti+n <t'+6/2 < '+ < t;p1—n (11.17)

for all ¢, 1 <4 <m — 1. On the other hand, if ¢’ € [ti—1 +n,¢ — 7] = Bin,
then necessarily either (¢’ + 6/2,t' 4+ ¢) intersects B,y or (t' — d,¢' — §/2)
intersects B;,. Thus, for n > ng and each t' € [0,7T], there exists ¢; €
OV (' —06),0V(t'—0)+6/2) and te € (TA({' +6)—06/2,T A(t' + 9)] such
that

[2n(t) — [z (t1), zn(t2)]l < 2((e/4) +m) <€ (11.18)
ie., wi(zn,d) <e.
(viii)—(v). For z,t and € given, choose  so that 0 <t—n<t<t+n<T,
v(z,[t —n,t)) < €/4 and v(z,[t,t + n]) < €/4. Now choose § < 1 and
t'e (t—0/2,t+6/2). For § and ¢’ given, find 1, t3 in Disc(z)¢ such that
o <t<to,t'—6 <ty <t'—d/2andt' +6/2 <ty <t'+ 4. Then choose ng
so that ||z (t;) —z(t;)|| < ¢/4 for i — 1,2 and n > ng. Apply (viii) to choose
ni > ng so that wk(z,,d) < €/2. Then

lzn () — [z(t=), z@)]] lzn () = [2(t2), 2(t2)]l| + /4

<
< lzn(®) = [2a(t1), za(t2)]ll + €/2
< wi(zp,0) +€/2<e for n>ni(11.19)

Since ¢ is arbitrary in (¢ — 6/2,t + §/2),
Ws(Tn,z,t,6/2) <e for n>mng,
which implies (v). =

Remark 6.11.1. The equivalence (iii)<>(vii)<>(viii) was established by Sko-
rohod (1956). =

Remark 6.11.2. There is no analog to characterization (v) involving w}(zy, z,t,0)
in (11.4) instead of ws(zy,z,t,d). For t € Disc(z),

lim lim @*(z,,z,t,6) =0
e oo, hon 2 60)

implies pointwise convergence z,(t) — z(t), but not the local uniform con-
vergence in Theorem 6.4.1. =
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6.11.3. WM, Convergence

Corresponding characterizations of W Ms convergence follow from Theorem
6.11.1 because the W My topology is the same as the product topology, by
Theorem 6.10.2. Let

Wy (T1,T2,0) = sup Wy(z1,z2,t,0) (11.20)
0<t<T

for Wy, (1, T2,t,d) in (4.7).

Theorem 6.11.2. (characterizations of W M, convergence) The following
are equivalent characterizations of T, — x as n — oo in (D, W Ms):

(i) dy2(Zn,z) = 0 as n — 0o for dy o in (11.2); i.e., for any e > 0 and
all n sufficiently large, there exist (u,r) € Iy, 2(z) and (up,7y) € Iy 2(zy)
such that ||u, —ul|| V ||rn — 7] <e.

(it) mp(zp,z) = 0 as n = oo for the metric my in (10.5).

(11i) Given wy(z1,x2,0) defined in (11.20),

lim lim @y (zp,z,6) =0 .
0 pnooo w(n )

(iv) For each t, 0 <t <T,

lim lim @y (z,,z,t,0) =0 .
510 nyoo wl@n )

(v) For all € > 0 and all sufficiently large n, there exist finite ordered
subsets A of Gy and A, of I'y,, of common cardinality m as in (3.9) with
(21,t1) < (z0,t9) if t1 < tg, such that d(A,Gy) < €, d(An,Ts,) < € and
d*(A, A,) < € for all n > ng, for d in (5.8) and d* in (5.6).

Proof. (i)—(ii). Clearly, dy2(%n,z) — 0asn — oo implies that d, o(z?,, z%) —
0 as n — oo for each i. By Theorem 6.11.1, that implies ms(z},z*) — 0 as
n — oo for each 4, which implies (ii).
(ii)¢>(iii). By Theorem 6.11.1, (ii) is equivalent to
lim Tim (%, 2", 6) =0 (11.21)

00 nooo

for each 7, but that is equivalent to (iii) because

_ i .
112%)% We(zh,, 1", 0) = Wy(zp,x,0) . (11.22)
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(iii)<>(iv). By Theorem 6.11.1, (iii) is equivalent to
lim lim @,(zt,2%,t,6) =0 (11.23)

00 nooo

for each i, but that is equivalent to (iv) because

112% ws(zy, ', t,0) = Wy (Tn, z,t,0) . (11.24)
(iii)—(v). Follow the proof of (iv)—(vi) in Theorem 6.11.1. Use (??) to find
an 7 and an ng such that wy,(z,,z,1m) < €¢/4 for all n > ny. Define ¢(A)
as before, first by including Disc(z,€/2) and then by adding points from
Disc(z)¢ in the complement of the union of the intervals about the points in
Disc(z,€/2). Let A be defined for ¢ € t(A) — Disc(z,€/2) just as before. Let
A, be defined just as before. We complete the definition of A by including
a point (z;,t;) for each point (z,t) in A, with ¢ € (¢,¢/). This ensures that
A and A,, have the same cardinality. Since d(A,T'z,) < €/2, Wy(zn, z,n) <
/4, an(t) — o) < e/d, znlt) — st < /4, (k) — a(t—)]| < e/4
and ||z(t]) —z(t;)|| < €/4 for n > ny, we can choose these points to add to A
so that d*(A,, A) < €/2 for n > n; and d(A,G,) < e. (Unlike in the proof
of Theorem 6.11.1, here we cannot conclude that d(A4,T;) < ¢.)
(v)—(i). Paralleling the proof of (v)—(i) in Theorem 11.5.2, suppose that
the conditions of (v) hold and A, A, and € are given. Let (u,r) and (uy,ry,)
be parametric representations of z and z, such that

u(i/m) = z, r(i/m)=1t; for (z,t;) €A
up(i/m) = zng, rn(i/m) =tn; for (zni,tni) € An .
For any s € [0, 1] there is 7 such that s; < s < s;41 and
[un(s) —w(s)[| V lIrn(s) = r(s)l < [[(un(s),n(s)) — un(si), rn(si)l
H[(un(si), ra(s0)) = (ulsi), r(s)ll + [I(ulsi), 7(s2)) = (uls), r(s))]
< d(An,Gy,) + A" (An, A) + d(A,Gy) <3¢ . n

Theorem 6.11.2 and Section 6.4 show that all forms of M convergence
imply uniform convergence to continuous limit functions.

Corollary 6.11.1. (from W My convergence to uniform convergence) Sup-
pose that my(zy,x) = 0 as n — oo.
(i) If t € Disc(x)¢, then

lim lim v(zn,z,t,0)=0.
0 pooo (@n )

(i1) If © € C, then lim,_, ||z, — z|| = 0.
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Proof. For (i) combine Theorems 6.4.1 and 6.11.2. For (ii) add Lemma
6.4.2. =

Convergence in W My has the advantage that jumps in the converging
functions must be inherited by the limit function.

Corollary 6.11.2. (inheritance of jumps) If z, — = in (D, W Ma), t, =t
in [0,T] and =% (tp) — 2%, (tn,—) > ¢ > 0 for all n, then z(t) — z*(t—) > c.

Proof. Apply Theorem 6.11.2 (iv). =

Let J(z) be the maximum magnitude (absolute value) of the jumps of
the function z in D. We apply Corollary 8.5.1 to show that J is upper
semicontinuous.

Corollary 6.11.3. (upper semicontinuity of J) If z, — x in (D, M), then

Tm J(zn) < J(z) .

n—oo

Proof. Suppose that z,, — = in (D, W M) and there exists a subsequence
{zn, } such that J(z,,) — c. Then there exist further subsubsequences
{a:nkj} and {tnkj }, and a coordinate i, such that tny, — 1t for some t €

[O,.T] and. |$:sz (tnkj) - mflkj (tnkj —)| = ¢. Then Corollary 8.5.1 implies that
|z'(t) — 2*(t—)| >¢c. =

6.11.4. Additional Properties of M,

We conclude this section by discussing additional properties of the My
topologies. First we note that there are direct My analogs of the M re-
sults in Theorems 6.6.1, 6.7.1, 6.7.2 and 6.7.3.

Theorem 6.11.3. (extending SM, convergence to product spaces) Suppose
that ms(zn,z) — 0 in D([0,T],R*) and ms(yn,y) — 0 in D([0,T],R') as
n —oo. If

Disc(z) N Disc(y) = ¢,

then
ms((Zn,yn), (z,y)) = 0 in D([O,T],]RkH) as n — oo.



158 CHAPTER 6. THE SPACE D

Proof. We use characterization (v) in Theorem 6.11.1. Using the discon-
tinuity condition, it is easy to show that (11.9) holds for [(zn,yn), (z,¥)]
when it holds separately for [z,,z] and [y,,y], because i.e., at most one
of the segments [(z(t—),z(t)] and [y(t—), y(¢)] contains more than a single
point. =

Corollary 6.11.4. (from W M, convergence to SM, convergence when the
limit is in D1) If mp(z,,z) = 0 as n — oo and x € D, then my(zp,z) — 0
as n — oo.

Theorem 6.11.4. (Lipschitz property of linear functions of the coordinate
functions) For any 1, T2 € D([0,T],R*) and n € R,

m(nz1,nz) < ([0l v Dms (21, z2) -

Proof. For (?7), the key property is that

Lpe = {(nz,t) : (2,t) € Ty} .

It suffices to show that for all € > 0 and (z1,¢1) € Ty, there exists (25,12) €
I';z, such that

|21 — 2| V [t — o] < ([Inll V D)ms (w1, 32) + €.

However, for (2,t1) € T'y;,, there exists (z1,%1) € T'y, such that nz; = 2.
Then choose (z2,t2) € 'y, such that

llz1 — za|| V |t1 — to| < mg(z1,22) + €
Let (2},t2) = (nz2,t2). Then
|21 — 25| = Inz1 — nza| < Inllllz1 — 22l . =
We have an analog of Corollary 6.7.1 for the M, topology.

Corollary 6.11.5. (SMs-continuity of addition) If mg(z,,x) — 0 and ms(yn,y) —
0 in D([0,T],R¥) and

Disc(z) N Disc(y) = ¢,

then
ms(Tn + Yn,z+y) = 0 in D([0,T],RF).
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Proof. First apply Theorem 6.11.3 to get ms((zn,yn), (z,y)) — 0 in
D([0,T],RF*!). Then apply Theorem 6.11.4. =

Theorem 6.11.5. (characterization of SMj convergence by convergence of
all linear functions of the coordinates) There is convergence x, — T in
D([0,T],R¥) as n — oo in the SMy topology if and only if nz, — nz in
D([0,T],RY) as n — oo in the Moy topology for all n € R,

Proof. One direction is covered by Theorem 6.11.4. Suppose that z,, /A =
as n — oo in SMj. Then apply part (v) of Theorem 6.11.1 to deduce that
nT, 7 nx as n — oo for some 7. Note that ||a| > 0 for a € R* if and only
if [nal > 0 in R for some 1 € R*. Also, ||a — A|| > 0 for A C RF if and only
if [na —nA| > 0 in R for some n € R*, where nA = {nb: b€ A}. =

Just as with the M; topology, we can get convergence of sums under
more general conditions than in Corollary 6.11.5. It suffices to have the
jumps of z* and y* have common sign for all i. We can express this property
by the condition (7.2).

Theorem 6.11.6. (continuity of addition at limits with jumps of common
sign) If z, — x and y, — vy in D([0,T],RF, SMy) and if condition (7.2)
holds, then

To+ Y = x+y in D([0,T],RF, SM;) .

Proof. Apply the characterization of SMs convergence in Theorem 6.11.1
(v). At points ¢ in Disc(z)¢ N Disc(y)€, use the local uniform convergence
in Lemma 12.5.1 of the book and Corollary 6.11.1 here. For other ¢ not in
Disc(z) N Disc(y), use Theorem 6.11.3. For ¢ € Disc(x) N Disc(y), exploit
condition (7.2) to deduce that, for all € > 0, there exists § and ng such that

"Ds(l'n + Yn, T+ Y, t, 5) < ’LUS(.T)n,.’E,t, 5) + ws(yn,y,t,(S) +e€ (11'25)

foralln >ng. =

We now apply Theorem 6.11.5 to extend a characterization of con-
vergence due to Skorohod (1956) to RF-valued functions. For each z €
D([0,T],RY) and 0 < #; <ty < T, let

My, 4,(xz) = sup z(t) . (11.26)
t1 <t<t2
The proof exploits the SMy analog of Corollary 6.9.1.
In preparation for the next result, we state a basic lemma about preser-
vation of convergence under restriction maps. For z € D([0,T],RF) and
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0 <t <ty <T*letrsyy,: D(0,T),RF) — D([t1,t2],R¥) be the restriction
map, defined by 74, +,(z)(s) = z(s), t1 < s < ty. We omit the proof.

Lemma 6.11.1. (continuity of restriction maps) If z,, — = as n — oo in
D([0,T],R¥) with one of the SMy, WMy, SMy and W M, topologies and if
t1,to € Disc(x), then

Tty to (Tn) = Tty 4o(T) as n— o0 in D([t1,t2],R¥)
with the same topology.

Theorem 6.11.7. (characterization of SMy convergence in terms of con-
vergence of local extrema) There is convergence mg(xn,z) — 0 as n — o0
in D([0,T),RF) if and only if

My, 1,(nxn) = My, 4,(nx) as n — o0 (11.27)

for all np € R* and all points t1, to € {T} U Disc(z)¢ with t; < ts.

Proof. By Theorem 6.11.5, it suffices to consider the case of real-valued
functions. By considering n = +1 in (11.27), we get both the minimum and
the maximum over [t1,%2]. it is easy to see that (11.27) for n = £1 implies
characterization (v) in Theorem 6.11.1: For z,t and € given, choose -y so that
v(z, [t —v,t)) <€/2, v(z,[t,t+7]) <€¢/2and 0 <t—v <t+v<T. Then
finding ng such that |My, 4, (nzyn) — My, 4, (nz)| < €/2 for n > ng, n = £1
and
t—y<thi<t—d0<t<t+o<ta<t+r

implies that ws(zy,,z,t,d) < € for n > ng. On the other hand, if z,, — = in
D([0,T), R, M), then the restrictions converge in D([t1, %3], R', M3) for all
t1,to € Disc(z)® by Lemma 6.11.1. If my(z,,z) < € in D([t1,12], R, My),
then clearly | My, 1, (xn) — My, 1, (2)| < € and | My, 4, (—2n) — My, 4, (—2)| <,
so characterization (ii) of Theorem 6.11.1 implies (11.27). =

We can apply the characterization of My convergence in Theorem 6.11.7
to show the preservation of convergence under bounding functions in the M,
topology. See Corollary 12.11.6 in the book.

6.12. Compactness

We have nothing to add in this final section.



Chapter 7

Useful Functions

7.1. Introduction

This chapter contains proofs omitted from Chapter 13 of the book, with the
same title. As before, the theorems to be proved are restated here. The
section and theorem numbers parallel Chapter 13 in the book, so that the
proofs should be easy to find.

We consider four basic functions introduced in Section 3.5 of the book:
composition, supremum, reflection and inverse. Another basic function is
addition, but it has already been treated in Sections 12.6, 12.7 and 12.11
of the book. Our treatment of useful functions follows Whitt (1980), but
the emphasis there was on the J; topology, even though the M; topology
was used in places. In contrast, here the emphasis is on the M; and M-
topologies.

Here is how this chapter is organized: We start in Section 7.2 by con-
sidering the composition map, which plays an important role in establishing
FCLTSs involving a random time change. We consider composition without
centering in Section 7.2; then we consider composition with centering in
Section 7.3.

In Section 7.4 we study the supremum function, both with and without
centering. In Section 7.5 we apply the supremum results to treat the (one-
sided one-dimensional) reflection map, which arises in queueing applications.

We start studying the inverse function in Section 7.6. We study the
inverse map without centering in Section 7.6 and with centering in Section
7.7. In Section 7.8 we apply the results for inverse functions to obtain
corresponding results for closely related counting functions.

In Section 7.9 we apply the previously established convergence-preservation
results for the composition and inverse maps to establish stochastic-process
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limits for renewal-reward stochastic processes. When the times between the
renewals in the renewal counting process have a heavy-tailed distribution,
we need the M; topology.

In Chapter 3 of the Internet Supplement we discuss pointwise conver-
gence and its preservation under mappings. The prservation of pointwise
convergence focuses on relations for inidvidual sample paths, as in the queue-
ing book by El-Taha and Stidham (1999). There we see that a function-space
setting is not required for all convergence preservation.

7.2. Composition

This section is devoted to the composition function, mapping (z,y) into
x oy, where

(zoy)(t) ==z(y(t)) forall ¢.

The composition map is useful to treat random sums and, more generally,
processes modified by a random time change; e.g., see Section 13.9 of the
book on renewal-reward processes.

Henceforth in this chapter, unless stipulated otherwise, when D = DF,
so that the range of functions is R¥, we let D be endowed with the strong
version of the Ji, M; or M,y topology, and simply write Jy, My or My. It
will be evident that most results also hold with the corresponding weaker
product topology.

7.2.1. Preliminary Results

To ensure that z oy € D, we will assume that y is also nondecreasing. We
begin by defining subsets of D = D¥ = D([0, o0), R*) that we will consider.
Let Dy be the subset of all z € D with z%(0) > 0 for all i. Let D; and D4t be
the subsets of functions in Dy that are nondecreasing and strictly increasing
in each coordinate. Let D,, be the subset of functions x in Dy for which
the coordinate functions z* are monotone (either increasing or decreasing)
for each i. Let Cp, C4, C4 and Cp, be the corresponding subsets of C; i.e.,
Cy =Cn Dy, CTECQDT, CTT:CHDTT’ and C,,, = C N Dy,.

It is important that all of these subsets are measurable subsets of D
with the Borel o-fields associated with the nonuniform Skorohod topologies,
which all coincide with the Kolmogorov o-field generated by the projection
maps; see Theorems 11.5.2 and 11.5.3 in the book.

Returning to the composition map, we state the condition for zoy € D
as a lemma.
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Lemma 7.2.1. (criterion for z oy to be in D) For each z € D([0, 00), R¥)
and y € D+([0,00),R), zoy € D([0,00), RF).

A basic result, from pp. 145, 232 of Billingsley (1968), is the follow-
ing. The continuity part involves the topology of uniform convergence on
compact intervals.

Theorem 7.2.1. (continuity of composition at continuous limits) The com-
position map from DF x D% to D* is measurable and continuous at (z,y) €

k 1
C xC'T.

Our goal now is to obtain additional positive continuity results under
extra conditions. We use the following elementary lemma.

Lemma 7.2.2. Ify(t) € Disc(x) and y is strictly increasing and continuous
at t, then t € Disc(z oy).

The following is the Ji result.

Theorem 7.2.2. (Ji-continuity of composition) The composition map from
DF x D% to D taking (z,y) into (zoy) is continuous at (z,y) € (CF x D%)U
(D* x CTIT) using the Ji topology throughout.

Proof. First suppose that (z,,y,) — (z,y) in DF x D% with (z,y) €

C* x D;. Choose t; € Disc(y)®. Then y, — y for the restrictions to [0,];
i.e., there exist A\, € A([0,%1]) such that |lyn —y o A\plle, V ||An —elly, = 0.
Choose t, such that y(t;) < tg and y,,(t;) < t3 for all n > 1. Since z € C¥,
lzn — z||t, — 0. By the triangle inequality,

lznoyn —zoyodullty < |Tpoyn —zoyullt, + |Toyn —zoyo Anllyy - (2.1)

The first term on the right in (2.1) converges to 0 because ||z, — z||s, — 0
and the range of y, is contained in [0,%2]. The second term on the right
in (2.1) converges to 0 because z is uniformly continuous over [0,%] and
1Yyn —y o Anllt, — 0.

Next suppose that (z,,y,) — (z,9) in D¥ x D% with (z,y) € D x Cy.
By Lemma 7.2.2 below, y(t) € Disc(x)€ for each ¢t € Disc(z o y)¢. However,
for each t' € Disc(z)¢, we have local uniform convergence of z, to z, i.e.,

lim lim v(zy,z,t,6) =0; (2.2)

0 nooo
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see Section 12.4 in the book. Since y,(t) = y(t) as n — 00, as a consequence
of (2.2), we have (zy o y,)(t) = (z o y)(t) for each t € Disc(z o y)¢. Now
we show that the closure of the sequence {z, oy, : n > 1} is compact
in the J; topology. Since (z, o y,)(t) — (z o y)(¢) for ¢ in a countable
dense subset, all limits of convergent subsequences must coincide with z oy.
Since all convergent subsequences have the same limit, compactness implies
that the sequence itself must converge; i.e., z,, oy, — z oy (J1). Hence it
suffices to show that the closure of {z, oy, } is compact, for which we apply
Theorem 14.4 of Billingsley (1968). For an arbitrary ¢, choose to > y(t1)
with to € Disc(z)¢. Then, for all sufficiently large n, y,(t1) < t2 and z, — =
for the restrictions in D([0,%,], R¥). Tt is easy to see that condition (14.49)
and (14.50) in Billingsley (1968) hold. First, (14.49) holds because

sup [z oyn(s)|| < sup [z, < oo, (2.3)
0<s<ty 0<s<ty
n>1 n>1

since z,, — « in D([0, %], R, J;). Next (14.50) holds because the oscillation
functions for z,, oy, over [0, ¢1] be bounded above by the oscillation functions
of z, over [0,1;]; e.g., since y € C4 and |y, — y||t, — 0, for any o there

n

exists ng and d; such that wwnoyn(él) <wy (02) foralln>ng. =

7.2.2. M-Topology Results

We have a different result for the M topologies.

Theorem 7.2.3. (M-continuity of composition) If (z,yn) — (z,y) in
DF x D% and (z,y) € (D* x CTlT) U (Ck x D%), then zp, 0oy, — oy in
DE, where the topology throughout is My or Ms.

In most applications we have (z,7y) € D¥ x CTIT’ as is illustrated by the
next section. That part of the M conditions is the same as for J;. The
mode of convergence in Theorem 7.2.3 for y,, — y does not matter, because
on D%, convergence in the M; and My topologies coincides with pointwise
convergence on a dense subset of [0, 00), including 0; see Corollary ?7.

It is easy to see that composition cannot in general yield convergence in
a stronger topology, because £ oy = z and z, oy, = ,, n > 1, when y,, =
y = e, where e(t) = t, t > 0. Unlike for the J; topology, the composition
map is in general not continuous at (z,y) € C X D% in the M topologies.

We actually prove a more general continuity result, which covers Theo-
rem 7.2.3 as a special case.
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Theorem 7.2.4. (more general M-continuity of composition) Suppose that
(Tn,yn) — (z,y) in D* x D%. If (i) y is continuous and strictly increasing
at t whenever y(t) € Disc(z) and (ii) x is monotone on [y(t—),y(t)] and
y(t—),y(t) & Disc(x) whenever t € Disc(y), then x, oy, — x oy in DF,
where the topology throughout is My or Ms.

Theorem 7.2.3 follows easily from Theorem 7.2.4: First, on DF x C’Tl, 1y is
continuous, so only condition (i) need be considered; it is satisfied because
1y is continuous and strictly increasing everywhere. Second on Cfn X D%, T
is continuous so only condition (ii) need be considered; it is satisfied be-
cause z is monotone everywhere. Hence it suffices to prove Theorem 7.2.4,
which is done in Section 1.8 of the Internet Supplement. The general idea in
our proof of Theorem 7.2.4 is to work with the characterization of conver-
gence using oscillation functions evaluated at single arguments, exploiting
Theorems 6.5.1 (v), 6.5.2 (iv), 6.11.1 (v) and 6.11.2 (iv).

We obtain a stronger result (M; convergence of z, o y, given only My
convergence of z,) if we do not need to invoke condition (i) in Theorem
7.2.4. A sufficient condition is for = to be continuous.

Theorem 7.2.5. (obtaining SM; convergence from W M, convergence) If
the conditions of Theorem 7.2.4 hold with y(t) ¢ Disc(x) for all t, then
Tpoyy — zoy in (DF,SMy) even if x, — = only in (D¥, W M).

Proof. Apply Lemmas 7.2.4, 7.2.5 and 7.2.8 below. =
We prove Theorem 7.2.4 by identifying four different cases, with each
either having t € Disc(z o y) or not.

Proof of Theorem 7.2.4. We will establish the appropriate characteri-
zation of convergence x, oy, — x oy at each ¢ separately, using Theorems
12.5.1 (v), 12.5.2 (iv), 12.11.1 (v) and 12.11.2 (iv) in the book.

There are four cases to consider:

(i) t & Disc(y) and y(t) & Disc(z), so that ¢ € Disc(z o y);

(ii) ¢ € Disc(y), z(u) = z(y(t—)) = =(y(t)) for all u € [y(i—),y(t)] and
y(t—), y(t) & Disc(x), under which t &€ Disc(z o y);

(iii) ¢t € Disc(y), z(y(t—)) # z(y(t)), = is monotone on [y(t—),y(t)] and
y(t—),y(t) & Disc(x), under which ¢ € Disc(z o y);

(iv) y(t) € Disc(z) and y is continuous and strictly increasing at ¢ so that
t € Disc(z oy).
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In case (ii) we have t ¢ Disc(z o y) even though ¢ € Disc(y). The
regularity conditions in case (ii) follow from condition (ii); since z(y(t—)) =
z(y(t)), monotonicity reduces to a constant value over the subinterval. Case
(iii) differs from case (ii) by having z(y(t—)) # z(y(¢)), which makes ¢t &
Disc(zoy). The regularity conditions in case (iii) again follow from condition
(ii). The regularity conditions in case (iv) when y(t) € Disc(z) follow from
condition (i). We use Lemma 7.2.2 in case (iv). In each case we know
whether or not ¢ € Disc(x o y). The four cases are covered by subsequent
lemmas as follows: Case (i) by Lemmas 7.2.3-7.2.4; case (ii) by Lemma
7.2.5; case (iii) by Lemmas 7.2.6-7.2.8; and case (iv) by Lemma 7.2.10. =

We now establish several lemmas in order to complete the proof of The-
orem 7.2.4. Throughout, we assume that (z,,y,), n > 1, and (z,y) are
elements of D¥ x D%. Refer to Section 12.4 of the book for the oscillation
functions.

Lemma 7.2.3. If v(yn,y,t,01) < d2 in D%, then
u(fEn O Yn,T © yataél) < ’U(Ilfn,.T,y(t), 52) + Il_}(x °y,t, 51)

for v in (12.4.2), u in (12.4.1) and v in (12.4.3), all in Section 12.4 of the
book.

Proof. By the condition, |y,(t1) — y(t)| < 2 provided that 0V (t —§1) <
t1 < (t+ 61) AT. Hence, for ¢; in that range,

[@noyn)(t1) = (o))l < [lzn(yn(tr) — 2(y(@))]]
Hz(y(2) = z(y(E)

—
< v(zp,z,y(t),02) +v(x oy, t,b1) . =

Lemma 7.2.4. Ift & Disc(y), y(t) & Disc(x),

lim lim v(yn,y,t,6) =0 24
TR 2.0
and o
lim lim v(z,,z,y(t),0) =0, (2.5)
0 nooo
then o
lim lim v(z,oyn,zoy,t,d)=0. (2.6)

R
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Proof. Since t ¢ Disc(y) and y(t) & Disc(z), t ¢ Disc(x oy) and 9(z o
y,t,01) = 0 as 81 — 0. We apply Lemma 7.2.3: For € > 0 given, choose d,
and ni so that

v(zn,z,y(t),02) < €/2 for n>mn;.
Then choose ¢; and ng > ny so that v(zoy,t,d1) < €/2 and
V(Yn,y,t,01) <o for n>ng.
By Lemma 7.2.3,
w(zp o yp,x0y,t,01) <e for n>ngy.
Since € was arbitrary, we have shown that

lim lLim u(z,oyn,z0y,t,6) =0,
010 poo

which is equivalent to (2.6) by Theorem 12.4.1 in the book. =
Recall the m,, is the product metric inducing the W M topology.

Lemma 7.2.5. Suppose that t € Disc(y) but y(t) ¢ Disc(z), y(t—) ¢
Disc(z) and z(y(t)) = z(y(t—)) so that t ¢ Disc(z o y), i.e., case (ii)
in Theorem 7.2.4. If my(yn,y) — 0 and my(z,,z) — 0 as n — oo, and
z(u) = z(y(t)) for all u € [y(t—),y(t)], then (2.6) holds.

Proof. Since u ¢ Disc(z) for all u € [y(t—),y(t)] and my(z,,z) = 0 as
n — oo, for € > 0 given, we can choose §; and ng so that

sup {lzn(u) — z(u)] < e (2.7)
OV(y(t—=)—81)<u<(y(t)+81)AT
for all n > ng by Lemma 12.4.2 in the book. Since z(u) = z(y(t)) for
y(t—) < u < y(t) and z is continuous at y(t—) and y(t), from (2.7) we can
obtain d9 such that
sup {llzn(u) —2(y(@)I} < 2e (2.8)

OV (y(t—)—d2) <u<(y(£)+62) AT

for n > ng. By right continuity and the existence of left limits, we can
choose t; < t < ty such that

y(t) <y(t—) <y(t1) +062/2, (2.9)
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y(t) <ylta) <y(t) +62/2, (2.10)
(@ o y)(t;) — (zoy)(t)]| <e, (2.11)

and t; ¢ Disc(y) for j = 1,2. Applying (2.4), we can choose d3 > 0 and
n1 > ng so that

U(ynayatja(s?)) < 52/2 (212)
for all n > ny and j = 1,2. Combining (2.9)—(2.12), and using the mono-
tonicity of y, and y, we have for 0V (t — d3) < t/, t" < (t+ 83) AT,
lyn (') = {y(t=), y(t)}| < d2. Thus, by (2.8),

20 0 yn(t) =z oyt < llznoyn(t) —zoy(B)l| +llzoy(t) —zoy(t”)|| < 3e.

Since € was arbitrary, we have established (2.6). =
We now turn to case (iii). We first show how we can exploit the mono-
tonicity condition.

Lemma 7.2.6. (characterization of My convergence at a monotone limit)
Suppose that x is monotone on [a,b]. Then z, — = in D([a,b],RE, W My) if
and only if x,, — = pointwise on a dense subset of [a,b] and

nli)lgo w*(zn,[a,b]) =0, (2.13)
where
w'(z,[a,0) = sup  {|lz(tz) — [z(t1), z(L3)][} - (2.14)
a<t1 <t2<t3<b

These imply that x, = = as n — o in SMy as well.

