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In this paper we describe the time-dependent moments of the workload process in the M/G/1 queue. The kth moment
as a function of time can be characterized in terms of a differential equation involving lower moment functions
and the time-dependent server-occupation probability. For general initial conditions, we show that the first two
moment functions can be represented as the difference of two nondecreasing functions, one of which is the moment
function starting at zero. The two nondecreasing components can be regarded as probability cumulative distri-
bution function (cdf’s) after appropriate normalization. The normalized moment functions starting empty are called
moment cdf’s; the other normalized components are called moment-difference cdf’s. We establish relations among these
cdf’s using stationary-excess relations. We apply these relations to calculate moments and derivatives at the origin of
these cdf’s. We also obtain results for the covariance function of the stationary workload process. It is interesting
that these various time-dependent characteristics can be described directly in terms of the steady-state workload

distribution.

In this paper, we derive some simple descriptions of
the transient behavior of the classical M/G/1
queue. In particular, we focus on the workload pro-
cess {W(¢): t 2 0} (also known as the unfinished work
process and the virtual waiting time process), which is
convenient to analyze because it is a Markov process.
Our main results describe the time-dependent proba-
bility that the server is busy, P(W(t) > 0), the time-
dependent moments of the workload process,
E[W(¢)*], and the covariance function of the
stationary workload process.

The transient behavior of the M/G/1 queue (and
more general models) has been studied extensively,
so that there is a substantial literature, including the
early papers by Kendall (1951, 1953), Takacs (1955,
1962b), Bene§ (1957), and Keilson and Kooharian
(1960); the advanced books by Takdics (1962a, 1967),
Benes (1963), Prabhu (1965, 1980), Kingman (1972),
Cohen (1982), Asmussen (1987), and Neuts (1989),
and the more recent papers by Ott (1977a, b),
Harrison (1977), Middleton (1979), Rosenkrantz
(1983), Blanc and van Doorn (1986), Cox and Isham
(1986), Gaver and Jacobs (1990), Baccelli and
Makowski (1989a, b), and Kella and Whitt (1991). A
good basic reference is Kleinrock (1975).

Nevertheless, we believe that we have something
to contribute. We focus on relatively simple exact
relations and approximations that are convenient for
engineering applications. In particular, we extend
previous work for the same purpose in Abate and
Whitt (1987a-c, 1988a—d). Our earlier work described
the transient behavior of one-dimensional reflected
Brownian motion (RBM) and various processes asso-
ciated with the M/M/1 queue. The M/M/1 workload
process was discussed in Section 6 of Abate and Whitt
(1988b). Since RBM and the M/G/1 processes can
serve as rough approximations for many other queue-
ing processes, these results help describe how a large
class of queueing processes approach steady state.
These results provide simple analytical approxima-
tions in the spirit of the empirical work by Odoni and
Roth (1983). The RBM and M/M/1 approximations
have also been applied to gain additional insight into
queueing simulations in Whitt (1989, 1991).

There are two main objectives in relation to our
previous work. First, we want to see how the theory
for RBM and M/M/1 extends to the M/G/1 model. As
indicated in Remark 6.3(b) of Abate and Whitt
(1988b), much of the theory does extend and now we
provide the details. Second, we want to see how well
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the RBM and M/M/1 approximations work for the
M/G/1 model. We focus on the first objective in this
paper; we intend to focus on the second objective in
a sequel. Our approach to approximations is dis-
cussed in Section 1 of Abate and Whitt (1987a),
Section 8 of Abate and Whitt (1988b), and Abate
and Whitt (1988c).

Moment CDFs and Moment-Difference CDFs

As in our previous work, the special case of starting
out empty plays an important role. We represent the
kth moment function starting at x as

my (¢, x) = E[W()*|W(0) = x]
= m (2, 0) + di(t, x) (1)

and we show that the kth moment function starting
empty m,(¢, 0) is nondecreasing in ¢ for all k, while
the kth moment difference function d,(¢, x) is nonin-
creasing in t for k = 1, 2. Indeed, except for the
monotonicity of d,(¢, x), which is covered by
Theorem 11 here, this result was obtained for the
M/G/1 workload process and other reflected Lévy
processes without negative jumps in Theorem 7.3 of
Abate and Whitt (1987b). (It is important to add the
condition of no negative jumps there!)

Since the functions m,(¢, 0) and d,(¢, x) are mono-
tone (the last only for k = 1 and 2), we can express
them as probability cumulative distribution functions
(cdf’s) after appropriate normalization. For m,(t, 0),
we just divide by the steady-state limit m, () =
m; (%, x). Looking at the moment cdf’s

H (t) = my(t, 0)/my(=), t 20, (2)

is convenient for interpretation, because we separate
the steady-state value m,(») from the proportion
of the steady-state value attained at time £. Moreover,
as before, the moment cdf’s have nice probabilistic
structure. See Section 1 of Abate and Whitt (1987a)
for more discussion.

Much of the probabilistic structure is expressed via
the stationary-excess operator. For any cdf F on the
positive real line with mean f,, let F, be the associated
stationary-excess cdf (or equilibrium residual lifetime
cdf) defined by

Fo(t)=fi! I [1= F(u))du, t = 0; 3)
0

e.g., see p. 193 of Karlin and Taylor (1975),
Whitt (1985), and pp. 319 and 337 of Abate and Whitt
(1988b). Let f; and f., be the kth moments of F and
F,, respectively. Then
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fex = fra1/tk + 1) f1. 4)

Let F®(0) and F%)(0) be the kth (right) derivatives at
the origin of F and F,, respectively. Then

FI(0) = 1/f; and FEH(0) = —FID(0)F®(0). (5)
By Theorem 7.3 of Abate and Whitt (1987b),

_ [T PW(=) > y)
Hl(’)‘L EW(=)]

= J FyO(t) dVe(y), (6)
0

P(Tyo < t)dy

where V(t) = P(W(x) < t), V, is the stationary-
excess cdf associated with V, T, is the first passage
time from y to 0 and F, is its cdf, whose Laplace-
Stieltjes transform is given by (33). Moreover, here
we show that the second-moment cdf is the station-
ary-excess of the first-moment cdf, just as it is for the
M/M/1 workload process (see Theorem 5 of Abate
and Whitt 1988b and Theorem 2).

