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Abstract

We introduce and investigate approximations for the probability distribution of the maximum

of n iid nonnegative random variables, in terms of the number n and the first few moments

of the underlying probability distribution, assuming the distribution is unbounded above but

does not have a heavy tail. Since the mean of the underlying distribution can immediately be

factored out, we focus on the effect of the squared coefficient of variation (SCV, c2, variance

divided by the square of the mean). Our starting point is the classical extreme-value theory

for representative distributions with the given SCV - mixtures of exponentials for c2 ≥ 1,

convolutions of exponentials for c2 ≤ 1 and gamma for all c2. We develop approximations for

the asymptotic parameters and evaluate their performance. We show that there is a minimum

threshold n∗, depending on the underlying distribution, with n ≥ n∗ required in order for the

asymptotic extreme-value approximations to be effective. The threshold n∗ tends to increase

as c2 increases above 1 or decreases below 1.

Key words: two-moment approximations, extreme-value theory, maximum of independent ran-

dom variables, Gumbel distribution.





1. Introduction and Summary

Suppose that we have n independent and identically distributed (iid) nonnegative random

variables - Z1, . . . Zn - each distributed as a random variable Z with a cumulative distribution

function (cdf) F , and we are interested in the probability distribution of the maximum Mn ≡
max {Z1, Z2, . . . , Zn}. Given the cdf F , we can easily numerically calculate the cdf of Mn,

because

P (Mn ≤ x) = F (x)n, x ≥ 0 . (1.1)

We also can numerically calculate the moments via

E[Mk
n ] =

∫ ∞

0
kxk−1[1− F (x)n] dx ; (1.2)

e.g., see p. 150 of Feller (1971); and we can calculate quantiles (x(n,q) such that P (Mn ≤
x(n,q)) = q) by performing binary search with the cdf in (1.1).

However, suppose that we have only a partial characterization of the cdf F . In particular,

suppose that we know only its first two moments - mk ≡ E[Zk] for k = 1, 2 - or, equivalently,

only its mean m1 ≡ E[Z] and its squared coefficient of variation c2 ≡ c2
Z (SCV, variance

divided by the square of the mean). What can we say about the distribution of Mn now?

Extreme-value distributions have many applications, e.g., in extreme-value engineering and

insurance; see Castillo (1988) and Embrechts et al (1997). However, in asking this question, we

are primarily motivated by a queueing problem, in particular, approximating the probability

distribution of the last departure time from a multi-server queue with a terminating arrival

process (a finite number of customers), when the service-time distribution is only partially

characterized; see Crow et al. (2005a). That problem in turn arose in the study of congestion

associated with various inspection schemes, such as inspecting shipping containers at ports of

embarkation (leaving to come to the country); see Crow et al. (2005b).

How does the analysis here relate to the queueing problem? The last departure time can

be expressed as the sum of the time of the last arrival and the remaining time required to serve

all customers in the system at the time of the last arrival. Assuming n is relatively large, the

queueing system will be approximately in steady state at the time of the last arrival. Then

the remaining time until the last departure will be approximately independent of the time of

the last arrival and itself be the maximum of the remaining completion times. When there

are infinitely many servers, these remaining completion times are all residual service times. If

in addition the arrival process is Poisson (even nonhomogeneous), then these residual service
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times (except for the very last arrival), turn out to be iid with a distribution that can be

determined; see Crow et al. (2005a). Hence the last departure time involves the maximum of

a random number of iid random variables.

Here, with the general problem, we start by making the elementary observation that Mn

is proportional to the mean m1 = E[Z]. If we multiply all the random variables Zn by some

constant, then Mn itself is multiplied by that same constant. Hence, without loss of generality,

we can assume that m1 = 1 and we make that assumption. We thus ask: Given that m1 = 1,

how does the distribution of Mn depend on n and the SCV c2 of the cdf F? And to what

extent do n and c2 determine the distribution of Mn?

We are interested in developing approximations for two reasons: first, to gain insight into

the way the distribution of Mn depends on the cdf F and, second, to do further analysis; e.g.,

apply calculus to do optimization and embed the model in larger queueing network models,

as in Whitt (1983), Bitran and Dasu (1992), Buzacott and Shanthikumar (1993) and Suri

et al. (1993). Given the motivating inspection application, we are especially interested in

approximations for moderate values of n, e.g., 10 ≤ n ≤ 1000.

The Need for Regularity Conditions. A basis for understanding lies in the classical

extreme-value theory; see Castillo (1988), Embrechts et al. (1997), Galambos (1987), Kotz

and Nadarajah (2000), Resnick (1987) and Thomas and Reiss (2001). Paralleling the normal

approximation from the central limit theorem, the distribution of Mn will usually have a

relatively simple asymptotic form that will be a good approximation when n is sufficiently large.

However, there is not one possible asymptotic form, but three; see Section 3.2 of Embrechts

(1997) or Proposition 0.3 of Resnick (1987). The particular asymptotic form and the specific

approximation depends on different properties of the distribution of the random variable Z -

the asymptotic behavior of the tail F c(x) ≡ 1− F (x) as x →∞; see Chapter 3 of Embrechts

et al. (1997) or Chapter 1 of Resnick (1987).

Thus, concerning approximations with limited two-moment partial information, the main

message from extreme-value theory is that we should be cautious: we do not have

the right information. But suppose that we want a rough answer even if we do not have

the right information. To avoid gross approximation errors, we clearly need to assume more.

Accordingly, first, we assume that Z is unbounded above and, second, we assume that we can

rule out the possibility of a heavy tail; we assume that

F c(x) ≤ Ke−λx for all x ≥ 0 , (1.3)
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for some constant K, where λ > 0.

Under those extra assumptions, the extreme-value theory tells us that the relevant asymp-

totic form is the Gumbel distribution - defined in (2.2) below. Moreover, the extreme-value

theory tells us that we need extra regularity conditions and shows the impact of these regular-

ity conditions. From a practical perspective, it is natural to assume as regularity conditions

that the tail probability has the asymptotic property

F c(x) ∼ γ(λx)αe−λx as x →∞ , (1.4)

for 0 < λ < ∞ and 0 < γ < ∞, where f(x) ∼ g(x) as x → ∞ means that f(x)/g(x) → 1 as

x → ∞. In practice, it is usually difficult to distinguish between (1.4) and other asymptotic

behavior consistent with (1.3).

We assume that regularity condition (1.4) holds, but without directly verifying it. Con-

sequently, we do not know the asymptotic parameters in (1.4). It is important to emphasize

that the condition (1.4) is critical. We can have the same SCV with a distribution having

heavy-tail tail asymptotics of the form

F c(x) ∼ γx−α as x →∞ for α > 2 , (1.5)

which will produce vastly different (larger) maxima. From data, these two cases can be distin-

guished by estimating log (F c(x)). Under (1.4), log (F c(x)) is approximately a linear function

of x for large x; under (1.5), log (F c(x)) is approximately a linear function of log (x). If we

actually had data, then we could directly estimate the parameters in (1.4) and apply available

extreme-value approximations, as described in Sections 3 and 7 below. Here we assume that

condition (1.4) holds, but that we do not know the parameters.

Regularity condition (1.4) covers two distinct cases: (i) the cdf F has a pure exponential

tail (α = 0) and (ii) the cdf F does not have a pure-exponential tail (α 6= 0). The case of a pure-

exponential tail is illustrated by the familiar hyperexponential (Hk) distributions (mixtures of

exponential distributions), which have c2 > 1. For c2 < 1, the case of a pure-exponential

tail is illustrated by hypoexponential distributions (convolutions of exponential distributions)

when the component exponential distributions have different means and by a limiting case,

the shifted-exponential distribution (the distribution of a constant plus an exponential random

variable).

The case of a non-exponential tail is illustrated by gamma distributions, which includes

Erlang distributions (convolutions of exponential distributions when all the component expo-

nential distributions have the same mean). Based on previous experience with asymptotic

3



approximations, e.g., as in Abate and Whitt (1997), we anticipate that asymptotic extreme-

value approximations will be more effective with a pure exponential tail, and that will be borne

out here. We will see that the extreme-value approximations take a simpler form and are more

accurate when F has a pure-exponential tail.

A Numerical Approach. To obtain numerical results, we suggest fitting a representative

approximating distribution to the partial information and then computing the exact distribu-

tion of the maximum according to (1.1). We will show that approach is more reliable than

the classical extreme-value approximations, even when we know the asymptotic parameters

in (1.4), when the SCV c2 is very large or small (e.g., c2 ≥ 16 or c2 ≤ 1/16) and n is not

extremely large (e.g., n ≤ 1000).

As is frequently done in queueing approximations, e.g., see Whitt (1982-1984), we suggest

using the exponential distribution for c2 ≈ 1, the H2 distribution with an appropriate choice

of the third parameter for c2 > 1 (matching the first three moments, if possible), and the

shifted-exponential distribution or a convolution of exponential distributions for c2 < 1. They

all have pure-exponential tails. As an alternative, and for comparisons, we also consider the

gamma distribution for all c2 > 0, which does not have a pure-exponential tail. We give details

in the remaining sections. As noted above, all four distributions are “exponential-like.”