Proof. Clearly ws(z,d) < w*(z, [a,b]) on D([a,b],R¥) for all § > 0, where

ws(z,0) = sup ws(z,t,0)
a<t<b

for wg(z,t,d) in equation (12.4.4) of the book, so that (2.13) plus the point-
wise convergence implies that z, — z as n — oo in SM;, by the basic
characterization of SM; convergence, which in turn implies convergence in
W Ms,. To go the other way, suppose that w*(zy,[a,b]) /4 0 as n — oo.
Then there exist € > 0 and subsequences {ny}, {t,, ;} for j = 1,2 and 3
such that n; — oo and

||‘T’nk (tnk,Q) - [‘T”k (tnkyl)’xnk (tnk,?»)]H > € (2'15)
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for all ng. There are thus further subsequences {n}}, {t;, ,} for j = 1,2,
and 3 so that t;zk j—rtjas nj, — oo for each j, where ¢; < ¢o < ¢3. Assuming

that z, — z as n — oo in WMy, we have z,y (t;, ) — [[z(t;—), z(¢;)] as

nj, — 00, by the characterization of WM, convergence. This, with (2.15)
and the monotonicity of z, implies that

lrgiagc{llxi(tz—) —[2'(t=), 2’ @)1, ot (te) — [ (=), &' (ta)]ll > 0,

which is impossible because z! is monotone for each i. Hence, (2.13) must
hold when z, > r asn — oo in WMs. =

We will also apply the following elementary lemma, for which we omit
the proof. We use the oscillation functions w; in (12.4.4) and ¥ in (12.4.3)
of the book.

Lemma 7.2.7. If
y(t—) = 82 < yn(t1) < ynltz) < y(t) + 62
whenever 0 <t — 61 <t1 <ty <t+ 61, then
Ws(Zn © Yns t,01) < B(2n,y(t), 02) + 0(2n, y(t—), 02) + w* (zn, [y(t—), y(1)])
for w* in (2.14).
We apply Lemmas 7.2.6 and 7.2.7 to establish the following.

Lemma 7.2.8. In case (i), with t € Disc(y), y(t—), y(t) € Disc(z) and
x monotone on [y(t—),y(t)], if (Tn,yn) = (z,7y) in DF(W My) x D%(WMQ),
then

lim lim wy(z, o yn,t,0) =0 .
300 e s(Tn © Yn )

Proof. For any 3 > 0 given, we can find §; so that

y(t—) —02/2 < y(t1) < ylte) < yl(t) + 02/2

for OV (t —61) < t; <ty <t+ d§;. By choosing continuity points of y, we
can choose ny > nq so that

y(t—) — 02 < yn(t1) <ynlte) <y(t) + 02
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for all n > ns. Hence we can apply Lemmas 7.2.6 and 7.2.7. By Lemma
7.2.6, w*(zp, [y(t—),y(t)]) — 0 as n — oco. Since z, — z and y(t—), y(t) &
Disc(x),

lim Lim %(zp,y(t),6) =0

010 nooo

and o
lim lim 9(zy,y(t—),0) =0.

0 noeo

An application of Lemma, 7.2.7 completes the proof. =
We now turn to case (iv). We first establish a preliminary result of
independent interest, but which we do not directly need.

Lemma 7.2.9. Suppose that my(zp,z) — 0 in D and m(y,,y) — 0 in
D%, but that y(t) € Disc(x). If y is strictly increasing and continuous in a
neighborhood of t, then (xn o yn)(t)) — (zoy)(t') for allt' in a dense subset
of neighborhood of t and all sequences {t}} with t,, — t'.

Proof. In the neighborhood of y(t), there are at most countably many
discontinuities of x. Since y is strictly increasing and continuous in a neigh-
borhood of t, ¢ is invertible there. Hence, for suitably small §o and all but
countably many ¢’ in (¢ — do,t + d2), we simultaneously have y continuous
at ¢ and z continuous at y(¢'). At all such ¢, we have y,(t,) — y(¢') and
Zn(yn(t")) — z(y(t')) whenever t,, — t', because m,-convergence implies
local uniform convergence at continuity points, by virtue of Theorem 12.4.1
in the book.

Corollary 7.2.1. Ify is strictly increasing and continuous whenever y(t) €
Disc(z) and (zp,yn) — (z,y) in D%(Ml) X D%(Ml), then z, oy, = T oy

Proof. By Lemma 7.2.6, My convergence on D% coincides with pointwise
convergence on a dense subset. Apply Lemma 7.2.9. =

Lemma 7.2.10. If m(yn,y) — 0 in D%, where y is continuous and strictly
increasing at t, then for any 6 > 0, we can find §1 > 0 such that, for all n
sufficiently large,

ws(xn, y(t)a 5) )
ww(xna y(t)’ 5) )

ws(wn © ynata 51)

’U)w(.’L‘n o ynata 61)
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II‘T}S(:EWA,'/E,:l/(t)’<S )
ww(mn,x,y(t), 6) .

U_)s(mn OYn, T OY, ta 51)

<
ws($n°yna$°yata51) S

Proof. Since y is continuous at ¢, we can find 1 < t < %2 such that y is
continuous at ¢; and t9 and |y(t) — y(t;)| < 6/2 for j = 1,2. Since y, = y
we can find ng such that |y,(t;) — y(¢;)| < §/2 for n > ny and j = 1,2.
By the triangle inequality, |yn(t;) — y(t)| < d for n > ng and j = 1,2. Let
01 = min{|t—t1], [t—t2|}. Since y, and y are nondecreasing, |y, (t')—y(t)| < &
whenever |t' — t| < §;. Hence

ws(xn o Yn, T, 61) < ws(x”,y(t), 5)
and
ww(wn O Yn, t, 51) < ww(m'n,y(t),J) .

Moreover, since y is continuous and strictly increasing, z(y(t)—) = z(y(t—))-
Hence

Ws(Ty © Yn, T 0 Y, t,61) < Ws(Tn, T,y(t),0)
and
Wy (T © Yn, T 0Y,1,01) < Wy (T, 7,y(t),0) . =
7.3. Composition with Centering

This section considers the composition map with centering. Nothing was
omitted from the book here.

7.4. Supremum

In this section we consider the supremum function, mapping D = D([0,T], R)
into itself according to

#'(t) = sup z(s), 0<t<T. (4.1)
0<s<t

7.4.1. The Supremum without Centering

The following elementary result is stated without proof.
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Theorem 7.4.1. (Lipschitz property of the supremum function) For any
x1,T2 € D([O,T], ]R),

]
AN

dJ1 (xla :L'Q) )

< dp,(z1,22) ,

QL
S
]
B

AN

sz(wlaxQ) < dM2(-'E1a$2)'

The conclusion in Theorem 7.4.1 can be recast in terms of pointwise
convergence: Since z! is nondecreasing, convergence zh — 2! in the M
topologies is equivalent to pointwise convergence at continuity points of z',
because on D+ the M; and M> topologies coincide with pointwise conver-
gence on a dense subset of R including 0; see Corollary 12.5.1 in the book.
Thus the M topologies have not contributed much so far. We obtain more
useful convergence-preservation results for the supremum map with the M
topologies when we combine supremum with centering. As before, let e be
the identity map, i.e., e(t) =¢, 0 <t <T.

7.4.2. The Supremum with Centering

The following is the main result stated as Theorem 13.4.2 in the book. Our
object here is to prove it.

Theorem 7.4.2. (convergence preservation with the supremum function
and centering) Suppose that c,(x, —€) =y as n — oo in D([0,T],R) with
one of the topologies Ji, My or My, where ¢, — 0.
(a) If the topology is My or Mo, then cn(a:g—e) — y in the same topology.
(b) If the topology is Ji, then cn(xz —e) — y if and only if y has no
negative jumps.

Before proving Theorem 7.4.2, we establish some preliminary lemmas.
We first give an alternative expression for the result, in the form of a con-
tinuous mapping theorem. Let y, = ¢, (z, — e). Then s,(y,) = cn(zg —e),
where

sn(y) = (y+cne)l —cpe for yeD. (4.2)

Thus the conclusion of Theorem 7.4.2 can be expressed as sy, (yn) — s(y) =y
when y, — y, with the appropriate topology.

Note that, for z € D and sp, in (4.2), sp(z) cannot have any negative
jumps. For any x € D, we can characterize s,(z) as the majorant which
decreases by at most slope ¢, at any time; i.e.,

sp(z) =inf{y € D :y > =z, y(t2) —y(t1) > —cn(ta —t1)}, (4.3)
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where we allow 0 < t; <ty <T.

Lemma 7.4.1. For any = € D, s,(z) defined by (4.2) satisfies (4.3).

Proof. First note that s,(z) > z. Next note that

sn(@)(t2) — sp(z)(t1) = (4 cne)'(t2) — (z + cne)T(t1) — cnlte — t1)
> —cp(ty —t1).

Finally, suppose that y > z and y(t2) —y(t1) > —cp(te —t1) forall 0 < ¢; <
to < T. Then s,(y) = y. Since y > x, s,(y) > sp(z). Hence y > sp(z). =

We can also bound s, (z) above for sufficiently large n by another majo-
rant. Let the left-local-majorant of z € ([0,T],R) be

sj(z)(t) = 0v(t§u)z <tx(s), 0<t<T. (4.4)

It is obvious that z < sj(x) for all z and € > 0. Moreover sj(z)(t) is
nonincreasing as € | 0. We now show that s{(z) — z in (D, M>) as € | 0.

Lemma 7.4.2. For any x € D and € > 0, there exists 6 > 0 such that

sz(.T,S?(.T)) <e. (4.5)

Proof. First, for z and € given, apply Theorem 12.2.2 in the book to choose
z. € D, such that ||z — z.|| < €/3. For z, it is evident that there exists ¢
with 0 < § < €/3 such that

dury (88 (), ) < 6 < €/3 and ||s0(x.) — 9 (z)|| < €/3.
Hence,
diry (2,57 (2)) < |l& — @]l + dor, (zc, 87 (2)) + 157 () — 5] (@)| < e w (4.6)

We now show that s, (z) — = as n — oo in the M, topology, uniformly
over a large class of functions .

Lemma 7.4.3. Let s, be as in (4.2), where ¢, — 0o. For any M and € > 0,
there is an ng such that

dar, (sn(2),2) <€ nZng, (4.7)

for all z with ||z|| < M.
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Proof. Let ¢, M and z be given with ||z|| < M. Apply Lemma 7.4.2 to
find § such that m(s?(z),z) < § < e. Choose ng so that c,d > 2M for
n > ng. Then, for n > ny,

z(8) + cns — et < z(t) (4.8)
forall s, 0 <s<t—9,0<t<T, because under those conditions
z(s)+epns—cnt <M —cpd < —M < z(t). (4.9)

Hence, for n > ny,
z < sp(z) < s (z), (4.10)

so that, by Lemma 7.4.2, s,(z) is contained in an My e-neighborhood of z;
ie., (4.7) holds. =
Next, for the J; results we need the following.

Lemma 7.4.4. If z € D([0,T],R) and z has no negative jumps, then for
any € > 0 there is a § > 0 such that

v (z,0)= sup {z()—=z(t)} <e. (4.11)
oV (t—8)<t/ <t
0<t<T

Proof. Under the condition, for any € > 0 and all ¢ € (0,7, there is a §(¢)
such that 0 < ¢t — 6(t) < ¢t and

z(t') <z(t) +e forall t' e (t—4§(t),t). (4.12)

By the right continuity of z at 0, there is a 6(0) such that ||z(¢') — z(0)]| < €
for 0 < ¢/ < §(0). The intervals [0,46(0)), (t — d(t),t), 0 < t < T, form an
open cover of the compact set [0,7]. Hence there is a finite subcover. Let the
subcover be chosen (modified) so that each ¢ is in at most two subintervals.
Let 0 be the minimum length of the overlapping intervals, i.e.,

6 = min{|ts + 0(ti+1) — tis1]} A 6(0). (4.13)

Then, if ¢ is any point in [0,7], it either belongs to the subinterval [0, (0))
or it is at least § away from the left endpoint of one of its subintervals.
Hence property (4.11) holds for § in (4.13). =
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Proof of Theorem 7.4.2. (a) We will show that s,(z,) — = whenever
Zn — z, for s, in (4.2). First consider the My topology. Let M be a
constant so that ||z|| < M/2. Since das, (zn,z) — 0, there is an ng such that
|zn|| < M for all n > ngy. By the condition and Lemma 7.4.3, for any € > 0
there is an ny > ng such that das, (25, ) < €/2 and dag, (sn(zn), zn) < €/2
for n > ni. Hence, by the triangle inequality, for n > nq,

dMQ(Sn(.Tn),ZE) < dM2(5n(mn)7$n) + sz(xn,m) <e€.

Next consider the M topology. Since M convergence implies My con-
vergence, we have dy, (sp(zy),z) — 0 by the proof above. It thus suffices
to strengthen convergence from My to M. In particular, we can apply part
(v) of Theorem 12.5.1 in the book. By Theorem 12.4.1 in the book, the M,
convergence implies the local uniform convergence at continuity points in
condition (12.5.4) in the book, so it only remains to establish the oscillation
function limit at discontinuity points in condition (12.5.5) in the book; i.e.,

lim lim ws(sy(zn),t,6) =0 . (4.14)

0 nsoo

We show that if (4.14) fails, then necessarily we cannot have

lim lim wg(zy,,t,0) =0, (4.15)

00 pnooo

so that =, /4 = (Mi), which is a contradiction. If (4.14) fails, then there
must exist € > 0, 6 | 0 and ng 1 0o such that

Ws(Sny (Tny),t,0;) > € forall k. (4.16)

Let yn, = Sn,(zn,). Given (4.16), there are two cases: In the first case,
there exist ¢y, 1, t,, 2 and t,, 3 such that

ov (t — (Sk) < tng,1 <tng2 <tpgs < (t + (Sk) AT, (4.17)

y”k( T2 2) > y”k( Nk, 1)+eand ynk( T2 2) > y”k( ng,3 3)+e. However, ynk( 'flk:2) >
Yny (tn,,1) + € implies that there must exist ¢, 2 With 2y, 1 < tnk 9 < tng2
and znk(tnkg) > Yn, (tn,,2)- Since yn, (tn, 1) > xnk(tnk 1) and yp, (tn, 3) >
Zn, (tn,,3), we then must have ws(zy, ,t,0;) > €, which contradicts (4.15).
In the second case, there exist t,, 1, tn, 2 and t,, 3 such that (4.17)
holds, yn, (tny,2) < Yng(tng,1) — € and yn, (tn, 2) < Yn,(tn,,3) — €. By the

last inequality, there must exist ¢/, o3 With 1, 0 < tnk 3 < ty, 3 such that
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',I"nk (t{ﬂk,f}) 2 ynk (tnk,?)) — €. Since Tn S y’n7 J"nk (tnk,2) S ynk (tﬂk,2)' Fina‘lly’
since {zy, } is uniformly bounded, there is §; where 6) | 0 as k — oo, and
Hence, we must have

Ws (T, t, 0 +0;) > € forall k. (4.18)

Since 0y + 6}, | 0 as k — oo, (4.18) again contradicts (4.15) and thus z,, — =
(My). Thus, dar, (sp(zn),z) — 0 as claimed.

(b) We now turn to the J; result. Given c,(x, —e) — y (J1), there exists
An € A such that |cp(zn, —€) —yo Ap|| = 0 as n — co. We want to show
that ||c,(zh — €) — y 0 An|| = 0. Since @}, > z,, it suffices to show, for any
€ > 0, that there is nq such that

cntn(s) —cns <y(Ap(s)) +e for 0<s' <s<T (4.19)

for n > ny. Choose ng such that ||c,(z, —€) —y o A\y|| < €/2 for n > nyg.
From (4.19), we see that it suffices to show that there is ny > ng such that

YA (s) SyAn(s)) +en(s—8')+e€/2 for 0<s' <s<T. (4.20)

Since y has no negative jumps, we can apply Lemma 7.4.4 to conclude
that there is a 0 such that v~ (y,d) < €/2 for v~ (y,d) in (4.11). Then
choose n; > ng such that ||\, —e|| < ¢ and ¢,d > ||y|| for n > ny, and we
obtain (4.20). Finally, recall that the maximum negative jump function is
continuous, e.g., see p. 301 of Jacod and Shiryaev (1987); i.e.,

J_(z) = Os<1t11<)1{x(t—) —z(t)} . (4.21)

Clearly, J_(ca(zh — €)) = 0, so that if co(zh — ) — y (J1), then y must
have no negative jumps. =

We now obtain joint convergence in the stronger topologies on D([0, 7], R?)
under the condition that the limit function have no negative jumps.

Theorem 7.4.3. (criterion for joint convergence) Suppose that c,(z,—e) —
y as n — oo in D([0,T],R) with one of the J1, My or My topologies, where
¢, — oo. If, in addition, y has no negative jumps, then

cn(zn —e,z) —e) = (y,y) as n— oo (4.22)

in D(]0,T],R?) with the strong version of the same topology, i.e., with SJi,
SMi or SMs.
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Proof. For the SM; and SM, topologies, we will work with paramet-
ric representations, using the parametric representation ((u,u),r) for (y,y).
Given that (¢, (z,—e) — vy, there exist parametric representations (uy,r,) €
Is(cn(zn—e)) and (u,r) € (y) such that ||u, —u|V|r,—7] = 0asn — co.
We construct the desired parametric representations from these. Note that
(¢ up 4 oy ) € I(3,) and (), 70) € M (cn(zh — €)) for

+

up, = cn((cglun + 7)) = 70) = (un + carn)’ — - (4.23)

Note that z), has the jumps up of z,, while o} is continuous when Ty has

a jump down. Thus ((up,u,),mn) € Us(yn,y),) for y, = cp(z, —€) and

Yy = co(zh —e). Of course ((u,u),r) € I,((y,y)). Thus it remains to show
that

|, uly) — (u,w)|| V|jrn — 7] =0 as n— oo. (4.24)

Given that |Jup, —ul| V ||r, — || = 0, it suffices to show that |lu], — ul| — 0.
Clearly, u!, > u, for all n, so that it suffices to show that, for all € > 0, there
exist ny such that u!,(s) < u(s)+efor alln > nj and s € [0, 1]. Equivalently,
by (4.23), it suffices to show that

un(s') + en(rn(s’) —mn(s)) <u(s) +e 0<s <s<1, (4.25)

for all n > n;. However, if we assume that the limit y has no negative
jumps, then Lemma, 7.4.4 implies that there is a 6 > 0 such that

u(s’) < wu(s) +¢/2 (4.26)
for all s,s" with 0 < s’ <s <1 and r(s) —r(s'") <. Choose ng so that
lup —ul|| V|jrn —7]| < (0 A€)/4 for n>mnyg.
Choose n1 > ng so that
cnd/4>2||z|| for n>n. (4.27)

There are two cases: (i) 7,(s) — rp(s') < 6/4 and (ii) r,(s) — rp(s’) > 6/4.
In case (i), r(s) — r(s’) < 4, so that by (4.26)

un(8") + en(rn(s) —rn(s)) < un(s) <u(s') +e/4 <u(s) +e, (4.28)

so that (4.25) holds. In case (ii), by (4.27),
un(s') + en(rn(s’) —m(s)) < u(s’) +€/2 —cpd/4
< u(s) + 2||u|| —cnd/4 +€/2
< u(s) +e, (4.29)



178 CHAPTER 7. USEFUL FUNCTIONS

so that again (4.25) holds. Turning to Ji, we note that the result already fol-
lows from the proof of Theorem 7.4.2 (ii) because the same homeomorphims
An € A were used for both ¢, (2, —€) = y and cp(zh —€) > y. =

Corollary 7.4.1. Under the conditions of Theorem 7.4.3,

lea(z) —2,)| =0 as n— oco.

Proof. Apply subtraction to get
cn(Tn — mﬁ) =cp(zy —€) — cn(mz —e) >z —xz(Ma) .

Since the limit is continuous, the convergence holds in the uniform topol-
ogy. =m

We next give an elementary result about the supremum function when
the centering is in the other direction, so that x,, must be rapidly decreasing.
Convergence z},(t) — z(0) as n — oo is to be expected, but that conclusion
can not be drawn if the Ms convergence in the condition is replaced by

pointwise convergence.

Theorem 7.4.4. (convergence preservation with the supremum function
when the centering is in the other direction) Suppose that ¢, — oo and
T, + cpe = y in D([0,T),R, Mz). Then

||x;rl —z(y)|| =0 as n— oo,
where z(y)(t) = y(0), 0 <t < T.

Proof. The assumed M> convergence implies local uniform convergence at
the origin: For any € > 0, there is a ¢ and an ng such that

sup |-'L'n(t) + cnt — y(0)| < ’U(xn,y,o, 5) <e
0<t<6

for n > ng, where v(x1,x2,t,6) is the modulus of continuity in (4.2) in
Section 6.4. Hence, z,(t) < y(0)+e€ forallt, 0 < ¢ < §, and n > ng. Use the
conditions to find n; > ng such that ||z, + cpel| < ||y|| + € and ¢,§ > 2||y||
for n > nq. Then, for t > § and n > nq,

Tn(t) = —cpd+zn(t) +cnd < —cpd+||zn+cne|| < —cnd+||yll+€ < y(0)+e.

Hence, mﬁ(t) <y(0)+eforallt,0 <t<T,and n > n;. On the other hand,
for all ¢, z),(t) > 2,(0) = y(0) as n — co. =
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7.5. One-Dimensional Reflection

Closely related to the supremum function is the one-dimensional (one-sided)
reflection mapping, which we have used to construct queueing processes.
Indeed, the reflection mapping can be defined in terms of the supremum
mapping as
px)=z+ (—zVv0)T;
ie.,
H2)(t) = 2(t) — (inf{z(s) :0< s <} AD), 0<E<T,  (5.1)

as in equation (2.5) in Section 5.2 of the book.

The Lipschitz property for the supremum function with the uniform
topology in Lemma ??7 immediately implies a corresponding result for the
reflection map ¢ in (5.1).

Unfortunately, however, the Lipschitz property for the reflection map ¢
with the uniform topology does not even imply continuity in all the Skorohod
topologies. In particular, ¢ is not continuous in the M, topology.

We do obtain positive results with the J; and M; topologies. As before,
let dj, and djs, be the metrics in equations 3.2 and 3.4 in Section 3.3 of the
book. For the J; result, we use the following elementary lemma.

Lemma 7.5.1. For any x € D and X\ € A,
B() o A=z o)) .

For the M; result, we use the following lemma. A fundamental difficulty
for treating the more general multidimensional reflection map is that Lemma
7.5.2 below does not extend to the multidimensional reflection map; see
Chapter 8.

Lemma 7.5.2. (preservation of parametric representations under reflec-
tions) For any z € D, if (u,r) € II(z), then (p(u),r) € II(¢(z)).
Proof. In book. =

Theorem 7.5.1. (Lipschitz property with the J; and M; metrics) For any
T1,T2 € D([Oa T]a R);

dj (¢(1), p(z2)) < 2dy, (71, 72)

and
dary (9(21), $(22)) < 2dpry (71, 22))
where ¢ is the reflection map in (5.1).
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Proof. In book. =

Theorem 7.5.1 covers the standard heavy-traffic regime for one single-
server queue when p = 1, where p is the traffic intensity. The next result
covers the other cases: p < 1 and p > 1. We use the following elementary
lemma in the easy case of the uniform metric.

Lemma 7.5.3. Let d be the metric for the U, Ji, M1 or M topology. Let
zVa:D — D be defined by

(zVa)(t)=z({t)Va, 0<t<T. (5.2)
Then, for any x1,x2 € D,
d(z Va(zi),zVa(ze)) < d(z1,22) -

Theorem 7.5.2. (convergence preservation with centering) Suppose that
Zp — cpe =y in D([0,T),R) with the U, J1, My or My topology.

(a) If ¢, & +o0, then

¢(zy) —cne >y +y(y) as n—oo in D
with the same topology, where
() () = (—y(0)) VO =—(y(0) A0), 0<¢t<T.
(b) If ¢, - —o0, y(0) <0 and y has no positive jumps, then
l¢(zn) —Oe|| =0 as n—o00 in D,

where e(t) =1, 0 <t <T.

Proof. (a) Note that
() — cpe = T — cpe+ (—z, VO,
where (—z, V0)" = (—z,)" v 0. By assumption, z,, — c,e — y. By Theorem

7.4.4,
||(—a:n)T —z2(-y))| =0 as mn— o0

where z(—y)(t) = —y(0), 0 <t < T. By Lemma 7.5.3,

(=) VO —2(—y) VO| =0 as n — oco.
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We obtain the desired convergence by adding, using the fact that the second
term has a continuous limit.

(b) Apply the argument of Theorem 7.4.4 to show that, for all € > 0,
there exists n1 such that —z,(t) > —y(0) —e for all ¢, 0 < ¢t < T, and all
n > ny. Since y(0) < 0, —z,(t) > —efor all ¢, 0 < ¢ < T, and all n > ny.
Thus,

(=n + cne, (—7n) VO + cre) = (—y, —y)
in D([0,T],R?) with the appropriate strong topology. Then, by Theorem
7.4.3,

(=, + cne, (—2n) VO + cne, (=25 VO + cre) = (—y,—y,—y)  (5.3)

in D([0,T],R3) with the appropriate strong topology. Then, by applying
subtraction to the first and third terms in (5.3), we get

gb(xn) = Tp+ (_wn \ O)T
[(—zn V 0)" + cpe] — [~z + cne]
- —y+y=20e (5.4)

as n — Q. [ ]

7.6. Inverse

We now consider the inverse map.. It is convenient to consider the inverse
map on the subset D,, of z in D = D([0,00),R) that are unbounded above
and satisfy z(0) > 0. For z € D,,, let the inverse of = be

o (t) =inf{s >0:z(s) >t}, t>0. (6.1)

As before, let Dy be the subset of z in D with z(0) > 0, and let D4 and
D4+ be the subsets of nondecreasing and strictly increasing functions in D.
Let DuT =D, N DT and DUTT =D, N DTT Clearly,

Dy CDyCD,CDy.

7.6.1. The M, Topology

Even for the M; topology, there are complications at the left endpoint of
the domain [0, c0).
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Example 7.6.1. Complications at the left endpoint of the domain. To see
that the inverse map from (D4, U) to (D4, My) is in general not continuous,
let z(t) =0,0<t<1,and z(t) = ¢, t > 1; Let z, =t/n, 0 <t <1 and
Ty(t) =t,t > 1. Then ||z, —2z|/ooc =n~! = 0, but z;1(0) =0 4 1 = z71(0),
so that z;1 4 7! (M;). =

To avoid the problem in Example 7.6.1, we can require that z=1(0) = 0.
To develop an equivalent condition, let DeT be the subset of functions z in
D, such that z(t) =0 for 0 <t <e.
Then let
D: = ﬁ?LO:I(Du,n—l)c : (6.2)

Lemma 7.6.1. (measurability of D)) With the J;, My or My topology, D},
in (6.2) is a G5 subset of Dy, and

D} ={z € D, :z"'(0) =0} . (6.3)

Let D;T = Dy N Dy, A key property of DZ,T’ not shared by D, + because
of the complication at the origin, is that parametric representation (u,r) for
z directly serve as parametric representations for z—! when we switch the
roles of the components u and 7.

Lemma 7.6.2. (switching the roles of u and r) For z € Dy, +, the graph
Ty serves as the graph of T'y-1 with the azes switched. Thus, (u,r) € II(x)
if and only if (r,u) € I(z~!), where II(x) is the set of My parametric
representations.

Corollary 7.6.1. (continuity on (D}, My)) The inverse map from (D}, M)
to (Dyz, M) is continuous.

Proof. First apply Theorem 7.4.1 for the supremum. Then apply Lemma
76.2. =

We now generalize Corollary 7.6.1 by only requiring that the limit be in
D;.

Theorem 7.6.1. (measurability and continuity at limits in D) The inverse
map in (6.1) from (Dy, Mz) to (Dy+, M1) is measurable and continuous at
x € D}, i.e., for which z71(0) = 0.
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Proof. First, recalling that the Borel o-field on D coincides with the Kol-
mogorov o-field generated by the projections, measurability follows from
Lemma ?7?; it suffices to show that {z : z7!(¢) < a} is measurable. How-
ever,

{z:27'(t) <a} N721 M=y {z:27Y((t+7 ")) <a+Ek'}
%2, N {o o ((E+57Y) < at k1)

— R {miaa KT 2 ), (64)
which is measurable. Next we turn to continuity. For any = € D, 2~ =
(zM) ™1, so it suffices to start from z};, — zT. By Theorem 7.4.1, the assumed
convergence T, — « in (D, M) implies that z}; — 2z in (D4, Ms). How-
ever, the M; and M> topologies coincide in Dy. So xib — 2z in (D4, My).
Since * € D, z' € DZ,T' However, we need not have :L‘IL € D;‘m. We
could directly apply Lemma 7.6.2 if zh € D? for all sufficiently large n.

Hence suppose that is not the case. Then there exists a subsequence {xﬁk}

with xlbk o4 Dy, & for all ng. Necessarily, then, zILk(O) = 0 for all ng. Since

z) — 21, we can conclude that z'(0) = 0. Since 2! is right continuous and

zt € D;, ;, for any € > 0, there exists §, 0 < § < /2, such that § € Disc(z1)®

and 0 < z'(0) < €/2. Let ng then be such that \acIL(O) —zT(0)] < €/2
and |w£(5) — z1(0)] < €/2 for all n > ngy. Hence, for n > ngy, we can
define an approximation to a:gk which belongs to D] ;. In particular, let

7, (0) = x%k (0) = 0 and let z;, (t) = w%k(t) for all t > ¢ and let z;, be
defined by linear interpolation in [0,6]. Then z;, € Dy ., ||z}, — ah, |l < e
and ||(mj;k)_1 - x;le < ¢ for all n > ng. For n > ng such that z}, € Dy

let z; = ). Since € was arbitrary, we can choose z} such that z} — z'

(My), ||z — z)| = 0 and |(z)~t =z ! = 0 as n — co. By Lemma 7.6.2,
(zx)~t — 27! (My). Since ||(z2) "t =zl = 0, 2z, — =7 (M) as well. =

Corollary 7.6.2. . (continuity at strictly increasing functions) The inverse
map from (Dy, Ms) to (Dy4,U) is continuous at € Dy 4.

Proof. First, D, 4 C DZ,T’ so that we can apply Theorem 7.6.1 to get

z;' = 27! in (Dy4, Mi). However, by Lemma ??, 27! € C when z €
Dy, ++. Hence the My convergence z,1 — 271 actually holds in the stronger

topology of uniform convergence over compact subsets. =
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7.6.2. The M| Topology

For cases in which the condition z=1(0) = 0 in Theorem 7.6.1 is not satisfied,
we can modify the M; and M> topologies to obtain convergence, following
Puhalskii and Whitt (1997). With these new weaker topologies, which we
call M{ and M}, we do not require that z,(0) — z(0) when z, — z. We
construct the new topologies by extending the graph of each function z by
appending the segment [0,2(0)] = {a0 + (1 — a)z(0) : 0 < a < 1}. Let the
new graph of z € D be

I = {(z,t) € R¥ x[0,00) : 2z = az(t) + (1 — @)z(t—)
for 0 < a<1andt>0}, (6.5)

where z(0—) = 0. Let II'(z) and II}(z) be the sets of all M; and M,
parametric representations of I, , defined just as before. We say that z, — z
in (D, M) if there exist parametric representations (uy,r,) € II'(z,) and
(u,r) € I'(z), where IT' is the set of M{ and M parametric representations,
such that

llun — ||t V]rn—rlt =0 as n— oo foreach ¢>0. (6.6)

With the M| topologies, we obtain a cleaner statement than Lemma
7.6.2.