Paralleling (2), we also form the two moment-
difference cdf’s

d1 (¢, x)
x

da (¢, x) (7)
x2

Gi(t,x)=1- and

Gy(t,x)=1-

The moment-difference cdf’s also have nice structure.
Indeed, by Theorem 7.3 of Abate and Whitt (1987b),

Gl(t,x)=%f

0

X

P[Tyy < tldy, (8)

where T, is the first-passage time fromy to 0. Here
we show that the second-moment-difference cdf G, is
the stationary-excess of the first-moment-difference
cdf G, (see Theorem 11). From (4), (6), and (8), we
see that the moments of H, and G, fori = 1, 2 can
be determined in terms of the moments E [Tﬁo]; we
determine the first four in Theorem 7.

Just as we did before for RBM and M/M/1, in this
paper we also derive the moments and derivatives at
the origin of the M/G/1 moment cdf’s and moment-
difference cdf’s, so that we can also derive approxi-
mations for these cdf’s just as we did for the M/M/1
cdf’s in our previous work; e.g., we can fit a cdf to the
special characteristics. See Abate and Whitt
(1987a, 1988c) and Johnson and Taaffe (1989, 1990,
1991) for more discussion.
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Expressions in Terms of the Steady-State
Workioad Moments

An interesting feature of the M/G/1 model in contrast
to many other stochastic models is that the steady-
state workload distribution depends on all the ingre-
dients of the model, in particular, the full service-time
distribution (see Whitt 1983). Thus, the steady-state
workload distribution determines the service-time
distribution and, in principle, the transient behavior.
Consistent with this property, we show that the mo-
ments of the moment cdf’s have relatively nice ex-
pressions directly in terms of the steady-state
workload moments v, = m,(»). (In part, this is
explained by (6).) The steady-state moments, in turn,
can be expressed in terms of the service-time mo-
ments via the Takdcs (1962b) recurrence formula, (20)
below.

For one example, let &, be the jth moment of the
moment cdf H, in (2), let v, = m,(») = E[W(x)*] be
the kth moment of the steady-state workload cdf 1,
and let v, be the kth moment of the steady-state
workload stationary-excess cdf V/,. Let the service
rate be 1 and let the arrival rate and traffic intensity be
p, which we assume is less than 1. Then, by the
corollary to Theorem 6,

=Yt _(_1 (X2
m=125= (7550 (5) ®
Note that 4, provides a summary description of the
time it takes for the mean E[W(z)|W(0) = 0] to
approach its steady-state value m ().

For a second example, let {W*(¢): + 2 0} be a
stationary version of the workload process, with
W*(0) £ W(x), where £ denotes equality in distri-
bution. Then the covariance function is
C () = EIW*OW*()] - EIW*0)]* ¢ 2 0, (10)

and the asymptotic variance is

©

ol=2 J C, (t)dt (11)
1}

(e.g., see p. 1345 of Whitt 1989). In the same spirit as
(9), we show that
V3 = VaVy

1-p
(see Theorem 10). Formula 12 extends Benes (1957),
Ott (1977a), and Theorem 8 of Abate and Whitt
(1988b). Note that

od/Var W*(0) = (v3 — vav1)/[(1 = p)(v2 = v])]
provides a summary description for the time ¢ it takes

for the dependence between W*(0) and W*(¢) in the
stationary version to die out. Note that this summary

ol =

(12)

measure differs from 4, in (9), but both are of order
(1-p2asp—1.

Organization of this Paper

Here is how the rest of this paper is organized. In
Section 1 we define the M/G/1 workload process and
introduce our notation. In Section 2 we present a
simple derivation of differential equations for the
M/G/1 moment functions. This produces a nice sim-
ple derivation of the Takéics (1962b) recurrence rela-
tion for the steady-state moments. In Section 3 we
apply the differential equations to establish the key
relations among the moment cdf’s. In Section 4 we
review the relations among the basic transforms de-
scribing the M/G/1 transient behavior. In Section 5
we apply these transform relations to derive the mo-
ments of the moment cdf’s. In Section 6 we describe
the covariance function in (10). In Section 7 we es-
tablish properties of the moment-difference cdf’s in
(7). In Section 8 we mention complementary-cdf
cdf’s. Finally, in Section 9 we present previously
omitted proofs.

1. THE M/GA MODEL

In this section we quickly review the M/G/1 model
and introduce our notation. As usual, the M/G/1
queue has a single server, unlimited waiting space, a
Poisson arrival process, and i.i.d. service times that
are independent of the arrival process. The standard
queue discipline is first-in first-out, but because we
are focusing on the workload process, the specific
queue discipline will not matter.

Let A = {4(¢): ¢+ 2 0} be the Poisson arrival
counting process and let it have intensity p. Let
{S,: n 2 1} be the i.i.d. sequence of service times
and let S be a generic service-time random variable
(having the distribution of §;). We assume that S
has cdf G with mean 1. Thus, the traffic intensity is p,
the same as the arrival rate. We are interested in the
stable case, so we assume that p < 1.

Let the fotal input process be X = {X(t): t =z 0},
where

X(t)=8,+-+8S40,t20, (13)

with S, = 0. Note that X(¢) represents the total input
of work in the interval (0, #]. The process X is a
compound Poisson process. Let the net input process
be Y = {Y(¢): ¢ = 0}, where

Yt)=X()—t,t = 0. (14)

Let the workload process be W = {W(t): t = 0},
defined by
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wit)
Y(¢) + W(0) if inf Y(s)>-W(0)
T Y® - it Y(s) it inf Y(s) < -W(0),

(15)

where W(0) is an initial workload that is independent
of {4(¢): ¢ = 0} and {S,: n = 1}. Note that W is
obtained from Y and W(0) by simply applying the
one-dimensional, one-sided reflection map (e.g., see
p- 19 of Harrison 1985).

It is significant that Y is a Lévy process without
negative jumps. The results here hold when Y is re-
placed by another Lévy process without negative
jumps, but we do not discuss that case (see Harrison
1977, Middleton 1979, Prabhu 1980, and Kella and
Whitt 1991 for related material).

2. THE MOMENT DIFFERENTIAL EQUATION

Let m,(t) = m,(t, x) be the kth moment function
defined in (1) and let py(¢) be the emptiness probabil-
ity function, i.e.,

po(t) = polt, x) = P(W(t) = 0|W(0) = x). (16)

In this section we will obtain simple expressions for
the derivatives of the moment functions 1, in terms
of the emptiness probability p,. We focus on
the emptiness probability itself in Section 4.
Thus, the emptiness probability is fundamental. This
idea does not seem to be as well known as it should
be, but it certainly is not new. Indeed, this idea is a
major theme in Benes (1963).