Simple Approximations and Insights. Nevertheless, here we are primarily interested in

closed-form analytic approximations. We will show that it is possible to develop reasonable

closed-form approximations for moderate values of n and c2, such as 10 ≤ n ≤ 1000 and

1/16 ≤ c2 ≤ 16. Our starting point is the classical extreme-value theory associated with (1.4)

in the case of a pure exponential tail (α = 0). Since the extreme-value approximations are

not consistently good for all n and c2, an important component of our approximation is an

indication when the extreme-value approximations will be appropriate.

The extreme-value theory produces the following approximation for the qth quantile of Mn:

x(n,q) ≈ λ−1 [log (nγ)− log log (1/q)] , (1.6)

where log is the natural logarithm (base e) and λ and γ are the asymptotic parameters in (1.4);

see Section 3. Based on an examination of representative special cases, as crude approximations

for the asymptotic parameters, assuming that the mean is m1 = 1, we suggest

λ−1 ≈ c2 and γ ≈ 1
c2

. (1.7)
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Combining (1.6) and (1.7), and ignoring q, we suggest the following crude approximation:

E[Mn] ≈ x(n,q) ≈ c2 log
( n

c2

)
, (1.8)

From extreme-value theory, the role of log (n) is well known, but we are unaware of any previous

statements about the approximate role of the SCV c2. However, our numerical experiments

show that approximation (1.8) is not sufficiently accurate for practical purposes when c2 < 1.

As a simple rough approximation for the qth quantile x(n,q), suitably for practical

purposes, we propose

x(n,q) ≈ φ(c2)
[
log

(
nψ(c2)

)− log log (1/q)
]
, n ≥ n∗ ≡ n∗(c2, q) , (1.9)

or, equivalently, the extreme-value approximation (1.6) with

λ−1 ≈ φ(c2) and γ ≈ ψ(c2) , (1.10)

where

φ(c2) ≡




c2 , c2 ≥ 1 ,

c ≡
√

c2 , c2 ≤ 1 ,

(1.11)

ψ(c2) ≡





c2+1
2(c2)2

≈ 1
c2

, c2 ≥ 1 ,

e{(1−
√

c2)/
√

c2} ≈ 1
c , c2 ≤ 1 ,

(1.12)

and

n∗(c2, q) ≡





c2

q , c2 ≥ 1 ,

1
q , c2 ≤ 1 .

(1.13)

The first case of (1.9) with c2 ≥ 1 is based on the H2 distribution (and an appropriate

choice of the third parameter); the second case with c2 ≤ 1 is based on the shifted-exponential

distribution. They are both consistent with extreme-value theory; i.e., they are asymptotically

correct as n →∞ (for an appropriate choice of the third parameter in the case of H2).

The two separate cases of (1.9) agree at the boundary c2 = 1, coinciding with the well-known

exponential asymptotic extreme-value approximation in (2.3) and (3.6) below. The final term

involving − log log (1/q) tends to be relatively negligible when q is near 0.5 (the median); indeed

it equals 0 when q = e−1 ≈ 0.368. For q = 0.25, 0.5, 0.75 and 0.9, − log log (1/q) = −0.327,

0.367, 1.25 and 2.25, respectively.

The approximation for c2 ≤ 1 in (1.9) can also be re-expressed as

x(n,q) ≈ 1−
√

c2 +
√

c2 log (n)−
√

c2 log log (1/q), c2 ≤ 1 . (1.14)
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This alternative form in (1.14) says that the quantile x(n,q) can be expressed as a convex com-

bination of corresponding extreme-value approximations for the quantile when the underlying

distribution is exponential and deterministic, using the weight c ≡
√

c2 on the exponential

term.

Experience shows that the value of n required for asymptotic extreme-value approximations

to be useful depends on the underlying cdf F . We find that the SCV c2 can also be used to

provide a simple rough indication of the range of n for which the simple rough approximation

in (1.9) is reasonable. When c2 = 1 and F is exponential, (1.9) is remarkably accurate even

for small n (e.g., for all n ≥ 5). We find that is decidedly not the case when c2 is much

greater than 1. In order to invoke approximation (1.9), and in order to apply other asymptotic

extreme-value approximations more generally, n should be larger as the SCV c2 increases above

1. We give a suggested range for n in (1.13).

For the shifted-exponential distribution, we do not need n∗(c2, q) to increases as c2 decreases

below 1, but we do for the gamma distribution; see Section 7. Since the the cdf F has mean 1,

it is reasonable to require that any estimate of x(n,q) be at least 1. Thus we would refine (1.9)

to be the maximum of 1 and the calculated value.

Organization of the rest of this paper. In Sections 2 and 3 we review the simple case of

the exponential distribution and the asymptotic result for the case in which the cdf F has a

pure exponential tail.

Starting with distributions having c2 ≥ 1, in Section 4 we consider the special case of an

H2 distribution. The H2 distribution has three parameters, so there is an additional degree

of freedom. For the H2 distribution, we ask how the distribution of Mn depends on this

additional parameter. We will show that the simple rough approximation above is reasonable,

but in pathological cases it can break down completely.

Turning to distributions with c2 ≤ 1, in Sections 5, 6 and 7 we consider shifted-exponential

distributions, convolutions of exponential distributions and gamma distributions. We consider

reverse engineering in Section 8; we estimate F given the distribution of the maximum as a

function of n. Finally, we draw conclusions in Section 9. Additional supporting tables and

plots appear in an Internet supplement, Crow et al. (2005c).
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2. The Exponential Distribution

The distribution of the maximum Mn when the cdf F is exponential is known to be the

sum of n exponentials with means k−1, 1 ≤ k ≤ n, so that the mean is exactly the harmonic

number Hn ≡
∑n

k=1 k−1. The distribution also has a simple accurate approximation. As we

show in the next section, for the exponential distribution (with mean m1 = 1), we have the

limit

Mn − log (n) ⇒ W as n →∞ , (2.1)

where ⇒ denotes convergence in distribution and W is a random variable with the Gumbel

distribution, i.e.,

G(x) ≡ P (W ≤ x) ≡ exp {−e−x}, for all x ∈ R , (2.2)

which has mean and variance E[W ] = ζ ≈ 0.5772, the Euler constant, and V ar(W ) ≈ 1.644;

see Johnson and Kotz (1970). The Gumbel distribution has qth quantile x(q) = − log log (1/q),

where G(x(q)) ≡ q. The mode of the Gumbel distribution is at 0, which is the (1/e)th = 0.37th

quantile.

Hence, for the exponential distribution (with mean m1 = 1), we have the approximations

Mn ≈ log (n) + W

E[Mn] ≈ log (n) + 0.5772

V ar(Mn) ≈ 1.644

x(n,q) ≈ x̃(n,q) ≡ log (n)− log log (1/q) , (2.3)

where P (Mn ≤ x(n,q)) ≡ q.

The approximations in (2.3) based on the Gumbel distribution are remarkably accurate

when F is exponential, even for small n, e.g., n = 5. In Table 1 we compare exact values to

approximations for three quantiles of the cdf of the maximum: q = 0.25, q = 0.50 and q = 0.75.

The results are spectacular, provided that q and n are not both too small. The final column

gives the crude approximation in (1.8), which here only ignores the log log (1/q) term. in (2.3).

The exponential case illustrates important basic phenomena: The mean E[Mn] grows with

n like log (n), while the variance is asymptotically constant, so the distribution concentrates

about the mean (relatively) when n is sufficiently large. Similarly, any qth quantile also grows
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q = 0.25 q = 0.50 q = 0.75
n exact approx. exact approx. exact approx. crude (1.8)

5 1.42 1.28 2.04 1.98 2.88 2.86 1.60
10 2.04 1.98 2.70 2.67 3.56 3.55 2.30

100 4.29 4.28 4.97 4.97 5.85 5.85 4.61
1000 6.58 6.58 7.27 7.27 8.15 8.15 6.90

Table 1: A comparison of exact values with asymptotic approximations from (2.3) for three
quantiles of the cdf of the maximum of n iid exponential random variables with mean 1 for
four values of n.

like log (n), but the difference of two quantiles, x(n,q2) − x(n,q1) for 0 < q1 < q2 < 1, is asymp-

totically constant. The predictability for large n resulting from the asymptotically constant

spread is remarkable. However, log (n) increases slowly with n, so that we do not see that rel-

ative concentration if n is not very large. In practice (for moderate n), the mean and standard

deviation are usually of the same order.

3. Asymptotics for a Pure Exponential Tail

In this section we assume that the cdf F has a pure-exponential tail; in particular, we

assume that (1.4) holds with α = 0. (Here we make no assumption about the mean of F .) The

pure-exponential-tail assumption is a “common case, and is satisfied by all Hk distributions.

To make this discussion self-contained, we review the classical result and its proof.

Theorem 3.1. (pure exponential tail) If condition (1.4) holds with α = 0, then

Mn − log (nγ)
λ

⇒ W

λ
, (3.1)

where W is a random variable with the Gumbel distribution in (2.2), while λ and γ are the

asymptotic parameters in (1.4).