Lemma 7.6.3. (graphs of the inverse with the M{ topology) For x € D, 4,
the graph T, serves as the graph T _, with the azes switched, so that (u,r) €
Il'(z) (My(z)) if and only if (r,u) € '(z™") (My(z~1)).

Thus we get an alternative to Theorem 7.6.1.

Theorem 7.6.2. (continuity in the M, topology) The inverse map in (6.1)
from (Dy, Mj) to (Dy4, M) is continuous.

Proof. By the M) analog of Theorem 7.4.1, if z, — =z in (D,, M}),
then =, — z' in (Dyt, M}). Since the M} topology coincides with the
M; topology on Di, we get zh — 2t in (Dy+,M7). By Lemma 7.6.3, we
get (zh)~! = (M)~ in (Dy4,M{). That gives the desired result because
(Nl =z lforallz € Dy. =

An alternative approach to the difficulty at the origin besides M] topol-
ogy on D,([0,00),R) is the ordinary M; topology on D,((0,00),R). The
difficulty at the origin goes away if we ignore it entirely, which we can do by
making the function domain (0, c0) for the image of the inverse functions.

In particular, Theorem 7.6.2 implies the following corollary.
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Corollary 7.6.3. (continuity when the origin is removed from the domain)
The inverse map in (6.1) from D,(]0,00), M3) to D, +((0,00), M1) is con-
tinuous.

Proof. Since the MJ, topology is weaker than My, if z,, — z in D, ([0, 00), M3),
then z, — z in D,([0,00), M}). Apply Theorem 7.6.2 to get z,' —
z! in Dy4([0,00), M]). That implies z,! — 27! for the restrictions
in D4([t1,t2], M1) for all ti,ty € Disc(z™1)¢, which in turn implies that
z;' = 27 in Dy 1((0,00),M). =

However, in general we cannot work with the inverse on D, ((0, ), R).
We can obtain positive results if all the functions are required to be mono-
tone. The following result is elementary.

Theorem 7.6.3. (equivalent characterizations of convergence for monotone
functions) For z,, n > 1, z € Dy +([0,00),R), the following are equivalent:

zpn =z in Dy 4((0,00), R, My) ; (6.7)

Tp =z in Dy +([0,00), R, M) ; (6.8)

Zn(t) = z(t) for all t in a dense subset of (0,00) ; (6.9)
r,' -z ' in D((0,00),R, M) ; (6.10)

o' > z7! in D([0,00),R, M) ; (6.11)

' (t) = 27 (t) for all t in a dense subset of (0, 00). (6.12)

Proof. Theorem 7.6.2 implies the equivalence of (6.8) and (6.11). Clearly,
(6.8)—(6.7)—(6.9), so that (6.11)—(6.10)—(6.12). It thus suffices to show
that (6.9)—(6.8). For any € > 0, we can find ¢ and ny such that 0 < ¢ <,
t € Disc(z) and |z,(t) — z(t)] < € for n > ng. Let ny > ng be such
that dyy (zn,7) < € for the restrictions to [t,#'] for any ¢ > ¢ with ¢’ €
Disc(z)¢. Since z,, and z are nondecreasing and nonnegative, the bounds
g (Tn, ) < € over [t,'] and |z,(t) — z(t)| < € imply that dyg(zn,z) <€
for the restrictions over[0,#']. Since ¢ and ¢’ were arbitrary, z, — z in
D4([0,00), R, M3), but the M) and M| topologies are equivalent on Dy. =

In general, convergence in D([0, 00), R, M7 ) provides stronger control of
the behavior at the origin than convergence in D((0,00),R, M;). Nothing
more is omitted from Section 13.6 of the book.



186 CHAPTER 7. USEFUL FUNCTIONS

7.7. Inverse with Centering

We continue considering the inverse map, but now with centering. We start
by considering linear centering. In particular, we consider when a limit for
cn(7n —e) implies a limit for ¢, (z,,! —e) when x,, € Dy, = D, ([0, 00), R) and
¢n — 00. By considering the behavior at one %, it is natural to anticipate
that we should have c,(z;! —e) = —y when c,(z, —e) — y. A first
step for the M topologies is to apply Theorem 7.4.2, which yields limits for
Cn (IEI«L —e). Thus for the M topologies, it suffices to assume that z,, € D;.
Now we state the main limit theorem for inverse functions with centering.

Theorem 7.7.1. Suppose that c,(z, —e) = y as n — oo in D([0,00), R)
with one of the topologies Ms, My or Ji, where x, € Dy, ¢, — o and
y(0) = 0.

(a) If the topology is My or My, then cn(x,* —e) — —y as n — oo with
the same topology.

(b) If the topology is J1 and if y has no positive jumps, then c,(z, ' —e) —
—y as n — 0o.

Proof. (a) The proof is easy for the M; topologies when z, € D for

all sufficiently large n. First, given c,(z, — e) — y (M;), we can apply

Theorem 7.4.2 (a) to conclude that ¢,(zh —e) — y (M;). Hence we can

assume that z,, € D?. Thus there exist parametric representations (uy,r,) €

I(cy(z,, —€)) and (u,r) € II(x) of the appropriate type such that ||u, —

ully V|rn = 7llt = 0 as n — oo for all ¢ > 0. Then (ul,,r,) € II(z,) for
' 1

Up, = €, Un + T Since z, € D} for n sufficiently large, (ry,u,) € O(z;h)
!

and (¢, (rn, — ), ul) € M(cy(z,;t —€)) for sufficiently large n. However,

cn(rn —ul) = —up (7.1)

and
lub, —rlls = 0 asn — oo forallt>0, (7.2)

so that ¢, (7, ' —e) = —y (M;) as n — oo. However, in general we need not
have z,, € D;, for all sufficiently large n. So, suppose that we do not. We
then only have z,, € D, for all n. As before, we can apply Theorem 7.4.2 to
show that it suffices to assume that z,, € D; for all n. We now show that
we can approximate &, € Dy by z7, € DX for all n sufficiently large, so that

collzn — i =0 and cpllz,t — (z5)7 =0 as n—oo. (7.3)
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The limits in (7.3) plus the triangle inequality imply that
dcp(zy, —€),y) < d(cn(zn —€),y) +cullzn — || 20 as n— oo (7.4)
and

d(cn(l‘gl - 6)7 _y)
< llen(en® = (23) 7 +dleal(zy) ™" —€),—y) =0 (7.5)

as n — oo, where d is the M; metric. Thus, the remaining problem is to
construct z;, € D} satisfying (7.3). Since y(0) =0 and y € D, for all € > 0,
there exists §; such that v(y,0,d1) < €/2. Since c,(zn, — €) = y (M), there
exists ng and dy such that v(cy(zn —e),9,0,0/2) < €/2 for all n > ngy. Thus

t—cle<an(t) <t+c,le (7.6)
for alln > ng and t with 0 <t < § = §; A d2. By Lemma 7?7,
t+e,le>x, (t—)>t—c,le (7.7)

foralln > ngand t with 0 <t < 4§ — c;le. Now choose n; > ng so that
c;le < §/4 for all n > ny. Then, by (7.6), for n > ny,

0 < 2n(8/4) < 6/2 (7.8)

and (7.7) holds for 0 <t < 36/4. Hence, if n > n; and z,, ¢ D3, we can
construct 7 € D} by letting z7,(0) = z,(0) = 0, z3(t) = zn(t), t > §/4,
and letting z} be defined by linear interpolation for ¢ in [0, d/4]. By (7.8),
zy, € D}. Since z7, is defined by linear interpolation over [0, d/4], for n > n,

llen (27, — €)lls/a = max{cn(zn — €)(0), cn(zn —e)(0/4)} <€, (7.9)
so that
len(zh — zn)ll < llen(@n — €)lls/a + llen(zr, — €)llsja < 2€. (7.10)

Similarly, (z3)~!(t) = z,,;}(¢) for t < z,(6/4) < §/2 and n > ny, so that by
(7.7)

llen((23) ™ = 2 )| < llen(an® = e)lla2 + llen((z5) ™ = €)llsja < 2¢. (7.11)

Since € was arbitrary, (7.10) and (7.11) imply (7.3), as required.
(b) Since cp(zyp, —e) = y (J1) and ¢, — o0, ||z, —€|lt = 0 as n — oo
for all ¢ > 0. By Corollary 7.6.2, |lz,' —e|; — 0 as n — oo for each
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t > 0. By Theorem 7.2.2, we can apply the composition map to obtain
cn(znoz,t—x; 1) — y (J1). Hence it suffices to show that c, ||z 0z, —el|; —

0 as n — oo for all ¢ > 0. However, by Corollary ?7,

cnllzn o :B,_ll —elly < Cnngl(t)(iL'n)

= Joi (en(zn —€)), (7.12)

where Ji(x) is the maximum jump of z over [0, ¢], treating z(0—) as 0. Since
cn(zn —e) = y, y(0) = 0 and y has no positive jumps, Ji(c,(z, —e)) — 0
as n — oo for all £ > 0, which implies the desired conclusion. =

Nothing else is omitted from Section 13.7 of the book.

7.8. Counting Functions

Inverse functions or first-passage-time functions are closely related to count-
ing functions. A counting function is defined in terms of a sequence {s, :
n > 0} of nondecreasing nonnegative real numbers with s = 0. We can
think of s,, as the partial sum

Sn=T1+- -+ Ty, n>1, (8.1)

by simply writing z; = s; — s;_1, ¢ > 1. The associated counting function
{c(t) : t > 0} is defined by

ct) =max{k>0:s,<t}, t>0. (8.2)

To have c¢(t) finite for all ¢ > 0, we assume that s, — oo as n — co. We can
reconstruct the sequence {s,} from {c(¢) : ¢ > 0} by

Sp=inf{t >0:¢(t) >n}, n>0. (8.3)

The sequence {s,} and the associated function {c(¢) : ¢ > 0} can serve
as sample paths for a stochastic point process on the nonnegative real line.
Then there are (countably) infinitely many points with the n'® point being
located at s,. The summands z, are then the intervals between successive
points. The most familiar case is when the sequence {z,, : n > 1} constitutes
the possible values from a sequence {X,, : n > 1} of i.i.d. random variables
with values in R, . Then the counting function {c(¢) : ¢ > 0} constitutes a
possible sample path of an associated renewal counting process {C(t) : t >
0}; see Section 7.3 of the book.

Paralleling Lemma 13.6.3 in the book, we have the following basic inverse
relation for counting functions.
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Lemma 7.8.1. For any nonnegative integer n and nonnegative real number
2
sn <t if and only if c(t) >n. (8.4)

We can put counting functions in the setting of inverse functions on D4
by letting
y(t) =s;4,t20. (8.5)

To have y € D4, we use the assumption that s, — oo as n — oo. if all the
summands are strictly positive then

y () =c(t)+1, t20, (8.6)
where y~! is the image of the inverse map in (6.1) applied to y in (8.5). With
(8.6), limits for counting functions can be obtained by applying results in
the previous two sections.

The connection to the inverse map can also be made when the summands
x; are only nonnegative. To do so, we observe that the counting function c is
a time-transformation of y~!. both are right-continuous, but c(t) < y~1(¢).
In particular, ¢ and y can be expressed in terms of each other.

Lemma 7.8.2. (relation between counting functions and inverse functions)
For y in (8.5) and ¢ in (8.2),

ct) = vyl ®)-)-), t20, (8.7)
c(t) = y t(t—) forall te Disc(c)= Disc(y '), (8.8)
y 1) = c(cHe(t), t>0. (8.9)

The three functions y, y~' and c are depicted for a typical initial segment
of a sequence {sp, : n > 0} in Figure 13.1 of the book. We can apply (8.7)—
(8.9) in Lemma 7.8.1 to show that limits for scaled counting functions with
centering, are equivalent to limits for scaled inverse functions. We use the
fact that the M topologies are not altered by changing to the left limits,
because the graph is unchanged. We first consider the case of no centering;
afterwards we consider the case of centering. When there is no centering,
the M; and M, topologies coincide and reduce to pointwise convergence on
a dense subset of R, including 0.

Consider a sequence of counting functions {{c,(t) : ¢ > 0} : n > 1} with
associated processes

Yo' (1) = calen ' (ea(?)), 20, (8.10)
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Yn = (y, 1) "!. Form scaled functions by setting
cn(t) =n tep(ant) and  yu(t) = a, yn(nt), t>0, (8.11)
where a,, are positive real numbers with a,, = oco. Note that

¢p () =ay ey (nt) and yu'(t) =n"'ya(ant), t>0.  (8.12)

Theorem 7.8.1. (asymptotic equivalence of limits for scaled processes)
Suppose that y, € Dys, n > 1, for y, in (8.11). Then any one of the
limits yn =y, yn' =y~ L, ¢ =y~ or et =y~ in D4([0,00),R) with
the My (= M) topology, for y,', c, and c,* in (8.11) and (8.12), implies
the others.

Proof. The equivalence between y,, — y and y,;! — y !, and between

¢, =y Yandc,! — y follow from Theorem 7.6.1. We can relate the limits
¢, =y~ ! and y, — y by applying (8.6), after modifying the summands z,, ;
in the sequences {s, j : k > 0} to make them strictly positive. We can show
that the limits are unaltered by adding suitably small positive values to the
summands. Given € > 0 and {z, : n > 1}, let

Th=x,+e2 " n>1, (8.13)

and let ), =z +---+ 2z}, n> 1, and ¢'(t) = max{k > 0: s, <t},t > 0.
Then
sn<s,<s,+e n>0, (8.14)

and
c((t—e)Vv0) <) <c(t), t>0. (8.15)

The actual limits we want to consider involve a sequence of sequences {{s;, 4 :
k > 0},n > 1} with s,9 = 0 for each n. Let {{c,(t) : ¢ > 0}} be the

!

s 3 : ! ! ! !
associated sequence of counting functions. Let Ty k Spks ny,(t), s, and n,

be associated quantities defined by the modification in (8.7), i.e., by letting
Ty = Tnp+ 2%, k>1. (8.16)

Given that scaled processes are formed as in (8.11) and (8.12). It is elemen-
tary that

HYH - ygz”oo < 6n/an —0 (8.17)
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so that, for appropriate choice of €,, e.g., €, =€, €,/a, — 0. The bound in
(8.15) enables us to conclude that ¢, — ¢ (My) if and only if ¢, — ¢ (M)
by applying Corollary 12.11.6 in the book. Hence it suffices to assume that
the sequences {s, 1 : K > 0} are strictly increasing, which implies that (8.6)
holds. Then, after scaling as in (8.11) and (8.12),

||Yr71 —¢plloo <1/n—0,

which completes the proof. =

We now apply the results for inverse maps with centering in Section 7.7
to obtain limits for counting functions with centering. Consider a sequence
of counting functions {{c,(t) : ¢ > 0} : n > 1} associated with a sequence
of nondecreasing sequences of nonnegative numbers {{s, ; : £ > 0} : n > 1}
defined as in (8.2). Let the scaled functions ¢y, yn, ¢, and y;; ! be defined
as in (8.10)—(8.12).

Theorem 7.8.2. (asymptotic equivalence of counting and inverse functions
with centering) Suppose that y, € Dy, n > 1, by, = 0o and y(0) = 0. Then
any one of the limits b, (y, —€) = y, bu(cn —€) = —y, bu(y, ' —€) = —y
or by(c,! —e) = y in D([0,00),R) with the My or My topology, for yn,
cn, and y,; ! and c; ' in (8.11) and (8.12), implies the others with the same
topology.

Proof. The equivalence between b, (y, —e) — y and b, (y, ' —e) = —y is
contained in Theorem 7.7.1. Similarly, the equivalence between by, (c, —e) —
—y and b, (c,;! —e) — y is contained in Theorem 7.7.1. Let the topology be
fixed at either My or My. Given b,(y; ' —e) — —y, we have ||y, —e¢|; — 0
and ||y, —e|lt = 0 as n — oo for each ¢t > 0. For any = € D, let Z denote the
associated left-limit function; i.e., Z(t) = z(t—). Then ¢, = ¥, oy, oy, .
Given b,(y,! —e) — —y, we have ., — e, ¥, — e, bu(y,} —¢) —
—y and b,(y, — e) — vy, because the graphs are unchanged. Now we can
apply the composition map to get b, (¥, o Jnoy,! —ynoy,!) = —y and
bo(Fnoyn' —yn') — y. Hence, by Proposition ??, for each t € Disc(y)¢,
we have

ba(cn —e)(1) = ba(¥,' oFnoy, —e)(t)
= bn(S’El °yn Oy;l —¥n Oy;l)(t)
+bn(Fnoyn' —yn)(t) +balyn " —e)()
= —y(t) +y() —y(t) = —y(t). (8.18)
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Now we apply Theorems 6.5.1 (iv) and 6.11.1 (iv). Let w(z,d) be the
M; oscillation function over the interval [0,¢]. By (8.8), the oscillations
of by(c, — €) coincide with the oscillations of b,(y,;' — €) at discontinu-
ity points of ¢, and y,!. Moreover, in between such discontinuity points,
they have identical maximum oscillations. Hence, for any interval [0, ¢] with
t € Disc(y)®,

w(bp(cy —€),8) < wbn(y,' —e),0) . (8.19)

Since by, (y;,! — e) — —y by assumption,

lim Tim w(b,(y,' —e),8) =0 (8.20)
00 nooo

Consequently, o
lim lim w(b,(c, —€),d) =0. (8.21)
00 oo

Hence, we can conclude that b,(c, —e) — —y.

To go the other way, suppose that b,(c, —e) = —y. Applying Theorem
7.7.1, we have b,(c,! —e) = vy, ¢, — e and c,' — e. Then, paralleling
(8.18), we can apply (8.9) to obtain

ba(yil—e)(t) = bulcpoc,toc, —e)(t)
= ba(eaoc, oc, — ¢, oca)(?)
+bn(c;1 o ¢y — ) (t) +bu(cy —e)(t)
— —y(t) +y(t) —y(t) = —y(?) (8.22)

for each t € Disc(y)¢. Now let w(z,d,t) denote the M; oscillation function
over the interval [0, ¢] as a function of the right endpoint ¢. Then, paralleling
(8.19), by (8.8), for all t; € Disc(y)¢, there exists to > t1 with t9 € Disc(y)°
such that

w(by(y, ! —e),0,t1) < wbp(c, —e),d,t2) (8.23)

for all n sufficiently large. Hence we can use the previous oscillation argu-
ment to conclude that b,(y,! —e) = —y. =

7.9. Renewal-Reward Processes

Nothing was omitted from Section 13.9 in the book.



Chapter 8

Queueing Networks

8.1. Introduction

This chapter contains proofs omitted from Chapter 14 of the book, with
the same title. Section 8.9 also contains supplementary material on the
existence of a limiting stationary version for a general reflected process.
With the exception of Section 8.9, the section and theorem numbering here
parallels Chapter 14, so that the proofs should be easy to find.

Here is how this chapter is organized: We start in Section 8.2 by care-
fully defining the multidimensional reflection map and establishing its basic
properties. Since the definition (Definition 8.2.1) is somewhat abstract, a
key property is having the reflection map be well defined; i.e., we show that
there exists a unique function satisfying the definition (Theorem 8.2.1). We
also provide multiple characterizations of the reflection map, one alternative
being as the unique fixed point of an appropriate operator (Theorem 8.2.2),
while another is a basic complementarity property (Theorem 8.2.3).

A second key property of the multidimensional reflection map is Lipschitz
continuity in the uniform norm on D([0,7], R¥) (Theorem 8.2.5). We also
establish continuity of the multidimensional reflection map as a function of
the reflection matrix, again in the uniform topology (Theorems 8.2.8 and
14.2.9 in the book). It is easy to see that the Lipschitz property is inherited
when the metric on the domain and range is changed to d;, (Theorem 8.2.7).
However, a corresonding direct extension for the SM; metric d; does not
hold. Much of the rest of the chapter is devoted to obtaining positive results
for the M, topologies.

Section 8.3 provides yet another characterization of the multidimensional
reflection map via an associated instantaneous reflection map on RF.

Sections 8.4 and 8.5 are devoted to obtaining the M; continuity results.

193
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In Section 8.4 we establish properties of reflection of parametric represen-
tations. We are able to extend Lipschitz and continuity results from the
uniform norm to the M; metrics when we can show that the reflection of
a parametric representation can serve as the parametric representation of
the reflected function. The results are somewhat complicated, because this
property holds only under certain conditions.

In Sections 8.6 and 8.7, respectively, we apply the previous results to
obtain heavy-traffic stochastic-process limits for stochastic fluid networks
and conventional queueing networks. In the queueing networks we allow
service interruptions. When there are heavy-tailed distributions or rare long
service interruptions, the M topologies play a critical role.

In Section 8.8 we consider the two-sided regulator and other reflection
maps. The two-sided regulator is used to obtain heavy-traffic limits for
single queues with finite waiting space, as considered in Section 2.3 and
Chapter 5 of the book. With the scaling, the size of the waiting room
is allowed to grow in the limit as the traffic intensity increases, but at a
rate such that the limit process involves a two-sided regulator (reflection
map) instead of the customary one-sided one. Like the one-sided reflection
map, the two-sided regulator is continuous on (D!, M;). Moreover, the
content portion of the two-sided regulator is Lipschitz, but the two regulator
portions (corresponding to the two barriers) are only continuous; they are
not Lipschitz.

We also give general conditions for other reflection maps to have M; con-
tinuity and Lipschitz properties. For these, we require that the limit function
to be reflected belong to Di, the subset of functions with discontinuities in
only one coordinate at a time.

In Section 8.9 we show that reflected stochastic processes have proper
limiting stationary distributions and proper limiting stationary versions
(stochastic-process limits for the entire time-shifted processes) under very
general conditions. Our main result, Theorem 8.9.1, establishes such lim-
its for stationary ergodic net-input stochastic processes satisfying a natural
drift condition (9.7). It is noteworthy that a proper limit can exist even if
there is positive drift in some (but not all) coordinates. Theorem 8.9.1 is
limited by having a special initial condition: starting out empty. Much of
the rest of Section 8.9 is devoted to obtaining corresponding results for other
initial conditions. Theorem 8.9.6 establishes convergence for all proper ini-
tial contents when the net input process is also a Lévy process with mutually
independent coordinate processes. Theorem 8.9.6 covers limit processes ob-
tained in the heavy-traffic limits for the stochastic fluid networks in Section
14.6 of the book.
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8.2. The Multidimensional Reflection Map

We start by giving basic definitions and establishing alternative characteri-
zations. Then we establish continuity and Lipschitz properties.

8.2.1. Definition and Characterization

Let Q be the set of all reflection matrices, i.e., the set of all column-stochastic
matrices @) (with Qf,j >0 and Z§:1 Qg,j < 1) such that Q™ — 0 as n — oo,
where Q" is the n'" power of Q.

Definition 8.2.1. (reflection map) For any x € D* = D([0,T],R¥) and
any reflection matriz QQ € Q, let the feasible regulator set be

U(z) E{wEDf:J;—i—(I—Q)wZO} (2.1)

and let the reflection map be R = (¢, ¢) : D¥ — D?* with regulator compo-
nent

y=9(z) =inf ¥(z) = inf{w : w e ¥(z)} , (2.2)

i.e.,

y'(t) = inf{w'(t) e R:w € U(z)} forall i and t, (2.3)

and content component
z=¢dz)=z+ (I —-Q)y . (2.4)

It remains to show that the reflection map is well defined by Definition
8.2.1; i.e., we need to know that the feasible regulator set ¥U(z) is nonempty
and that its infimum y (which necessarily is well defined and unique for
nonempty ¥(z)) is itself an element of ¥(x), so that z € D¥ and z > 0.

To show that ¥(z) in (2.1) is nonempty, we exploit the well known fact
that the matrix I — ) has nonnegative inverse.

Lemma 8.2.1. (nonnegative inverse of reflection matrix) For all Q € Q,
I — @Q is nonsingular with nonnegative inverse

(I_Q)_l :ZQn ’
n=0

where Q° = I.
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Proof. Note that

(I-QU+Q++Q" ) =1-Q". (2.5

Since Q" - 0asn — oo, I — Q™ — I as n — oo, where I has determinant
1. Hence, for all sufficiently large n, the left and right sides of (2.5) have
nonzero determinant. Since the determinant of the product of two matrices
is the product of the determinants, the determinant of 7 —() must be nonzero,
so that I — @ must be nonsingular. Now multiply both sides of (2.5) by this
inverse, which we have shown exists, to obtain

I+Q+--+Q"'=(I-Q) '(I-Q").

Since the right side tends to the proper limit (I — Q)~! as n — oo, so does
the left. =

The key to showing that the infimum belongs to the feasibility set is
a basic result about semicontinuous functions. Recall that a real-valued
function z on [0,T] is upper semicontinuous at a point ¢ in its domain if

lim sup z(t,) < z(t)
tn—t

for any sequence {t,} with ¢, € [0,7] and ¢, — ¢t as n — oco. The function
z is upper semicontinuous if it is upper semicontinuous at all arguments ¢
in its domain.

Lemma 8.2.2. (preservation of upper semicontinuity) Suppose that {z; :
s € S} is a set of upper semicontinuous real-valued function on a subinterval
of R. Then the infimum z = inf{zs : s € S} is also upper semicontinuous.

Proof. For any ¢t and € > 0 given, we need to find § such that z(t') <
z(t) + € whenever |t' —t| < 4. Since z is the infimum, for any ¢ and €, we
can find z € {z; : s € S} such that z(t) < z(t) + €¢/2. Since z is upper
semicontinuous, there exists ¢ such that z(t') < z(t) + ¢/2 for all ¢’ with
|t —t'| < d. As a consequence,

z(t') <z(t') <a(t) +€/2 <a(t) +e
whenever |t —¢'| < J. =

Recall that 7 = supyc,<; z(s),t > 0, for z € D*. Forz = (z,...,2%) €
D¥ let 2T = ((z})T,..., (zF)1).
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Theorem 8.2.1. (existence of the reflection map) For any z € D* and

QeQ,

(I-Q)H(-2)"v 0] € U(z) , (2.6)

so that ¥(x) # ¢,
y = y(s) € V(z) C Dk 27)

fory in (2.2) and
z=¢(z)=z+(T—-Q)y>0. (2.8)

Proof. The proof is in the book. =
We now characterize the regulator function y = 1 (z) as the unique fixed
point of a mapping ™ = 7, g : D’TC — D’T“, defined by

m(w) = (Quw —z)TV 0 (2.9)
for w € D’T“. For this purpose, we use two elementary lemmas.

Lemma 8.2.3. (feasible regulator set characterization) The feasible regula-
tor set W(x) in (2.1) can be characterized by

U(z) ={we Df cw > w(w)}
for m in (2.9).

Proof. The proof is in the book. =

Lemma 8.2.4. (closed subset of D) With the uniform topology on D, The
feasible regulator set U(z) is a closed subset of Df, while D’Tc is a closed
subset of D.

Theorem 8.2.2. (fixed-point characterization) For each Q € Q, the regu-
lator map y = () = pg(z) : D* — D’TC can be characterized as the unique

fized point of the map m = g : Df — D’TC defined in (2.9).
Proof. The proof is in the book. =

Theorem 8.2.3. (complementarity characterization) A function y in the
feasible regulator set U (z) in (2.1) is the infimum ¥(x) in (2.2) if and only
if the pair (y,z) for z = x+ (I — Q)y satisfies the complementarity property

/ Zdy' =0, 1<i<k. (2.10)
0
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Proof. The proof is in the book. =

8.2.2. Continuity and Lipschitz Properties

We now establish continuity and Lipschitz properties of the reflection map
as a function of the function z and the reflection matrix ). We use the
matriz norm, defined for any k x k real matrix A by

k
41l = max Ay (2.11)
=1

We use the maximum column sum in (2.11) because we intend to work with
the column-substochastic matrices in Q. Note that

[ A1 Azl < [l Al - [[ A2

for any two k X k real matrices A; and Ay. Also, using the sum (or /1) norm

k
ull =l (2.12)
i=1

on R¥ we have
[ Aul| < [|A| - [J] (2.13)

for each k x k real matrix A and u € R¥. Indeed, we can also define the
matrix norm by

[A]l = max{[|Au]| : w € R, [Jul| =1}, (2.14)

using the sum norm in (2.12) in both places on the right. Then (2.11)
becomes a consequence. Consistent with (2.12), we let

k
lz|l = sup |lz(t) = sup Y [l«*(#)] (2.15)
0<t<T 0<t<T 1=

for z € D([0,T],R*). Combining (2.13) and (2.15), we have
[Az[| < [IA]] - [l]] (2.16)

for each k x k real matrix A and = € D([0,T], RF).
We use the following basic lemma.

Lemma 8.2.5. (reflection matrix norms) For any k X k matriz Q € Q,

QI <1, Q¥ =v<1 (2.17)
and

- < = - (2.15)
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Proof. The first relation in (2.17) is immediate. Since Q™ — 0 for all @

in Q, the Markov chain associated with Q! is transient. Since the Markov

chain has k states,

k
Q)F <1, (2.19)

=1

J

which, with (2.11), implies the second relation in (2.17). Probabilistically, if
the probability of eventually exiting the state space {1,...,k} of the Markov
chain is 1, then the probability of immediately exiting the state space from
some state must be positive. Then the probability of reaching that state or
the exterior (leaving the state space) in one step must be positive from some
other state. Proceeding on by induction, the state space must be exhausted
after k steps, so that (2.19) holds. Finally,

00 00 k-1 00
DoM< IR Y NQ™I+ ) I
n=0 n=0 n=0 n=0

so that (2.18) holds. =

We now show that 7 = 7, ¢ in (2.9) is a k-stage contraction map on D’T“.
Recall that for z € D, |z| denotes the function {|z(¢)| : ¢ > 0} in D, where
lz(t)| = (|z*(t)],...,|z*(t)|) € R¥. Thus, for z € D, |z|" = (||, ..., |zFT),
where |2°|T(t) = supy<,<; [27(s)], 0 <t < T.

Lemma 8.2.6. (7 is a k-stage contraction) For any Q € Q and wi,wy €
Dk
1

7" (wr) = 7 (we)|" < |Q"(jwy —wa|")| for n>1, (2.20)
so that
[7" (w1) — 7" (w) || < Q|+ llwr — wal| < Jlwy — wy (2.21)
forn>1 and
7" (w1) — 7" (w)[| < yllwy —wo|  for n=>k,

where
1QFl=v<1.

Hence
|7 (w) —¥(z)]| =0 as n—oo.
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Proof. The proof is in the book. =

We now establish inequalities that imply that the reflection map is a
Lipschitz continuous map on (D, || - ||). We will use the stronger inequalities
themselves in Section 8.9.

Theorem 8.2.4. (one-sided bounds) For any Q € Q and z1,z2 € D,
—(I - Q) 'mi(z1 —w2) < P(x1) — (m2) < (I — Q) 'mi(z2 — 1) (2:22)
where m1(z) = (A1(z1),. .., 71 (z%) with H, : D' — D' defined by
i (z") = ()T V0.