To describe the transient behavior of the workload
process, it is customary, following Takdcs (1955,
1962a, b), to start with an integrodifferential equation
for the cdf P(W(t) < x) or its Laplace transform, but
we will show that it is relatively easy to treat the
moment functions directly. (This observation has
been made with the closure approximations for
queues with time-dependent arrival rates, e.g., see
Rothkopf and Oren (1979). The results in this section
also hold for time-dependent arrival rates.)

First, we establish (review) necessary and sufficient
conditions for the moment functions to be finite, for
fixed ¢ and in the limit as ¢+ — «. Let => denote
convergence in distribution. All omitted proofs
appear in Section 9.

Proposition 1. a. Here m,(t) < » if and only if m;(0)
< « and E[S*] < .

b. W(t) > W(») ast — © where P(W(x®) < o) = 1.
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c. If m,(0) < ®, then my(t) = my(=) = E[W(®)*] as
t — w0, where m,() < ® if and only if E[S**'] < =.

Note from Proposition 1 that one higher moment of
S must be finite to have m, () < » than is required
to have m,(t) < = fort < .

We now consider the derivative with respect to
time of the kth moment function, denoted by m;(¢).
An expression for the derivative of the first moment
function follows from a basic conservation law, i.e.,
rate-in equals rate-out (e.g., see p. 55 of Takacs
1962a). In particular, since the rate-in of work is
t~'EX(t) = p and the rate-out at time ¢ is 1 — po(?),

mi(t)=p =1 +po(®), t>0, 17
or, equivalently,

my(t) =m(0) + (p ~ 1)t

+I polu)du, t > 0. (18)
0

Since W(t) > W(x) as t = ®, py(t) — po(®) as
t — «. By Little’s law (L = AW) applied to the
server, we know that py(®) = 1 - p. Hence,
mi(t) > 0ast — o,

Our main result in this section is a higher-moment
extension of (17). When we let t — », we immediately
obtain the Takacs (1962b) recurrence formula for the
steady-state moments (see (5.112) on p. 201
of Kleinrock 1975, Lemoine 1976, and p. 185 of
Asmussen 1987). The first steady-state moment is
the Pollaczek-Khintchine mean value formula for the
workload. The proof is very simple except for a few
technical details; we sketch it here. We provide the
extra technical details in Section 9. Let my(») = 1
and let £ denote equality in distribution.

Theorem 1. a. If m,(t) < » for some k, k = 2, then
the derivative m(t) exists and

mi(t) = pE[S¥] = (1 = plhm_y (1)
k-1 k
+o 3 (5)ElSImes, o). (19)
7=2

b. If my,,(0) <  and E[S*"'] < = for some k,

kz21,thenmp (t) > 0ast - »and

E(S]+l]
j+1

k

my () = 1—:)'121 (ﬂc)

me_, (=), k = 1. (20)

Sketch of Proof. (See Section 9 for more.)

Part a. We calculate m,(r + €) — m,(¢) to order e by
conditioning and unconditioning on W(¢). We say
that f(e) = o(e) if f(e)/e = 0 as € — 0. Note that
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X(t + €) — X(t) is independent of W(t). More-
over, X(t + €) — X(t) £ X{(e). To order e, there is
either one arrival in 4(e) or none. Hence, ignoring
complications when 0 < x < €, we have

E[W(t + e)KW(1) =x > 0] = peE[(x + S — €)4]
+(1 = pe)E[(x — €)¥] + o(e)
k
=pe Y (f)x’E[S"‘f] +(1—pe)xk—ekx*1+0(e)
j=0
and
E[W(t + e)4W(t) = 0] = peE[S*] + o(e).

Next, upon unconditioning, ignoring the problems
involving interchanging the expectation with the limit
as € — 0, we obtain

k
met + &) ~mi(e) = pe 3 (K) ELSImecs ()

j=0
+ (1 —pe)my(t) — ekmy_(¢)
— my(t) + o(e). (21)

We obtain (19) from (21) by noting that the three terms
involving m,(t) cancel, combining the two terms in-
volvingm, _,(¢), pulling out the term involving m (¢},
dividing by € and letting € — 0.

Part b. We apply mathematical induction. When
we are considering my,(f) given the condition
E[W(0)*'] <  and E[S**"] < «, we have m,(t) —
m;(=) < = for each j < k by the induction assump-
tion, because E[W(0)'*!] < » and E[$'*'] < « for
allj < k. Assuming now that m;_ () > 0 ast — =
(which we will prove later), we see from (19), with £
replaced by k + 1, that m,(t) — my() as t — o,
where

S S
(k + 1)(1 - p)

—_r S k+1\prei -
a2 T B )

k+1
P 1 k+1
=— — " T JE[S Imisq- (),
1—p,§2k+1( FDELS Imiss -, ()
which becomes (20) upon making the change of
variables I = j — 1; e.g., then

my (@) = E[S**1]

1 (e+1y__1 (k
k+1( J )‘1+1(l)'
From (17) and (19), we see that the moment func-
tions m, depend on the arrival rate p and the service-
time distribution only via p, the service-time moments
and the emptiness probability py(¢). Moreover,

(17) and (19) provide a recursive formula for m,(z)
in terms of p, E[$'], 1 <j < k, and p,,.

We conclude this section by mentioning that the
proof of Theorem 1 also applies to the M/M/1 queue
length moments, so that we can obtain different
proofs of our previous results.

3. THE MOMENT CDFs

We now focus on the special case in which we start
empty, i.e., P(W(0) = 0) = 1. Then, as we show
below, W(¢) is stochastically increasing in ¢ and we
can regard appropriately normalized moment func-
tions as probability cumulative distribution functions
on the positive half-line. (A real-valued function F on
the positive half-line is a cdf if it is a nonnegative and
nondecreasing with F(») = lim,_,, F(z) = 1. By
convention, we take it to be right-continuous.

Recall that one random variable Z, is stochastically
less than or equal to another Z,, denoted by Z, <,,
Z,, if E[g(Z,)] < E[g(Z,)] for all nondecreasing
real-valued functions g for which both expectations
exist. A family of random variables {Z(¢): ¢ = 0} is
stochastically increasing if Z(¢t,) <, Z(t,) for
0 < t, < t,. The following result is well known, but
worth emphasis.

Proposition 2. If P(W(0) = 0) = 1, then the workload
process {W(t): t = 0} is stochastically increasing.

Proof. Since the net input process {Y(¢): ¢ = 0} has
stationary independent increments

W) S M@ = sup (¥, 130, (22)

when W(0) = 0 by (15). Obviously M(z) is
nondecreasing in # w.p.1. Hence, E[ g(M(¢))] is non-
decreasing in ¢ for each nondecreasing real-valued
function g. Finally, by (22), E[g(W(¢))] =
E[g(M(®))].