To prove the classic result, we exploit the basic lemma:

Lemma 3.1. If cn are real numbers such that cn → c as n →∞, then

(
1 +

cn

n

)
→ ec as n →∞ . (3.2)

Proof of Theorem 3.1. Apply Lemma 3.1 to get

P

(
Mn ≤ log (nγ) + x

λ

)
=

(
1− F c

(
log (nγ) + x

λ

))n

∼
(

1− e−x

n

)n

→ exp {−e−x} as n →∞ , (3.3)
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because

F c

(
log (nγ) + x

λ

)
∼ γe−λ[(log (nγ)+x)/λ] =

e−x

n
as n →∞ (3.4)

for each fixed x, by virtue of assumption (1.4), so that

nF c

(
log (nγ) + x

λ

)
→ e−x as n →∞ . (3.5)

Hence we have the approximations:

Mn ≈ λ−1(log (nγ) + W )

E[Mn] ≈ λ−1(log (n) + log (γ) + 0.5772)

V ar(Mn) ≈ 1.644λ−2

x(n,q) ≈ x̃(n,q) ≡ λ−1 [log (nγ)− log log (1/q)] , (3.6)

4. The H2 Distribution

In this section we suppose that Z has an H2 distribution, with tail probability

F c(x) ≡ P (Z > x) = pe−λx + (1− p)e−ηx, x ≥ 0, (4.1)

where 0 < λ < η and 0 < p < 1, which implies a pure exponential tail asymptotically, just as

in (1.4) with α = 0 and γ = p < 1. Hence we use the approximations in (3.6) with γ = p.

Again we initially make no assumption about the mean. We propose using the H2 distribution

as an approximation when we are given only the first two or three moments of Z in the case

c2 > 1. We indicate how to do the fitting below.

The H2 distribution highlights potential limitations of the extreme-value theory. With the

extreme-value theory, we act as if we can ignore the second term in (4.1); i.e., we use the

approximation

F c(x) ≈ pe−λx, x ≥ 0. (4.2)

We can see that the approximation in (4.2), and thus the associated approximations in (3.6),

will perform poorly if η is very close to λ or if p is extremely small when n is not large. To see

the problem, suppose that λ = η. Then (1.4) holds with α = 0 and γ = 1, but we use γ = p

instead. However, while it is good to be aware of these difficulties, we do not expect them to

commonly arise.

We proceed by developing further approximations for the extreme-value approximations in

terms of other parameters besides the initial three: λ, η and p. In particular, we want to use

approximation (3.6) but with approximations for the parameters λ−1 and p.
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Alternative Parameter Triples. For approximations, natural alternative parameters are

the first three moments. Essentially equivalent are the mean m1 (here allowed to be general)

and the SCV c2 ≡ (m2 −m2
1)/m2

1 and the skewness β ≡ m2
3/m3

2. Like the SCV, the skewness

is appealing because it is independent of scale: it remains unchanged if Z is multiplied by

a constant. All moments are easy to compute, since moments of mixtures are mixtures of

moments; Z has kth moment

E[Zk] =
pk!
λk

+
(1− p)k!

ηk
. (4.3)

In terms of the first three moments, we can obtain expressions for the standard parameters:

λ−1 = m1

(
(u + 1.5v2 + 3v) +

√
(u + 1.5v2 − 3v)2 + 18v3

6v

)
,

η−1 = m1

(
(u + 1.5v2 + 3v)−

√
(u + 1.5v2 − 3v)2 + 18v3

6v

)
,

p =
1− (η−1/m1)

(λ−1/m1)− (η−1/m1)
, (4.4)

where

u ≡ (m3/m3
1)− 1.5(m2/m1)2 and v ≡ (m2/m2

1)− 2 (4.5)

and we again use the convention that λ−1 > η−1, e.g., see p. 136 of Whitt (1982). When we

are fitting an H2 distribution to the first three moments, we require u ≥ 0 and v ≥ 0. Having

v ≥ 0 is equivalent to c2 ≥ 1. If c2 = 1, then the distribution must be exponential and there

is no flexibility in the third moment. For c2 > 1, we must have m3 ≥ 1.5m2
2m1, which is a

restriction. If m3 is initially too small, then we suggest choosing a value slightly above the

lower bound 1.5m2
2m1.

Given data, we can estimate the asymptotic parameters λ and γ in (1.4). Even if we know

the asymptotic parameters λ and γ in (1.4) (with α = 0), we might be interested in fitting an

H2 distribution, because the asymptotic extreme-value approximations developed in Section 3

are effective only for n above a threshold n∗. We might want an H2 approximation to develop

an approximation for smaller n. Given the mean m1 and the asymptotic parameters λ and γ

in (1.4) (with α = 0), where λ−1 > m1 and γ < 1, we suggest fitting the H2 distribution by

letting p = γ and choosing η to make

m1 =
p

λ
+

1− p

η
. (4.6)

By the assumptions above, necessarily η > λ, so that the H2 distribution has the given asymp-

totics. We can roughly judge the quality of the H2 approximation by comparing the SCV of

the H2 distribution to the actual SCV.
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As an appealing alternative third parameter to go with the mean and the SCV is the ratio

of the dominant component mean to the total mean, i.e.,

r ≡ (p/λ)
m1

≡ (p/λ)
(p/λ) + ((1− p)/η)

. (4.7)

As a function of m1, c2 and r, we can express the basic parameters λ, η, and p as

λm1 =
(

1
c2 + 1

) (
1
r

) (
c2 + 1

2
+ 2r − 1− (c2 − 1)

2

√
1 +

8r(1− r)
(c2 − 1)

)

p/m1 = λr

ηm1 =
(1− p)
(1− r)

. (4.8)

For an alternative expression in terms of r, see p. 169 of Whitt (1984).

Approximations for the parameters λ−1 and p. We develop an approximation for λ−1

by establishing upper and lower bounds for the square root. In particular, we use the following

elementary lemma.

Lemma 4.1. For all x > 0,

1 +
x

2
− x2

8
≤ √

1 + x ≤ 1 +
x

2
. (4.9)

Theorem 4.1. For all m1 > 0, c2 > 1 and 0 < r < 1,

m1

(
c2 + 1

2

)(
1
r

)
 1

1 + 2(1−r)2

(c2−1)


 ≤ λ−1 ≤ m1

(
c2 + 1

2

)(
1
r

)
, (4.10)

so that

λ−1 ∼ m1

(
c2 + 1

2

)(
1
r

)
as c2 →∞ or r → 1 . (4.11)

and

p ≡ γ = m1λr ∼ 2r2

c2 + 1
as c2 →∞ or r → 1 . (4.12)

Now, to simplify, we again assume that m1 = 1. The limit in (4.11) yields the aesthetically

appealing product approximation for λ−1:

λ−1 ≈
(

c2 + 1
2

)(
1
r

)
with p ≡ γ ≈ 2r2

c2 + 1
. (4.13)

Combining (4.13) and (3.6), we obtain the associated H2 maximum-quantile approximation

x(n,q) ≈
(

c2 + 1
2

)(
1
r

)(
log

(
2r2n

c2 + 1

)
− log log (1/q)

)
(4.14)
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There are several observations to make about the product approximation for λ−1 in (4.13).

First, Theorem 4.23 implies that the approximation in (4.13) is an upper bound for λ−1, so

it is conservative (overestimates λ−1). Second, the bounds in Theorem 4.23 imply that the

maximum percentage error for approximation (4.13) is

max percentage error ≡ 100× (UB − LB)
LB

=
200(1− r)2

(c2 − 1)
% . (4.15)

For example, if r = 1/2 (balanced means), then the maximum percentage error in (4.13) is at

most [50/(c2−1)]%; if in addition c2 = 6, then it is at most 10%. Numerics indicates the error

typically is much less. For example, if c2 = 6 the maximum error in (4.13) over all r is at most

5%. However the product approximation for λ−1 in (4.13) is not good for c2 close to 1.

Approximation as a function of the SCV alone. We obtain an approximation as a

function of the SCV c2 alone (with m1 = 1) by just substituting a representative value of r.

For that purpose, it is common to assume r = 1/2, corresponding to balanced means. When

r = 1/2, formula (4.8) (with m1 = 1) simplifies to

λ = 1−
√

(c2 − 1)/(c2 + 1) . (4.16)

However, it is actually not so natural to have r fixed at 1/2 for all c2. For most values

of c2, r = 1/2 is entirely reasonable, but we contend that it is more natural to have r ↑ 1

as c2 ↓ 1. To see that, we can apply (4.8) to see what happens to the parameters as c2 ↓ 1.

By (4.8), λ → 1, η → 1 and p → r as c2 ↓ 1 for any fixed r with 0 < r < 1 (and m1 = 1).

The limiting H2 distribution then has two exponential components, each with mean 1, one

with probability r and the other with probability 1− r. That limit is equivalent to the correct

exponential distribution, but it is pathological from the perspective of the regularity condition

is (1.4). From the approach to the limit as c2 ↓ 1, we get F c(x) ∼ re−λx as x →∞ instead of

F c(x) ∼ e−λx for the exponential.

Thus we here propose a different choice for r, making r a non-constant function of c2, which

approaches with a simple exponential as c2 ↓ 1. In particular, we propose

r ≡ r(c2) ≡ c2 + 1
2c2

. (4.17)

With (4.17), we have r(c2) ≈ 1/2 for most values of c2, but we have r(c2) ↑ 1 as c2 ↓ 1, so

that the pathology above is avoided. It is also reasonable to have the function of c2 be monotone

and continuous. Using (4.17), the product approximation in (4.13) and (4.14) become

λ−1 ≈ c2 with p ≡ γ ≈ c2 + 1
2(c2)2

(4.18)
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and (1.9).