Proof. The proof is in the book. =
As a direct consequence of Theorem 8.2.4, we obtain the desired Lipschitz

property.

Theorem 8.2.5. (Lipschitz property with uniform norm) For any Q € Q
and r1,T9 € D,

lp(z1) — (@)l < (= Q7| llw1 — 2]
Do 11Q™ - llzy — 2]

n=

IN

0
k
1—7

IN

lz1 — 22|l (2.23)

where v = ||QF|| < 1, and

I¢(z1) = pla2)ll < A+ =QI- I - Q) DIz — 2l

2k
(1472 ) o —zal (2.24)

IN

Proof. The proof is in the book. =
We now summarize some elementary but important properties of the
reflection map.

Theorem 8.2.6. (reflection map properties) The reflection map satisfies
the following properties:

(i) adaptedness: For any z € D and t € [0,T], R(z)(t) depends upon z
only via {z(s) : 0 < s < t}.

(#7) monotonicity: If z1 < z9 in D, then ¥(z1) > P(z2).
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(iii) rescaling: For each z € D([0,T],R¥), n € R¥, 3> 0 and vy nonde-
creasing right-continuous function mapping [0,T1] into [0,T], n+ B(zo7y) €
D([0,T1],R*) and

R(n+ B(zo7)) =BR(B 'n+z)oy .

(iv) shift: For allz € D and 0 < t; <ta2 < T,

P(z)(t2) = P(2)(t1) + P(p(2)(t1) + z(tr + ) — x(t1)) (b2 — 41)
and
P(z)(t2) = p(P(x) (1) + z(t1 + ) — z(t1)) (22 — 11)
(v) continuity preservation: If x € C, then R(x) € C.

We can apply Theorems 8.2.5 and 8.2.6 (iii) to deduce that the reflection
map inherits the Lipschitz property on (D, J;) from (D, U). Unfortunately,
we will have to work harder to obtain related results for the M; topologies.

Theorem 8.2.7. (Lipschitz property with dj,) For any Q € Q, there ezist
constants K1 and Ko (the same as in Theorem 8.2.5) such that

dy, (Y(z1),9(x2)) < Kidy, (71, 22) (2.25)

and
dy (¢(z1), p(x2)) < Kod, (21, 72) (2.26)
for all x1,29 € D.

Proof. The proof is in the book. =

We now want to consider the reflection map R as a function of the
reflection matrix ) as well as the net input function z. We first consider
the maps 7 = 77, 5(0) in (2.9) and ¥ = 1q in (2.2) as functions of Q when
@ is a strict contraction in the matrix norm (2.11), i.e., when ||Q|| < 1.

Theorem 8.2.8. (stability bounds for different reflection matrices) Let Q1, Q2 €
Q with ||Q1|| =71 <1 and ||Q2]| =2 < 1. For alln > 1,

1730, O < (175 4+ 977 |2 (2.27)

and

]| - Q1 — Q2]

7201 (0) = w0, O < (172 -+ 93 ) =

. (2.28)
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so that

]l
||¢Q]‘ (z)] < q (2.29)

and

]| - |Q1 — Q2]

I, (@) ~ba,(@) < T S

(2.30)

Proof. First
72,0, O = (=) v O|| < |l -

Next, by induction,

I )l

1(Qjz q,(0) — 2)T v 0
1Q51l - 7z, @; (O)I + [l
WA+ 4+l + ]
(@t +--+ )=l

IN

IA A

Similarly, by induction

I35, (0) — w3, (0)ll 1Q172,q, (0) — Q27z,q, (0)]
1Q17%,¢, (0) = Q27z ¢, (0) + [ Q277 , (0) — Qa7z g, (0)]
1Q1 = @2l - llzll/ (1 —71) + Q2| - [I7z,q, (0) — 77, (0)l

A +y2+ -+ 2)NQ — Qo - l2ll/(1 = 1) -

IANIN N IA

Finally, since ||77; 5(0) —1g(z)|| — 0 as n — oo, the final two bounds (2.29)
and (2.30) follow. =
Nothin more is omitted from Section 14.2 of the book.

8.3. The Instantaneous Reflection Map

Nothing has been deleted from this section in the book.

8.4. Reflections of Parametric Representations

In order to establish continuity and stronger Lipschitz properties of the re-
flection map R on D with the M; topologies, we would like to have (R(u), )
be a parametric representation of R(z) when (u,r) is a parametric repre-
sentation of z. That is not always true, but we now obtain positive results
in that direction.
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Theorem 8.4.1. (reﬂections of parametric representations) Suppose that
z €D, (u,r) € Us(x) and r~1(t) = [s_(t), 5. (2)].
(a) Ift € Disc(z)¢, then

R(u)(s) = R(z)(t) for s_(t) <s<sy(t) .
(b) If t € Disc(z), then
R(u)(s-(t)) = R(z)(t—) and R(u)(s1(t)) = R(z)(t) .
(c) If t € Disc(x) and z(t) > z(t—), then

d(u)(s) = (z)(t—) + ( juJ(S) —u (s_(1))

ud (s4(8)) —w (s (¢

))) a(t) — 2(t-)]

forany 5,1 <j <k, and

so that
R(u)(s) € [R(z)(t—), R(z)(t)] for s—(t) <s<s4(1).

(d) If t € Disc(z) and z(t) < z(t—), then ¢*(u) and ¥ (u) are monotone
in [s_(t),s4(t)] for each i, so that

R(u)(s) € [[R(z)(t=), R(x)(®)]] for s (t) <s<s4(F) -

We can draw the desired conclusion that (R(u),r) is a parametric rep-
resentation of R(x) if we can apply parts (c) and (d) of Theorem 8.4.1 to
all jumps. Recall that D, (D;) is the subset of D for which condition (c)
(condition (c) or (d)) holds at all discontinuity points of z. For x € Dy, the
direction of the inequality is allowed to depend upon ¢.

Theorem 8.4.2. (preservation of parametric representations under reflec-
tion) Suppose that x € D and (u,r) € s(x).

(a) If x € D, then (R(u),r) € II;(R(x)).

(b) If x € Dy, then (R(u),r) € II,(R(x)).

We also have an analog of Theorems 8.4.1 and 8.4.2 for the case z € D
and (u,r) € Iy (z).

Theorem 8.4.3. (preservation of weak parametric representations) If z €
Dy and (u,r) € I, (z), then (R(u),r) € I, (R(x)).
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As a basis for proving Theorem 8.4.1, we exploit piecewise-constant ap-
proximations.

Lemma 8.4.1. (left and right limits) For any = € D, (u,r) € II;(x) and
rH(t) = [s- (1), s+ (2)],

R(u)(s- (1)) = R(z)(t=) and R(u)(s+(t)) = R(z)(t) . (4.1)

In order to prove Lemma, 8.4.1, we establish several other lemmas. First,
the following property of the reflection map applied to a single jump at
time t is an easy consequence of the definition of the reflection map. We
consider the reflection map applied to the jump in two parts. Given the
linear relationship in (2.4), it suffices to focus on only one of ¥ or ¢.

Lemma 8.4.2. (the case of a single jump) For any b;,by e R¥, 0 < g < 1
and 0 <t <T,

¢(b1+b21j 1) (w) = P(b(b1+8bo 1y 1) (1) +(1—B)bo I}y 1) (u) for t<u<T.

Lemma 8.4.3. (generalization) For any by,by € R¥ and right-continuous
nondecreasing nonnegative real-valued function a on [0,T] with «(0) = 0,

(b1 + aby) () = d(by + a(t)boIipr)(t), 0<t<T . (4.2)

Proof. Represent a as the uniform limit of nondecreasing nonnegative
functions «;, in D.. Then ||¢(by + anbs) — ¢p(by + aby)|| — 0 as n — oo
by the known continuity of ¢ in the uniform metric. Hence it suffices to
assume that « € D.. We then establish (4.2) by recursively considering
the successive discontinuity points of a, using Lemma, 8.4.2 and Theorem
8.2.6(1V). ]

Proof of Lemma 8.4.1. Any x € D, can be represented as

m

r= Z bl 11

=0

for 0 =tg < t1 <---<tm§Tandbj€]R’C for 0 < j < m. Thus ¢; is the
4§ discontinuity point of z. Let [s_(t;), s+ (¢;)] = r~'(¢;) for each j. Since
(u,r) € II4(x) instead of just I, (z), u can be expressed as

m
U= E ajb; ,
J=0



8.4. REFLECTIONS OF PARAMETRIC REPRESENTATIONS 205

where o (s) =1 for all s and, for j > 1, «; : [0,1] — [0, 1] is continuous and
nondecreasing with a;(s) = 0, s < s_(t;) and a;j(s) =1, s > sy(t;). We
can now consider successive intervals [s_(%;), s4(t;)] recursively exploiting
Lemma 8.4.3. First, for any s with 0 < s < s_(#1).

P(u)(s) = ¢(boljo,11)(s) = ¢(2)(0) = ¢o(x(0)) -

Now assume that (4.1) holds for all j < m—1 and consider s € [s_(ty,), S+ (tm)]-
By the induction hypothesis, Lemma 8.4.3 and Theorem 8.2.6(iv),

d(u)(s) = G(P(x)(tm1) + wmbmdls_(t,),17) ()
= $(d(@)(tm-1) + m(8)bmI[s_(1,,),1)(8)

so that (4.1) holds for ¢,,. =

Proof of Theorem 8.4.1. (a) Since t € Disc(x)®, u(s) = z(t) for s_(t) <
s < s4(t). Given z € D with t € Disc(z)¢, it is possible to choose z, € D,
such that ¢ € Disc(zy,) for all n and ||z, —z|| — 0, by a slight strengthening
of Theorem 6.2.2 in Section 6.2. By characterization (i) of M; convergence
in Theorem 6.1 in Section V.6, given (u,r) € II4(x), we can find (uy,r,) €
II4(z,) such that

lup —u||V]rp —7]| >0 as n— oo.

Since R is continuous in the uniform topology, ||R(u,) — R(u)|| — 0 and
|R(zr) — R(z)|| — 0 as n — oco. Let s, be such that r,(s,) = t. Since z,, €
D, and t € Disc(xy,)¢, R(uy)(sp) = R(x,)(t) by Lemma 8.4.1. Since 0 <
sn <1, {s,} has a convergent subsequence {s,, }. Let s’ be the limit of that
convergent subsequence. Since 7, (sp,) = t for all ny, we necessarily have
' € [s_(t),5:(1). Since |Rlun) ~ R(u)| 0, R(@n,)(t) = Rltn,)(s1,) -
R(u)(s'). Since we have already seen that R(z,)(t) — R(z)(t), we must
have R(u)(s') = R(z)(t). Since R(u) is constant on [s_(t), s4(t)], we must
have R(u)(s) = R(z)(t) for all s with s_(t) < s < s4(¢).

(b) Since R maps D into D and C into C, R(z) is right-continuous
with left limits, while R(u) is continuous. Given t € Disc(z), we can find
t, € Disc(z)® with t, 1 ¢t. We can apply part (a) to obtain R(u)(sy(t,)) =
R(z)(t,) — R(z)(t—), but s4(t,) 1 s—(t), so that R(u)(s+(tn)) = R(u)(s—(t)).
Hence, we have established the first claim: R(u)(s—(t)) = R(z)(t—). Sim-
ilarly, we can find t, € Disc(z)® with ¢, | t. Then we can apply part (a)
again to obtain R(u)(s—(t,)) = R(x)(t,) — R(z)(t). Since s_(t,) | s4(¢),
R(u)(s—(tn)) 4 R(u)s4(t)). Hence R(z)(t) = R(u)(s+(t)) as claimed.
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(c) We can apply Lemma 14.3.4 (a) in the book. Since the increment
z(t) — z(t—) is nonnegative in each component,

z(t) = 2(t—) + z(t) — z(t—)
and y(t) = y(t—). Similarly,
P(u)(s) = d(u)(s—(2)) + uls) —u(s—())

and 9(u)(s) = (u)(s-(t)) for s_(£) < s < s1(¢). .

(d) We apply Lemma 14.3.4 (b) in the book. Each coordinate ¢’(u) and
' (u) is monotone in s over [s_(t), s, ()], so that the desired conclusion
holds.

Proof of Theorem 8.4.2. (a) We combine parts (a)—(c) of Theorem 8.4.1
to get (R(u),7)(s) € Tg(y for all s. Since R maps C into C, (R(u),r) is
continuous. Also r is nondecreasing with 7(0) = 0 and (1) = T because
(u,r) € (). Finally, (R(u),r) maps [0,1] onto g, and (R(u),v) is
nondecreasing with respect to the order on I'g(;) because the increments of
R(u) coincide with the increments of u over each discontinuity in z because
z € Dy, and (u,r) has these properties.

(b) We incorporate part (d) of Theorem 8.4.1 to get R(u) monotone over
[s_(t),s.(t)] = r~1(t) for each t € Disc(z) = Disc(R(x)). This allows us
to conclude that (R(u),r) € II,,(R(z)). =

We now turn to the proof of Theorem 8.4.3. For the proof, we find it
convenient to use a different class of approximating functions. Let D; be
the subset of all functions in D that (i) have only finitely many jumps and
(ii) are continuous and piecewise linear in between jumps with only finitely
many changes of slope. Let D, ; = D; N D;.

Analogous to Theorem 6.2.2 in Section 6.2, we have the following result.

Lemma 8.4.4. (approximation of elements of D, by elements of Dy ;) For
any « € Dy, there exist x,, € Dy such that ||z, — z|| = 0 as n — co.

Proof. For z € D, and € > 0 given, apply Theorem 6.2.2 in Section 6.2 to
find z1 € D, (with only finitely many discontinuities) such that ||z — z1|| <
€/4. The function z; can have jumps of opposite sign, but the magnitude
of the jumps in one of the two directions must be at most €¢/2. Form the
desired function, say z2, from z;. Suppose that {¢1,...,t} = Disc(z1).
Suppose that z; has one or more negative jump at ¢;, none of which has
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magnitude exceeding €/2. If z; has a negative jump at t; in coordinate i
for some 4, then replace ¢ over [tj—1,t;) by the linear function connecting
7t (tj_1) and z%(¢;). Similarly, if z; has one or more positive jumps at some
t; with all magnitudes less than €/2, then proceed as above. It is easy to
see that Disc(z2) C Disc(z1), z2 € Dy and ||z — 22| <e€. =

We now show that limits of parametric representations are parametric
representations when ||z, — z|| — 0.

Lemma 8.4.5. (limits of parametric representations) If (i) ||z, — z|| — 0
as n — o0, (i) (up,rn) € U (zy) for each n, where z = s or w, and (iii)
|un, —ul|| V ||rn —7]| = 0 as n — oo where u and r are functions mapping
[0,1] into R® and R, respectively, then (u,r) € I1,(x) for the same z.

Proof. Since (u,r) is the uniform limit of the continuous functions (un,7,),
(u,r) is itself continuous. Since r is the limit of the nondecreasing functions
Tn, T 18 itself nondecreasing. Since r,(0) = 0 and r,(1) = T for all n,
7(0) = 0 and r(1) = T. Since r is also nondecreasing and continuous, r
maps [0, 1] onto [0,7]. Pick any s with 0 < s < 1. Then r(s) = ¢ for some t,
0<t<T,and r,(s) =t, — tas n — oco. Suppose that (u,,r,) € I(z,)
for all n. That means that

Un(8) = an(8)zn(tn) + (1 — an(s))zn(tn—)

for all n. Since 0 < ay,(s) < 1, there exists a convergent subsequence
{an, (s)} such that ay, (s) = a(s) as ny — oo. At least one of the following
three cases must prevail: (i) t,, > t for infinitely many ny, (ii) t,, = ¢
for infinitely many ny and (iii) ¢,, < t for infinitely many nj. In case
(i), we can choose a further subsequence {rny,} so that Uny, (s) = z(t); in
case (ii), we can choose a further subsequence so that Uny,, (s) = a(s)z(t) +
[1 — a(s)]z(t—); in case (iii) we can choose a further subsequence so that
Uny, (s) = z(t—). Since uy(s) — u(s), the limit of the subsequence must
be u(s). Hence, (u(s),r( )) € 'y, for each s. Since (u,r) is continuous with

7(0) =0and r(1) =T, (u,r) maps [0, 1] onto I';. Since (up,r,) is monotone
as a function from [0, 1] (Tz,,<) and ||up, — u|| V ||rn — || = 0, (u,7) is
monotone from [0, 1] to (I'y, <). Hence, (u,r) € II;(x). Finally, suppose that
(Un,Tn) € Ily(zn) for all n. By the result above applied to the individual
coordinates, (u(s),r(s)) € Iy and thus (u,r) € II,(z?) for each 4, which
implies that (u,r) € I, (z). =
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Proof of Theorem 8.4.3. For z € D,, apply Lemma 8.4.4 to find z, €
D, such that ||z, — z|| — 0. Suppose that (u,r) € II,(z). Then it is
possible to find u, such that (uy,r) € I (z,) and ||u, —u|| — 0. To do so,
let up(s—(t)) = za(t—) and un(s1(t)) = zna(t), where [s_(t),s4+(8)] = r~'(t)
for each t € Disc(z). If t € Disc(zy)®, let up(s) = un(s4(t)) for s_(t) <
s < s4(t); if t € Disc(zy), define u, so that ||u, — u|| — 0. Given that
(un,7) € y(zy), we can apply mathematical induction over the finitely
many time points such that x, has a jump or a change of slope to show
that (R(uy),r) € I, (R(zy)) for each n. We use Lemma 14.3.4 of the book
critically at this point to treat the discontinuity points of z, in Dy;. The
continuous linear pieces between discontinuities can be treated by applying
the rescaling property in Theorem 8.2.6 (iii) with =1 and n = 0. Finally,
we apply Lemma 8.4.5 to deduce that (R(u),r) € II,(R(z)). For that, we
use the fact that |R(z,) — R(z)|| — 0 and ||R(upn) — R(u)|| — 0.

8.5. M; Continuity Results

In this section we establish continuity and Lipschitz properties of the re-
flection map on D = D* = D([0,T],R¥) with the M; topologies. Our first
result establishes continuity of the reflection map R (for an arbitrary reflec-
tion matrix @) as a map from (D, SM;) to (D, L1), where L, is the topology
on D induced by the L; norm

T
lellz, = /0 le(t)ldt (5.1)

Under a further restriction, the map from (D, W M) to (D, W M;) will be
continuous.

Recall that Dg is the subset of functions in D without simultaneous
jumps of opposite sign in the coordinate functions; i.e., x € Dy if, for all
t € (0,7), either z(t) —xz(t—) < 0 or z(t) — z(t—) > 0, with the sign allowed
to depend upon t. The subset D; is a closed subset of D in the J; topology
and thus a measurable subset of D with the SM; and W M; topologies (since
the Borel o-fields coincide). The proofs of the main theorems here appear
in Section 6.2 of the Internet Supplement.

Theorem 8.5.1. (continuity with the SM; topology on the domain) Sup-
pose that x, — © in (D, SM).
(a) Then
R(z,)(tn) = R(z)(t) in R* (5.2)
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for each t € Disc(z)¢ and sequence {t, : n > 1} with t, —t,

Sup [R(zn)|| < oo, (5.3)
R(z,) = R(z) in (D,Ly) (5.4)
and
P(zy) = Y(z) in (D,WM) . (5.5)
(b) If in addition x € D, then

d(zn) = d(x) in (D,WM), (5.6)

so that
R(z,) — R(x) in (D,WM) . (5.7)

Proof. (a) We first prove (5.2). Since z, — z in (D,SM;), we can find
parametric representations (u,r) € Ils(z) and (upn,r) € Hs(zy,) for n > 1
such that

lun — || V||rn —7|| = 0.

By Theorem 14.4.1 (a) in the book, R(u)(s) = R(z)(t) for any s € [s_(t), s4(t)] =
r~1(t), since t € Disc(z)¢. Moreover, by Corollary 14.3.4 in the book,
t € Disc(R(z))¢. For any sequence {t, : n > 1} with ¢, — ¢, we can
find another sequence {t,, : n > 1} such that ¢, — ¢, ¢/, € Disc(z,)¢ and
|R(zn)(t],) — R(zy)(tn)|| = 0 as n — oo. (Here we exploit the fact that
R(z,) € D for each n.) Consequently, R(x,)(tn) — R(x)(t) if and only if
R(z,)(t,) = R(z)(t). By Theorem 13.4.1 (a) again, R(u,)(sp) = R(z)(t],)
for any s, € [s_(t,),s.(t)] = r,1(t,). Since 0 < s, < 1 for all n, any
such sequence {s, : n > 1} has a convergent subsequence {s,, : k > 1}.
Suppose that s,, — s’ as ny — oo. Since t;, = t as n — oo and t;, =
Ty, (Sn,) — 7(8") as ny — 0o, we must have s’ € [s_(t), s4(¢)]. Then, since
[ R(un) — R(u)|| — 0,

R(n, ) (tn,) = R(un,)(sn,) = R(u)(s) = R(z)(?) .

Since every subsequence of {R(zy)(t),) : n > 1} must have a convergent
subsequence with the same limit, we must have R(z,)(t}) — R(z)(t) as
n — oo, which we have shown implies that R(z,)(t,) — R(z)(t) as n —
oo, as claimed in (5.2). Next we establish (5.3). For any =z € D, ||z| =
supg<;<7 ||2(t)|| < oo. Since dg(zy,z) — 0, ||zn] — ||z|| as n — oco. Hence,
it suffices to show that there is a constant K such that

|R(z)|| < K||z|| forall zeD,
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but that follows from Theorem 13.2.5. We apply the bounded convergence
theorem with (5.2) and (5.3) to establish (5.4). We now turn to (5.5).
Since ¥(z,) and ¥(z) are nondecreasing in each coordinate the pointwise
convergence established in (5.2) actually implies W M7 convergence in (5.5);
see Corollary 12.5.1 in the book.

(b) First, we use the assumed convergence z, — z in (D, SM;) to pick
(u,r) € I4(x) and (up,rn) € Is(zy), n > 1, with

[t —ul| V|rn —r|| = 0.
Since R is continuous on (D, U), we also have ||R(u,) — R(u)|| — 0. By part
(a), we know that there is local uniform convergence of R(x,) to R(z) at

each continuity point of R(z). Thus, by Theorem 12.5.1 (v) in the book, to
establish R(z,) — R(z) in (D, W M), it suffices to show that

lim Tim ws(RY(z,),t,6) =0 (5.8)

I R
for each i, 1 <4 < 2k, and t € Disc(R(z)), where
ws(z,t,0) = sup{||z(t2) — [2(tr), z(83)]]| : (t1,%2,23) € A(£,0)}  (5.9)
for
A(t,0) = {(t1,t2,83) : (1 —0) VO < t; <to <t3 < (t+6) AT} .

(Since we are considering the i*" coordinate function R(z,), the function
in (5.9) is real-valued here.) Suppose that (5.8) fails for some ¢ and t. Then
there exist € > 0 and subsequences {0y} and {ny} such that d; | 0, ny — oo
and

ws(R (2, ),t,01) > ¢ forall &, and mny.

That is, there exist time points t1 5, , to s, and t3,, with
(t — (Sk) vVO< tn, < ton, < t3n, < (t + (5k) AT (510)
and . _ _
1B () (B2,n) — [RY (@, (E1my ) B (@ (B3, )]l > € (5.11)

Since the values R‘(zn,)(t) are contained in the values R(up,)(s) where
(Uny,Tny) € Ils(2n, ), we can deduce that there are points s;,, for j =1,2,3
such that 0 < sy, < Son, < 830, <1, Ty (Sjn) = tjm, for j =1,2,3 and
all ny, and

IR (uny ) (s2,n1) — [R () (s1,04)5 B () (83,0,)]1| > € . (5.12)
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By (5.10) and (5.12), there then exists a further subsequence {n} } such that
tj!n:k — t and Sjmi > Sj as n;c — oo for j = 1,2,3, where 0 < 51 < 590 <
s3 <1, rp (8 ) = 7(sj) =1t and

IR () (s2) — [R'(u)(s1), B (w)(s3)]l 2 € > 0. (5.13)

However, by Theorem 14.4.2 in the book, (R(u),r) € IL,(R(x)) since z €
Dy, so that (R'(u),r) € T4(R(z)). Hence (R'(u),r) € I4(R'(z)). Since
R'(u) is monotone on [s_(t), sy (t)], (5.13) cannot occur. Hence (5.8) must
in fact hold and R!(x,) — R'(z) in (D, My). Since that is true for all i, we
must have R(z,) — R(z) in (D,WM;). =

Under the extra condition in part (b), the mode of convergence on the
domain actually can be weakened. However, little positive can be said if
only z, — z in (D, WM;) without = € Ds; see Example 14.5.3 in the book.

Theorem 8.5.2. (continuity with the WM, topology on the domain) If
Zn = x in (D, W M) and x € Ds, then (5.7) holds.

The proof of Theorem 8.5.2 is more difficult. We now work towards its
proof. By Theorem 8.4.3, R is Lipschitz on (Ds, W M), but z, need not be
in Ds;. We show that we can approximate z,, by elements of D;.

We first restate Corollary 12.11.2 in the book as a lemma. It states that
Convergence in W M,, which of course is implied by convergence in W Mj,
has the advantage that jumps in the converging functions must be inherited
by the limit function.

Lemma 8.5.1. (inh(_eritance of jumps) If ¢, — = in (D,WMQ), th = tin
[0,T] and z} (tn) — zk,(tn—) > ¢ > 0 for all n, then z*(t) — z*(t—) > c.

For z € D and t € Disc(x), let y(z,t) be the largest magnitude (absolute
value) of the jumps in z at time ¢ of opposite sign to the sign of the largest
jump in z at time ¢. Let y(z) be the maximum of y(z,t) over all t € Disc(z).
We apply Lemma 8.5.1 to establish the next result.

Lemma 8.5.2. If z, — = in (D, W M), then

lim (zn) < 7(z) -

n—00

We only use the following consequence of Lemma 8.5.2.



212 CHAPTER 8. QUEUEING NETWORKS

Lemma 8.5.3. If z,, = z in (D,WMj) and x € Dy, then y(z,) — 0.

We also use a generalization of Lemma 8.4.4 above, which is established
in the same way.

Lemma 8.5.4. For any x € D, there exist z,, € Dy such that ||z, —z| —
v(z) as n — oo.

We combine Lemmas 8.5.2 and 8.5.4 to obtain the tool we need.

Lemma 8.5.5. If z,, — = in (D,WM) and © € Dy, then there exists
z;, € Dy for n > 1 such that ||z;, — z,|| — 0.

Proof of Theorem 8.5.2. Given z,, — z in (D,WM;j), apply Lemma
8.5.5 to find z, € Dy, for n > 1 such that ||z}, — z,|| — 0 as n — oco. Then,
by the triangle inequality, Theorem 14.2.5 in the book and Lemma 8.5.3
above,

dp(R(zn), R(z)) < dp(R(zp), R(zh)) + dp(R(zy,), R(z))
< ||R(za) — R(zp)|| + dw(R(z7), R(z))
< Kllzg — ol + Kdy(ar,, 2).
Since
dp(l‘%,(ﬂ) S dp(mguxn)_‘_dp(mma:)
< lag = zall + dp(@n, )
— 0,

dy(z),z) — 0. Hence, d,(R(zy), R(z)) — 0 as claimed. =

Example 12.3.1 in the book shows that convergence x, — z can hold in
(D,W M) but not in (D,SM;) even when z € D,;. Thus Theorems 8.5.1
(a) and 8.5.2 cover distinct cases. An important special case of both occurs
when z € Dy, where D; is the subset of £ in D with discontinuities in only
one coordinate at a time; i.e., z € Dy if t € Disc(z*) for at most one i when
t € Disc(x), with the coordinate i allowed to depend upon ¢. In Section 6.7
it is shown that W M; convergence x,, — x is equivalent to SM; convergence
when z € D;.

Just as with Dy above, D; is a closed subset of (D, J;) and thus a Borel
measurable subset of (D, SM;). Since Dy C Dy, the following corollary to
Theorem 8.5.2 is immediate.
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Corollary 8.5.1. (common case for applications) If z,, — = in (D, W M)
and x € Dy, then R(z,) — R(z) in (D, W M).

We can obtain stronger Lipschitz properties on special subsets. Let
D, be the subset of x in D with only nonnegative jumps, i.e., for which
z'(t) — 2*(t—) > 0 for all i and ¢. As with D, and D; above, D/ is a closed
subset of (D, J;) and thus a measurable subset of (D, SM;).

Theorem 8.5.3. (Lipschitz properties) There is a constant K (the same as
associated with the uniform norm from Theorem 8.2.5) such that

ds(R(z1), R(22)) < Kdy(z1,72) (5.14)
for all x1,z9 € D, and
dp(R(z1), R(z2)) < dy(R(z1), R(z2)) < Kdy(z1,22) < Kdg(z1,22) (5.15)
for all 1,29 € Ds.
Proof. Given that x € D, apply Theorem 14.4.2 (a) in the book to get
(R(u),r) € IIi(R(x)) when (u,r) € II4(x). Then
ds(R(z1), R(z2))

inf ut —ubl| V| —r
O (R R LR
i=1,2

< inf uy) — o(u Vry —
S ot (19000 = B Vs = ral}

< inf  {K||uy —uz| V[lr1 —ra|}

(ujorg)€Ts(24)
i=1,2
S de (:L‘].a x2)

because K > 1. The other results are obtained in essentially the same
way. Apply Theorem 14.4.3 in the book to get (R(u),r) € I, (R(z)) when
(u,r) € Iy (z) and x € D;. When z € Dy, apply Theorem 13.4.2 (b) to get
(R(u),r) € II,(R(z)) when (u,r) € II5(z). =

We can actually do somewhat better than in Theorem 8.5.1 when the
limit is in D,.

Theorem 8.5.4. (strong continuity when the limits is in D) If
zn =z in (D,SMp), (5.16)
where x € D, then

R(zy) = R(z) in (D,SM) . (5.17)
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Proof. Suppose that z, — z in (D,SM;). By Theorem 8.5.1(a), we
have (z,) — ¥(z) in (D,WM;). Since x € Dy, 9(z) € C, by Corollary
14.3.5 in the book. Hence the W M; convergence is equivalent to uniform
convergence; i.e.,

$(xn) = (z) i D([0,T],R*,U) .
We can then apply addition with equation (14.2.6) in the book to get
R(z,) = R(z) in D([0,T]),R* SM;). =

Our final result shows how the reflection map behaves as a function of
the reflection matrix @), as well as x, with the M7 topologies.