Henceforth, in this section we assume that
P(W(0) = 0) = 1. For emphasis, we thus write pg,
for p,. As a consequence of Proposition 2, we can
form cdf’s associated with the moment functions
m(t) as defined in (2) whenever m(») < ». More-
over, as a consequence of Proposition 2, pyo(2) is
nonincreasing in z. Since pge(0) = 1 and pge(®) =

1 — p, we can form a Oth-moment or server-
occupation cdf H, by setting
Hy(t)=[1-po(®))p, t20. (23)

It is significant that the emptiness probability func-
tion pgq is a well-studied object. In particular, it is a
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standard p function associated with a regenerative
phenomenon in the sense of Kingman (see p. 38
there). It follows from Theorem 2.3 on p. 32 of
Kingman that p,, is Lipschitz continuous with mod-
ulus p, that is,

|Poo(t2) = Poo(21)] < pltz — 24| (24)

for all positive ¢, and t,, because py(0) = —p.
Consequently, pyo is absolutely continuous with re-
spect to Lebesgue measure, which implies the same
for Hy in (23), so that H, has a density s, with

t

Ho(t) = J ho(u)du, t 2 0, (25)
[

and 0 < hy(¢) < 1 for all 2. However, as illustrated by
considering the case of deterministic service times
(see p. 39 of Kingman), H, is not necessarily differ-
entiable at all . (These important properties of the
emptiness probability function p,, were also obtained
directly by Ott 1977a.)

As in our previous papers, we relate the different
moment cdf’s to each other by using the stationary-
excess operator in (3). Our main result in this section
follows directly from Theorem 1. It is a generalization
of the M/M/1 result in Theorem 5 of Abate and Whitt
(1988b). Recall that v, is the kth moment of
V(t) = P(W(x) < t).

Theorem 2

a. If E[S**'] < », then H, is a proper cdf.

b. Hl = HOe'

C. H2 = Hle'

d.H; = (1 + a3)H,, — azH,, where a3 = 3v,v,/v,.

e. H4 = (1 + ay + B4)H3e - a4H3 - B4H2, where
_ 4V1V3 6V22

ay —T and B, —74—.

Proof. By Proposition 2, H, is a proper cdf provided
that v, = my(o) < o, which holds if and only if
E[S**'] < « by Proposition 1. To obtain the explicit
expressions, apply (13) and Theorem 1, noting that
hi(t) = m(t)/m, () is the probability density func-
tion of the kth moment cdf H,, while

hie(t) = hee (0)[1 — Hi(8)], £ 2 0, (26)

is the probability density function of A, by (3)-(5).
For example, from (17),

hi(@)m () =mi(t) = p — 1+ poo(?)
= p[1 = H,(9)],
so that by (26),
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hi(t)m(2)/p = hoe()/ho(0),

K 0e EJ x dHy(s)
0

= 1/h1(0) = m()/p

and, indeed, 4; = hg,. The various expressions, in-
cluding the constants in parts d and e, are obtained by
algebraic manipulation. Given the stated results, it is
easy to see how to group terms to verify the formulas.

From Theorem 2, we see that the moment cdf’s H,
for k < 4 can be expressed directly in terms of
the Oth-moment cdf H,. Moreover, by (4) and (5), the
moments of H, and the derivatives of H, at¢ = 0 can
be expressed directly in terms of the corresponding
quantities of H,.

4. BASIC LAPLACE TRANSFORM RELATIONS

In Section 3 we saw that the moment cdf’s H, can be
expressed in terms of the emptiness function p,, or
the associated server-occupation cdf H,,. In this sec-
tion we review the basic Laplace transform relations
that enable us to determine pg, and H,. Unfortu-
nately, however, the situation is not quite as simple as
in the M/M/1 case, because we characterize pg, only
via a functional equation for its Laplace transform. In
very few cases (M/M/1 is one) can we obtain a direct
expression for this transform. Nevertheless, in the
next section we apply these transform relations to
determine the moments of H, and thus the moments
of the moment cdf’s H, for k < 4. The functional
equations can also be solved iteratively to numeri-
cally invert the transforms (see sections 1.2 and 2.2 of
Neuts 1989, and Abate and Whitt 1992a, b).

For any cdf F, let f be its Laplace-Stieltjes trans-
form (LST), defined by f(s) = [g e ™" dF(¢), which
coincides with the Laplace transform of its density f
when F(¢) = [ f(u)du for all ¢; i.e., then f(s) = [&
e *'f(t)dt. Thus, ¢ and g, are the LSTs of the
service-time cdf G and the associated service-time
stationary-excess cdf G, respectively.

As before, let V' be the cdf of W(») whose LST is
given by the Pollaczek-Khintchine transform formula

sy t=p
U TR &7

(see (5.108) on p. 200 of Kleinrock). Let B be the cdf
of a busy-period distribution and recall that its LST b
is characterized by the Kendall functional equation

b(s)=2(s + p — pb(s)); (28)
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(see (59) in Kendall 1951, the discussion by I. J. Good
on p. 182 there, and (5.137) on p. 212 of Kleinrock
1975).

Let n and { be two functions defined by

n(s) =s —p + pg(s) and
{(s) =5+ p— pb(s). (29)

The functions 1 and ¢ are inverse functions in the
sense that, for any s,

n({(s)) = s, (30)

as it is easy to see from (28) and (29). Note that we can
rewrite (28) and (29) as a functional equation for ¢,
namely

s+ p = {(s) = pg(£(s)). (31)

The function ¢ in (29) is known to be the exponent
of the first passage time LST. In particular, as before,
let T, be the first passage time from x to 0 and let F
be its cdf. The cdf F, is related to the probability of
emptiness p,o(t) = P(W(t) = 0|W(0) = x) by

{4
Pro(®) = (Fro *poo)(t) = j Poolt —wdF @), (32)
0
where * denotes convolution, as is easy to verify by
first principles; i.e., to be at 0 at time ¢# you have to
reach 0 for a first time somewhere in the interval
(0, ?].
The LST of the first-passage time cdf F,, is

©

Fols) = J e~ dF (1) = e (33)
]

for {in (29), and the Laplace transform of p,(¢) is

® e x4
paals) = j e Stpaa(0)dt = (34)
0 {(s)
(see (9) on p. 52 of Takécs 1962a, p. 229 of Kleinrock
1975, and p. 70 of Prabhu 1980). Hence, if W(0) has
cdf F,, then
" fo(¢(s)
pots) = [ e potnn =25 (35)
0 {(s)
(see (9) on p. 52 of Takacs 1962a).
As a consequence of (34), we have the Laplace
transform of the emptiness function py,, i.€.,

®

, _ st 1
Poo(S)=L e Fpoo(t)dt )

1
“s+p-pb(s) (36)

The final expression confirms that pg is a standard p
function associated with a regenerative phenomenon
(see (4) on p. 38 of Kingman).