For this particular choice of r, the product approximation is consistently good by virtue of

(4.10). Since
2(1− r)2

c2 − 1
=

c2 − 1
2(c2)2

≤ 1
8

, (4.19)

with the maximum occurring at c2 = 2, the maximum relative error in λ−1 for this r in the

product approximation is 1/9 or 11%. Significant errors for H2 in the approximation based on

c2 alone will thus occur only because the actual value of r differs substantially from (4.17).

Approximation (4.13) dramatically shows that very small r will seriously invalidate the

more elementary approximations based on the first two moments in (1.8) and (1.9). By using

the extremal distributions and stochastic ordering for H2 distributions in Whitt (1984), or

by applying (4.8), we can conclude what is possible as we allow r to vary, for given first two

moments. We see that the range is just as predicted by the product approximation in (4.13).

Theorem 4.2. For m1 = 1 and c2 > 1 given, all values of λ−1 are possible with

λ−1 ≥
(

c2 + 1
2

)
. (4.20)

The minimal value of λ−1 is obtained in the degenerate case with η−1 = 0 and

p ≡ γ =
2

c2 + 1
. (4.21)

From Theorem 4.24, we see that in order for the approximation in (1.9) based on the SCV

to be useful, even for the H2 distribution, we depend on extra regularity conditions. When the

cdf F is H2, we need to assume that r is not too small. If we can assume that r does not differ

much from the new approximation in (4.17), then we can use the simple rough two-parameter

approximations in (4.18) and (1.9).

Minimum thresholds for n. So far, we have focused on approximating the key parameter

λ−1. Now we want to consider another issue. We observe that we can still have problems with

the approximation of the cdf of Mn if p is too small. Because of the mixing property of H2

distributions, we can regard the n H2 random variables as a random number, N , of exponential

random variables with mean λ−1 and another random number number, n−N , of exponential

random variables with mean η−1, where N has a binomial distribution with parameters n and

p. Because we exploit approximation (4.2), the approximation is driven by the N exponentials

with mean λ−1. Since np = E[N ], the mean number of exponential random variables with

mean λ−1, the approximation becomes problematic when np is small.
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From (4.13) or (4.18), we know that p will be small when c2 is large, so that we should

anticipate difficulties in that case. Let n∗ be the threshold value of n for which the extreme-

value approximation will be effective. From above, we anticipate that we should have n∗ ≥ 1/p.

From our numerical experiments, we see that n needs to be larger when q is smaller. Thus, as

a rough criterion we propose n ≥ 1/(pq). Using (4.13), we can find an approximate expression

for the threshold value, namely,

n∗ ≈ 1
pq
≈ (c2 + 1)

2r2q
≈ c2

q
. (4.22)

To provide further insight in the case of small p (or high c2), we suggest exploiting this

mixing property further. We can express the cdf of the maximum exactly as a binomial mixture,

and then for large n and small p we can perform a Poisson approximation, getting

P (Mn ≤ x) =
n∑

k=0

(
n
k

)
pk(1− p)n−k(1− e−λx)k(1− e−ηx)n−k

≈
∞∑

k=0

e−np(np)k

k!
(1− e−λx)k(1− e−ηx)n−k

= e−np(1− e−ηx)ne{np(1−e−λx)/(1−e−ηx)}

=
[
e−p(1− e−ηx)e{p(1−e−λx)/(1−e−ηx)}

]n
. (4.23)

Assuming that λ << η and that the relevant x is relatively large, we can further approxi-

mate, starting in the second line of (4.23). For small np and λ, we get the simple approximation

P (Mn ≤ x) ≈ e−np(1− e−ηx)n +
∞∑

k=1

e−np(np)k

k!
(1− e−λx)k . (4.24)

From (4.24), we can get an associated approximation for the mean. First, from Section 2,

E[Mn] ≈ e−np

(
log (n) + ζ

η

)
+

∞∑

k=1

e−np(np)k

k!

(
log (k) + ζ

λ

)
, (4.25)

where ζ ≈ 0.5772 is again the Euler constant. Then, exploiting the asymptotic approximations

log (n) ∼ Hn + ζ, where Hn ≡
∑n

k=1 k−1 are the harmonic numbers, and the relation
∞∑

n=1

xnHn

n!
= ex[log (x) + E1(x) + ζ] , (4.26)

where E1(x) is the exponential integral, i.e.,

E1(x) ≡
∫ ∞

x
t−1e−t dt , (4.27)

see Chapter 5 of Abramowitz and Stegun (1972) and (25) of Weisstein et al. (2005), we get

E[Mn] ≈ e−np

(
log (n) + ζ

η

)
+

log (np) + E1(np) + ζ

λ
. (4.28)
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For reference, note that E1(1) ≈ 1.895, E1(x) → 0 as x →∞ and

log (x) + E1(x) + ζ → 0 as x → 0 . (4.29)

Formula (4.28) shows what happens as n increases for very small p. Initially, e−np ≈ 1 so that

E[Mn] behaves like (log (n) + ζ)/η and eventually, as n increases, e−np ≈ 0, so that E[Mn]

behaves like (log (np) + ζ)/λ.

A revealing double limit. We now introduce an appealing asymptotic regime that provides

additional insight into the threshold n∗. We let both n →∞ and c2 →∞, but at a coordinated

rate. To properly formulate the double limit, we consider cdf’s Fn indexed by n. Let

Mn,k ≡ max {Zn,1, · · · , Zn,k}, n ≥ 1 and k ≥ 1 , (4.30)

where {Zn,k : k ≥ 1} is a sequence of iid random variables distributed as Fn for each n. Let

bxc be the greatest integer less than x.

Theorem 4.3. Consider a sequence of H2 cdf’s {Fn : n ≥ 1}. Suppose that the cdf’s Fn have

common mean 1 and r, 0 < r < 1, for all n. Let c2
n be the SCV of Fn and assume that c2

n →∞
as n →∞ such that

2nr2

c2
n + 1

→ β or, equivalently, by (4.12), npn → β . (4.31)

If β > 0 in (4.31), then for any constant ξ > 0

P (λnMn,bξnc ≤ log (βξ) + x) → e−e−x
as n →∞ for log (βξ) + x > 0 . (4.32)

If instead β = 0 in (4.31), then

λnMn,bξnc ⇒ 0 as n →∞ . (4.33)

Proof. For (4.32), it suffices to apply Lemma 3.1 after noting that

P
(
Mn,bξnc ≤ λ−1

n (log (βξ) + x)
)

=
(

1− ξnpn

ξn
e−(log (βξ)+x) − (1− pn)e−ηnλ−1

n (log (βξ)+x))

)bξnc
,

(4.34)

provided that log (βξ) + x > 0 (to make the argument of the probability on the left positive).

Assuming that log (βξ)+x > 0, the last term on the right in (4.34) is asymptotically negligible,
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because λ−1
n = r/pn = O(n) and ηn = (1−pn)/(1−r) = (1−O(n−1))/(1−r) → η = 1/(1−r) >

0 as n →∞. On the other hand, if β = 0, then for any x > 0

P
(
Mn,bξnc ≤ λ−1

n x)
)

=
(

1− ξnpn

ξn
e−x − (1− pn)e−ηnλ−1

n x

)bξnc
→ e0 = 1 as n →∞ ,

(4.35)

again by Lemma 3.1. That implies (4.33).

Theorem 4.3 has interesting implications. Recall that the conditions have 1/pn or, equiva-

lently, c2
n increase as n increases. The limit (4.33) says that if n << 1/p, then the maximum

is negligible compared to λ−1, the mean of the dominant exponential. In that case, clearly the

extreme-value approximation is not appropriate.

With condition (4.31) and ξ = 1, the condition log (β) + x > 0 in (4.32) translates into

log (np) + x > 0. A relevant value of x is the qth quantile of the Gumbel distribution, which is

− log log (1/q). In order for the extreme-value theory to yield a good approximation for x(n,q),

this double limit suggests we should have

log (np)− log log (1/q) > 0 or, equivalently, n >
log (1/q)

p
. (4.36)

In other words, the double limit suggests an approximate value for the threshold for n:

n∗ ≈ log (1/q)
p

≈ c2 log (1/q) , (4.37)

which is roughly consistent with (1.13).

Numerics for the H2 distribution. Numerical comparisons between approximations and

exact values for the H2 distribution with c2 = 4.0 are given in Tables 2-4, considering four

values of n: n = 10, 20, 100 and 1000. We let the individual H2 random variables have mean

1, c2 = 4.0 and we consider three values of r: r = 0.25, r = 0.50 and r = 0.75. In these three

cases, the (λ, p, η) triples are, respectively (0.1303, 0.0326, 1.7746), (0.2254, 0.1127, 1.2899) and

(0.3101, 0.2326, 3.0697).

We again treat the quantiles q = 0.25, q = 0.50 and q = 0.75, but start with the median

q = 0.50 in Table 2. We give five values: (i) the exact values from (1.1) plus binary search, (ii)

the asymptotic values from (3.6) and (4.8), (iii) the product approximation in (4.14), (iv) the

simple rough approximation in (1.9) and the crude approximation in (1.8).