Theorem 8.5.5. (continuity as a function of (z,Q)) Suppose that Q, — Q
in Q.
(a) If z, — z in (D¥,WM,) and z € Dy, then

R, (zn) = Rg(z) in (D*, WMy) . (5.18)
(b) If z,, — x in (D*,SM;) and x € D, then
Rg, (zn) = Rg(z) in (D**,SMy) . (5.19)

Proof. We only prove the first of the two results, since the two proofs are
essentially the same. If z,, — z in (D, W M;) with z € Dy, then we can find
z;, € Dy, for n > 1 such that ||z, — z;,|| = 0 by Lemma 8.5.5. By Theorem
14.2.5 in the book,

IRq. (2n) = Rq, (27)|| < Knllzn — 2| = 0 (5.20)

because K, — K < oo. By Theorem 14.4.3 in the book, (Rg(u),r) €
IT,(R(x)) when x € Ds. So, for any € > 0 given, let (u,r) € I, (z) and
(un,7n) € Iy(z}) such that |u, — u|| V ||rp — 7]] < €. Then (Rg(u),r) €
I, (Rg(z)), (Rg, (un),rn) € Iy(Rg, (z),)) for n > 1 and

1R, (un) — Ro(u)|| < K(e+[|Qn — QI]) (5.21)
by Theorem 14.2.9 and equation (14.2.35) in the book, so that
Rg, (z},) = Rg(z) in (D* ,WMy). (5.22)

Combining (5.20), (5.22) and the triangle inequality with the metric d),, we
obtain (5.18). =

We can apply Section 6.9 to extend the continuity and Lipschitz results
to the space D([0,00), RF).
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Theorem 8.5.6. (extension of continuity results to D([0, c0), R¥)) The convergence-
preservation results in Theorems 8.5.1, 8.5.2 and 8.5.4 and Corollary 8.5.1
extend to D([0, 00), R).

Proof. Suppose that z, — z in D([0,00), R¥) with the appropriate topol-
ogy and that {t; : j > 1} is a sequence of positive numbers with ¢; €
Disc(x)® and t; — oo as j — oo. Then, 14, (z,) — 4;(z) in D([0, o), RF)
with the same topology as n — oc for each j, where r; is the restriction map
to D([0,],R¥). Under the specified assumptions,

rt; (R(zn)) = Ry, (r1;(2n)) = Ry (re; (z)) = 11, (R(z)) (5.23)

in D([0,,],R?*) with the specified topology as n — oo for each j, which
implies that

R(z,) = R(z) in D([0,00), R?¥) (5.24)

with the same topology as in (5.23). =

Theorem 8.5.7. (extension of Lipschitz properties to D([0,00),RF)) Let
R : D(]0,00),RF) — D([0,00), R?*) be the reflection map with function do-
main [0,00) defined by Definition 8.2.1. Let metrics associated with domain
[0,00) be defined in terms of restrictions by equation (9.1) in Section 12.9 of
the book. Then the conclusions of Theorems 8.2.5, 8.2.7 and 8.5.3 also hold
for domain [0, c0).

Proof. Apply Theorem 12.9.4 in the book. =

8.6. Limits for Stochastic Fluid Networks

Nothing has been omitted from Section 14.6 of the book.

8.7. Queueing Networks with Service Interruptions

Nothing has been omitted from Section 14.7 of the book.

8.8. The Two-Sided Regulator

Nothing has been omitted from Section 14.8 of the book.
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8.9. Existence of a Limiting Stationary Version

In this section, drawing on and extending Kella and Whitt (1996), we show
that there exists a proper limiting stationary version of a reflected stochastic
process under natural conditions. We establish existence and uniqueness of
the limiting stochastic process, but we do not otherwise characterize the
limiting marginal distribution on R*¥ or determine how to calculate it.

Our existence and uniqueness results with general initial conditions cover
the case of the reflected Lévy process obtained as the heavy-traffic limit of
the vector-valued buffer-content stochastic processes in a stochastic fluid
network, as in Section 14.6 of the book, when the exogenous input processes
at the different nodes are independent Lévy processes (i.e., processes with
stationary independent increments) under a natural condition on the net
input rates. We also obtain useful results about more general reflected
processes without the independence conditions.

8.9.1. The Main Results

We are given a net-input stochastic process { X (¢) : ¢ > 0} and the associated
reflected content stochastic process

Z(t)=(X)(t) =X({H)+ (T -Q)Y(t), t=0, (9-1)

where Y = (X)) is the minimal nondecreasing nonnegative stochastic pro-
cess such that Z > 0, as in Definition 8.2.1. We want to consider the limiting
behavior as ¢ — co. We want to determine conditions under which

(Zs(t1),- -y Zs(tm)) = (Zu(t1), ..., Zu(tm)) in RF™ as s— o0 (9.2)

for all positive integers m and any m time points ¢; with 0 <11 < --- < tp,
where

Zst)y=Z(s+t), t>0, s>0, (9.3)

and the limiting stochastic process Z, = {Z.(t) : t > 0} is a stationary
stochastic process, i.e., where

(Zuo(tr +h), .., Za(tm + B) E (Zu(t1),- .., Zul(tm))

for all positive integers m, any m time points ¢; with 0 <t; < --- <1, and
all h > 0. We also want the limit process to be proper, i.e., we want to have

P(Z,(t) <oc)=1 forall ¢.
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We then call the stochastic process Z, the limiting stationary version of Z.

We first observe that convergence of the finite-dimensional distributions
in (9.2) for processes Z, defined as in (9.3) directly implies that the limit
process Z, is stationary.

Lemma 8.9.1. (stationarity from convergence) If
(Z(s+1t1),..s Z(s +tm)) = (Zu(t1), ..., Zu(tm)) in R (9.4)

as s = oo for all positive integers m and all m time points t; with 0 < t; <
coo < ty, then Z, is a stationary process.

Proof. If (9.4) holds, then
(Z(s+ti+h),...,Z(s +tm + k) = (Zi(t1 +u),..., Z(tm +u)) (9.5)

as s — oo for any u, 0 < u < h, because we can let s’ = s+h—u, t; = t;+u,
1 <i<m,andlet s — oo with (9.4). Hence the distribution of the random
vector on the right in (9.5) must be independent of u. =

In order to obtain a unique limiting stationary version, we will assume
that the net-input process X has stationary increments, i.e., the joint dis-
tribution of the random vector

(X(t1+8) —X(ur+),..., X(tm + 5) — X(um + 5))

in R¥™ is independent of s for all positive integers m and all m-tuples of
real numbers (t1,...,t,) and (u1,...,un). We assume that X is defined on
the whole real line (—o00,00). As a consequence,

X;={X({t+s)—X(s):t>0} (9.6)

has a distribution as a random element of D¥ independent of s. We will also
assume that X has ergodic increment, i.e., the increment X (¢ + s) — X(s)
have finite mean and

t1X(t) - E[X(1) — X(0)] w.p.l as t—o0.

Here is our main result: In addition to the assumptions above, it depends
on the special initial condition X (0) = 0, which forces Z(0) = Y (0) = 0.
The proof of the following result and several others are given at the end of
the section.
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Theorem 8.9.1. (existence of a limiting stationary version) If X has sta-
tionary ergodic increments with X(0) =0 and

(I-Q) 'EX(1)-X0))'<0, 1<i<k, (9.7)

then (9.2) holds, i.e., the finite-dimensional distributions of Zs in (9.3) con-
verge as s — oo to the finite-dimensional distributions of a proper stationary
stochastic process Z,.

We now show the necessity of condition (9.7), leaving untouched the
boundary case of equality. In particular, we show that a proper limit cannot
exist if the strict inequality in (9.7) is reversed in any coordinate 7. Indeed,
then the i*P coordinate of the reflected process grows without bound.

Theorem 8.9.2. (necessity of the drift condition) Suppose that

tIX(t) >z in R wpl as t— . (9.8)
If
I-Q 'z<0, (9.9)
then
t71Z(t) -0 as t— oo w.p.1 (9.10)

for Z in (9.1). On the other hand, if (I — Q~')x)* > 0 for some i, then

liminft~*Z*(t) >0 for that i . (9.11)

t—o0

Proof. By Corollary 3.2.1 in the Internet Supplement, the SLLN in con-
dition (9.8) implies the stronger FSLLN

X, —ze in D wp.l

for
X,(t) =n"'X(nt), t>0.

By Theorem 8.2.5,
d(X,) = p(ze) in D w.pl as n— oo.
However, condition (9.9) implies that ¢(ze) = 0. Hence, (9.10) is obtained

by applying the projection map 71 (z) = z(1). Finally, we obtain (9.11) from
(9.8) after noting from (9.1) that (I — Q) 'Z > (I - Q) !X. =
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Theorem 8.9.1 does not cover all cases, because it requires the special
initial condition X (0) = 0. However, we also obtain additional results with
other initial conditions below. A difficulty occurs because in general the
initial condition X (0) and the remaining net-input process {X(¢) — X(0) :
t > 0} are dependent. Hence, in general we cannot talk about the increments
process as if it did not depend upon the initial condition. Nevertheless, we
are able to obtain some positive results. We first establish a tightness result;
see Section 11.6 of the book.

Theorem 8.9.3. (tightness under general initial conditions) If X has sta-
tionary ergodic increments, and if condition (9.7) holds, then the family of
random variables {Z(t) : t > 0} is tight in RE.

Since tightness in product spaces is equivalent to tightness of the com-
ponents in each coordinate by Theorem 11.6.7 in the book, Theorem 8.9.3
implies the following.

Corollary 8.9.1. (tightness of the finite-dimensional distributions) Under
the conditions of Theorem 8.9.3, the family {Zs(t1),...,Zs(tm) : s > 0} is
tight in RE™ for every positive integer m and m time points 0 < t; < --- <
tm.

We can combine Prohorov’s theorem (Theorem 11.6.1 in the book) with
monotonicity to obtain the following result.

Corollary 8.9.2. (convergence of subsequences) Under the conditions of
Theorem 8.9.3, every subsequence {Z(ty) : k > 1} based on a sequence
{tx : k > 1} of nonnegative numbers has a convergent subsequence {Z(t},) :
kE>1}. If Z(ty) = L in R* as t;, — oo, then

Z,(0) <g L, (9.12)
where Z, is the stationary process obtained in Theorem 8.9.1 and
P(li<oo)=1, 1<i<k.

If we can conclude that the process Z gets arbitrarily close to the origin,
then we can replace tightness in Theorem 8.9.3 with convergence.

Theorem 8.9.4. (convergence if the origin is approached) If, in addition
to the assumptions of Theorem 8.9.3, for any € > 0 there exists random time
Te with

P(T.<o0)=1 (9.13)
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such that
1Z(Te)| <€, (9.14)

then the finite-dimensional distributions of Zs in (9.3) converge as s — oo
to the finite-dimensional distributions of the limit process Z, in Theorem
8.9.1.

We can obtain a stronger conclusion if the origin is actually hit for all
initial positions.

Theorem 8.9.5. (coupling if the origin is always hit) If, in addition to the
assumptions of Theorem 8.9.3, for each initial value X (0), there exists a
random time T with P(T < o) = 1 such that Z(T) = 0, then the process
{Z(t) : t > 0} couples with the stationary version in finite time, so that

for all measurable real-valued functions f on DF.

However in general {Z(t) : t > 0} need never visit a neighborhood of the
origin.

Example 8.9.1. The process Z need not vist a neighborhood of the origin.
To see that it is possible to have Z(t) # (0,...,0), and even | Z(t)|| > ¢ >0
for some constant ¢, for all ¢ > 0 under the conditions of Theorem 8.9.3,
consider a two-dimensional case in which either X'(t +¢) — X'(t) > de or
X?2(t+€) — X2(t) > e for all ¢, where € and § are small positive constants.
For example, let

0, 3k<t<3k+2
Vi) =

—1, 3k+2<t<3k+3

and

5, 3k+1<t<3k+3
V3(t) =
~1, 3k<t<3k+1

for all nonnegative integers k. Let U be uniformly distributed on [0, 3].
Then {V(t) : t > 0} = {(Vi(t + U),V2(t + U)) : t > 0} is a stationary
process on the positive half line, so that X (t) = fg V(u)du is a net input
process with stationary increments. It is easy to see that the content process
associated with Q = 0 never hits the origin after time 0, and yet for § < 1/2
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it has a proper steady-state distribution. Indeed, eventually Z(t) follows the
deterministic trajectory with Z(3k — U) = (26,0), Z(3k +1 —U) = (0,9)
and Z(3k +2—U) = (4,26). This steady-state trajectory is reached for

max{Z'(0), ZQ(O)})
1—-26 )

t23<1+

By an appropriate choice of units, the limiting trajectory falls outside any
neighborhood of the origin.

We can also modify Example 8.9.1 to construct two stable content pro-
cesses which differ only in their initial conditions but do not couple in finite
time.

Example 8.9.2. Fuailure to couple in finite time. We modify Example 8.9.1
by letting Qiz = P2t,1 = efor 0 < e < §. The content process now approaches
the deterministic trajectory with Z(3k—U) = (20—e+¢€',0), Z(3k+1-U) =
(0,6—e+€)and Z(3k+2-U) = (6,20 —e+¢€'), where € = (202 —¢6)/(1+6).
However, unlike Example 8.9.1, the content process typically does not reach
this cycle in finite time. Suppose one of the two content processes starts
above another, where they have the same net input process X. They move
together until they hit a boundary. However, when the lower process is on
a boundary and the other is not, the other coordinate of the two processes
moves away from each other at rate e. Hence the processes cannot couple
on any boundary, although they do get closer in an appropriate metric as
they hit the boundaries.

Since many of the limiting net-input processes X will be Lévy processes
(i.e., will have stationary independent increments), we now add the inde-
pendent increments property.

Theorem 8.9.6. (existence and uniqueness for Lévy net-input processes
with independent coordinate processes) Suppose that X = (X',..., X*) has
mutually independent marginal processes X*, 1 < i < k, each with stationary
and independent increments, X (0) is proper and condition (9.7) holds. Then
the limit (9.2) holds and the limit has the same distribution as the limit Z,(0)
associated with X (0) = 0.

As mentioned in the beginning of this section, Theorem 8.9.6 applies to
the limit process in Section 8.6 when the scaled versions of the exogenous
arrival process C converge to a Lévy process with mutually independent
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coordinate processes, because the only stochastic component in the net-
input process X is C*. However, in general, Theorem 8.9.6 does not apply
to the heavy-traffic limits for the queueing network in Section 8.7. It does
in the special case in which the coordinate limit process X’ depends only
on the limit of the scaled process associated with the i*" coordinate arrival
process.

It remains to establish more general conditions under which the assump-
tions of Theorems 8.9.4 and 8.9.5 are satisfied. It also remains to find use-
ful expressions for the limiting distributions. Explicit expressions for the
Laplace transforms of non-product-form two-dimensional stationary buffer-
content distributions of stochastic fluid networks with Lévy exogenous in-
put processes have been determined by Kella and Whitt (1992a) and Kella
(1993).

8.9.2. Proofs

We now provide the missing proofs for the results above. We first establish
some bounds and inequalities to be used in the proofs. Let D’f be the subset

of nonnegative nonincreasing functions in D¥. As before, let D’Tc be the
subset of nonnegative nondecreasing functions in D¥.

Theorem 8.9.7. (bounds and inequalities for the reflection map) Assume
that ©1,20 € D with o — x1 € D’T“, z3=z1+ (I — Q)¢Y(x2) and w > 0 in
RE. Then

(i) d(z2) > $(z1),
(ii) p(z1) — (z2) € DY,
(i) P(x1) —p(z2) < (I — Q)™ (z2 — 1),
(iv) P(z3) = (1) — P(z2),
(v) 0< (I Q)" (b(z2) — a1)) < (I - Q)™ (2 — 1),
(vi) 0 < 1((z2) — ¢(z1)) < Lz2 — 71),
(vii) (I —Q) ! (d(z1 +w) — ¢(21)) € D,

(viii) 1(¢(z1 +w) — ¢(x1)) € D},
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Proof. Parts (i) and (ii) follow for 21,29 € D, by induction from Corollary
14.3.2 and Lemma 14.3.3 in the book. They then follow for x1,z9 € D by
taking limits: Given z1,z9 € D with 9 —z1 € Dy, it is possible to find 1,
and z9,, € D, with 29, — 21, € D4 for all n and ||z, —z;|| = 0 as n — oo
for j = 1,2. Part (iii) follows from Theorem 14.2.4 in the book because

m(ze —z1) =29 —21 for zo—x1 €Dy .
Turning to (iv), note that

0 < ¢(z3) = 21 + (I — Q)(P(22) + Pp(x3)) (9-15)

and

0 < ¢pz1) = w3 + (I — Q)(Y(21) — (a2)) - (9.16)

From (9.15) and minimality of ¥(z1), it follows that ¥ (z1) < ¥(z2) + 1 (z3)
for any choice of 1 and z2. From (9.16) and minimality of ¢ (z3), it follows
that ¥ (z3) < ¥(z1) — ¥(z2). Hence we must have 9(z3) = ¥(z1) + ¥(z2
as claimed. Parts (v) —(viii) follow from the relations (I — Q)~'¢(z) =
(I —Q)"'z +(z) and 1(I — Q) > 0, and Theorem 14.2.4 in the book. =

We now apply Theorem 8.9.7 to determine the shape of several mean
values as a function of time.

Corollary 8.9.3. (concavity of mean values) If X has stationary incre-
ments with X (0) = 0, then the functions (I — Q) E#(X)(t))¢, Ev*(X)(t)
and 1E$(X)(t) are concave functions of t for each i.

Proof. Apply parts (vii), (ii) and (viii) of Theorem 8.9.7, respectively. We
will only prove the first result because the three proofs are essentially the
same. It suffices to show that

(T = Q)T'E[H(X)(t + 5) — H(X)(s)])’

is nonincreasing in s for all ¢, but that follows from Theorem 8.9.7(vii),
because ¢(X)(t + s) is distributed as the reflection of X (t) = X (s +t) —
X (s) starting at ¢(X)(s) evaluated at ¢, while ¢(X)(s) is distributed as
the reflection of X, starting at 0 evaluated at ¢, since the law of X is
independent of s. =

We say that a real-valued function f on R, is subadditive if

ft+t2) < f(t1) + f(t2)
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for all ¢, € R,. We say that an Rf-valued stochastic process { X (t) : ¢ >
0} is stochastically increasing and subadditive (SIS) if

Ef(X(t1 + 1)) < Ef(X(t1)) + Ef (X (22))

for all nondecreasing subadditive real-valued functions f on R¥.

Corollary 8.9.4. (SIS property) If X has stationary increments with X (0) =
0, then (I — Q)™'Z and 1Z are stochastically increasing and subadditive
stochastic processes.

Proof. Since the two results are proved similarly, we only prove the first.
Let

281,52“) =(I-Q)'Z(t)
with Z having initial value Z(s1) and net input X, (t) = X (s9 +1t) — X (s2),
t > 0, where 0 < 57 < s9. By Theorem 8.9.7(vii),

Zs,s(t) - ZO,s(t) < Zs,s(o) - ZO,S(O) = Zs,s(o)

for all s,t > 0, or

ZO,O(S + t) = Zs,s(t) < ZO,s(t) + Zs,s(O) ,
so that, for any subadditive function

s
Elf(Zoo(s+1) < E[f(Zos (t)+Zs,s(0))~]
E[f(Z0,s(t))] + E[f (Zs,5(0))]
E[f(Zoo(t))] + Elf (Zo,0(s))] 5

with the last line holding because there is equality in distribution for the
respective terms. =

A key to establishing the important Theorems 14.8.1 and 14.8.6 in the
book is the following stochastic increasing property, which we deduce from
Theorem 8.9.7.

IN N

Theorem 8.9.8. (stochastic increasing starting empty) If X has stationary
increments and X (0) = 0, then the family of processes {Zs : s > 0} in (9.3)
is stochastically increasing in s, i.e.,

Ef(Zs,) < Ef(Zs,)

for 0 < s1 < s9 and all bounded measurable nondecreasing real-valued func-
tions f on D = D([0,00),R¥), using the componentwise order on D.
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Proof. Tet Z,(t) (Z(t)) be the content with Z(0) = 0 (Z(0) = Z(s))
and input increments from X in equation (14.8.6) in the book. Then, for
0 < 81 < 82,

A

Zsysi(s1+1) < Zsy 5,(s1+t) forall t>0 w.p.l,

by Theorem 8.9.7 because Z,,_,,(0) = 0 < Z,,_,,(0) = Z(so — s1) and both
processes have the common input increments from X,. Hence,

A~

Ef(Zsy—51) S Ef(Zs,—s51)

for all nondecreasing bounded measurable real-valued functions f on D,

using the usual componentwise order. However, since X 4dx ,
(Zgr—o(s1+8) 1t >0} S {Z(s1 +1) : t >0} = Z,,

and
{Zsy—s,(s1+1t):t >0} ={Z(s2+1t):t >0} = Zs, .

These last three relations combine to establish the desired conclusion. =
We use the following result to establish Theorem 14.8.3 in the book.

Theorem 8.9.9. (tightness solidarity) Suppose that X has stationary in-
crements. Then {Z(t) : t > 0} is tight for all proper distributions of X (0) if
and only if it is tight for any one.

Proof. Note that {Z(¢) : ¢t > 0} is tight if and only if {(I — Q) *Z(¢) : t >
0} is tight. By Theorem 8.9.7, the processes (I — Q) 1 Z(t) starting at X (0)
and 0, with common increments from X, differ by at most (I —Q)~!|| X (0)]|.
Hence they are tight or nontight together. Hence, the tightness of the process
with one proper initial condition implies the tightness of the process starting
at 0. Then the tightness of the process starting at 0 implies the tightness of
any other process with another initial condition. =

The key to our tightness results, and thus also our convergence re-
sults, is our ability to bound the marginal processes Z¢ associated with
a k-dimensional reflected process Z = (Z1,..., Z*) by related well-studied
and well-understood one-dimensional reflections. For that purpose, we have
the following bounds.

Theorem 8.9.10. (one-dimensional reflection bounds) For any z € D* and
Qe
P1((I = Q)™ 'z) < ¢P(z) < (I - Q) 'u(w) (9.17)
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and
$1((I-Q)7'2) < (I - Q) 'p(z) < (I - Q) u(a) , (9.18)
where (11, ¢1) : DF — D% with

W1(2)', $1(2)) = 1(a%), di(a”), 1<i<k,
and (1&1,651) : D — D? being the one-dimensional reflection map, i.e.,
$1(z") = 2’ + 11 (a)) (9.19)

and

~

1 (z') = —OiSI;fSt{wi(s)_}, t>0. (9.20)

Proof. For the upper bounds, note that

$1(z) =z +pi1(2) =2+ (I - Q) — Q) 4u(z) .
By the minimality of ¢ (z) in the definition of (1, ¢),

P(z) < (I - Q) () -

Therefore,

(I-Q)"'d(z) = (I-Q) 'wt+¢(z) < (I-Q)'z+(I-Q) ¢ (z) = (I-Q) "¢ (z).

Similarly, for the lower bound,

p((I-Q) ') = -Q) 'z +4i (I - Q) 'x) (9-21)

and

I-Q) 7 '¢(z) = (I~ Q) 'z +4(a).
Since (I — Q) '¢(z) > 0, we can apply the minimality of v in (9.21) to
deduce that

P1((I - Q) 'z) < 9(z)

and

P((I-Q)7'2) < (I -Q) () . =

In order to apply the one-dimensional reflection bounds in Theorem

8.9.10, we need to have a net input process X with negative drift in each
coordinate. However, from (9.7), we only have X such that (I — Q)~1X
has negative drift in each coordinate. We now show that, given X such
that (I — Q) !X has negative drift, we can bound (I — Q) '¢(X) above by
(I -Q) '¢(X,), where X, (t) = X(t) — yt, t > 0 and X, has negative drift
in each coordinate.



8.9. LIMITING STATIONARY VERSION 227

Theorem 8.9.11. (upper bound with negative drift) Let X be a random
element of D* with stationary increments such that

EX(1)=X(0)] =2z and (I-Q) '2)'<0, 1<i<k.

For any y € R* with y* > z' and (I — Q)"'y)' < 0, 1 < i < k (there
necessarily is one), let

Xy(t)=X(t) —yt, t>0.
Then X, has stationary increments (and ergodic increments if X does) with
EX,(1) - X, (0] =2"-y' <0, 1<i<k,
and

(I-Q)7'¢(X) < (I- Q) '¢(Xy) - (9.22)

Proof. Only the final conclusion (9.22) requires discussion. Let e be the
identity map, i.e., e(t) =t, t > 0. Recall that

X)) = X(@)+ T -Qp(X)()
p(Xy)(t) = X(@) —yt+ (T - Q)p(Xy) ()
plye)(t) = yt+ (I —Q)p(ye)(t), t=0.

First, since (I — Q)™ 'y < 0, it is easy to see that
)

$(ye)(t) =0 and y(ye)(t) = —(I - Q)" 'yt .
Then

P(Xy)(t) = P(Xy)(F) + Pye) (1) = X(t) + (I — Q) (P (Xy)(¢) + 1(ye)(?)) -
By the minimality of 1 (X),

P(X) < p(Xy) + 9(ye)

and

I-Q7'¢(X) = (I-Q7'X +9(X)

(1= Q)7'X +9(Xy) +9(ye) = (I - Q)T'¢(X,). =
We now state the classical one-dimensional result, which depends on

the fact that the reflected content ¢(X)(¢) has the same distribution as the

supremum of the time-reversed net-input process for each ¢ (but not for
multiple t).

IN



228 CHAPTER 8. QUEUEING NETWORKS

Theorem 8.9.12. (classical one-dimensional result) If X is a real-valued
stochastic process with stationary increments such that

X, (t) = —X(—t) & —o0

as t — oo and X (0) is proper, then there exists a proper random variable L
such that
HX)t)=L in R as t— oo.

Proof. First assume that X(0) = 0. Given the time reversed process
X,(t) = —X(—t), t > 0, note that

H(X)(t) = X)(t) foreach ¢>0.
Since X, (t) > —oc0 as t - oo and X, € D,
XI(t) = X/ (c0) <00 ast— oo w.p.l.

Hence the desired conclusion holds with the proper limit L 4 xt (00). Now
suppose that X (0) # 0. Since X (t) — —oo w.p.1, the processes Z(t) starting
at 0 and X (0), with common net input process X, couple w.p.1. Hence we
can invoke Theorem 8.9.5. =

We now provide the missing proofs of theorems earlier in this section.

Proof of Theorem 8.9.1. By Theorem 8.9.8, the family of processes Z; in
(9.3) are stochastically increasing in s. Consequently, the finite-dimensional
distributions of Z; are stochastically increasing in s. The cumulative dis-
tribution functions (cdf’s) of (Zs(t1),..., Zs(t)) in RE¥™ thus converge as
s — oo to a possibly improper cdf; e.g., see Chapter VIII of Feller (1971).
It thus suffices to show that {Z(t) : t > 0} is tight for each 4, for which it
suffices to show that {((I — Q)~'Z(¢))* : t > 0} is tight for each i. (The
tightness implies that the limiting cdf is proper.) By Theorem 8.9.11, we can
bound (I — Q) '¢(X) above by (I — Q) *¢(X,), where X, (t) = X (t) — yt
for appropriate y € R¥ and

—oo < B[Xj(1) — X}(0)] <0 forall i. (9.23)

By (9.18) in Theorem 8.9.10, we can bound (I — Q)~'¢(X,) above by
(I-Q)~'¢1(X,), where ¢; is the vector of one-dimensional reflection maps.

Hence it suffices to show that {¢, (Xi(t) : t > 0} is tight for each i, where
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$1 is the one-dimensional reflection map in (9.19). However, ¢ (X;)(t) con-
verges to a proper limit by Theorem 8.9.12. The condition —X (—t) — —o0
in Theorem 8.9.12 holds for X, by virtue of (9.23) and that fact that
{—=X(t)} is a process with stationary ergodic increments (Stationarity and
metric transitivity are invariant under time reversal, and ergodicity is equiv-
alent to metric transitivity.) The assumptions imply that

-t X, (-t) = E[X,(1) — X,(0)] as t—oc w.p.l

for each 7, which implies that —X;(—t) — —oo w.p.1 ast — oc foreach i. =

Proof of Theorem 8.9.3. By Theorem 8.9.1, we have convergence to a
proper limit L for the process {Zy(t) : ¢ > 0} starting from the origin. By
the continuous mapping theorem,

I-Q) 'Zyt) = T —-Q) 'L as t— 0.
If X(0) is proper, then so is X (0)* = (X!(0)*,...,X*(0)*). Then, from
Theorem 8.9.7(i) and (v),
0< (I-Q) ' Zx()(t) < (I-Q) ™ Zx(o)+(t) < (I-Q) ™' Zo(t)+(I-Q) ' X (0) 7,

where here Z,,(t) denotes the process governed by X with initial position
w. Hence

P(|((I - Q)" Zx()(1))'| > 2K) < P(|(I = Q)™ Zo(1))'| > K)
+ P(I(I-Q)'X(0))| > K),
so that the tightness holds by the results above. =

Proof of Corollary 8.9.2. We can combine Prohorov’s theorem (Theo-
rem 11.6.1 in the book) with monotonicity. By Theorem 8.9.7,

Z() (t) S ZX(O) (t) for all ¢. (924:)

Since Zy(t) = Z.(0) by Theorem 8.9.1, (9.12) must hold. (Stochastic order
on R* is preserved under weak convergence.) =

Proof of Theorem 8.9.4. Since (9.24) holds and
(I-Q) " (Zx, — %) € D} ,
by Theorem 8.9.7(vii),
0<(I-Q) ' (Zx)(t) — Zo(t)) < (I — Q) '1le forall t>T..

Since Zy(t) = L as t — oo by Theorem 8.9.1 and e is arbitrary, we must
have Zx(o)(t) = L too. =
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Proof of Theorem 8.9.5. The processes starting at 0, X (0) or Z,(0) can
all be given a common net input process X (t) — X (0), ¢ > 0. Hence, they all
must couple when the process starting at Z(0) vV Z*(0) first hits the origin. =

In preparation for the proof of Theorem 8.9.6, we now establish a prop-
erty of the limiting distribution in the one-dimensional case when X is a
Lévy process.

Theorem 8.9.13. (mass near the origin) If, in addition to the assumptions
of Theorem 8.9.12, the one-dimensional net-input process X has independent
increments, then

P(L<e)>0 forall €>0,

where L is the limiting random variable.

Proof. Consider the time reversed process X, defined in Theorem 8.9.12.
It suffices to show that P(X](c0) < €) > 0. Suppose not. Then P(X;(c0) >
€) = 1, which implies that P(7T, < o) = 1, where

Te =inf{t > 0: X, (t) > €} .

Using the regeneration property associated with the stationary independent
increments, that in turn implies that

limsup X, (t) = +o0 w.p.1,
t—00
which contradicts the limit X,(f) — —oo w.p.l. Hence we must have
P(X](c0) <€) >0 for all € > 0 as claimed. =

Proof of Theorem 8.9.6. The conditions allow us to apply Theorem
8.9.4. Theorems 8.9.10 and 8.9.11 allow us to bound the process (I —
Q)"1p(X)(t) above by (I—Q)"1¢1(X,)(t), as in the proof of Theorem 8.9.1.
However, ¢;(X,) has mutually independent coordinate processes. Let L' be
the limit random variable for the one-dimensional process associated with
$1(Xy) and coordinate i. Since, for any e > 0,

P(L'<e,...,LF<e)=J[P(L'<e)>0
=1

by the independence and Theorem 8.9.13 we must have P(7, < oco) = 1 for
the random time 7T in Theorem 8.9.4. =
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As mentioned earlier, Theorem 8.9.6 applies to the limit process in Sec-
tion 14.6 in the book when the scaled versions of the exogenous arrival pro-
cess C converge to a Lévy process with mutually independent coordinate
processes, because the only stochastic component in the net-input process
X* is C". However, in general, Theorem 8.9.6 does not apply to the heavy-
traffic limits for the queueing network in Section 14.7 of the book. It does
in the special case in which the coordinate limit process X¢ depends only
on the limit of the scaled process associated with the i*! coordinate arrival
process.
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Chapter 9

Nonlinear Centering and
Derivatives

9.1. Introduction

In this chapter we continue to study the useful functions introduced in Sec-
tion 3.5 of the book and investigated in Chapter 13 of the book. Now we
consider supremum, reflection and inverse maps with nonlinear centering.