By combining (28), (29), and (36), i.e., by replacing
b(s) by g({(s)) in (36), we see that p, satisfies the
functional equation

1
s+p - pg(Lpeols))

The functional equations (28), (31), and (37) are ob-
viously equivalent; i.e., a solution to one yields a
solution to all.

To do further analysis, it is convenient to introduce
an additional random quantity. As in our previous
papers, let T, be the first passage time to 0 starting
in equilibrium; let F (t) and f,o(s) be its cdf and LST,
respectively. Consistent with previous notation, let
(feo)x be the kth moment of F ;.

Poo(s) = (37)

Theorem 3. a. The LST of the equilibrium time to
emptiness is

(1= p)(s) _
pYLs) _

feols)=1-p +pb.(s) = P(L(s))

= D(sfeo(s)/(1 = p));

b. (FEO)e = Bee;
C. (feo)x = pbex forallk = 1.

Proof. (Part a) By first principles, in equilibrium the
probability that the server is idle is 1 — p and, given
that the server is busy, the remaining busy period has
the busy-period stationary-excess distribution, so
that we obtain the first formula. Alternatively, from
first principles and (33),

feols) = f

0

-]

Fa(s)dV(s) = J e HOqV(x)
0

= P(£(s)), (38)
but from (27) and (29),
1 —_
o) = 22 (39)
n(s)

so that, by (30),

Fols) = (1 —p){(s) _ (1= p)(s)
1(L(s)) s

_(1=p)(s +p = pb(s)

S

=1- p+ pl;e(s)’

with the last step holding because
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. (1 -b(s))
be(s)=(1-p) ———. (41)
We have thus established all formulas except the last
one. However, from the second formula, we see that
f(s) = sf.o(s)/(1 — p), which establishes the final
formula.

For part b, apply (3), noting that 1 -—
F_(t) = p[l — B.(t)]. For part c, apply the first
formula in part a.

We now obtain expressions for the LSTs ho(s) and
h.(s). See Corollary 5.2.1 and Theorem 9.1 of Abate
and Whitt (1988a) for related M/M/1 results. Note
that Ay(s) = b(s) in that case.

Theorem 4
. b.(s) b.(s
a. ho(s) = = ©

fe0(s) C1-p+pb.(s)

. bee(s)  (feo)e
b. hi(s) = 0. (L(s)) = hoe(s) = - $)_ U s)_

fels)  feols)

Proof. (Part a) By (23),
. 1-sp
o) = ), (42)

P
so that, by (36) and (41),

b
flo(s)=l[1—- S _ ]: e(s)A i
p s+p—pb(s)] 1-p+pb.(s)

which yields the first formula, by Theorem 3a.
(Part b) By (6),

® o

le(s>=f fyo(s)dVe()’)=J
0

0

e VOV, (y)

=Ve({(s))-

By Theorem 2b, 4, = A.. By (3) and the result from
part a, for some constant c,

; _Crq_f _c|q_ be(s)
hoe(s) = S [1 = ho(s)] =3 [1 1=+ 05.0)
_cbee(s)
feO(s) .

However, since sze(s)on(s) and b, (s) are proper
cdf’s, we must have ¢ = 1 and the desired result.

Remark 1. The results in Theorem 4 suggest that
1/feo(s) might be the LST of a bonafide cdf, but this is
not true. Indeed, 1/fo(s) = sPgo(s)/(1 — p) is the
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Laplace transform of {8, + poo(£)}/(1 — p), where &
denotes a unit point mass at 0 and —p < pg(t) < 0.

5. MOMENTS OF THE MOMENT CDFs

Even though the M/G/1 transient quantities of inter-
est are only characterized implicitly via transform
functional equations, we can obtain the moments by
differentiating. For the busy-period functional equa-
tion (28), this involves a reversion of series, as nicely
described on p. 148 of Cox and Smith (1961).

As before, we will denote the kth moment of a cdf
F or its LST f by f,. Since the steady-state workload
W(x) has cdf V, this means that its kth moment is
denoted by v, as well as m, (). We show that it
is convenient to express the moments b, kg, and
hy in terms of the moments v,. To interpret the
results that follow, recall that g, = 1 and, from (4) and
(20),

P [k
ve=—t—3 (j)ge,vk_]. (43)
P =1

We first apply the relation
feols) = D(sfea()/(L = p)) (44)

in Theorem 3a to express the moments b, in terms of
the moments v,. Recall from Theorem 3c that
(feo)x = pbex- Let (£ )i be the kth moment of the
j-fold convolution of F,y, i.e., of the transform f,(s)’.
We give a recursive expression for (f,)x = pb., for
all k and then a convenient explicit expression for the
first four moments of the busy-period stationary-
excess cdf B..

Theorem 5

o (e =t = 3 )

(fET)I )k—]v k= 1’
AV -y

Vi
b. b = i=p)
c. b= vy + 2vi
p(1—p)*’
d. buy = vs + 9v,vy + 6V
p(1=-p)* ~
e b= Ve + 16vavy + 12v3 + T2v,vi + 24v‘1‘.

p(1 - p)*
Proof. From Theorem 3a,

A — - _ kpbeksk
feo(s) kgo( 1Y) T (45)
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while

k

v(s) = i (—1)* ﬂ (46)
k=0 k!

Combining (44)(46) and rearranging terms yields the
results.

From Theorem 5a, we see that ( f.o), iS monotone
in (vq, ..., v¢), which, in turn, is monotone in
(81> +++ > 8x+1) by (20). (We then think of the arrival
rate as fixed instead of the mean service time.)

Since b, = (1 — p)~! and b, = by,4/(k + 1)by,
we have the following corollary to Theorem 5.

Corollary
2v
a. b2 = ! 2
p(1 = p)
3(vy + 2vd)
b. by = 222D,
p(1-p)°
4(V3 + 9V2V1 + 6V%)
C 4 = P s
p(1 —-p)
i b 5(ve + 16v3vy + 12v3 + T2v,vi + 24v7)
. D5 = .

p(1-p)°

Similarly, we apply the relationflo(s)ﬁ ols) = b.(s)
in Theorem 4a to obtain expressions for the moments
hog- As in Theorem 5, we give a recursive expression
for hg, for all k and then convenient explicit expres-
sions for the first four.