The balanced-means case r = 0.5 plays a special role, because the exact values in that case

serve as a natural approximation based on the first two moments alone. The exact value with

r = 0.5 is our proposed numerical approximation for all cdf’s with SCV c2 = 4 (assuming
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exact (1.1) asymp. (3.6) product (4.14) simple (1.9) crude (1.8)
n\r 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
10 2.4 2.8 4.0 -5.8 2.2 3.9 -10.2 1.8 3.9 3.3 3.7
20 3.3 5.3 6.2 -0.5 5.2 6.1 -3.3 5.3 6.2 6.0 6.4

100 11.9 12.4 11.3 11.9 12.4 11.3 12.8 13.3 11.6 12.5 12.9
1000 29.5 22.6 18.8 29.5 22.6 18.8 35.9 24.9 19.3 21.7 22.1

exact np approx. np

n\r 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 nψ(c2) in (1.12)
10 0.3 1.1 2.3 0.2 1.0 2.3 1.6
20 0.7 2.3 4.7 0.5 2.0 4.5 3.1

100 3.3 11.3 23.3 2.5 10.0 22.5 15.6
1000 32.6 112.7 232.6 25.0 100.0 225.0 156.2

Table 2: A comparison of exact values with approximations for the q = 0.50 quantile of the
cdf of the maximum of n iid H2 random variables with mean 1 and SCV = 4 for four values of
n and three values of r. Also displayed are exact values and approximations for np, indicating
when the asymptotics should be used. The problematic values with np < 1/q = 2.0 are
highlighted.

regularity condition (1.4)). The product approximation with r = 0.5 is a second two-moment

approximation, serving as an alternative to (1.9). The exact value as a function of r is our

proposed numerical approximation given the first three moments. (We then use (4.4) and (4.7)

to get the conventional H2 parameters.)

In Table 2 we also display the exact values of np based on (4.8) and the approximations

based on (4.13). (These are not repeated in Tables 3 and 4 because the values do not change

with q.) We have indicated that we need np to be suitably large, not just n. We highlight

in bold those problematic cases in which np < 1/q = 2.0. We anticipate that in these cases

n is not yet large enough for the extreme-value approximations to perform well, and that is

confirmed. First we see that we obtain good rough approximations for np, which is only used

to estimate whether the approximations should be effective. Next we see that the extreme-

value approximations in (3.6) are again spectacular if n is large enough, in particular, for

np > 1/q = 2.0. From either the exact or the approximate values of np in Table 2, we are

able to accurately predict when the approximations will perform well. With that guide, the

extreme-value approximations perform well: we first use the approximation of p in (4.13) or

(4.18) to indicate if np is large enough and, if so, we use the approximation of x(n,q) in (4.14) or

(1.9) to predict the quantile itself. From Table 2 we see that the simple rough approximation

in (1.9) based on the SCV alone is reasonable, considering that the exact values for the three

values of r vary considerably.
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exact (1.1) asymp. (3.6) product (4.14) simple (1.9) crude (1.8)
n\r 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
10 3.7 6.1 6.8 1.0 6.1 6.7 -1.4 6.2 6.9 6.8 3.7
20 6.5 9.2 9.0 6.3 9.1 9.0 5.5 9.7 9.2 9.5 6.4

100 18.6 16.3 14.2 18.6 16.3 14.2 21.6 17.7 14.5 16.0 12.9
1000 36.3 26.5 21.6 36.3 26.5 21.6 44.6 29.2 22.2 25.1 22.1

Table 3: A comparison of exact values with approximations for the q = 0.75 quantile of the
cdf of the maximum of n iid H2 random variables with mean 1 and SCV = 4 for four values
of n and three values of r. The problematic values with np < 1/q = 1.33 are highlighted.

exact (1.1) asymp. (3.6) product (4.14) simple (1.9) crude (1.8)
n\r 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
10 1.7 1.6 1.9 -11.1 -0.9 1.7 -17.1 -1.6 1.6 0.5 3.7
20 2.4 2.8 4.0 -5.8 2.2 3.9 -10.2 1.8 3.9 3.3 6.4

100 6.7 9.3 9.1 6.6 9.3 9.1 5.9 9.9 9.3 9.7 12.9
1000 24.2 19.5 16.5 24.2 19.5 16.5 28.9 21.4 17.0 18.9 22.1

Table 4: A comparison of exact values with approximations for the 0.25 quantile of the cdf of
the maximum of n iid H2 random variables with mean 1 and SCV = 4 for four values of n
and three values of r. The problematic values with np < 1/q = 4.0 are highlighted.

Turning to Tables 3 and 4, we see that the results are better for higher quantiles than for

lower quantiles. In the present setting, we want to be estimating quantiles that are at least

several times the mean of F , which here is 1. In Table 3 with q = 0.75, the approximations

perform even better than in Table 2, but in Table 4 with q = 0.25, they perform worse. We

clearly need to require n to be larger when we decrease q. Experience with results such as

these led us to propose the rough guideline that np ≥ 1/q. That is reflected in (1.9).

Given the excellent performance of the extreme-value asymptotic approximations when np

is not too small, the performance of the three-parameter product approximation in (4.14) and

the corresponding simple two-parameter approximation obtained by setting r = 0.5 or the

alternative in (1.9) can be judged by evaluating the approximations for λ−1. Theorem 4.23

and (4.15) provide bounds on the error, and show that performance improves as r and c2

increase. The error bound in (4.15) shows that there is no trouble at all in estimating λ−1

with (4.13) if r ≥ 0.9 or if c2 ≥ 20.

We conclude this section by displaying results for an H2 distribution with much larger SCV,

in particular, for c2 = 16 (again with mean 1). To provide a basis for comparison with Table

2, we display the results for q = 0.5 in Table 5. As in Table 2, we consider four values of n:

n = 10, 20, 100 and 1000, and three values of r: r = 0.25, r = 0.50 and r = 0.75. In these three
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exact (1.1) asymp. (3.6) product (4.14) simple (1.9) crude (1.8)
n\r 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
10 2.1 1.7 1.3 -69.0 -13.6 -0.4 -76.3 -14.6 -0.5 -11.8 -7.5
20 2.7 2.5 7.5 -47.0 -2.2 7.4 -52.7 -2.8 7.3 -0.7 3.6

100 6.0 24.4 25.5 4.1 24.3 25.5 2.0 24.6 25.6 25.1 29.3
1000 77.1 62.3 51.4 77.1 62.3 51.3 80.3 63.7 51.7 61.9 66.2

exact np approx. np

n\r 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 nψ(c2) in (1.12)
10 0.1 0.3 0.7 0.1 0.3 0.7 0.3
20 0.2 0.6 1.3 0.1 0.6 1.3 0.7

100 0.8 3.0 6.7 0.7 2.9 6.6 3.3
1000 7.9 30.3 66.7 7.4 29.4 66.2 33.2

Table 5: A comparison of exact values with approximations for the q = 0.50 quantile of the cdf
of the maximum of n iid H2 random variables with mean 1 and SCV = 16 for four values of
n and three values of r. Also displayed are exact values and approximations for np, indicating
when the asymptotics should be used. The problematic values with np > 1/q = 2.0 are
highlighted.

cases, the (λ, p, η) triples are, respectively (0.0315, 0.0079, 1.3228), (0.0607, 0.0303, 1.9393) and

(0.0889, 0.0667, 3.7332).

As before, the extreme-value approximations are spectacular when n is large enough, but

now there are more cases in which n < n∗ = 1/(pq). We again highlight the values for which

np < 1/q = 2.0. There are more of these problematic values now because the higher SCV

leads to a smaller value of p. We thus confirm that n needs to be larger for the extreme-

value approximations to perform well when the SCV increases above 1. We remark that our

criterion seems to be conservative, because the approximations are good when n = 20, r = 0.75

and np = 1.3, even though our criterion flags that case as potentially difficult. Observe that

the results for c2 = 16 in Table 5 are quite different from those for c2 = 4 in Table 2, and

approximation (1.9) predicts the behavior relatively well. Observe that the threshold n∗ ≈ 1/pq

is important for the exact values as well as the approximations; the exact values jump up in

the region of n∗. For example, compare n = 100 and n = 1000 for r = 0.25. That can be

explained by (4.28).

5. The Shifted-Exponential Distribution

In order to have a representative class of “exponential-like” distributions with 0 < c2 < 1,

in this section we consider the shifted-exponential distribution. That is, we suppose that

Z
d= d + X, where d is a constant with 0 < d < 1 and X is an exponential random variable
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with mean λ−1. As before, we assume that m1 ≡ E[Z] = 1, so that we have

1 = d + λ−1 and c2 = λ−2 . (5.1)

We thus let λ−1 = c ≡
√

c2.

The shape of the shifted-exponential density tends not to be too realistic, but it has a

pure-exponential tail and is easy to work with. We can derive the extreme-value asymptotics

either from Section 2 or from Section 3. We get the same result from both approaches. Noting

that

γ = eλd = eλ−1 = e(1−c)/c > 1, (5.2)

we get

Mn ≈ λ−1 [log (nγ) + W ]

≈ c
[
log (ne(1−c)/c) + W

]

≈ 1− c + c (log (n) + W ) . (5.3)

We thus have the approximations

Mn ≈ 1− c + c(log (n) + W )

E[Mn] ≈ 1− c + c log (n) + 0.5772c

V ar(Mn) ≈ 1.644c2

x(n,q) ≈ x̃(n,q) ≡ 1− c + c log (n)− c log log (1/q) . (5.4)

where c ≡
√

c2. Since the extreme-value asymptotics reduces to the exponential case, we

know that the extreme-value asymptotics perform extremely well for the shifted-exponential

distribution, just as in Table 1. In practice, then, the only approximation remaining is the

approximation of the given distribution with 0 < c2 < 1 by the shifted-exponential distribution.