Following Mandelbaum and Massey (1995), we identify the limit of the
properly scaled function as a derivative. We also show how the convergence-
preservation results for the reflection map can be applied to establish heavy-
traffic limits for nonstationary queues.

To explain the derivative representation, recall that our previous results
on the preservation of convergence with linear centering started with the
assumed convergence

cn(zn—€e) >y in D, (1.1)

where ¢, — oo and e is the identity function, i.e., e(t) = ¢, ¢ > 0. Given
(1.1), we found conditions under which

cn(p(zy) —€) -2z in D (1.2)
for various functions ¢ and we identified the limit z. We also obtained some
extensions in which the linear centering function e in (1.1) is replaced by a
nonlinear function z; i.e., instead of (1.1), we assumed that

cn(zp —2) >y in D as n— oo, (1.3)

233
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where ¢,, - oo. In particular, see Theorems 13.3.2, 13.7.2 and 13.7.4 and
Corollaries 13.4.1, 13.7.1 and 13.7.2 in the book. We now want to obtain
some further results of this kind.

Given (1.3), we have as a consequence

Tp =z in D. (1.4)

Hence, for any continuous function ¢, we have

d(zn) = Pp(x) in D. (1.5)
Thus we want to find functions z € D and regularity conditions such that
cn(p(zn) —@p(z)) > 2 in D. (1.6)

The previous results with centering by e were of this form, where ¢(z) =
x = e. The M topologies play an important role, because the limit z in (1.6)
may have discontinuities even when y,  and x,, are all continuous functions.
In a probability context, (1.6) is interesting because it corresponds to
a FCLT refinement to a nonlinear FLLN. We may have scaled stochastic
processes {X,,(t) : ¢ > 0} which obey a nonlinear FWLLN of the form

Xp,=>z in D, (1.7)

where z is a nonlinear deterministic function, and a FCLT refinement of the
form

cn(Xp—2)=Y in D, (1.8)
where ¢, — 0o. From the FWLLN (1.7) it follows directly that

d(Xn) = ¢d(z) in D (1.9)

for a continuous function ¢. Our goal is to establish the FCLT refinement
of (1.9), i.e.,
cn(d(Xp) —d(z))=Z in D. (1.10)

As before, (1.10) follows from (1.8) when (1.6) follows from (1.3). Hence we
focus on obtaining (1.6) from (1.3).

It is interesting that, under regularity conditions, z in (1.6) can be
thought of as a derivative of the map ¢, in particular, a directional deriva-
tive of ¢ in the direction y, evaluated at x. To see that, it is convenient to
index the functions by € in such a way that x, becomes z. and ¢, becomes
¢~1. (That is without loss of generality.) Then (1.3) is equivalent to

e Nze—z) =y as €l0. (1.11)
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Without being too precise, we can rewrite (1.11) as
ze=z+ey+o(e) as €l0. (1.12)

Now, assuming that the function ¢ : D — D satisfies

(@ + 0(€)) — p(Tc) = o(e) as €0 (1.13)
for any Z¢ with . — = in D as € | 0 (which is not automatic), we have
d(x) =d(r +ey)+ole) as €l0 (1.14)

and, given the e-analog of (1.6),
oz +ey) =¢(r) +ez+o0(e) as €l0. (1.15)

From (1.15), it is evident that z can be given the directional derivative
interpretation. Moreover, (1.14) and (1.15) together imply that

€ Hop(ze) —p(z)) =2 as €l0. (1.16)

Equivalently, (1.3), (1.13) and (1.16) imply the desired (1.6).

Here is how the present chapter is organized: In Section 2 we investigate
when the convergence-preservation question (when (1.3) implies (1.6)) can
be reduced to the derivative determination in (1.15). Unfortunately, we are
not able to show that this can be done as generally as we would like. This
step seems to be the weak link in our analysis in this chapter. Hopefully
future research will provide further insights.

In Sections 9.3 — 9.5 we determine sufficient conditions for the derivatives
of the supremum and reflection maps to exist and determine their form. As
should be anticipated from Chapter 13 in the book, the reflection derivative
can be expressed in terms of the supremum derivative. The M; topology
plays an important role even if z and y in (1.3) are both continuous.

In Section 9.6 we apply the derivative calculation and convergence-preservation
results for the reflection map to establish heavy-traffic limits for nonsta-
tionary queues. For example, these results cover the My/M;/1 queue with
time-dependent arrival and service rates.

Finally, in Section 9.7 we consider the derivative of the inverse map.

9.2. Nonlinear Centering and Derivatives

In this section we investigate when the desired convergence-preservation
(when (1.11) implies (1.16)) can be deduced by determining the derivative
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via (1.15). For any function ¢ : D — D, a general approach to establish the
desired limit (1.16) for ¢(z,) is to exploit the triangle inequality:

(e [p(ze) — ¢(2)],2) < de[$(z +ey) — $(2)], )
+d(e [plze) — $(@)] e [Pz + ey) — H(@)])

for an appropriate metric d. A limit for the first term in (2.1) as € | 0
identifies z as the derivative of ¢ in the direction y evaluated at z. In
addition to establishing the existence of this derivative, we must also show
that the second term in (2.1) converges to 0 as e | 0. Surprisingly, the
second term presents difficulties. However, we are able to show that it is
negligible under regularity conditions. The results are in a good form when
y € C, but not so good when only y € D. (Recall that the limit z in (1.16)
may be discontinuous even if y € C, so the case y € C is interesting and
important.)

We now obtain results about the second term in (2.1) for general func-
tions ¢ : (D1,d1) — (D2, ds), where D; = D([0,t;], R¥) for i = 1,2.

Theorem 9.2.1. (reduction of convergence preservation to the derivative)
Suppose that ¢ : (Dy,d1) — (Da,ds), where the metrics d; satisfy the prop-
erties:

di(cz1,cxo) = cdi(z1,22) forall ¢>0, 1=1,2, (2.2)
di(:zl + x3,T9 + iL‘3) = di(.rl,l‘g), 1=1,2,
da(d(z1), P(z2)) < Kdy(x1,22) for some K >0, (2.4)

for all x1, xo, 3 € D;. Then
do (e [P(ae) — p(x)], e [p(z + ey) — d()]) < Kdi(e™ (2 —x),y) . (2.5)

Proof. The conditions imply that

dy(e [p(ze) — p(@)], e (z + ey) — p()]) = € 'da(g(zc), p(x + €y))
< e 'Kdi(ze,x + ey)
= Kdi(e Yz —),y) . =

Notice that the uniform metric satisfies conditions (2.2) and (2.3). The
following application of Theorem 9.2.1 is elementary.

Theorem 9.2.2. (reduction for the supremum and reflection maps with
the uniform metric) If d; and dy in Theorem 9.2.1 above are the uniform
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metric on D([0,t],R) and ¢ is the supremum function in equation (13.4.1)
in the book or the reflection map in equation (13.5.1) in the book, then the
conditions of Theorem 9.2.1 above are satisfied, so that conclusion (2.5)
holds.

Proof. It is evident that the uniform metric on D satisfies conditions (2.2)
and (2.3). The supremum and reflection functions also satisfy (2.4) with
respect to the uniform metric by Lemmas 13.4.1 and 13.5.1 in the book.

Example 9.2.1. The need for the map ¢ to be Lipschitz. To see the need
for ¢ : D — D being Lipschitz in Theorem 9.2.1, let ¢(z)(t) = \/z(1),t > 0.
If ||z — z||+ — 0 for ¢t > 1, then ||¢p(z.) — ¢(z)||: — 0, but ¢ is not Lipschitz.
Suppose that z(t) = 0, y(t) = 1 and z.(t) = z(t) + ey(t) = ¢, t > 0. Then
le  (ze — ) —y|| = 0 for all ¢,

e p(we) — p(2)](t) = € [Ve—0] = €2 3500 as €l0. = (2.6)

Unfortunately, for the nonuniform Skorohod metrics on D, which we will
want to consider when y ¢ C, we do not have properties (2.2) and (2.3) in
Theorem 9.2.1.

Example 9.2.2. Failure for nonuniform metrics. Unlike with the uniform
metric, we cannot conclude that d(e 'z, e 'z +y) — 0 as € | 0 when
d(e Y(ze —z),y) = 0as e | 0 if d is the J;, My or My metric and y is not
continuous. To see this, let z(t) = tIjo1)(t) + (2 —)I}1,9(t), vy = Ijo,1) — Iz
and ze = (z + €)Ijp1_q + (& — €)I1_¢ 2] in D([0,2],R). Then e *(z — z) =
y o A, where A\c € A with A(1) =1 —¢, A(0) = 0 and A(2) = 2. Hence
dy(e (e —z),y) = |Ae —€]| = ¢ = 0 as € | 0. However ezl(2) =
elzl(1—€) = €L, while (e Lz +9)1(2) = (e lz+y)(1—) = e L +1, so that
di, (6 'z, elz+y)>1. =

However, under regularity conditions, we can also establish results start-
ing from Jy, M7 and My convergence. We state the following results for
the strong SJ;, SM; and SM, metrics on D([0,],R¥). Corresponding re-
sults for the product metrics for Lemmas 9.2.1 and 9.2.2 below follow; just
consider one coordinate at a time.

Recall that z is Lipschitz on [0, ¢] if there is a constant K so that |z(t1)—
z(t2)| < Klt1 — to| for 0 < t1,to < t. This regularity condition is typically
satisfied in applications, because x often satisfies an ordinary differential
equation (ODE). If z is absolutely continuous with derivative i, where & €
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D, then for each ¢ > 0, there exists K such that |#(s)| < K for 0 < s <t
and, for 0 <t <ty <,

t2

ot2) = a(t)] < [ 6(s)lds < Klta =] (27)
t

so that z is Lipschitz.

Lemma 9.2.1. (subtracting a common Lipschitz function) Suppose that x

is Lipschitz in [0,t] with Lipschitz constant K. If d; is the SJi, SMy or

SMy metric on D([0,t],R¥), then

di(z1 —z,29 —x) < (1 4+ K)di(z1,22) - (2.8)

Proof. First consider J;. For all € > 0, there exist 7(e) > 0 and increasing
homeomorphisms A, of [0,¢] such that

|21 — 220 Aclle V |Ae — elle < (1 +n(e))dy(z1,72) -
It follows that
|21 — 2 0 Aellt + [l — = 0 Acl¢
(1 +n(e))de(z1, 72) + K| Ae —el|¢
(1+n(e) + K[1 + n(e)])di(z1, z2) -

Since 7(e) can be made arbitrarily small, the proof for J; is complete. Now
consider M;. For all € > 0 and ¢ > 0, there exist n(e) > 0 and parametric
representations (u1,71¢) of 1 and (uge,71¢) of x2 such that

[[ure = wael| V{716 = racll < (1 +n(€))di (w1, x2) -

Since z is continuous, (x o 71¢,71¢) and (x o T9¢,T2¢) are parametric repre-
sentations of z, (u1e — x o r1¢,71¢) and (uge — T © T'9¢,7T9¢) are parametric
representations of 1 — x and z9 — z, and

[(z1 —2) — (72 — 2) 0 Acllt

ININ A

||(ule — o Tle) - (u2€ — o T2€)|| < ||Ule - u2€|| + ||,7,' OTle — O T2€||
< (1—{—77(6))6175(.’151,552)+K||7"15_7‘26||
< (T+n(e) + K[1+n(e)])di(z1,z2) -

Since 7)(€) can be arbitrarily small, the proof for M; is complete. Now
consider My. let (z1,t1) € Dy,. If (29,t2) € [y, is such that ||(z1,t1) —
(22,t2|| < 6, then (21 — .’I?(tl),tl) ely, —s (2‘2 — :E(tz),tz) €l'y,_5 and
(21 — 2(t1),11) V (22 — z(t2), t2)|| < (21, 1) — (22, 22) [ + ([ (1) — z(E2)]]
< 4+ K|t 6 <Q+K)§. =

Next we generalize (2.2).
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Lemma 9.2.2. (deterministic scaling) Let d; be the SJ1, SMy or SMs met-
ric on D([0,t]),R¥). For any c > 0,

det(czi o c e, czg 0 c7le) = cdy(z1, o) (2.9)
or, equivalently,

di(cr1,cr2) = cdyy. (21 0 ce,T9 0 ce) < (¢ V 1)dy(z1, 72) - (2.10)

Proof. First, for SJi, note that A € A; if and only if cAoc le € Ay for
c¢>0and
lchocle—elles = c||X—ells -
Hence
det(czi oc e, cxg 0 cle)

= )\in/{ {llez1octe— (cxaocte)o(choc te)|e Vchocte —e|e}
€Nt
— inf _ _
Anf {cllz1 — @2 0 Mlle V |2 —ell¢}

= cdi(z1,19) .

Next, for SMy, note that ¢, is the graph of cz; o ¢ te over [0,ct] if and

only if 'y, is the graph of z; over [0,¢]. Hence (2.9) holds. Finally, for SM;,
note that (cu;,cr;) is a parametric representation of cz; o c~le over [0, ct]
if and only if (u;,r;) is a parametric representation of z; over [0,¢]. Hence
(2.9) holds. =

Our next result goes beyond Theorem 9.2.1 by allowing the map ¢ to be
Lipschitz with respect to the SJi, SM; or S My metrics, but not the uniform
metric.

Theorem 9.2.3. (Lipschitz functions with respect to nonuniform metrics)
Suppose that y € D([0,t1],RF') and x, z., = + ey all belong to a subset
A of D([0,t1],R¥1) for sufficiently small € > 0. Suppose that ¢ : A —
D([0,t;],R¥2) is Lipschitz with respect to the metrics di on A and dy on
D([0,t3], R¥2), i.e., there is a constant K such that

d2(p(z1), p(z2)) < Kdi (21, 72) (2.11)

for all z1,z9 € A, where di and dy are nonuniform Skorohod metrics (not
necessarily the same). Suppose that = is Lipschitz on [0,t1] and ¢(z) is
Lipschitz on [0,t2]. Then there is a constant K' such that

dy (e [p(ze) — p(@)], € plz + ey) — p(=)])
< K'e 'di(ze — 7, €y)
< K'lleHze —z) =yl - (2.12)
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Proof. By Lemmas 9.2.2 and 9.2.1 and the assumptions, for € < 1, there
are constants K7, K9 and K3 such that

da(e [p(xe) — d(@)], e Bz + ey) — p(x)))
< e Mdy(p(ze) — p(), Bz + ey) — B())
< Kie dy(p(ze), d(z + ey))
< K1Koe tdi(ze, T + €y)
< K1 Ky Kse 'dy (we — 7, ey)
< K1 K Kse Hze — 2 — eylly,
<K KoKslle Yze —x) —yllsy . w (2.13)

The final upper bound in Theorem 9.2.3 does not help with the supre-
mum and reflection maps because the supremum and reflection maps already
have the required Lipschitz properties with respect to the uniform metric,
by Theorem 9.2.2. In order to apply Theorem 9.2.3 without having to resort
to the cruder uniform metric bound, we need to have

di(ze —z,ey) =0(e) as €lO0. (2.14)

First, from this analysis, we see the need to be precise about what we mean
about o(¢) terms in (1.12)—(1.15). Next, we observe that d;(e~![z. —z],y) —
0 does not directly imply that di(z. — z,ey) = o(e) as € | 0, but that it is
possible to have d (z.—x, ey) = o(€) as € | 0 without having ||z, —z—ey||t, =
o(€) as € ] 0.

Example 9.2.3. Condition (2.14) is weaker than the usual limit. We would
like to have e 'd(z, — z,ey) — 0 as € | 0 whenever d;(e~(zc — z),y) — 0
as € | 0, so that we could improve upon (2.12), but that implication is not
valid. To see that, let z = y = I; 5) in D([0,2],R) and let z = z +€l}; 45, 9-
Then e !(z —z) = Iji45.9) and d (e ! (z¢ —),7y) = 6. On the other hand
e ldy, (v —x,ey) = e (e Adc), which converges to 0 if and only if e~ 15, — 0
as € — 0. Hence, we do not necessarily have e 'd;(z. — z,ey) — 0 as € | 0,
given dy(e~!(z. — x,9) — 0, but we could have it, as is the case here when
€16, = 0as e | 0. On the other hand, |[e ! (z.—z)—y|| =1foralle > 0. =

Example 9.2.4. A parametric family of ezamples. Consider Example 9.2.2
modified by having

Te = ('T + 6)I[O,l—ei”) + (.’L‘ - G)I[l—eP,Q] . (215)
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Then z. —z = ey o Ac for A\(1) =1 — €, A\(0) = 0 and A(2) = 2 with A,
defined by linear interpolation elsewhere. Thus

d, (ze — z,ey) = dy (¢ (we —2),9) = [Ae —ell =€, (2.16)

so that condition (2.14) holds if p > 1, but not if 0 < p < 1.

9.3. Derivative of the Supremum Function

In this section we consider the derivative of the supremum function; i.e., we
find conditions under which the limit (1.15) is valid and identify the limit z
when ¢ : D — D is the supremum function. The supremum function maps
r € D = D([0,T],R) into z' € D for

z'(t) = sup z(s), 0<t<T. (3.1)
0<s<t

In order to treat the derivatives, we will find it necessary to consider
functions outside of D. Thus let Dy;,,, be the set of functions with left and
right limits everywhere, but without having to be either left continuous or
right continuous at each discontinuity point. In general, we will only be able
to conclude (in Theorem 9.3.2 below) that the derivative belongs to Dyjyy,.
In our definition of the derivative, we start by allowing one function to be
in Dyjp,. For z € D, y € Dy, and € > 0, let

ze=z(z,y) =€ x+ey)t —zl = (elz+y)t — ezt (3.2)

The derivative of the supremum function (in the direction y, evaluated at
z) is the limit of z. as € | 0, if it exists. We will show that the limit does
exist under regularity conditions and identify it. In this section we consider
pointwise convergence for all ¢; in the next section we consider M, and M,
convergence.

We start by stating two elementary lemmas; the second follows from the
first.

Lemma 9.3.1. (the case of constant y) If y(s) = ¢, 0 < s <t, then z(t) =
c for all e.

For z* be the infimum function; i.e., z¥ = —(—2)T.

Lemma 9.3.2. (monotone bounds) For all € > 0, y* < z. < yT.
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Even though z is right-continuous, it can approach its supremum from
the left (z(s) = sljp,)(s)) or right (z(s) = —sl[;4,)(s))- Let ®L(t) and
®2(t) be the subsets of time points in [0, ] at which the left and right limits
of x attain the supremum; i.e.,

L) ={s:0<s<tz(s—)=2x"(t)} (3.3)

and
SRt ={s:0< s <t,z(s+) =2T(t)} . (3.4)
Let ®,(t) = ®L(¢t) U®L(t). When z € C, ®L(t) = ®L(3).

Example 9.3.1. The possibility of empty sets. Tt is possible for ®L or ®E(¢)
to be empty: Let z(t) = tljg1)(t), ¢ > 0. Then, for t > 1, ®L(t) = {1}, while
OR(t) = ¢. However, ®L(t) U DE(t) £ ¢. =

These subsets need not be closed, but they have the following partial closure
property.

Lemma 9.3.3. (partial closure property) For any z € D and t > 0, ®L(¢)
is closed from the left, while ®E(t) is closed from the right; i.e., if s, T s in
[0,t] and s, € ®L(t) for all n, then s € ®L(t); if s, | 5 and s, € E(t) for
all n, then s € ®E(t). Moreover, if s, T s in [0,t] and s, € ®E(t) for all n,
then s € ®L(t); if s, | s in [0,t] and s, € ®L(t) for all n, then s € ®L(t).

Corollary 9.3.1. (compactness of ®,(t)) For each t > 0, ®,(t) is a com-
pact subset of [0,1].

We next show that z. is monotone in €.

Lemma 9.3.4. (monotonicity in €) For z. in (3.2), z(t) decreases as ¢
decreases for each t.
Proof. We want to show that

(e5'z+y)T —elal < (Tl + )T — e tal
for €1 > ey or, equivalently,

('z+y) — (g s+ < (" —e N2l (3.5)
However, (3.5) follows from the relation

o —zl <(z1—z)". =

We first establish pointwise convergence for z in (3.2).
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Theorem 9.3.1. (pointwise convergence) For each x € D,y € Dy, and
t>0,

limz(t) = 2(t) = sup y(s—)V sup {y(s),y(s+)} . (3.6)
€l0 s€DL(t) sEPL(L)

Proof. The convergence follows from the monotonicity established in Lemma
9.3.3. Lemma 9.3.2 above provides a lower bound, which implies that there
is a proper limit for each t. For any § > 0, let s(¢) be a point in [0, %] such
that

(€ 'z +1y)(set) > (e 'z +9)T () -6 . (3.7

(Since z and y need not be continuous, the supremum of ¢ 'z + y need not
be attained.) Then

y(se(t)) = ylse(t)) +e Halse()] —2"(1)}
> y(s)+ e lax(s) —zT(t)] =6 for 0<s<t
y(s—) —6 for se€ dL(2)

(
y(s)—6 for se€ ®E(1) (3.8)
( (

>
y(s+)— 48 for se @),
implying that
lim y(s(t)) = 2(t), t=0. (3.9)
n—oo
We now verify that
lim y(se(t)) <z(t), t>0. (3.10)
n—oQ

Start by choosing {s¢(t)} such that y(sc(t)) — Lim y(s¢(t)) as €| 0. Since
n—oo

s¢(t) € [0,t], any subsequence from {s.(¢)} has a convergent subsequence
{s¢(t)} as € | 0. (Let € | 0 through countably many values.) So suppose
that sg(t) — so(t) as € | 0. Without loss of generality, by taking a fur-
ther subsequence if necessary, we can assume that either s¢ () 1 so(¢) with
ser(t) < so(t) for all € > 0 or se(t) | so(t) with se(t) > so(t) for all € > 0.
Suppose that se(t) 1 so(t). Then y(se(t)) — y(so(t)—). We can deduce
from (3.8) that there is a constant K such that, for all €,

—K < e Mz(sa(t)) —zT(#)] <0, (3.11)
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implying that z(s¢(t)) — zT(t) as ¢ — 0, so that z(so(t)—) = z'(t) and
so(t) € ®L(t). By this argument,

lim y(s(t)) < sup y(s—) . (3.12)

n—00 SEBL(t)

On the other hand, if s¢(t) | so(t), we can deduce by the same reasoning
that

Tm y(sc(t) < sup {y(s),y(sH)} . (3.13)

n—00 SEDR(L)

Since one of (3.12) or (3.13) must hold, we have established (3.10). Finally,
from the first and last lines of (3.8),

0> e Ha(se(t)) — 2" (t)} > 2(t) —y(se(t)) - (3.14)

Since y(s¢(t)) — z(t), e 1 {z(s¢(t)) — 2T ()} — 0 as € | 0, which implies that
z(t) = 2(t) as e 0. =

Corollary 9.3.2. (simplification under extra conditions) Suppose that = €
C and y € Dyjp,. Then the limit z in (3.6) is

z(t) = sup {y(s—),y(s),y(s+)}. (3.15)
sED,(L)

If, in addition, y € C, then

) = sup {y(s)) . (3.16)
SED,(L)

We now determine the structure of the limit function z in (3.6). Since
®L(t), ®E(t) and ®,(t) are subsets of [0,], we need a notion of convergence
of sets. For subsets A, and A of R, we say that A, — A if (i) for all
an € Ap, n > 1, {a,} has a convergent subsequence and the limits of all
convergent subsequences belong to A, and (ii) for all a € A, there exists
a, € Ap, n > 1, such that a,, — a as n — oco. In our set limits involving
®L(t) and ®E(t), only three special cases arise: (i) Ay, is independent of n for
all sufficiently large n, (ii) the sequence {4,} is eventually monotone, i.e.,
either A, C A,+1 for all sufficiently large n or A, D A,41 for all sufficiently
large n, and (iii) A = {a}, i.e., the limit set contains a single point.

When we consider ®,(t) = ®L () U ®£(¢), we have compact subsets of
[0,%]. Then the notion of set convergence above is induced by the Hausdorff
metric on the space C = C([0,00)) of compact subsets of [0,00), defined in
(2.8) in Chapter V.
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However, even if z and 2T are continuous in , ®,(t) is in general not con-
tinuous in ¢t. Moreover, at some time points, ®,(¢) is neither left-continuous
nor right-continuous.

Example 9.3.2. Lack of continuity from left or right in ®,(t). Suppose
that z(t) = (1 —t)1jo,1)(t) + (t — 1)I}1,00) (). Then ®,(t) = {0}, 0 <t < 2,
®,(2) = {0,1} and ®,(t — 1) = {t}, t > 2, so that ®, is neither left-
continuous nor right-continuous at ¢ = 2. However, ®,(2) is the union of
the left and right limits ®,(2—) and ®,(2+). =

Example 9.3.3. Neither left-continuous everywhere nor right-continuous
everywhere. We can extend Example 9.3.2 to show that the limit 2z need not
be either a left-continuous function or a right-continuous function, even if x
and y are both continuous. Let

x(t) = (1—t)Ij,1)(t) + (E—1)I[1,3)(t) + (5— 1) I[3,.4) (t) + (= 3) [[4,00) (t) (3.17)

and
Y(t) = —tljo2.5 + 6(t — 2.5)I12.5,00) (%) - (3.18)
Then
o,(t) = {0}, 0<t<2, &,2) =102}
S,.(t) = {t}, 2<t<3, P (t) =13}, 3<t<5,
®4(5) {3,5}, @a(t) ={t}, t>5,
z(2) = 0 and z(5)=15. (3.19)

Then z is discontinuous at t = 2 and ¢t = 5, with z being left-continuous at 2
and right-continuous at 5. Hence z is neither left-continuous everywhere nor
right-continuous everywhere. On the positive side, z is either left-continuous
or right-continuous at each ¢ and z is upper semicontinuous everywhere. =

Example 9.3.4. Neither left-continuous nor right-continuous at one t. We
now show that the limit z in (3.8) need not be either left-continuous or
right-continuous at a single argument ¢ when z € C and y € D but y & C.
We construct y and x so that y and ®, have only one common discontinuity.
Let

y(t) = tlo,1)(t) + I y(t), t>0, (3.20)

and
z(t) = —tI[O,l)(t) +(t— 2)1[1,00) (t), t>0, (3.21)
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so that
D,(t) ={0},0<t<2,9,(2) ={0,2} and P,(t)=¢t, t>2. (3.22)
Hence y and ®, are continuous everywhere except ¢ = 2. Moreover,

z2(2) = sup {y(s)}V sup{y(s—)}=0v1i=1, (3.23)
s€{0,2} se{2}
while z(t) = 0 for all other . Hence the left and right limits coincide at
t = 2 but do not equal z(2), so that z ¢ D. It is easy to see that z.(2) =1
and
2(t)=0, 0<t<2—¢ and t>2+e¢€,

with z. defined by linear interpolation elsewhere. Hence, z. has slope e !

on [2 —¢,2], slope —e ! on [2,2 + ¢] and is 0 elsewhere. Consistent with
Theorem 9.3.1, 2z, converges pointwise to z. We will want to impose regu-
larity conditions to prevent such pathological behavior. As an alternative,
we could conclude that z, converges to a limit in one of the larger spaces E
or F in Chapter X. =

We now introduce a regularity condition under which the limit z in (3.6)
has left and right limits everywhere and is either left continuous or right
continuous everywhere (without necessarily being right continuous every-
where). Let D;, denote this space. We first define some subsets of [0, oc).
(We could alternatively restrict attention to a subinterval [0,7].) For any
z € D, let Rinc(z) and Linc(z) be the set of right-increase and left-increase
points of z, let Lconst(xz) be the set of left-constant points of z, and let
Amaz(z) be the argmax set of z, i.e., the set of arguments at which z
equals its supremum, i.e.,

= {t>0:z(t) <z(t+e€) for all sufficiently small e X324)

Rinc(x T
{t>0:2(t —¢) <z(t) for all sufficiently small ¢ X325)
) =
(¢

{t>0:z(t—€) =z(t) for all sufficiently small e X326)
{t>0:tecdE)}. (3.27)
We will look at these sets for the functions z and z. Of course, z' is

nondecreasing and right-continuous. Let Disc(z) be the set of discontinuity
points of z.

Lconst(x

(z)
Linc(x)
(z)

)

Amaz(x

Theorem 9.3.2. (regularity properties of the limit z) Suppose that x, y €
D. Then z € Dy, where z is the limit in (3.6). At all t not in the set

Bad(z) = Rine(z") N Leonst(z") N Disc(x) N Linc(z) N Amaz(z) , (3.28)
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z is either left-continuous or right-continuous. For t € Bad(z), z(t+) =

y(t), z(t—) is independent of {y(t—),y(¢)} and z(t) = max{z(i—-), y(t—),y(t)},
so that z is left-continuous at t if z(t—) > y(t—) V y(t), right-continuous at
tif y(t) > y(t—) V z(t—), and neither left-continuous nor right-continuous

ify(t=) >y(t) v z(t—). If
y(t—) < 2(t—) Vy(t) (3-29)
for all t € Bad(z), for which a sufficient condition is
Disc(y) N Bad(z) = ¢ , (3.30)
then z is either left-continuous or right-continuous at all t, so that z € Dy ;.

Corollary 9.3.3. (regularity for continuous y) If x € D and y € C, then
S Dl,r-

Remark 9.3.1. Sufficient condition for having more than one point in the
set. Let |®,(t)| be the cardinality of the set ®,(t). Note that |®,(¢)] > 2
when t € Leonst(z') N Amaz(z), i.e.,

Leonst(z") N Amaz(x) C {t : |®,(t)| > 2}, (3.31)

so that t € Bad(z) when |®,(t)| > 2 and z(t —€) < z(t—) = z(t) = zT(t) <
z'(t + €) for all suitably small e > 0. =

Remark 9.3.2. The set Bad(z) is at most countably infinite. From (3.28),
it follows that Bad(z) C Disc(®,), where &, € D([0,00), (C,h)). Therefore,
Bad(x) is a countable set. =

Corollary 9.3.4. (regularity properties of the limit Z when Y is a stochas-
tic process) Suppose that {Y (t) : t > 0} is a stochastic process with sample
paths in D. If x € D and if P(t € Disc(Y)) = 0 for each t > 0, then
P(Z € D;,) =1, where Z is the limiting stochastic process defined by ap-
plying (3.6) to Y.