Theorem 6

a.hox = b — p 2 (J beihox-p, k2 15

Vi
b. hg1 =(1 — p)b, =—;
o1 =(1=p)b, P

Va
c.hp=0—-p)b. —2p(1 - bl = ———;
02 =(1=p)b. —2p(1-p)bs o -p)

+3

d_h03=‘ﬁ_ﬁv_21;
p(1-p)

+ 8

e. hoy = Ve T O3V + 12v,vE + 6v3.

p(l - p)?

Note that ph,; represents the expected total server
utilization lost by starting at 0 instead of in steady
state; i.e., by (23),

a

phor =p J [1 - Hy(2)dt
0

®

= J' [p— (1 - poo(e)))de
0

t

= lim F

t—>x

J (Lgprwy>0p — Liwwy>opwio)=03)du |,
0

where 1 is the indicator function of the set B and W*
is the stationary version, as in (10).

By combining (4), Theorems 2b and 6, we obtain
expressions for the first three first-moment cdf
moments A ;.

Corollary
_ 1 (VZ ) Vel
T1-p\2vy) 1-p°
1
b. h12 = ( )
(1-p)? 30

1 Vs 3vi
——('_+2V3 +3V2V1 + — )
(1 —_ p)3 4V1 2v1

Theorems 5 and 6 and their corollaries obviously
can be extended to higher moments, but we have yet
to discover general expressions for the kth moment.
Such general expressions (of a sort) follow from (6),
however. For this purpose, we describe the moments
of the first passage time from x to 0, T, (see p. 79 of
Prabhu 1980).

a. hyy

Vez + VZ

( —p)2

C. h13 =

Theorem 7. The first four moments of the first
passage time T, are:

pd

a. (fxo)1 1=,

b. (fro)2 = ——— (v +X);
(1-p)

-p

x
c. (fro)s=—"7 (3va + 6vy(vy +x) +x2);

(1-0p)

d. (fro)e = —— (4v3 + 36v,v, + 24v3
(1-p)

+ 12vox + 36vix + 12vx? + x3).

Proof. Differentiate the transform in (33) and re-
express in terms of the moments v,.

Combining (6) and Theorem 7, we obtain an alter-
nate proof of the corollary to Theorem 6. We also
obtain the following general result directly from (6).
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Theorem 8. For all positive integers k,

®

B = J E[TA1AV. ().
0

General expressions in terms of g, or v, for arbitrary
k in Theorems 5-8 remain a mathematically interest-
ing open problem.

We can also apply (6) and Theorem 2 to describe
the derivatives of H, at the origin.

Theorem 9. a. Forally > 0,
Fyu)y=0,0st<y, (47)

so that F) = 0 and H\")(0) = 0 for allj > 1.
b. Hz(l)(O) = (1 = p)v,, while HZ(J)(O) = 0 for all
iz 2

Proof. a. Note that W(r) decreases at most at rate 1,
so that P[T,,, < y] = 0; (47) with (6) implies the rest.
b. Apply (5) and Theorem 2c.

We can also use Theorem 2, (4), and (5) to obtain
HP(0) fork = 1 andj = 1.

6. THE COVARIANCE FUNCTION

Let C,,(¢) be the covariance function of the stationary
workload process, as defined in (10), and let ¢,,(¢) be
the associated correlation function defined by

C,(¢) = Var (W())c, (2), t = 0. (48)

The functions C,,(¢) and c,,(¢) were studied by Benes
(1957) and Ott (1977a, b). Indeed, Ott derived many
structural properties for C,, (¢), including the fact that
C,(¢) and C, () are monotone, which implies that
1 — ¢,,(¢) is a bonafide cdf provided that E[S?] < «,
so that Var (W(«)) < «. In this section, we comple-
ment these results by providing some additional struc-
ture.

For any cdf F with mean f;, let F* be the cdf
defined by

t

F*(t) = f~! J udF(u), t 2 0. (49)
0

and let fA"‘ be its LST. Note that F* is the stationary
total-life distribution associated with F (see p. 195 of
Karlin and Taylor). The distribution B*, where B is
the busy-period cdf, plays a key role, as noted by Ott
(1977a) (see (2.23) there).

Theorem 10. 1 — ¢ (¢) = U,(t) and
(ci+1)
2

~p e (r) = U, (50)
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where U is the cdf with LST

b%(s)
i(s) = - - (51)
(I =p+pb*(s))feo(s)

and the first two moments

vy =vi
(1-p)vy
so that (12) holds, i.e.,

=

ol = I C,(t)dt =2 Var W(®)u,,
0

V3 — Vv

and u; = ———,
(1-p)v,

U (52)

Y3 T Vavy p
I=p (a-p)
(1-p)? 5
: [Tgﬁ +5 (1= p)pge1ger + 2p%g5 | (53)

Remark 2. Note that (53) agrees with (2.16) of Ott
(1977a). In the M/M/1 case, g, = g for all
k, g3 = 6,8, =2, and g, = 1, so that o2 =
p(3 — p)/(1 - p)*. Also a(s) = b(s)hy(s).

Proof. Let riz (s, x) be the Laplace transform of
the moment function m (¢, x) starting in x. Thus, the
conservation law in (18) can be expressed as
(1~p) pxols)
(s, x) == - Ay (54)
S Ky 2 S

As in Theorem 8 of Abate and Whitt (1988b), we can
express the Laplace transform C,,(s) by

®©

sC,(s) = f st (s, x)xdV(x) — vi. (55)
0

Combining (54) and (55), we obtain

. (1=p)

5C,(s) = Var W) — — 2L

+ [ patere aveo. (56)
0

Letting

A s ” A

(s) = ———— f Dxo(s)xdV(x), (57)

(I—-pvy Jo
we see that

(I=p1 (1-a(s))
Var W(x) s

sC‘w(s) = Var W(oo)[l - s (58)
so that it suffices to show that i defined in (57) coin-

cides with & defined in (51) with the first two moments
in (52).
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Starting from # defined in (57), note that
Prols) = {(s)"'e ") by (34), so that

) s = o =xi(s)
tu(s) = d V|
(FMMkimx(”
s -1\ d ”
= | — _x((s)dV
(1—pw1(aw)d;L € (=)
Ky -1
= [0 . 59
u—w%m&“m 9