We use the extreme-value approximation in (5.4) as our simple rough approximation for 0 <

c2 < 1 in (1.9). As noted before, the approximation coincides with the “naive” approximation,

involving a convex combination of the exponential extreme-value approximation, denoted by

xM
(n,q) and the deterministic extreme-value approximation, denoted by xD

(n,q) ≡ 1; i.e.,

x(n,q) = (1− c)xD
(n,q) + cxM

(n,q) , (5.5)

with a weight c placed on the exponential term.
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6. Convolutions of Exponential Distributions

Continuing to focus on distributions with c2 < 1 (and m1 = 1), we now consider convo-

lutions of exponential distributions, i.e., the distribution of a sum of n independent random

variables: Z ≡ Z1 + · · ·+Zn, where Zi is exponential with mean 1/λi, but with the restriction

that all the component exponential distributions have different means. With that condition,

the convolution has a pure-exponential tail. Moreover, the tail of the cdf F has a relatively

simple expression:

F c(x) ≡ F c
Z(x) =

n∑

i=1

Ci,ne−λix, x ≥ 0 , (6.1)

where

Ci,n =
∏

j,j 6=i

λj

λj − λi
; (6.2)

see Section 5.2.4 of Ross (2003).

Without loss of generality, label the component random variables so that λ1 < λ2 < · · · <
λn. Then, for the extreme value theory in Section 3, we are interested in λ1 and γ = C1,n.

Since λ1 is the smallest of all the λi, we see from (6.2) that γ > 1. However, the weights on

other terms may be negative.

We see that the extreme-value asymptotics will produce problematic results when λ2 is

close to λ1. As λ2 ↓ λ1, C1,n ↑ ∞. For reasonable results, we assume that λ2 is not too close

to λ1.

We also observe that the shifted exponential distribution considered in the previous section

is in fact a limiting case of a convolution of exponentials. By the law of large numbers, the sum

of a large number of independent exponential random variables will be approximately constant

with a mean equal to the sum of the means. In particular, suppose that one exponential

random variable has mean 1−d, while the sum of the remaining n−1 independent exponential

random variables is fixed at d < 1, and we let n → ∞ while ensuring that each individual

exponential among the n− 1 is asymptotically negligible. Then the sum of all n exponentials

approaches the shifted exponential distribution.

We now consider a convolution of exponentials with a given SCV c2 < 1. We can achieve

any SCV value between 1/n and 1 with a convolution of n exponentials; e.g., see Aldous and

Shepp (1987). If we restrict attention to n = 2, there are only two parameters, which we can

match to the mean and the SCV. We get the equations

1
λ1

+
1
λ2

= 1 and
1
λ2

1

+
1
λ2

2

= c2 , (6.3)
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q = 0.50 q = 0.75
n exact asymp. (3.6) (1.9) exact asymp. (3.6) (1.9) (1.8)

10 2.520 2.489 2.49 3.282 3.269 3.28 2.0
20 3.119 3.104 3.11 3.891 3.884 3.90 2.6

100 4.535 4.532 4.55 5.313 5.312 5.34 3.9
1000 6.575 6.575 6.61 7.355 7.355 7.40 5.7
(10)5 10.661 10.661 10.73 11.441 11.441 11.52 9.4
(10)6 12.704 12.704 12.79 13.485 13.484 13.48 11.2

Table 6: A comparison of exact values with approximations for two quantiles (q = 0.50 and
0.75) of the cdf of the maximum of n iid random variables, each distributed as the convolution
of two exponential distributions, having overall mean 1 and SCV = 0.8 for six values of n. The
distribution parameters are λ−1

1 = 0.8873, λ−1
2 = 0.1127, C1,2 = 1.1455 and C2,2 = −14.55.

q = 0.50 q = 0.75
n exact asymp. (3.6) (1.9) exact asymp. (3.6) (1.9) (1.8)

10 2.30 2.28 2.29 2.93 2.92 2.97 1.7
20 2.79 2.78 2.83 3.42 3.42 3.51 2.1

100 3.95 3.95 4.08 4.58 4.58 4.78 3.1
1000 5.61 5.61 5.86 6.25 6.25 6.54 4.4
(10)5 8.94 8.94 9.43 9.58 9.58 10.11 7.2
(10)6 10.61 10.61 11.21 11.25 11.25 11.89 8.6

Table 7: A comparison of exact values with approximations for two quantiles (q = 0.50 and
0.75) of the cdf of the maximum of n iid random variables, each distributed as the convolution
of two exponential distributions, having overall mean 1 and SCV = 0.6 for six values of n.
The distribution parameters are λ−1

1 = 0.723, λ−1
2 = 0.277, C1,2 = 1.618 and C2,2 = −6.18.

with the constraints: λ1 < λ2 and 0.5 < c2 < 1. That yields a quadratic equation for λ−1
1 in

terms of c2.

We present numerical results for three values of c2 - 0.8, 0.6 and 0.51 - in Tables 6-8. In the

first two cases the extreme-value asymptotics are spectacular for all values of n. The simple

rough approximation in (1.9) is spectacular for c2 = 0.8 and quite good for c2 = 0.6, with a

gap appearing for very large n; e.g., there is about a 6% error for n = 106.

We include the case c2 = 0.51 to deliberately include a difficult case, in which λ−1
2 is close

to λ−1
1 . In this case the extreme-value approximation is not initially so good, but eventually

becomes good. In fact, for small n, the simple rough approximation performs better than the

extreme-value asymptotics. Overall, the simple rough approximation performs well in this case

too.

To obtain values of c2 less than 0.5, we need to consider more exponential terms. To

illustrate, in Table 9 we give results for the sum of 4 independent exponential random variables
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q = 0.50 q = 0.75
n exact asymp. (3.6) (1.9) exact asymp. (3.6) (1.9) (1.8)

10 2.20 2.32 2.19 2.73 2.82 2.82 1.5
20 2.62 2.72 2.69 3.15 3.22 3.32 1.9

100 3.58 3.63 3.84 4.09 4.14 4.46 2.7
1000 4.92 4.95 5.48 5.43 5.43 6.11 3.9
(10)5 7.57 7.58 8.77 8.07 8.08 9.40 6.2
(10)6 8.89 8.89 10.41 9.39 9.39 11.04 7.4

Table 8: A comparison of exact values with approximations for two quantiles (q = 0.50 and
0.75) of the cdf of the maximum of n iid random variables, each distributed as the convolution
of two exponential distributions, having overall mean 1 and SCV = 0.51 for six values of n. The
distribution parameters are λ−1

1 = 0.5707, λ−1
2 = 0.4293, C1,2 = 4.0355 and C2,2 = −3.0355.

q = 0.50 q = 0.75
n exact asymp. (3.6) (1.9) exact asymp. (3.6) (1.9) (1.8)

10 1.91 2.01 1.91 2.29 2.36 2.40 1.05
20 2.21 2.29 2.29 2.58 2.64 2.78 1.26

100 2.89 2.94 3.18 3.25 3.29 3.66 1.74
1000 3.84 3.86 4.44 4.19 4.21 4.92 2.43
(10)5 5.69 5.70 6.96 6.05 6.05 7.44 3.82
(10)6 6.62 6.62 8.22 6.97 6.97 8.70 4.51

Table 9: A comparison of exact values with approximations for two quantiles (q = 0.50 and
0.75) of the cdf of the maximum of n iid random variables, each distributed as the convolution of
four exponential distributions with individual means 0.4, 0.3, 0.2 and 0.1, having overall mean 1
and SCV = 0.3, for six values of n. The remaining asymptotic parameter is p = C1,4 = 10.667.

with means 0.4, 0.3, 0.2 and 0.1. Here the SCV is c2 = 0.3 and the mean is again 1. As before,

the asymptotic extreme-value results are excellent, although there is about 5% error for small

n. The simple rough approximation is good for smaller n, but begins to deviate for larger n.

Overall, the simple rough approximation in (1.9) is reasonable though.

7. The Gamma Distribution

In this section we suppose that Z has a gamma distribution, with probability density

function (pdf)

f(x) ≡ λνxν−1e−λx

Γ(ν)
, (7.1)

with the two parameters ν > 0 and λ > 0, where Γ is the gamma function, with Γ(k) = (k−1)!

for k a positive integer. When ν = 1, the gamma distribution reduces to the exponential

distribution, but we will not consider that special case. The first two moments have a simple

form: E[Z] = ν/λ and c2
Z = 1/ν.

23



For the gamma pdf in (7.1), the associated tail probability has asymptotics

F c(x) ∼ λνxν−1e−λx

λΓ(ν)
as x →∞ ; (7.2)

see p. 186 of Abate and Whitt (1997), which refers to p. 17 of Erdélyi (1956). Further

analysis shows that the next term on the right in (7.2) in an asymptotic expansion has the

form Cxν−2e−λx; e.g, that is easy to see when ν is an integer greater than or equal to 2

(an Erlang distribution). In contrast, for cdf’s with a pure exponential tail, the next term

is typically of the form Ce−ηx, where η > λ; e.g., that is the case for any finite mixture of

exponentials. Consequently, the relative error in (7.2) decays linearly instead of exponentially

(as in the pure-exponential-tail case).