Proof. In Remark 9.3.2 it was noted that the set Bad(z) in (3.28) is
countable. Consequently,

P(Z e Dy,) =P(Disc(Y)NBad(z) =¢)=1. = (3.32)

Theorem 9.3.2 is proved by examining all relevant cases. We identify
appropriate cases and results for those cases in the following theorem.
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Theorem 9.3.3. (identification of relevant cases) The following is a set of
ezhaustive and mutually exclusive cases and subcases when x,y € D:

1. t & Amax(z), ie., t € ®E(t): 2 is right-continuous with a left limit at

t.

2. ®E(t) = ®L(t) = {t} : 2(t) = y(t—) Vy(t), z is either right-continuous
or left-continuous at t.

3. ®E(t) = {t}, ®L(t) = ¢: z is right-continuous with a left limit at t.

4. t € ®E(t) C ®,(t) # {t}, so that cases 1-3 do not hold;

(a)
(b)

t € Rinc(z?), i.e., ®y(t) C ®y(u) for some u > t: z is right-
continuous with a left limit at t.

Condition (a) does not hold and t € Leonst(z") N Linc(x)¢, i.e.,
t is not isolated in Dy(t): z(t—) > y(t—) and z(t+) = y(t), so
that z is left (right) continuous at t if z(t—) > (<) y(¢).
Condition (a) does not hold, t is isolated in ®,(t) and t € Disc(x):
z(t+) = y(t) and z(t) = max{z(t—),y(t)}, so that z is left (right)
continuous if z(t—) > (<) y(t). (In this case z(t) does not depend
upon y(t—).)

Condition (a) does not hold, t is isolated in ®5(t) andt ¢ Disc(x),
i.e., t € Bad(z) in (3.28): z(t+) = y(t), 2(t—) is independent
of {y(t—),y(t)} and z(t) = max{z(t—),y(t—),y(¢t)}. Hence z is
neither left-continuous nor right-continuous at t if and only if
y(t—=) > 2(t—) Vy(?).

Proof. We prove Theorem 9.3.3 by examining all relevant subcases. We
provide a further characterization below, but do not give all details. For
this purpose, let

Ul = {s:0<s<tz(s—)=z"(t-)}, (3.33)
t) = {s:0<s<tz(s)=z(t—)} (3.34)

and U, (t) = UL(t) U TE(2).

Case 1:

In this case, z(t) < z'(t) and z'(t—) = z'(t). Since z and =" are

right-continuous, ®% and ®F are constant in [t,t + ¢€) for all suitably small
€ > 0, so that z is necessarily right-continuous. We identify three subcases:
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(i) If t ¢ UL(¢), then z(t—) < z'(t—), so that ® and E are constant in
(t — €,t + €) for all suitably small € > 0, so that z is constant in the same
subinterval. (i) If t € WL (¢) = ®L(¢) and ®,(¢) # {t}, then z jumps down at
time ¢, so that z(t—) = zT(t—) = z'(t) > z(t). Since ®,(t) # {t}, =" must
be constant in (¢ — ¢, t] for all suitably small ¢ > 0 and there must exist s < ¢
such that z(s) = z'(t) or z(s—) = zT(t). Hence for s < ¢’ < t, ®L(#') and
®R(#') increase as ¢ increases. Since t ¢ ®E(t), ®E(#') + ®E(t) as # 1 ¢, so
that ®% is continuous at ¢. Since ®L(#') increases as ¢’ increases, ®L(#') has
a limit as ¢’ 1 ¢, but this limit set may be separated from ¢ € ®L(¢). Hence,
in general z is right-continuous with a left limit at ¢, with z(¢) depending
upon y(t—) but not y(¢). In this case z is continuous at ¢ if and only if
z(t—) > y(t—). (iii) If t € UL(t) = ®L(¢) and ®,(t) = {t}, then again
z jumps down at time ¢, z(t—) = zT(t—). Since z' is increasing from the
left at ¢, there exists a sequence {t,} with ¢, 1 ¢ as n — oo such that
z(t,£) = z'(¢,) and @4 (t,) = {t,}. Moreover, for any s with ¢, < s < t,
necessarily ®,(s) C [t,, s]. Hence, ®,(s) — ®,(t) as s T ¢t. This implies that
z is continuous at ¢ with z(t) = y(t—). We remark that the case t € UL(t)
but ¢ ¢ ®L(¢) cannot occur because it requires z(t—) = zT(t—) < zT(t),
which implies that £ make a jump up to a new maximum at time t, i.e.,
t € ®&(t), which contradicts our original assumption.

Case 2: ®f(t) = oL(t) = {t}.

In this case z(t—) = z(t) = z'(t), so that z is continuous at ¢. Since
D,(t) = {t}, ®4(u) C [t,u] for all u > t. Hence ®,(u) — P,(t) = {t} as
u | t, so that &, is right-continuous and z has a limit from the right with
z(t+) = y(t). In this case z' is increasing at ¢, and ®,(s) — ®L(t) as s 1 ¢,
so that @, is continuous at ¢ and z has the left limit z(t—) = y(¢—). Since
z(t) = y(t) Vy(t—), z is either left-continuous or right-continuous at ¢; z is
continuous at time ¢ if and only if y is.

Case 3: ®F(t) = {t} and ®L(t) = ¢.

In this case z(t—) # z(t) = z7(t), so that z is discontinuous at ¢. As in
case 2 above, ®,(s) — ®,(t) = {t} as s | ¢, so that &, is right-continuous
at t and z has the right limit z(¢+) = y(¢). Since z(t) = y(t), z is right-
continuous in this case. We identify three subcases: (i) If ¢ ¢ WL(¢), then
z(t—) < z'(t=) < z'(¢), so that z jumps up to a new maximum at time
t and ®L and ®F are constant in (¢ — ¢,t) for all suitably small e. Hence
®L ®Z and z have limits from the left, but may be discontinuous at t.
(ii) If U, (t) = {t}, then z(t—) = zT(t—) < z(t). As in (ii), = jumps up
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to a new maximum at ¢. Since ®,(t) = {t}, z' is increasing from the left
at t. Hence, there exists a sequence {t,} with ¢, 1 ¢t as n — oo such that
z(tyt) = zT(t,) T 2T (t—) and ®,(t,) = {t,}. Hence ®,(s) C [ty, s] for all s
with ¢, < s < t. Hence, ®,(s) — UL(t) = {t} as s 1 ¢, so that ®, and z have
limits from the left at ¢, with z(¢t—) = y(¢—). (iii) Suppose that ®L(¢) = ¢
and t € U,(t) # {t}. This is similar to case (ii). Since W, (t) # {t}, z' is
constant in [t — ¢,t) for all suitably small e. Thus, over (¢ — ¢, t), ®L(s) and
®2(s) increase to UL(t) and UE(t) as s 1 t. Hence, z has a left limit at .
In general, z need not be continuous at t.

Case 4(a): In this case z'(t) = ' (u) for some u > t. Hence ®Z(u) | ®L(%)
and ®2(u) | ®E(t) as u | ¢ so that z is right-continuous at ¢. If ¢ is not
isolated in ®,(t), as in Case 4(b), then there exists ¢, 1 ¢ with z(¢,—) = z'(¢)
or z(t,) = z'(t), so that z' is constant in [t — ¢,#] for all suitably small e.
Moreover, ®L(s) + ®L(t) and ®E(s) 1+ ®E(t) as s 1 t. Hence z has a
left limit z(t—) > y(t—). Moreover, ®L and ®£ are continuous at ¢. If
y(t—) < z(t—) < y(t), then y is right-continuous but not continuous. On
the other hand, if z(t—) > y(t), then z is continuous at ¢. If instead ¢ is
isolated in ®,(t), as in Case 4(c), then ®L(s) and ®£(s) are constant in
(t — €, t) for all suitably small ¢, but ®£(t) = ®£(t—) U {t}. Hence, ®L and
®F have limits from the left at t. Thus z has a limit from the left at ¢,
which does not depend on y(t—). If z(t—) < y(t), then z is discontinuous at
t; otherwise it is continuous.

Case 4(b): As in case 4(a), z has a left limit at ¢. If Case 4(a) does
not hold, then z'(t) < z'(t + ¢) for all sufficiently small e. In this case,
®,(s) — {t} as s | t, so that &, and z have limits from the right with
z(t+) = y(t). However, since ®,(t) # {t} by assumption, @, is not right-
continuous. In this case z is left (right) continuous if z(t—) > (<) y(¢).

Case 4(c): In this case
t € OK (z) = Rinc(z")NLeonst(z") N Disc(z)NLine(z)N Amaz(z) . (3.35)

Note that OK(z) in (3.35) differs from Bad(z) in (3.28) only by having
z(t—) < z(t). As noted for case 4(a) and 4(b), z has left limit z(¢—) and
right limit z(t+) = y(t) at ¢, with z(¢t) = z(t—) V y(t). However, since
z(t—) < z(t) = z'(t), t & ®L(t), so that z(t) does not depend upon y(t—).
Hence z is either left-continuous or right-continuous at ¢.
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Case 4(d): In this case t € Bad(z). Since z(t—) = z(t) = z(t), t € ®L(t)
and z(t) > y(t—). As in Case 4(c), z has left and right limits at ¢ with
z(t+) = y(t) and 2(t) = max{z(t—),y(t—),y(t)}. =

Theorem 9.3.2 concluded that z € Dy;,, when z,y € D. By the same
reasoning, examining the cases in Theorem 9.3.3, we can obtain the same
conclusion when y € Dyp,.

Theorem 9.3.4. (extension when y € Dy;,,,) Suppose that z € D and y €
Dy Then z € Dyyy,. At all t not in the set

Bad(z,y) = [Bad; (z) N Disc(y)] U Badsa(y) (3.36)
where
Bad; (z) = Rinc(z") N Leonst(z") N Linc(z) N Amaz(z) (3.37)
and
Bady(y) = {t € [0,T] : y(t) > y(t—),y(t+)} , (3.38)

z 1is either left-continuous or right-continuous. At t € Bad(z) N Disc(x),
z2(t+) = y(t+), z(t—) is independent of y(t—) and 2(t) = z(t—)Vy(t)Vy(t+),
so that z is left-continuous if z(t—) > y(t) V y(t+), right-continuous if
y(t+) > y(t) V z(t—) and neither right-continuous nor left-continuous if
y(t) > z(t—) Vy(t+). At t € Bad(z) N Disc(z)¢, z(t+) = y(t+), z(t—)
is independent of y(t—) and z(t) = z(t—) V y(t—) V y(t) V y(t+), so that
z is left-continuous if z(t—) > y(t—) V y(t) V y(t+), right-continuous if
y(t+) > z(t—)Vy(t—)Vy(t) and neither left-continuous nor right-continuous
if y(t=) Vy(t) > 2(t—) Vy(i+).

We get extra regularity conditions if we assume that x € C. Recall that z
is upper semicontinuous at ¢ if lim,_,; z(s) < z(t); z is upper semicontinuous
if it is upper semicontinuous at all ¢. Let D,; be the subset of upper
semicontinuous functions in Dy;,.

Theorem 9.3.5. (upper-semicontinuity when z € C) Suppose that © € C
and y € Dy, then z € Dyse. Then ®L(t) = ®E(t) = ®,(t) for allt > 0 and

z(t) = sup {y(s—)Vy(s) Vy(s+)} . (3.39)
SED(T)
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Proof. Since z € C, the only relevant cases in Theorem 9.3.3 are: 1(i),
2 and 4. Formula (3.39) follows directly from formula (3.6). The upper
semicontinuity follows from by considering the cases in Theorem 9.3.3. =

Remark 9.3.3. The need for x to be continuous. Without assuming that
x € C, we need not have z be upper semicontinuous. In Case 3 of Theorem
9.3.3, we can have z(t—) > z(t) = z(t+) = y(t+). =

From the point of view of applications, the two most common cases are

(i) z€eC and yeC
(i) zeC and yeD. (3.40)

We thus summarize the situation in these two important cases.

First, with case (i) in (3.40) when both z € C and y € C, we can apply
Corollary 9.3.3 and Theorem 9.3.5 above to conclude that z € D;; N Dy,
but Example 9.3.3 shows that we need not have z € D. Indeed, we will
always have z € Dy, N Dy, instead. For z € D, we have € Dy, only if
z(t) > z(t—) for all ¢. So it is important to have the space D, N Dy

Second, with Case (ii) in (3.40) when z € C but only y € D, Theorem
9.3.2 shows that z € Dy;,,,, but Example 9.3.4 shows that we need not have
z € Dy, in general. However, under condition (3.29), which is implied by
condition (3.30), Theorem 9.3.2 implies that we do have z € D;,. Moreover
Theorem 9.3.5 shows that z € Dy,.. So, in Case (ii) we should also have
z € Dy N Dy, but we need to impose condition (3.30).

Because we assumed only that y € Dy, in Theorem 9.3.1, we can con-
sider z playing the role of y. For example, we could start by considering
Ze(z1,y) in (3.2) for some z; € D and obtain z; = z(z,y) as € L 0. Then we
could consider z¢(z2, z1) in (3.2) for another x5 € D and obtain z9 = z(x2, 21)
as €} 0.

9.4. Extending Pointwise Convergence to M; Convergence

We now want to extend the pointwise convergence of z. to z as € | 0 in
Theorem 9.3.1 to M; convergence. We first observe that monotone point-
wise convergence of continuous functions in D does not by itself imply M;
convergence.

Example 9.4.1. Monotone pointwise convergence of continuous functions
does not imply M, convergence. To see that monotone pointwise convergence
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of continuous functions does not imply M; convergence in D(]0,2],R), let
To-n(0) = Ty-n(1 —27") = z9-n(1—2"("+D) =0

Ty-n(1 =327 F2)) = gy (1 =27 () L 2@ty — ) (2) =1

for n > 1, with x4 » defined by linear interpolation elsewhere. Clearly x5 »
is continuous for each n. Let 2 = To-n for 277 > € > 2™+ 1 > 1. Tt is
easy to see that £o-n(t) > To—(nt1)(t) | z(t) as n — oo for each ¢ > 0, so that
zc(t) | z(t) as € | 0 for each ¢ > 0. Moreover z. — z in D as e | 0 with the
M> topology, but not in the M; topology, because, for any § > 0, z. crosses
the strip (1/3,2/3) for ¢ in [1 — 6,1 + 4] three times for all sufficiently small
€, whereas z crosses it only once; see Theorem 12.5.1 (v) in the book. =

In general (without continuity conditions) monotone pointwise conver-
gence does not imply even My convergence.

Example 9.4.2. Monotone pointwise convergence without continuity does
not imply Ms convergence. To see that Ms convergence does not follow from
monotone pointwise convergence in or D;, when neither the limit nor the
converging functions need be continuous, let z = Iy 9 and zp, = 2I;_p-1 1)+
I[1,2]a n>1 =

However, we can obtain a positive result when the converging functions
are continuous (without relying on the special structure associated with the
supremum).

Theorem 9.4.1. (M; convergence from monotone pointwise convergence
of continuous functions) If x € Dy, z. € C for all € and z(t) | =(t) as
€l 0 for allt >0, then z. — z in (Dy,, M) as €] 0.

We can combine Theorems 9.3.1 and 9.4.1 above to obtain the following
corollary.

Corollary 9.4.1. (M, convergence of the supremum derivative) In the set-
ting of Theorem 9.3.1, if © and y are both continuous, then z. — z in
(Dl,raMQ) as e *L 0.

However, by exploiting the special structure of the supremum function,
we will actually establish the stronger M; convergence under weaker con-
ditions. To prove Theorem 9.4.1, we exploit approximations by piecewise-
constant functions see Section 12.2 in the book.
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Proof of Theorem 9.4.1. Since the pointwise convergence is monotone,
ze(t) > z(t) for all t and e. For any v and § > 0, let Z be a piecewise-constant
function in D with ||z — Z||, < 6. Then z(t) < Z(t) + 6 for 0 < ¢ < u. Let
Z be the upper boundary (containing only vertical and horizontal pieces)
of the § neighborhood of the completed graph I'; s of £ + ¢ for the time
set [0,%], using the Hausdorff metric, as depicted in Figure 9.1. Note that
z(s) > z(s) for 0 < s < t and h(T'z,T'z) < 39, where h; is the Hausdorff
metric applied to the graphs with time set [0,%]. It thus suffices to show
that z¢(s) < #(s) for all s, 0 < s < t, for all sufficiently small e.

Consequently, it suffices to show that z.(s) V Z(s) converges uniformly
to Z(s) for 0 < s <t as € | 0. However, Z has only finitely many discon-
tinuities. Since z. V Z is continuous and nonincreasing in €, we can apply
Dini’s theorem to get uniform convergence in any compact subset of [0, t]
excluding arbitrarily small open neighborhoods of each of the finitely many
discontinuities. To treat the discontinuities, we need to carefully treat the
neighborhood to the left (right) of a jump up (down). On the other side,
the limit function constrains z.(s) V (s) as € | 0. Now suppose that ¢ is
one of the finitely many discontinuities of Z. Then there is €y(¢) such that
|ze(t) — z(t)| < §/2 for all € < €y(t) by the pointwise convergence. Let
€9 be the minimum of the finitely many €y(t). For any € < ¢ given, the
continuity of z., implies that, for each discontinuity point ¢, there is an
n(t) = n(t,e) > 0 such that |z(t) — z.(s)| < §/2 for all s with |s —t| < n(?).
Thus, |z.(s) — z(t)] < § for |s —¢| < n(t). On the critical side of each
discontinuity, the monotonicity implies that

ze(8) < ze(s) < ze(t) + /2

for all € < e. Let the open neighborhood about ¢ be (t —n(t)/4,t + n(t)/4).
Outside the finite union of those open intervals, we have the uniform conver-
gence; inside those intervals we have established that z.(s)V Z(s) < &(s)+4.
Hence I';, is contained in the 4é-neighborhood of I’y for suitably small e,
which implies the M» convergence. =

We will want to approximate y € D by y € D.. For this purpose, it is
important to understand how z¢ and z in (3.2) and (3.6) depend upon y.

Lemma 9.4.1. (uniform Lipschitz property of z. as a function of y) For
any € >0,t>0,z€ D and y1, y2 € D,

| ze(z, y1) — ze(x, y2) 1t < llyr — volle (4.1)

and
lz(z,y1) — 2z(z,y2)|l: < llyr — v2lle - (4.2)
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Proof. Property (4.2) follows immediately from (3.6). For (4.1), note that

lze(z,y1) = ze(z, y2)lle = € Hll(z +eyn)’ — (2 + eyo) e
< ez +eyr) = (2 +ey2)lle
= llyr —welle - =

We also employ the following elementary, but useful, lemma.

Lemma 9.4.2. (z € D, when y € D.) Suppose that z, y € D. 1If, in
addition, y € D, and
Disc(y) N Bad(z) = ¢ (4.3)

for Bad(x) in (3.28), then z € D.. If y has k discontinuity points in (0,t),
then z has at most k discontinuity points in [0,t].

Proof. We use Theorem 9.3.2 to show that z € D. Since y € D,, for
any given interval [0, ], there are time points tp = 0 < t; < -+ < t =t
such that y is constant on [t;_1,t;) and [t;_1,t] for 1 < j < k. Note that
z(t) = y(0) for ¢t € [0,¢1). From (3.6), it is obvious that z can only assume
one of the k values y(t;—1), 1 < j < k. The function z may change to
y(tj—1) in the interval [t;_1,t;), but it can only do so once. Transitions from
Z(t]'_l—) < y(tj_Q) to y(t]'_g) < y(tj_l) to y(tj_1) at t; 1 are ruled out by
condition (4.3). =

Theorem 9.4.2. (M; convergence of the supremum derivative) Suppose
that ,y € D and (4.3) holds for Bad(x) in (3.28). Then

ze—=2z in (Dy,M;) as €l0

for z¢ in (3.2) and z in (3.6).

Proof. Lemmas 9.4.1 and 9.4.2 imply that it suffices to consider y € D,
in order to establish the M; convergence. By Theorem 9.3.2 and Example
9.3.2, the discontinuity condition (4.3) is necessary and sufficient to have
z € D. Under condition (4.3), it is possible to choose the piecewise-constant
approximation to y so that it too satisfies (4.3). So, henceforth, assume
that y € D, and satisfies (4.3). By Lemma 9.4.2, z € D, as well. Now, by
applying mathematical induction over the successive discontinuities of z, it
is not difficult to show that, for all sufficiently small € > 0, z(t) = z(t) for
all ¢ outside a union of open neighborhoods of the discontinuities of z. (We
strongly exploit D, at this step.) For given discontinuities of y and z, by
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making e suitably small, these neighborhoods can be chosen to be disjoint
with the property that z. is monotone on each interval. The monotonicity
together with the pointwise convergence established in Theorem 9.3.1 im-
plies the local characterization of M convergence in Theorem 12.5.1 in the
book. =

Example 9.4.3. The need for My convergence. It is possible to have z, = z
at a discontinuity point of z: For z(t) =0, t > 0, z.(t) = z(t) = y'(¢) for all
t > 0. Then z and z have the discontinuities of y. A typical case requiring
the M; convergence is y = Ijj o) and z(t) = —tljg1)(t) + (t — 2)I[1 0)(?)-
Then

ze(t) =€ N2 —t4 ) o2y () + Ip,00) (1) = 2(t) = Ip00)(t) in (D, M) .

Finally, we can combine Theorems 9.2.3, 9.4.2 and the triangle inequal-
ity (2.1) to obtain a preservation-of-convergence result for the supremum
function.

Theorem 9.4.3. (convergence preservation for the supremum map with
nonlinear centering) For € > 0, let ., y € D and let x be a Lipschitz
function in C. If

dpy, (e — z,ey) =0(€) as €l0, (4.4)
for which a sufficient condition is
e H(ze—z) —ylls =0 as €l0 forall t>0, (4.5)
and if (4.8) holds for Bad(x) in (3.28), then
ezl -2 =2 in (D, M) as €l0 (4.6)
for z in (3.6).

Corollary 9.4.2. (convergence preservation starting with the standard ini-
tial limit (4.5)) For € > 0, let zc € D and z,y € C with x being Lipschitz.
If (4.5) holds, then (4.6) holds for z in (3.39) and z € Dys. N Dy,.

9.5. Derivative of the Reflection Map
Now we consider the reflection map ¢ : D — D defined by

dz)=z+ (—zVv0)'; (5.1)
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see Section 13.4 in the book.
Results for the reflection map ¢ in (5.1) above follow from the results
for the supremum map in Sections 9.3 and 9.4 above, because

¢e(z,y) = € Pl + ey) — p(x)] =y + me(—z,—y) , (5.2)
where
me(z,y) =€ Y((z +ey)TVO—(zTVO0)]. (5.3)

Note that m.(z,y) in (5.3) differs from z.(z,y) in (3.2) only by the ex-
tra maximum with respect to 0. In most applications, we will have z(0) =
y(0) = 0, in which case the extra maximum V0 is superfluous; then m.(z,y) =
Ze(z,y). Thus, in this common case we can immediately apply the results
in Section 9.3 to obtain corresponding results for the reflection map.

Theorem 9.5.1. (derivative of the reflection map in the common case) Sup-
pose that x € D, y € D and z(0) = y(0) = 0. Then, for each t >0,

lim ¢c(z,)(t) = &(¢) (5.4)

where

<
=
Il
<
—
8
s
—
=

= y(t)—< inf ){y(s—)}/\ inf {y(S)}> (5.5)

sedl (¢ sed® (t)
and qf) € Dyjp- If, in addition,
Disc(y) N Bad(—z) = ¢ , (5.6)
then q’) € D, and
be(w,y) = d(z,y) in (Dip,My) as €l0. (57)

If, in addition, z € C, then q5 € Dysc. If, in addition, x is Lipschitz and
y € C, then there is convergence preservation: If

le Y(ze —x) —ylt =0 as el 0 forall t (5.8)
then
€ ($(@d) — $(@)) = dlz,y) in (Dip,Mi) as €l0.  (59)
for _
HO =y~ il {y()}. (5.10)
where

O L(t)={s:0<s<tz(s)=x"t)}, t>0. (5.11)
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Proof. The pointwise limit in (5.4) follows from Theorem 9.3.1, noting
that —(—y)" = y*. The fact that ¢ € Dy, follows from Theorem 9.3.2. The
stronger conclusion that ¢ € D, under condition (5.6) also follows from
Theorem 9.3.2, exploiting condition (3.30). The M; convergence in (5.7)
follows from Theorem 9.4.2. Finally, the convergence preservation ((5.8)
implies (5.9)) follows from Corollary 9.4.3. =

We now return to the general case. For that purpose, let

t; = ty(z) = inf{t > 0: 27(t) = 0} (5.12)

and
ty = ty(x) = sup{t > 0: 2" (t) = 0} , (5.13)

with #; = ¢, = oo if zT(t) < 0 for all . In many applications we will have
z(0) = 0; then ¢; = 0 and ¢, = co. It is easy to see that for any ¢, 0 < ¢ < ¢,
me(z,y)(t) = 0 for all sufficiently small positive e. Similarly, for any ¢,
ty <t < o0, me(z,y)(t) = ze(x,y)(t) for all sufficiently small positive e. We
need to examine the interval (¢; — €,t, + €) more carefully. To do so, we
exploit the following analog of Lemma 9.4.1, which is proved in the same
way.

Lemma 9.5.1. (uniform Lipschitz property for m, as a function of y) For
any €>0,t>0,z€ D and y1,y2 € D,

Ime(z, y1) — me(z, y2)lle < llyr — walle -

Our analog of Theorems 9.3.1, 9.3.2, 9.3.5 and 9.4.2 for m, is the follow-
ing.

Theorem 9.5.2. (the derivative in the general case) Suppose that x,y € D.
For each t > 0, m¢(z,y)(t) is decreasing in € and

=]

, 1<t
y(t=) vyt)vo, t=t
(t)vo, h<t<t, (5.14)
Z(t—=)VOVy(t), t=t,
z(t), t >ty

N

limme(z,)(t) = m(z,)(t) =

for me in (5.3), t; in (5.12), t,, in (5.13) and z(t) in (3.6). The limit m(z,y)
in (5.14) has limits from the left and right at all t. If x € C, then z is given
by (3.39) and z and m are upper semicontinuous. At all t not in the set

B(z) = {t;} U (Bad(z) N (t, 00)) (5.15)
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for Bad(z) in (3.28), m is either left-continuous or right-continuous. At
t = t;, m is left-continuous if y(t—) V y(t) < 0, m is right-continuous if
y(t) > y(t—) V0, and neither left-continuous nor right-continuous if y(t—) >
y(t) v O. If

(i) y(t—) <z2(t=) Vy(t) VO for te B(z)N[t,t] (5.16)
and
(i) y(t—) < z(t—) Vy(t) for te€ B(z)N (tu,00) , (5.17)
for which a sufficient condition is
Disc(y) N B(z) = ¢, (5.18)

then m is either left-continuous or right-continuous at all t, so that m € Dy ;.
Then
me(xay) —>m(z(;,y) in (Dl,’raMl) as €l0.

Proof. First, forany § > 0and T > 0, m¢(z,y)(t) = 0in [0, (0V(t;—08))AT]
and me(z,y)(t) = zc(z,y)(t) in [(t, + 0) A T,T] for all sufficiently small
positive e. We apply Theorems 9.3.1, 9.3.2 and 9.4.2 to treat the subinterval
[(ty + 0) AT, T). Hence it suffices to focus on the subinterval (t; — 4, t,, + J).
By Lemmas 9.4.1 and 9.5.1, it suffices to assume that y € D.. The argument
then is as for Theorems 9.3.1, 9.3.2, 9.3.5 and 9.4.2. =

Corollary 9.5.1. (convergence) If x,y € D, then
pe(z,y)(t) L y(t) + m(—z,—y)(t) as €l0
for ¢¢ in (5.2), each t > 0 and m in (5.14). If in addition (5.18) holds, then
be(5,9) > y+ml—z,—y) in (Diy,Mi) as €l0.

Finally, paralleling Theorem 9.4.3 for the supremum function, we can
combine Theorems 9.2.3, 9.5.2 and the triangle inequality in (2.1) to obtain
a preservation-of-convergence result for the reflection map.

Theorem 9.5.3. (M; convergence for the reflection derivative) For e > 0,
let ze,y € D and let x be a Lipschitz function in C. If condition (4.4) holds,
for which a sufficient condition is (4.5), and if (5.18) holds, then

€ (p(ze) = d(2)) =y +m(~z,~y) in (D, My) as el0 (519
for m in (5.14).

Corollary 9.5.2. Fore >0, let z. € D and z,y € C with = being Lipschitz.
If (4.5) holds, then (5.19) holds for m in (5.14), where m € Dys. N Dy,.
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9.6. Heavy-Traffic Limits for Nonstationary Queues

In this section we apply the convergence-preservation results in the last sec-
tion to establish heavy-traffic limits for nonstationary queues. We assume
that the queue-length process can be represented directly as the reflection
map applied to a net-input process, which is the difference of two nonde-
creasing processes admitting nonstationary rates.

As background, note that the queue-length process {Q(¢) : t > 0} in the
M/M/1 queue starting empty with arrival rate A and service rate y has such
a representation. In particular, for the M/M/1 queue,

Q) = ¢(X)(®), t=0, (6.1)
where X is the net-input process, satisfying
X(t)=XT(AT(t) - X" (A1) , (6.2)
with X* and X~ being rate-1 Poisson processes and
AT(t) =X and A (t)=uput, t>0. (6.3)

Then Xt o AT is a rate-\ Poisson process.

Similarly, for the M;/M;/1 queue with (integrable) time-dependent arrival-
rate function A(¢) and service-rate function y(t), (6.1) and (6.2) remain valid
with AT and A~ redefined as

+ = t s)ds an - = t s)ds. .
A(t)—/()A()d a A1) /Ou()d (6.4)

It is easy to see that there are many generalizations. First, we obtain
the queue-length process in an MMPP/MMPP/1 queue with independent
Markov modulated Poisson process (MPPP) arrival and service processes if
AT and A~ are independent stationary versions of finite-state continuous-
time Markov chains. (We then assume that X, X, AT and A~ are mu-
tually independent. We obtain the queue-length process in a more general
MMPP;/MMPP; /1 queue with independent time-dependent MMPP arrival
and service processes if AT and A~ are independent time-dependent finite-
state CTMOCs, governed by time-dependent transition functions.

We construct associated fluid queue models by letting X and X~ be
other Lévy processes instead of Poisson processes. Without loss of gener-
ality, these again can be rate-1 processes. For nodes in a communication
network with fixed bandwidth, it is natural to let X~ (¢) = ¢, ¢ > 0, but
generalizations are possible.



9.6. HEAVY-TRAFFIC LIMITS FOR NONSTATIONARY QUEUES 261

We now establish limits for a sequence of models indexed by n. For
each n, we have the four-tuple of stochastic processes (X, , X, , A}, A;))
with sample paths in D*. We then form the associated scaled stochastic
processes by letting

XH(t) = ¢ [XF(nt) — nzt(t)]

X, (t) = ;' [X, (nt) — nz(t)]

AT@) = ' [AT() —ny ™ (t)]

AL(t) = ' AL () —ny™(t)]

Xo(t) = o [XF (AT () — X5 (A7 (1) — na™ (y* () — 2~ (¥~ (1))]
Xa(t) = n7'[X7 (A1) — X7 (AL ()] ¢ >0, (6.5)

+

We think of the centering terms z©, z—, y© and y~ as deterministic func-

tions, but that is not necessary.
The following limit for the net-input process is a direct consequence of
Theorem 13.3.2 in the book.