However, by Theorem 3a, f;o(s) = V({(s)), so that

d ; d .
V() = — feo(s) = =5 (1 = p + pb.(s))

d¢ d¢ (d¢lds)
pbi(s)  —pbuibi(s)
= = —, (60)
1-pb'(s) 1+ pbib*(s)
Hence,
. s ( 1 )( pbo1b%(s) )
a(s) = ——— | — || —————=
(1 = p)vyi \L(s)/\L + pb1b*(s)

) bi(s)
(1= p + pb*()feals)

with the second line holding because (1 = p){(s)/
s =f.o(s) by Theorem 3a and pb,;/v, = 1. Finally,
the moments u,, are obtained by expanding the terms
b*(s), b*(s), and f(s) in (51). For this purpose, note
that b} = byii/by = (k + Dbeks bex = borry
boy = 2bgiof(k + 2)by and (feo)e = pbex = Pbrsr/
(k + 1)b,. Consequently,

be2 3pb V2 — V%
up=—=3pby = ——
el (1-p
and
b.3 ) V3 — VvV
U = - 10pb,, + 14p Zbel = — -
et (1-p)w

7. MOMENT-DIFFERENCE CDFs

As noted at the outset, the first two moment-
difference functions d,(¢, x) in (1) are monotone, so
that we can define associated moment-difference
cdf’s as in (7). The results beyond Theorem 7.3 of
Abate and Whitt (1987b) are contained in the
following theorem.

Theorem 11

a. d,(t, x) is decreasing and convex.
b. G, = G-

Proof. Let di(t, x) = d/dt d,(t, x) and m’(¢, x) =
d/dt m,(¢, x). From Theorem 1la,

dy(t, x) = m3(t, x) —m>(, 0)

2(1 = p)lm1(£10) — m (¢, x)]

—2(1 = p)d1 (¢, x).

Since d,(t, x) is positive and decreasing in ¢, d,(¢, x)
is decreasing and convex in 2. Moreover, from (7),
—d5(¢, x)

d
G’Z(ts x) = - GZ(ta x) =
dt x

_2(1 = p)dy (2, x)

2

x2

e R N
Since G5(¢t, x) = ¢[1 — G,(t, x)] for some constant
¢, G, = G,, (and the first moment of G; must be
&1 = x2(1 - p)).

Remark 3. It is not difficult to see that d(¢, x) is not
monotone and d,(¢, x) is not convex, using Theorem
1a and (17).

From (8) and Theorems 7 and 11, it is easy to
compute the moments of G,(¢, x) for i = 1, 2. Let the
kth moment of G,(¢, x) be denoted by g7;,. We sum-
marize the results in the following theorem.

Theorem 12

a. Forallx >0andk 2 1,

X

m=mJﬂmw;

0

b.gh = a
<511 T s
2(1-p)
x
e (w1 %)
SR TR
3v 2
d. gl = a ——2+3v12+2v1x+)i—;
g 3 4
1-p)

= - (2‘»3 +18v,vy +12v3+4v,x+12v
(1-p)

3
+3vix? + 5 )

Similarly, we can compute the derivatives at the
origin. Let G{)(¢, x) be the jth derivative with re-
spect to ¢ of G(¢, x) in (7) evaluated at ¢.

Theorem 13. a. Forallx > 0,

l_p_ x(t)
G, x) = — L0 (61)
X
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so that G{V(0, x) = (1 — p)/x.
b. Forallx > 0,

2(1-p)
Gi(t, x) = ———[1 - G1(z, x)), (62)
X
and
) 21 - p)
Gé (t’ x)= “—2[1_P_Px()(t)]; (63)
X
so that G{V(0, x) = 2(1 - p)/x and G§?(0, x)
= =2(1 — p)*x°.
Proof. a. Note that
d dl(ts x)]
(1) =& I A A4
Gi7(t, x) dt [1 X

_=mi(t, x) + mi(2, 0)
- X

_p—1-py)
X

b. Apply Theorems 11b and 12b.

by (17);

Remark 4. Additional properties of the moment-
difference cdf’s can be obtained as in Section 10 of
Abate and Whitt (1987b); e.g., the cdf’s G,(¢, x) are
stochastically increasing in x.

8. COMPLEMENTARY-CDF CDF's

As in subsection 1.7 of Abate and Whitt (1987a), we
can focus on the full-time dependent distribution
starting empty instead of the time-dependent
moments starting empty, by considering complemen-
tary-cdf cdf’s. For this purpose, let

P(W(t) > y|W(0) = 0)
P(W(©) > y)

=]

Hy(t) = , (64)

To characterize the complementary-cdf cdf’s, let
Ty, be the first passage time from 0 to the open
interval (y, «) by the net input process Y in (14).
Since p < 1, Y(¢) - —= as t — =, so that Ty, has
a defective distribution, i.e., P(Tj,< ) < 1. How-
ever, the complementary-cdf cdf’s can be expressed
in terms of the conditional cdf’s of Ty, given that
Ty, < .

Theorem 14. For each 'y > 0, H, is a bonafide cdf
and

H,(t) = = P(Ty, <t|Tyy <), t>0.
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Proof. By Proposition 2, P(W(¢) > y|W(0) = 0) is
nondecreasing in ¢, and by (22),

P(W(t) > y|W(0) = 0) = P(M(t) > y) (65)
and
P(W(») > y) = P(M(») >y). (66)

Moreover, M(t) > y if and only if T, < ¢, which
implies that M() > y if and only if T, < «. (We use
the fact that T, is the first passage time to the open
interval (y, «).) Consequently,

PM(t)>y)=P(Ty <1t) (67)
and
P(M(») > y) = P(Tg, < ). (68)

Combining (65)-(68) yields the result.

Unfortunately, however, the complementary-cdf
cdf’s are more complicated than the moment cdf’s;
e.g., we have yet to determine the moments of H,,.
The situation is much nicer for RBM (see subsection
1.7 of Abate and Whitt 1987a).

9. REMAINING PROOFS

In this section we provide the remaining proofs. We
start with some lemmas needed in the proof of
Proposition 1.

Lemma 1. For all positive integers n and k,
n k
E[(Z S,) ankE[sk].
J=1

Proof. By convexity and Jensen’s inequality (p. 47 of
Chung 1974),

E[(n'l 2 S,)k] sp™! 2 E[SF] = E[S*].
J=1

J=1

Lemma 2. For all t > 0 and all positive integers k,
E[X(t)*] < E[A()*]E[S"].

Proof. Conditioning on A(¢) and applying Lemma 1,
we obtain

A(e) k
ﬂxmﬂ=E4(ZSJ
J=1

A(t)} < E[A()X1E[S¥].