Even though the cdf F does not have a pure exponential tail, an appropriately scaled

version of the maximum converges in distribution to a Gumbel random variable W ; see p. 72

of Resnick (1987). In particular, by essentially the same argument as used to prove Theorem

3.1, we obtain

Theorem 7.1. If

F c(x) ∼ γ(λx)ν−1e−λx as x →∞ , (7.3)

then

Mn − log (n) + (ν − 1) log log (n)− log (γ)
λ

⇒ W

λ
as n →∞ . (7.4)

However, when performing the calculation, we see that we have eliminated a complicated

factor that is only asymptotically equal to 1; i.e., following the details of the proof suggests

that the natural approximation stemming from Theorem 7.1 is likely to be less accurate than

the corresponding approximations with the H2 distribution.

Henceforth we focus on the gamma distribution, for which γ = 1/Γ(ν). Since m1 = ν/λ

and c2 = 1/ν for the gamma distribution, λ−1 = m1c
2 and γ = 1/Γ(1/c2). We now assume

m1 = 1 as before. Thus, for the gamma case in terms of the single parameter c2, we obtain

the asymptotic approximations

Mn ≈ c2

[
log (n) +

(
1
c2
− 1

)
log log (n)− log (Γ(1/c2)) + W

]

E[Mn] ≈ c2

[
log (n) +

(
1
c2
− 1

)
log log (n)− log (Γ(1/c2)) + 0.5772

]

V ar(Mn) ≈ 1.644c2

x(n,q) ≈ c2

[
log (n) +

(
1
c2
− 1

)
log log (n)− log (Γ(1/c2))− log log (1/q)

]
. (7.5)
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From (7.5), we can continue and eliminate asymptotically negligible terms, yielding

Mn ≈ c2 [log (n) + W ] ≈ c2 log (n) , (7.6)

as in (1.8), but unless n is large, those deleted terms are actually not negligible, as we show

in Table 10, where we present a breakdown of the contributions to the approximation for the

mean E[Mn] in (7.5). In particular, the loglog terms are the same order as the log terms.

Approximations for the gamma function. To further simplify the asymptotic formulas

in (7.5), we can approximate log (Γ(ν)). There is a large body of literature on the gamma

function including approximations, many related to Stirling’s formula; e.g., see Chapter 6 of

Abramowitz and Stegun (1972). We observe that

log (Γ(ν)) ∼ − log (ν) as ν ↓ 0 and log (Γ(ν)) ∼ ν log (ν) as ν ↑ ∞ . (7.7)

We propose the following simple rational approximation for log (Γ(ν)), which is exact at ν = 1,

ν = 2, as ν → 0 and as ν →∞:

log (Γ(ν)) ≈ φ(ν) ≡
(

ν2 − 4
ν + 4

)
log (ν) . (7.8)

The ratio φ(ν)/ log (Γ(ν)) falls between 0.99 and 1.04 on the interval (0, 1), assuming its largest

value 1.04 as ν ↑ 1, where both terms are 0. The ratio rises up to a maximum of 1.26 at around

ν = 23 and then declines to 1 as ν increases further. Approximation 6.1.41 of Abramowtiz and

Stegun (1972) performs well for c2 < 1. However, we do not need approximations for numerics,

because the gamma function can be calculated.

For c2 < 1, we combine (7.5) and (7.7) to get an asymptotic approximation for small c2

and large n, where

β ≡ c2 log (n) ≥ 1 . (7.9)

ν n c2 log (n) (ν − 1) log log (n) − log Γ(ν) E[W ] E[Mn]
102 0.50 4.6 1.5 0.0 0.6 3.2

2 104 0.50 9.2 2.2 0.0 0.6 5.8
106 0.50 13.8 2.6 0.0 0.6 8.3
102 0.25 4.6 4.6 -1.8 0.6 2.0

4 104 0.25 9.2 6.7 -1.8 0.6 3.7
106 0.25 13.8 7.9 -1.8 0.6 5.1

Table 10: A breakdown of the contributions to the approximation of the mean E[Mn] in (7.5)
for the case of gamma random variables with mean 1, for three values of n and two values of
the shape parameter ν = 1/c2.
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Let F have a gamma distribution with mean m1 = 1 and SCV c2. Note that

x(n,q) ∼ c2

[
log (n) +

(
1
c2
− 1

)
log log (n)− log (Γ(1/c2))− log log (1/q)

]
as n →∞

≈ c2

[
log (n) +

(
1
c2

)
log log (n)− 1

c2
log (1/c2)− log log (1/q)

]
for small c2

≈ β + log (β)− c2 log log (1/q) under (7.9) . (7.10)

The final line in (7.10) provides an alternative to the second row in approximation (1.9),

but notice that it requires that log (n) ≥ 1
c2

. Because we use the asymptotic form of the gamma

function as c2 ↓ 0, we anticipate that approximation (7.10) will perform best when c2 is quite

small. But notice that n must grow rapidly as c2 decreases in order to have β = c2 log (n) > 1,

which is needed to have x(n,q) ≥ 1 = m1.

Numerics for the gamma distribution. We now report numerical comparisons between

approximations and exact values for the gamma distribution. First, paralleling Tables 2-4,

we give results for c2 = 4 in Table 11. As we anticipated, the asymptotic extreme-value

approximations are not as accurate here for this case of a cdf without a pure-exponential tail.

There is an error of about 5− 15% when n = 100 and n = 1000 for q = 0.5. We display results

for larger n to show that we have not made a mistake; convergence is evident, even though

the error remains at about 1% for r = 0.25 at n = 108. The simple rough approximation in

(1.9) consistently overestimates the exact value, but it too is reasonable, performing as well as

the exact values for H2 with r = 0.5. For the simple rough approximation in (1.9) and the H2

approximation with r = 0.5 we can estimate when n is large enough by seeing if np ≥ 1/q = 2.0.

The problematic values with np < 1/q = 2.0 are highlighted in Table 11.

In Tables 12 and 13 we turn to the case of c2 < 1, considering c2 = 1/4 = 0.25 and

c2 = 1/16 = 0.0625. Here the asymptotic values do not approximate the exact values very well,

having a relatively greater error than in Table 11. The situation is extremely bad for c2 = 1/16.

Even for c2 = 0.25, the asymptotic extreme-value approximation still have about 10% error

when n = 105 and 2.5% error when n = 1012. The simple rough approximation in (1.9)

based on the shifted-exponential distribution performs much better than the full asymptotic

approximation itself for smaller n, e.g., for n ≤ 100, but performs much worse when n gets

very large. When n is very large, the simple approximation in (7.10) closely agrees with the

asymptotic approximation in (7.5). Thus one might use (1.9) for n ≤ 1000.

26



q = 0.50 q = 0.75
n exact asymp. (1.9) H2 ex. exact asymp. (1.9) H2 ex. (1.8)

10 4.0 3.0 3.3 2.8 6.5 6.5 6.8 6.1 3.7
20 5.9 5.0 6.0 5.3 8.6 8.5 9.5 9.2 6.4

100 10.9 10.2 12.4 12.4 13.9 13.7 16.0 16.3 12.9
1000 18.8 18.1 21.7 22.6 21.9 21.7 25.2 26.5 22.1
(10)5 35.5 35.0 40.1 43.0 38.8 38.6 43.6 46.9 40.5
(10)8 61.6 61.3 67.7 73.7 65.0 64.8 71.2 77.6 68.1

Table 11: A comparison of exact values with approximations for two quantiles (q = 0.50 and
0.75) of the cdf of the maximum of n iid gamma random variables with mean 1 and SCV = 4 for
six values of n. The approximations are the asymptotic approximation in (7.5), the associated
simple rough approximation in (1.9), the exact values for H2 with r = 0.5, and the crude
approximation in (1.8). The problematic values with np > 1/q = 2.0 in the H2 framework
with r = 0.5 are highlighted.

q = 0.50 q = 0.75
n exact asymp. (7.10) (1.9) exact asymp. (7.10) (1.9) (1.8)

10 1.83 0.84 0.12 1.83 2.15 1.06 0.33 2.27 0.92
20 2.08 1.22 0.55 2.18 2.39 1.44 0.77 2.62 1.10

100 2.64 1.94 1.38 2.99 2.93 2.16 1.60 3.43 1.50
1000 3.38 2.82 2.36 4.14 3.66 3.04 2.58 4.58 2.07
(10)5 4.77 4.35 4.03 6.44 5.03 4.57 4.25 6.88 3.22
(10)8 6.75 6.43 6.22 9.89 6.99 6.65 6.44 10.33 4.95

(10)10 8.03 7.75 7.60 12.20 8.27 7.97 7.82 12.64 6.10
(10)12 9.28 9.04 8.93 14.50 9.52 9.26 9.15 14.94 7.25

Table 12: A comparison of exact values with approximations for two quantiles (q = 0.50
and 0.75) of the cdf of the maximum of n iid gamma random variables with mean 1 and
SCV = 0.25 for eight values of n. The approximations are the asymptotic approximation in
(7.5), the associated simple approximation (7.10), the simple rough approximation based on
the shifted-exponential in (1.9) and the crude approximation in (1.8).
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q = 0.50 q = 0.75
n exact asymp. (7.10) (1.9) exact asymp. (7.10) (1.9) (1.8)

10 1.40 -0.79 -1.77 1.42 1.53 -0.74 -1.72 1.64 0.32
20 1.50 -0.50 -1.47 1.59 1.62 -0.45 -1.41 1.81 0.36

100 1.72 -0.001 -0.93 1.99 1.83 0.05 -0.88 2.21 0.46
1000 1.99 0.52 -0.39 2.57 2.09 0.58 -0.33 2.79 0.61
(10)5 2.48 1.29 0.41 3.72 2.56 1.34 0.47 3.94 0.89
(10)8 3.12 2.16 1.32 5.45 3.19 2.22 1.37 5.67 1.32

(10)10 3.51 2.66 1.83 6.60 3.59 2.71 1.88 6.82 1.61
(10)12 3.90 3.12 2.30 7.75 3.97 3.17 2.35 7.97 1.90

Table 13: A comparison of exact values with approximations for two quantiles (q = 0.50 and
0.75) of the cdf of the maximum of n iid gamma random variables with mean 1 and SCV =
1/16 = 0.0625 for five values of n. The approximations are the asymptotic approximation in
(7.5), the associated simple approximation (7.10), the simple rough approximation based on
the shifted-exponential in (1.9) and the crude approximation in (1.8).