Theorem 9.6.1. (FLLN and FCLT for the net-input process) Suppose that
(X7, X, Af, A7) = (UH U, VE V) in (DLWM)  (6.6)

for the processes in (6.5), where x+ and x~ have continuous derivatives
2T and 27, yT and y~ are continuous nonnegative and strictly increasing,
cp — 00, nfcy, — 00 and
Disc(UT oy™) N Disc(V*') =
Disc(U” oy~ )N Disc(V™)
Disc(Ut oy™ + (T oy™)VT)

¢
¢
n

) =

Disc(U oy™ + (27 oy™)V7) = ¢. (6.7)
Then, R
X, =z in (D,M) (6.8)
and
X, =X in (D,M), (6.9)
for X,, and X,, in (6.5), where
z=xt oyt —x oy~ (6.10)

and

X=Utoy"+(@Toy") VI —U 0y — (3 0y )V™. (6.11)
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Proof. As usual, start by applying the Skorohod representation theorem
to replace the convergence in distribution in (6.6) by convergence w.p.1 for
special versions, without introducing new notation for the special versions.
Then apply Theorem 13.3.2 in the book, after rewriting X' as

XF () = (n/ep)n ' X, (nt) —zt ()], t>0, (6.12)
and similarly for the other functions. That yields
e (X o A —nat oyt X, oA, —nzoy)
= UToy"+ (@ oy )V, U oy™ + (@ 0y")V7) (6.13)
in (D%, W M;y). Multiply by ¢,/n in (6.13) to get
nH X oA, X oA) = (zt oy, 27 0yT) in (D2, WM;) (6.14)
Finally, given the last condition in (6.7), we can apply addition to go from
(6.13) and (6.14) to (6.9) and (6.8). =

We now apply Theorem 9.5.1 to obtain a corresponding result for the
queue-length processes. Let

Qu(t) = ;' (@n(nt) —ng(t)), ¢>0. (6.15)
and
Q.(t) =n"'Qn(nt), t>0. (6.16)

Theorem 9.6.2. (FLLN and FCLT for the queue-length process) If, in
addition to the assumptions of Theorem 9.6.1, y* and y~ are Lipschitz
continuous, £(0) =0, P(X(0) =0) =1 and

P(UY, U, VT,V )eCcH =1, (6.17)
then
Q.=q in (D,M) (6.18)
and
Qn = Q in (Dl,raMl) (619)
for Q in (6.16) and Q,, in (6.15), where
q = ¢(z) (6.20)
for x in (6.10) and
Q=X+ z2(—z,—X) (6.21)

for z in (6.10), X in (6.11) and z in (3.16). The limit process Q then has
upper semicontinuous sample paths.
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Example 9.6.1. The M;/M;/1 queue. Now let us examine the special case
of the M¢/M;/1 queue in more detail. For the My/M;/1 queue, ¢, = /n,
zT =2~ =eand UT,U~ are independent Brownian motions. It is natural
to have

t t
+ = :tS S all + = :l:S S .
An<t)—/0 N(s)ds and g (1) /OA (s)d (6.22)

where A5 and A* are deterministic functions. We can then have
nPOE (@) —nAE (1) o> vE(#) as n— oo (6.23)

uniformly in [0, 7], where y™ and v~ are deterministic, which implies that
t

AE() - / v (s)ds = V*E (6.24)
0

Thus the assumptions of Theorems 9.6.1 and 9.6.2 are satisfied and

t
o(t) = /0 VF(s) — A (s)lds, ¢>0, (6.25)

X(#) = Ut ( /Ot)\+(s)ds>

_uU- ( /0 t )\‘(s)ds) + /0 ‘L s) — (s (6.26)

while

where Ut and U~ are independent standard Brownian motions and the rest
involves continuous deterministic functions. It is easy to see that X is equal
in distribution (on D) to

U ( /0 ‘) + A‘(s)]ds) + /0 L s) (s, 30, (6.27)

where U is a standard Brownian motion.

The FWLLN limits  and g can be regarded as the net-input and buffer-
content processes, respectively, in a fluid-queue model with time-dependent
deterministic input rate A (¢) and time-dependent deterministic potential
output rate A7 (¢). Then

_(—2)* = — min { /0 () — )\+(r)]dr} (6.28)

0<s<t
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represents the cumulative potential output that is lost (i.e., does not occur
during the interval [0, ] because of insufficient input. Then

®_4(t) = {s:0<s<t,q(s) =0,—(—2)*(s) = —(—a)*(1)}  (6.29)

ie., ®_,(t) is the set of times s at which the buffer is empty (g(s) = 0) and
there is no potential output los over [s, t].

An important special case is when A} and A\ in (6.22) are independent
of n. Then y*(t) = v (t) = 0 for all £ > 0 and the deterministic function
fot[y’L(s) — 7 (s)]ds in (6.27) is identically 0. Then the limit for the queue-
length process has one of three forms over subintervals: time-scaled standard
Brownian motion (BM), time-scaled canonical reflected Brownian motion
(RBM) and the zero function. There can be discontinuities in the sample
path when the set function ®_,(t) is discontinuous in ¢. We display possible
sample paths of (AT, \7), (—z, (—=z)T), ®_,(t), ¢ and Q when X\~ is the
constant function in Figure 9.2 below. We identify nine intervals associated
with nine time points tp =0 < t; < --- < 3.

In this example, the fluid rates start out ordered by AT (¢) < A (2).
Thus —z(t) = fg [A™(s) — AT (s)]ds is initially increasing, which implies that
®_,(t) = {t}. Thus Q(t) = q(t) = 0 for these t. At time ¢;, the ordering
switches to AT () > A~ (t). Thus after t;, —z is decreasing, so that ® ,(t) =
{t1}. At time t5, the ordering switches back to AT(t) < A~ (t), but —z(t)
does not reach (—z)T(t) = (—z)(t1) and ¢(t) does not return to 0 until ¢ = ¢3.
In the interval (¢1,%3), g is positive and @ is time-scaled BM.

At time t3, there is a discontinuity in the set-valued function ®_, and
a corresponding jump in the stochastic process Q. In the interval (¢3,%4),
—z is still increasing and ®_,(t) = {t}, so that ¢(t) = Q(t) = 0, just as
in [0,%1). In the interval (¢4,%5), AT(t) = A, so that —z is constant and
D_,(t) = [ts,t], ta <t < t5. In the interval (t4,5), Q evolves as RBM. At
t5, AT increases, so that —z decreases and ®_,(t) = ®_,(t5) = [ts,15] for
ts <t < t7. At tg, AT starts to decrease again and at t7 q(t) = 0 for the
first time. Hence, @ evolves as BM in the interval (¢5,%7).

At t7, there is a second discontinuity in ®_, and a corresponding jump
in . In the subsequent interval [t7,%g], AT(t) = A™, so that —z remains
constant. Then ®_,(t) = [ta,t5] U [t7,t] for t7 <t < tg. During the interval
[t7,ts8], q(t) = 0 and @ evolves as RBM. At tg, A" starts to decrease and
thereafter remains below A~. Hence, ®_, has another discontinuity at ts.
After tg, ®_,(t) = {t} and ¢(t) = Q(¢) = 0.

We conclude this section by relating the three possible kinds of heavy-
traffic limits for the case of the M/M; /1 queue with fixed arrival and service
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rate functions AT (t) and p (t) to the values of a time-dependent traffic
intensity, defined by

pH(t) = sup {/Ot/\+(r)dr//:/\_(r)dr}, £>0. (6.30)

0<s<t
Notice that the buffer-content deterministic fluid limit ¢ satisfies
t) = t) — inf
q(t) = a(t) - inf a(s)
= sup {z(t) —z(s)}

0<s<t

t
~ s { / A (r) — )\_(r)]dr} , (6.31)
o<s<t LJs
so that ¢(¢) > 0 if and only if p*(¢) > 1.
Moreover, we can have ¢(t) = 0 but P(Q(¢) = 0) = 0 for all ¢ in an
interval (a,b) if and only if p*(¢) = 1 in (a,b). First, we must have p* <1
since ¢(t) = 0. However, in this region we must also have

/5 () — A (r))dr = 0 (6.32)

for some s suitably chose to t. For that s,

/t AT (r)dr/ /t A (r)dr =1 (6.33)

which implies that p*(¢) > 1. Since both p*(¢) < 1 and p*(¢t) > 1, we must
have p*(t) = 1.

We thus say that the queue is overloaded, critically loaded or underloaded
in an open interval (a,b) if p*(t) > 1, p*(t) = 1 or p*(¢) < 1 throughout the
interval (a,b). In Figure 9.2 above, in the intervals (0,t1), (t1,t3), (t3,%4),
(ta,t5), (t5,t7), (t7,18) and (tg, T'), we have successively p*(t) < 1, > 1, < 1,
=1,>1,=1and < 1.

9.7. Derivative of the Inverse Map

In this section we obtain convergence-preservation results for the inverse
map

7 (t) =inf{s > 0:z(s) >t}, t>0, (7.1)
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defined on the subset D,, of functions unbounded above in D = D([0, c0), R),
as in Section 13.6 of the book. As in previous sections here, we approach
convergence preservation through a derivative representation.

To determine the derivative of the inverse map, we introduce yet another
topology on D. Recall that we introduced the M| topology on D([0,], R)
by appending a segment to the graphs, i.e., by letting

. =T, U{(az(0),0):0<a <1}, (7.2)
where I'; is the graph of z, i.e.,

I'y ={(z,5) e Rx[0,t]:
z=az(s—)+ (1 —a)z(s) forsome o, 0<a<1}. (7.3)

We now construct a similar M{' topology on D([0,t),R) by also appending
the vertical line at ¢ to the graph, i.e., by setting

I =T U (R x {t}) (7.4)

for T, in (7.2). Note that the function value at the right endpoint ¢ plays
no role in the M{ topology.

As done before for the graph I'; in (7.3), we define a lexicographic order
relation on the graph I'/ by saying that (z1, s1) < (22, s2) if either (i) s; < s2
or (ii) s;1 = s and |z(s1—) — 21| < |z(s1—) — z2|. The definition makes the
relation < a total order on the graph I'?. A parametric representation
of the graph I'J or the function z is a continuous nondecreasing function
(u,7) mapping [0,1] into the graph I'” such that r(0) = 0, u(0) = 0 and
r(1) = t. We allow the parametric representation of I to cover only part
of the vertical line at ¢. If r(s) < ¢ for all s < 1, then the parametric
representation (u,r) covers only the single point (z(t—),t). If r(s) =t for
a < s <1, then (u,r) covers a compact subinterval of either {(z,t) : z >
z(t—)} or {(z,t) : z < z(t—)}. (Since (u,r) maps [0,1] into I'), we must
have (u(1),7(1)) € T, which implies that |u(1)| < oo.) Let II”(z) be the
set of all parametric representations of T'.

A metric d} inducing the M]' topology on D([0,t), R) is defined by letting

di(z1,m2) =  inf  {Jug —ugL V |Ire —r2lli} (7.5)
(uiﬂé)zelg'(%)
We have the following lemma linking the M| and M7 topologies with
bounded function domains.
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Lemma 9.7.1. Let z,z, € D([0,00),R). If z,, - x as n — oo for the
restrictions in D([0,t2), R, M{") for 0 < t3 < 0o, then z, — x as n — oo for
the restrictions in D([0,t1],R, M{) for each t; € Disc(x)® with 0 < t1 < to.

As before, we say that z,, — z in D([0, 00), R) with any of the topologies
My, M{ or M{ if z, — z for the restrictions in D([0,],R) (D(][0,?),R) for
MJ)) with the same topology for all ¢ in a sequence {tx} with ¢ — oo as
k — oo. (The boundary points ¢; can be taken from Disc(z)¢.) We obtain
the following result from Lemma 9.7.1.

Lemma 9.7.2. The M and M]' topologies coincide on D([0,00),R).

We can combine Lemma 9.7.2 here and Theorem 13.6.3 in the book to
obtain the following connection between M{ and M;.

Lemma 9.7.3. If

zn =z in D([0,00),R,M]) ,
where 2(0) = 0, then

zn, =z in D([0,00),R, M) .

A metric d” inducing the M]" topology on D([0,00),R) is defined by
letting

o0
" (21, 79) = / e LA (21, 5)]dE | (7.6)
0

where d} (z1, z2) is understood to be the d} metric applied to the restrictions
of z1 and z3 to [0,¢). There is convergence d”(zy,z) — 0 if and only if there
exist parametric representations (u,r) of z and (un,r,) of z,, n > 1 with
domains [0, c0), such that ||u, — u||; V ||r, —r|; = 0 as n — oo for each ¢.

To apply the approach in Section 9.2, we need the inverse map to be
Lipschitz. The Lipschitz property is valid on an appropriate subset of D with
an appropriate choice of metrics. Recall that D, is the subset of functions
z in D = D([0,00),R) that are unbounded above and have z(0) > 0. For
positive t1,t, let Dy (t1,t2) be the subset of z in D, with zT(t;) > t,.
Clearly D, (t1,t2) is a closed subset of D,,. Moreover,

Dy = M35y U, D(k,m) . (7.7)

We now show that the inverse map from D, (t1,%2) C D,([0,%1], R, M)
to D([0,12), R, M{") is Lipschitz.
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Lemma 9.7.4. For t > 0, let d} be the M| metric on D([0,t),R) and let
dy be the My metric on D([0,t],R). If z1, zo € Dy(t1,12), then

:f; (xfl’ﬁz;l) < dtl ($I A tQ"/Eg A t2) < dtl ('TI,:E;) < dtl (‘Tla -7"2) . (7'8)

where (z] Aty)(s) = xj(s) Ntg, 0 < s <t.

i

Proof. For z; € Dy(t1,t9), let (u;,7;) be an arbitrary M; parametric rep-
resentation of mZT Aty over [0,t1]. Then (r;,u;) is an M{ parametric rep-
resentation of z; ! over [0,%3) with the special property that u;(1) = ;.
Hence

Y (@7t 75 t) < dy (2] Ao,z Ato) (7.9)

It is not difficult to see that
dyy (2] At 2h A to) < dy, (o], 2]) < dyy (21, 22)

Hence the proof is complete. =

Lemmas 9.7.2 and 9.7.4 imply that the inverse map from D, ([0, c0), R, M)
to Dy ([0, 00),R, M]) is continuous, which is weaker than Theorem 13.6.2 in
the book. We now want to establish an analog of Theorem 9.2.3. For that
purpose, we need both z and z~! to be Lipschitz on [0,] for all £ > 0. The
following lemma, provides natural conditions.

Lemma 9.7.5. (conditions for both z and z ! to be Lipschitz) If z € D,
is absolutely continuous, i.e., x(t) = fg z(s)ds for t > 0, with £ € D and
with 1(t) < &(t) < u(t) for all t > 0 where 0 < I¥(t) < u'(t) < oo for all t,
then

t
sL() = / (/i (s)]ds for all >0 (7.10)
0
and z and £~ are both Lipschitz on [0,t] for all t > 0, with

d

& () E(fl)(t) =1/i(z"'(2)) - (7.11)

Proof. Clearly z is strictly increasing and continuous, so that x is a home-
omorphism of [0, 00) and zoz~! = e, where o is the composition map. Thus
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which implies that

t
1) = (z71(s))]ds ;
. (t)—/0[1/< (s)lds, >0

The Lipschitz properties hold because

|z(t2) — x(t1)| = /t2 &(s)ds < ul(ty)t2 — 1]

t1

and
t2
|27 (t2) — 27 (t1)] = t [1/@(z " (s))lds < [t2 — t1]/1*(t2) . =

We now want to establish an analog of Theorem 9.2.3. Since the M/
analog of Lemma 9.2.2 is evident, we only establish the M’ analog of Lemma
9.2.1.

Lemma 9.7.6. (reduction of convergence to the derivative with the M
topology) Suppose that x is Lipschitz on [0,t] with Lipschitz constant K.
Let d} be the M{" metric on D([0,t),R). Then

di(x1 —z,20 — ) < (1 + K)d} (1, 72) -

Proof. For all € > 0, there exists n(e) > 0 and parametric representations
(’u’i,éa Ti,e) € Hé’(.’L‘Z) such that

lur,e =zl VlIre = rall < (14 n(e))dy (21, 22) - (7.12)

We now want natural modifications of the parametric representations of z;
to serve as parametric representations of z and x; — z. To obtain such para-
metric representations for z, we need to allow for the line segment joining
(2(0),0) to (0,0). Hence we first modify the parametric representations of
z;. Let (u 7 ) € II{(z;) be scaled versions of the parametric representa-

tions (u;e, 7i¢) on [4, 1] with (u] (s),7;.(s)) = (0,0), 0 < s <4, i.e,

1,€

d.

(W, (6 +8), 7§ (8 4 8)) = (uie((1 = 0)"8),mie((1=6)7"s), 0<s<1—
(7.13)

Then

e = el V IIrte = roell = llua,e = wzell Ve = roell - (7.14)
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Since z € C, (u} , 7l ) e I"(z) for i = 1,2, if

2,67 " 1,€

!/
" _Jmor, §d<s<1
(8)_{0, s=0

with u; defined by linear interpolation on (0,0). Then (u;, —uj,,7i ) €
I"(z; — z) and

||(ull,e - ulll,e) - (U’IQ,E - ug,e)” \% ||Tll,e - Tl2,e||
(Hull,e - uIZ,eH + ||‘T OTl,e —TO T2,€”) v ||Tll,e - Tl2,e||
(14 K)(1+n(e)d{ (z1,22) .

d;f,(xl —Z,T2 — IE)

ININ N

Since n(e) — 0 as € — 0, the proof is complete. =
We now obtain the M{'-analog of Theorem 9.2.3. By Lemma 9.7.2, the
M and M7 topologies agree on D([0,00), R).

Theorem 9.7.1. Suppose that z,z. € D,([0,00),R) and that z satisfies
the condition of Lemma 9.7.5. If di(ze — xz,ey) = o(€) as € — 0 for t in a
sequence {ty} with ty — o0 as k — oo, for which a sufficient condition is
lle *(ze —z) —yllt = 0 as €[ O for all t > 0, then

de et =z ez +ey) t—2 ) =0 as €0, (7.15)

where d' is the M| metric on D([0, o0, R).

Proof. For any ty > 0, choose t; such that dy, (zc—z, ey) = o(€) as e | 0 and
7 Y(t2) < t1. The assumptions imply that ||z —z||;, — 0 and ||ey|;, — 0 as
e } 0. Hence, for all sufficiently small €, z., x+ey € Dy(t1,t2). On Dy (t1,12),
we can apply Lemmas 9.7.4 and 9.7.6, and the M analog of Lemma 9.2.2
to conclude for € < 1 that there are constants K; and K5 such that

(Mot — e (@ e) - a)
< @ be) - )
Kie 'dy,(z " (x4 ey) )
Kie 'dyy (2, @ + ey)
K1 Koe Ydy, (zc — z, ey)
K Ks||(e (ze — ) — oy, - (7.16)

IANIN N DA

This argument applies for arbitrarily large to provided that we increase t;
appropriately. =
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We now focus on the derivative of the inverse map. Let
ze = ze(z,y) = €z +ey) L —az71] . (7.17)
We first observe that z. in (7.17) is monotone decreasing in y.

Lemma 9.7.7. For any x € D, and y € D, if y1(t) < yo(t) for all t, then
ze(z,y1)(t) > ze(x,y2)(t) for all € and t, where z¢ is defined in (7.17).

We now show that it suffices to consider piecewise-constant functions y,
because under regularity conditions, z.(z,y) as a function of y is Lipschitz.
Hence, for z and y given, we can replace y by y. € D..

Lemma 9.7.8. Suppose that ¢ € Dy, & € D, y1 € D, t; = z7'(t3) + 1,
0<a< |2l <ooand [[yilley < K. If lyr — yalls, <1, then

1ze(@;91) = ze(2, y2)lle, < (2/a)llyr — v2lln
provided that € < a/[K + 1].

Proof. By the monotonicity established in Lemma 9.7.7,

Ze(xayl - 6) > ze(xayl)aze(xayQ) > ze(xayl + 5)

on [0,t] provided that ||y1 — y2||s, < ¢ for a suitably large ¢;. For the given
ti1and § <1,

(@+ey) ') < (z4+elyr—0)7' (1)
< (o —e(K+6)7\0)
< m‘l(t)+€(Ka—+5)§t1

provided that d <1 and e < a/(K +1). Hence, if ||Z]|s; > a and ||y1|ly, < K
for that ¢;, the inverses are all contained in [0,#;]. Then, for |ly1 — yalls, <
d<1,

1ze(2,y1) — Ze(z, y2)llee < Nl2e(2; 91 +0) — 2Ze(2, 1 — Ot
= (@ +elyr —0))" — (@ +elyr + )l
< .Ccfl(tg) +25/a . =
We now establish pointwise convergence. For this purpose, let
Pos(z) ={t>0:z(t) >0} . (7.18)

We obtain the following result by examining the indicated cases.
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Theorem 9.7.2. Ify € D and ¢ € D, satisfies the condition of Lemma
9.7.5, then

zet)=e (z+ey) 't)—2z )] = 2(t) in R as €l0

for each t, where

, _ —yl@ (1))

(1) 2(t) = ) < 0 (7.19)
if y(z=1(t)—) > 0; »

(12) =(t) = % >0 (7.20)

f y(z=t(t)—) < 0 and y(z~1(t)) < 0 or if y(z=1(t)—) = 0, sup{Pos(y o
“HN0,t)} <t and y(z~(t)) <0;

(#48) 2(t) =0 (7.21)

otherwise: if one of: (a) y(x='(t)—) = 0 and sup{Pos(y o x) N[0,1)} = t,
(b) y(z'(t)—) < 0 and y(z=(t)) = 0, (c¢) y(z~'(t)-) = 0, sup{Pos(y o
2) N[0,8)} <t and y(z~(t)) =0, or (d) y(z~'(t)—) <0 <y(z ().

Consequently, z is either left-continuous or right-continuous at t unless
y(z(t)—) < 0 < y(x(t)), in which case z(t—) > z(t) > z(t+).

Proof. It is elementary that z.(¢) converges pointwise to z(t) for z(¢) in
(7.20) when both % and y are continuous at z7!(t), so that z is continuous
at t. For the other cases, we apply Lemma 9.7.8 to approximate y by a
piecewise-constant function. We then exploit Lemma 9.7.7 and the fact
that £ and y are elements of D. We obtain the conclusions by examining
the different cases. =

Remark 9.7.1. In order to have the pointwise convergence in Theorem
9.7.2, at a single t, it suffices to have the conditions on x and y hold only
in a neighborhood of 27 !(¢). Then z need not be absolutely continuous or
strictly increasing everywhere.

Remark 9.7.2. We have difficulty at some ¢ if z is only an increasing home-
omorphism of [0, 00). Then we can have &(z~!(¢)) = 0 and 27!(t)) = oo for
some t, so that z.(t) — oo as € ] 0.

We now want to establish M| convergence in D. However, first we note
that the limit z does not necessarily belong to D, because it may be neither
left-continuous nor right-continuous at discontinuity points.
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Example 9.7.1. We need not have z € D. To see that we need not have
z€D,evenifz € C,let z=eand let y = —Ijg 1) + Ij1,o0)- Then

Ze(t) = I[O,lfe) (t) + 671(1 — t)I[1*€,1—|—€) (t) — I[1+€,OO) (t) (722)

and
z = I[O,l) - I(l,oo) (723)
so that z(1) = 0, but z(1—) = 1 and z(14+) = —1. However, z(1) is in

between z(1—) and z(1+). =

Since z(t) lies between z(¢t—) and z(t+) for all ¢, the space D* of such
functions with the M; and M’, topologies is equivalent to D because func-
tions in D and D* have the same graphs.

Theorem 9.7.3. (conditions for convergence to the right-continuous ver-
sion) If y € D and x € D, satisfies the condition of Lemma 9.7.5 with
z € D, then

2=z in (D,M]) as €l0

for z¢ in (7.17) and z4 the right-continuous version of z, i.e. z4(t) = z(t+),
t >0 and z in (7.19). If z,(0) = 0, the convergence is in M.

Proof. First, for z and y given, with & satisfying the conditions of Lemma
9.7.5, the conditions of Lemma 9.7.8 are satisfied. Since £ € D and y € D,
z € D* for z defined in (7.19). Start by replacing z by its right-continuous
version, which has the same graph. Invoking Lemma 9.4.1, for any ¢ > 0,
let Z € D, be such that ||z — Z||; < 6;. Suppose that z=1(¢;) and z~!(¢) are
two successive discontinuity points of y (where t1,%9 < t), regarded as an
element of D.. Suppose that y(s) = ¢ > 0 in [z7(t1),z71(¢2)). Then, for
any 02 > 0, z¢(s) 1 2(s) in (t1 + d2,t2 — d2). Since z¢ and Z + d; are both
continuous in (1 + d2, to — d2), we can apply Dini’s theorem to conclude that
z¢(8) NZ(s) — 01 converges uniformly to Z(s)—d1 in (t1 4 d2,t2 —d2). Similarly,
if y(s) = ¢ < 0 in [t1,12), then we can conclude that z.(s) V (2(s) + 61)
converges uniformly to Z(s) 4+ 61 in (¢1 + d2,t2 — d2). It thus suffices to
establish local M7 convergence at each of the isolated discontinuity points
of Z; see Theorem 6.5.1. However, z. is monotone in a neighborhood of each
of these discontinuity points for all sufficiently small e. Together with the
pointwise convergence at all continuity points established in Theorem 9.7.2,
this implies the required local M; convergence. To get the strengthened
convergence to M, apply Theorem 13.6.3 in the book. =
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The derivative result in Theorem 9.7.3 holds for arbitrary y € D. By
applying Theorem 9.7.1, we obtain a corresponding preservation result, but
only under the extra condition of uniform convergence of ¢~!(z. — z) to y
as € | 0, which holds if y € C.

Below let U be the topology on D([0, 00), R) of uniform convergence over
compact subsets.

Corollary 9.7.1. Suppose that z¢, x € E. Under the conditions of Theorem
9.7.3, if le H(ze — ) —yllt = 0 as € L 0 for all t > 0, then

_1_
€

e Nz ) =2z in (D,M]) as €l0

for z4 as in Theorem 9.7.3.

9.8. Chapter Notes

As indicated at the outset, this chapter is largely based on Mandelbaum
and Massey (1995). They formulate convergence preservation in terms of
the directional derivative. We focus on the second term of the triangle
inequality in (2.1). Thus The results in Section 9.2 here are new. It would
be nice if the upper bound Ke 'di(z. — x,y) in Theorem 9.2.3 could be
replaced by Kdi (e !(z.—x),y) under reasonable regularity conditions. The
existing bound in terms of Ke 'di(z. — z,y) may be suitable for applying
strong approximations. It thus also would be nice to develop such strong
approximations to apply with Theorem 9.2.3 here.

Section 9.3 on the derivative of the supremum function is also based
on Mandelbaum and Massey (1995). We provide extensions allowing the
functions z and y appearing in z.(z,y) in (3.2) to be discontinuous. We
also do not require that the limit z have only finitely many discontinuities
in each finite interval. The arguments are quite a bit more complicated as a
result. Some simplification is achieved here by exploiting approximations by
piecewise-constant functions. In particular, for establishing M; convergence,
Lemma 9.4.2 is key.

Given the intimate connection between the reflection and supremum
maps, most of the work on the derivative of the reflection map in Section
9.5 is done in Sections 9.3 and 9.4. The application of Sections 9.3 — 9.5
in Section 9.6 to obtain heavy-traffic limits for nonstationary queues also
follows Mandelbaum and Massey (1995). They focused on the M;/M/1
queue with fixed arrival-rate and service-rate functions A*(t) and A~ (t),
drawing on the strong approximation for Poisson processes. We show how
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the results can be generalized by applying convergence-preservation results
for the composition function with nonlinear centering in Chapter 13 of the
book.

Section 9.7 on the derivative of the inverse function is new. The MY
topology extends the M| topology introduced in Puhalskii and Whitt (1997).
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Figure 9.1: A possible function z, piecewise-constant approximation Z, up-
per bound Z + § and upper boundary & of the J-neighborhood of the graph
I';+5 used in the proof of Theorem 9.4.1.
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Figure 9.2: Graphs of the time-dependent arrival-rate and service-rate func-
tions (AT (¢), A" (¢)) with A~ constant, the functions (—z, (—z)"), the set-
valued function ®_, and the limits ¢ and @) for a typical realization of the
M;/M;/1 queue.
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Chapter 10

Errors and Comments After
Publication

This chapter contains a list of errors in the book found since publication.
It also contains comments on related work.

p. 80 While ||z, —z| = 1 in Figure 3.1, dj, (zn,z) = 1/2, not 1, as claimed
just below Figure 3.1. [Anton Kleywegt, Georgia Tech]

p. 100 third paragraph: A real-valued random variable (no s). [Aubin
Whitley, University of California at San Diego]

p. 114-115 format gz—gg should be used consistently, in (5.22) as well as

(5.27).

p. 124 Formula (6.12) is incorrect. It should be

Ar(1—y)r(2y -1)

=B 2 )

Lemma 4.6.1 applies; (6.12) was calculated incorrectly given Lemma 4.6.1
and formula (6.9). In Example 4.6.1 this makes the coefficient three times
smaller when v = 0.75. [Michael Roginsky, Berkeley]

279
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p- 126 The direct simulation method described here tends to be inef-
ficient. Michael Roginsky at Berkeley has been investigating alternative
procedures, including the Choleski decomposition, which directly constructs
normal random variables with the prescribed correlations. A method based
on wavelet decompositions is described in Chapter 2 of Park and Willinger
(2000). [Michael Roginsky, Berkeley]

p. 297 A finite-waiting room version of Theorem 9.3.4 is established in

W. Whitt, Heavy-traffic limits for loss proportions in single-server queues,
2002.

This paper can be downloaded from the “Recent Papers” section on my
homepage.

p. 358 Formulas (4.15) and (4.19) are correct for the M/M/m model,
where ¢ = 3, but they are incorrect for the GI/M/m model. These errors
appear in Halfin and Whitt (1981) and were perpetuated in Whitt (1993)
and here. Formula (4.15) should be

p=p(B,2) = a(B/Vz) ,

where

a(f) =p(B,1) = [L+ S2(B)/¢(B)]

and
e=(1+)/2.

Formula (4.19) should be
P(Z <2|Z <0)=2((z+B)/Vz)[2(B/V7)

for 8 in (4.14) and z above.
See the papers:

W. Whitt, Heavy-traffic limits for the G/Hj /n/m queue, 2002.
W. Whitt, A diffusion approximation for the G/GI/n/m queue, 2002.

These papers can be downloaded from the “Recent Papers” section on my
homepage.
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p. 360 Condition (4.23) should read

(m—7)//y—=p for —oco<f<o0

[Garud Iyengar, Columbia]
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