Proof of Proposition 1. a. Let 15 be the indicator
function of the set B. Note that

[(W(O0) — £} + 1py-ue-1y> (S = 1)F
s W(r) < W(0) + X(¢),
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so that

> (k
2 ($)ow) - 011 - e)EL(s - 1))
7=0

k
smt)< 3 (’?)m,-(O)E[X(t)""]. (69)
j=0 \J
Since
E[|Z|"1"” < E[|Z|*]"* for1<r<s (70)

for any random variable Z, the right side of (69) is
finite, and, thus, m(¢) < o« if m,(0) < « and
E[X(t)*] < =, but E[X(£)*] < = if E[S*] by Lemma
2. On the other hand, by (70), for the left side of (69)
to be finite it is necessary and sufficient that
E[(W(0) ~ )**] < = and E[(S — 1*] < «.
However, it is easy to see that if E[S*] = «, then
E[(S = 1)**] = ». Similarly, if E[(W(0) — £)**] =
w, then E[W(0)] = .

b. Let W(r, x) be the workload process with
W(0) = x. By Proposition 2, W(t, 0) is stochastically
increasing, so that W(z, 0) = W(x) and m,(t, 0) —
my () as t — o for all k. Since p < 1, we can apply
the strong law of large numbers to deduce that Y(z) —
—oow.p.1ast — . Hence, W(®) £ sup,,o {Y(?)} is
a proper random variable. By the coupling argument
in Theorem 7.3 of Abate and Whitt (1987b), D(z, x) =
Wi(t,x) — W(z, 0) has decreasing sample paths with
D(t, x) - 0 w.p.1 as ¢+ — « for all x, because
Y(t) - —« w.p.1. Consequently, W(t) = W(x) as
t — o for all W(0).

c. Since E[D(t, x)¥] < m(0) < = and
Wi, x)k = (W(t, 0) + D(¢, x))~,

k
met, x) = X (K EWe, OVIEID(, )]
j=0

and m,(t) — m(o) as t — o« for all W(0). It thus
remains to show that m,(») < o if and only if
E[S§**'] < . For this final result, we apply the
classical random walk arguments (see Kiefer and
Wolfowitz 1956, Lemoine 1976, and Chapter VIII of
Asmussen 1987). In particular, we can apply PASTA
(Poisson Arrivals See Time Averages) to see that
W(e) is distributed the same as the stationary distri-
bution of the discrete-time waiting-time process.
Then we apply Theorem 2.1 on p. 184 of Asmussen,
noting that the condition E[(X*)**!] < <« there is
equivalent to E[S**'] < .

We now prove a lemma to be used in the proof of
Theorem 1.

Lemma 3. For all positive integers k, E[X(€)*] = A
€ E[S*] + o(e) as e — 0.

Proof. Conditioning on A(¢€), we obtain

Ale) k
E[X(e)*]= EH( > S, ) A(e)”
j=1

= E[S{IP(A(e) = 1)

+ 3 E[(Jm1 Sj)k]P(A(e) = m),

m=2

where
E[STIP(A(e) = 1) = E[S*](A€ + o(e)) (71)
and, by Lemma 1,

21 E[(é Sj)k]P(A(E) =m)

© Ae)"e A€
<Y mkE[S"]( )
m=2

@ m, —A
< e2E[S¥le* 3 mk A€
m=2 m!
< €2E[Sk]e *E[4(1)k] = O(2). (72)

Combining (71) and (72) gives the desired resuit.

Proof of Theorem 1. a. The main idea of the proof was
sketched in Section 2. To be rigorous, we now bound
my(t + €) — m,(t) above and below by quantities that
we can analyze more easily. The upper bound has the
input of work X(r + €) — X(¢) in (¢, ¢ + €] come at
the end of the interval; the lower bound has it occur
at the beginning of the interval. We write X(¢) for
X(t + €) — X{(t) below, with the understanding that
it is independent of W(¢). In particular, note that

mi(t + €) — my(t) < E[(W(2) — )" + X(€))¥]
- E[W(1)],
where

E[(W(t) — €)* + X(s)¥]

< [k
3 (F)etovo - e i€
j=0

k=1 (k
=ElW(0) = )1+ 5, HERC R

- (peE[S¥7] + o(¢) (by Lemma 3)

= E[W(1)*] - ke E[W(£)*""]

k-1
+pe 3 (¥ |EIWEYIELS T + o(e),

j=0
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so that

E[((W(t) — €)* + X(e))*] — E[W(2)*]

€

k—1 k i
-p X (,- )mj<t)E[Sk-f] — kmy_y (1)
Jj=0

as € — 0, as in (17). Next, note that
mi(t + €) — my(¢)
= E[(W(t) + X(e€) — €]**] - E[W()*],
where
E[(W(2) + X(e) = €)*™*]
= E[(W(t) + X(e)— €) *|W(2) > 0)P(W(z) > 0)
+ E[(X(e) — €)*IP(W(z) = 0).
For € < x,
E[(W(t) + X(€) — €)™ {W(z) = x]
= E[(x + X(¢e) — €)X

k
=2 (}C)XJE[(X(G)—QI(_’] =xk+kx*Ype —e)
j=0

k-2 k
+ > (j )x’[peE[Sk‘f] +o(e€)]
j=0

by Lemma 3, while E[(X(e) — €)™ = peE
[S*] + o(e) by Lemma 3. Hence,

k=2 (k
mi(t + €) —my(t) 2 pe 3 (j)m](t)E[Sk_’]

— (1 = p)ekmy_1(t) + peE[S¥] + o(e).

Since the upper and lower bounds have identical lim-
its, the derivative exists and equals the common limit.
b. By part a, m;, (¢) exists and has the form (19) with
k replaced by (k + 1). By Proposition 1,
m;(t) — my(») < « for all j < k. Hence, by (19),
my.1(2) converges to a finite limit, say m}, (®). If
E[S?] < o, then my,i(t) — my,q(®) by
Proposition 1 and m () must be 0. However, the
situation is more complicated if E[§**!] < o =
E[S**?], because then m, () = ». We treat this
case by truncating the service-time distribution and
taking limits. Let S, = min {S, x}. For eachx > 0,
E[S%] < « for all k. Let W*(¢) and m(¢) be W(¢) and
m,(t) when the service-time distribution is S,. It is
easy to see that W*(z) approaches W(¢) from below
w.p.1 asx — . Moreover, m(®) — m,(®) as x —
 for each k. Hence, by (15) with 7 = ®, 0 = m}, ()
= Mpy1(®) as x — .
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