8. Reverse Engineering

We now show how we can obtain a rough estimate of the first two moments of the underlying

cdf F and the full cdf F itself, given knowledge of the distribution of the maximum for a few

values of n. To do so, we make the assumption that the cdf has a pure-exponential tail. We

thus apply the extreme-value approximations in (3.6). Given x(n,q) for known q and at least

two values of n, we can estimate the parameters λ−1 and γ, assuming the approximation for

x(n,q) in (3.6) holds as an equality.

Then given λ−1 and γ, we estimate the first two moments of the cdf F using our simple

rough approximation in (1.9). We denote the estimates of the mean m1 and the SCV c2 by m̂1

and ĉ2. Having estimated the mean and SCV, we fit an exponential distribution if ĉ2 ≈ 1, an

H2 distribution if ĉ2 > 1, and a shifted exponential distribution or a convolution of exponentials

if ĉ2 < 1.

Since we no longer can assume the mean is 1, we need to determine the mean now. In this

reverse direction, we first determine the SCV c2 from the asymptotic constant γ. Exploiting

the relation

γ ≈ ψ(c2) , (8.1)

where ψ is given in (1.12), we let

ĉ2 = ψ−1(γ) , (8.2)

using the fact that ψ is a strictly-decreasing continuous function of c2 with ψ(1) = 1. We plot

the function ψ in log-log scale in Figure 1. As noted in (1.12), γ ≈ 1/c2 when c2 ≥ 1 and
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Figure 1: The approximation function ψ in (1.12), mapping c2 into p for distributions with
pure-exponential tail.

γ ≈ 1/c when c2 ≤ 1.

Now, given ĉ2, we estimate the mean using (1.9). In particular, we let

m̂1ĉ
2 = λ−1 and m̂1 =

1
ĉ2λ

if ĉ2 > 1 (8.3)

and

m̂1ĉ = λ−1 and m̂1 =
1
ĉλ

if ĉ2 ≤ 1 . (8.4)

Given m̂1 and ĉ2 > 1, we estimate a full H2 cdf by applying (4.17) and letting the third

parameter be

r̂ =
ĉ2 + 1
2ĉ2

. (8.5)

Given m̂1 and ĉ2 ≤ 1, we estimate a full shifted-exponential cdf by directly using λ and

letting

d̂ = m̂1 − λ−1 . (8.6)

Alternatively, if 0.5 < c2 < 1, we can fit a convolution of two exponentials with estimated

means λ̂−1
1 and λ̂−1

2 by solving the pair of equations

1

λ̂1

+
1

λ̂2

= m̂1 and
1

λ̂2
1

+
1

λ̂2
2

= m̂2
1ĉ

2 , (8.7)

with the constraints: λ1 < λ2 and 0.5 < c2 < 1.
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9. Conclusions

Unlike the normal-distribution approximation for sums of n iid random variables, based on

the central limit theorem, the associated Gumbel-distribution approximation for the maximum

of n iid random variables, based on the extreme-value theorems, depends on the underlying cdf

F beyond its first two moments. First, we need to assume regularity conditions such as (1.4)

assumed here and, second, we need to approximate the key parameters λ, α and γ appearing

there. But, fortunately, unlike for sums of iid random variables, the exact distribution of

the maximum of n iid random variables is easy to compute directly for any n and any cdf

F , as indicated in the introduction. Thus, for numerical calculations, we propose fitting

representative distributions to the first few moments and calculating the desired characteristics

of the distribution of Mn for that representative distribution.

Nevertheless, we have focused on closed-form approximations, which have the advantage of

directly providing insight. They also can be used for further analysis within other models. As

in Abate and Whitt (1997), we find that the asymptotic approximations take a simpler form

and perform better when the cdf F has a pure-exponential tail. The story in Sections 2-6 for

cdf’s with a pure-exponential tail is much better than for the gamma distribution in Section 7.

When the cdf F has a pure-exponential tail, the extreme-value approximation in (3.6) usually

performs spectacularly well unless n is too small.

There are difficulties when F does not have a pure-exponential tail, especially when c2

is small. For n ≤ 1000, the asymptotic extreme-value approximation performs poorly for

c2 = 0.25 and is totally useless for c2 = 0.0625, as shown in Tables 12 and 13. In contrast, the

simple rough approximation in (1.9) based on the shifted-exponential distribution performs

well for n ≤ 1000, even though it does not have the correct asymptotic behavior.

An important idea introduced here is that there is a threshold n∗ ≡ n∗(F, q), depending on

the underlying cdf F and the target quantile q in x(n,q): It is necessary to have n ≥ n∗ before

the extreme-value approximations become useful. In addition to evaluating the performance

of the extreme-value approximations and developing approximations for the key asymptotic

parameters appearing there, we have developed approximations for the threshold n∗. For

c2 ≥ 1, we suggest the threshold n∗ ≡ n∗(c2, q) ≈ c2/q. In particular, we observed that n needs

to be larger as c2 increases above 1 and as q decreases. Insight into this relation was given in

Section 4. For the case of a pure-exponential tail, in Section 8 we also considered how to do

reverse engineering to obtain an estimate of the underlying cdf F given known behavior of the
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maximum for two or more values of n.

The crude approximation in (1.8) shows the main tendency, but is not accurate when

c2 < 1. The proposed approximations in (1.9), (4.14), (4.32), (5.4), (7.5) and (7.10) can be

viewed as refinements of (1.8). When F has a pure-exponential tail, there are two refinements:

(i) finding a better approximation for the multiplier λ−1 than c2 and (ii) finding an appropriate

function of c2 to include with n inside the logarithm.

For the practically important range 10 ≤ n ≤ 1000, the simple rough approximation in (1.9)

based on the first two moments of F seems to be satisfactory throughout when c2 ≤ 1. But it

is important to note that the first two moments do not pin down the asymptotic parameters

exceptionally well. The numerical results in this paper show the limitations of working with

only that partial information.

When c2 is not large and F is indeed only partially characterized by its first two moments,

approximation (1.9) should do as well as exact calculations for the representative distributions,

because the closed-form approximation formulas tend to be closer to the exact values for the

representative distributions (on which they are based) than the exact values for the representa-

tive distributions are to the exact values for other distributions. That is illustrated here in the

numerical examples, e.g., for the case c2 = 4.0 by considering examples when F has a gamma

distribution and an H2 distribution with r = 0.25, r = 0.5 and r = 0.75.

The threshold n∗ for n in order for the extreme-value approximations to be accurate in-

creases in c2 for c2 ≥ 1. The approximation for n∗ in (1.13) seems to be relatively accurate.

Tables 5 and 13 for c2 = 16 and c2 = 1/16 show that n has to be quite large before the

extreme-value-based approximations are useful when c2 is either very large or very small. For

high values of c2 and for moderate n, e.g., for n ≤ 1000, it is better to use the exact distribution

based on (1.1) for representative distributions than it is to use the extreme-value approxima-

tion, even given the asymptotic parameters in (1.4). In particular, we can use exact numerical

values based on H2 distributions, preferably based on the first three moments; see Table 5.

When c2 is large, it becomes more important to have an additional parameter, Of course,

the asymptotic parameters in (1.4) would be preferred, but in lieu of that, we suggest three-

moment approximations using the H2 distribution. Given the first three moments (assuming

that c2 > 1), we fit an H2 distribution by applying (4.4). For understanding, we can then

calculate the associated parameter r in (4.7). With r, the product approximation in (4.13)

and (4.14) is highly accurate for H2 when c2 is large, as shown by (4.10) and (4.15).

When the SCV c2 gets very large, we should also be concerned that the distribution may
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actually not satisfy the regularity condition (1.4), and instead have a heavy tail as in (1.5),

which will yield much larger maxima, growing as n1/α instead of log (n). In particular, instead

of (1.6), we would then have

x(n,q) ≈
(

γn

− log (q)

)1/α

; (9.1)

see Chapter 3 of Embrechts et al. (1997). With a heavy tail, there is less predictability: The

spread, as measured by x(n,q2) − x(n,q1), grows like n1/α, just like x(n,q). There is no relative

concentration in the limit as n →∞ with a heavy tail.
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