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Abstract

We study uniform acceleration (UA) expansions of finite-state continuous-time
Markov chains with time-varying transition rates. The UA expansions can be used
to justify, evaluate, and refine the pointwise stationary approximation, which is the
steady-state distribution associated with the time-dependent generator at the time of
interest. We obtain UA approximations from these UA asymptotic expansions. We
derive a time-varying analog to the uniformization representation of transition proba-
bilities for chains with constant transition rates, and apply it to establish asymptotic
results related to the UA asymptotic expansion. These asymptotic results can serve as
appropriate time-varying analogs to the notions of stationary distributions and limiting
distributions. We illustrate the UA approximations by doing a numerical example for
the time-varying Erlang loss model.
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1 Introduction

In many applied settings, such as with queueing systems, physical reality indicates that it
is appropriate to use nonstationary models. For example, arrival rates in service systems
typically vary substantially by time of day; e.g., see p. 259 of Hall [7]. However, if the rate of
change is sufficiently slow, then it is natural to approximate the time-dependent distribution
at any time ¢ by the steady-state distribution of the model with transition characteristics
at that time ¢. In particular, for a nonstationary continuous-time Markov chain (CTMC)
with time-dependent generator {A(t) : ¢ > 0}, we would approximate the time-dependent
probability vector p(t) at time ¢ by the steady-state probability vector m(t) associated with
A(t), obtained by solving mw({)A(t) = 0 and mw ()17 = 1, with the usual regularity conditions
guaranteeing a unique solution. (We regard vectors as row vectors, so that 1T is a column
vector of 1’s with T the matrix transpose.)

Some variant of the approximation procedure just described is routinely used in the
performance analysis of telecommunications systems and in many other applied settings. It
has been studied and called the pointwise stationary approzimation (PSA) by Green and
Kolesar [6], Whitt [26] and Eick, Massey and Whitt [4]. For example, Whitt [26] proved
that PSA is asymptotically correct for M;/M;/s queues and more general time-dependent
birth-and-death processes as the birth and death rates increase, which is equivalent (by a
change of time scale) to having the rates change more slowly.

In this paper we propose a way to quantitatively evaluate PSA and develop refinements
to it (without having to solve for the actual time-dependent distribution). In particular, we
focus on a class of asymptotic approximations called uniform acceleration (UA) asymptotic
expansions for CTMCs. The UA framework provides a natural way to justify, evaluate and
refine the PSA because the PSA is the first term of the UA expansion. When the next
few terms are relatively small, we can be confident that the PSA is a good approximation,
but when they are not, then the PSA can be regarded as unreliable. The first few terms of
the UA expansion provide a convenient check on PSA because they are essentially no more
difficult to compute than PSA itself.

In particular, suppose that A(t) is the time-dependent generator for a nonstationary
CTMC. Then the UA approximation of order n for the distribution at time ¢ is

p(t) ~ Y- 7 M(1) (1.1)

B (At =y W), (1.2)

with
yO) =0, x0T =1, (1.3)
y(k)(t):%ﬂ'(k_l)(t) and w17 =0 for k> 1. (1.4)

From (1.2) and (1.3), we see that 7(°)(¢) is indeed the stationary distribution associated
with A(1), so that w(®)(¢) is the PSA. However, to calculate the higher-order terms (1)



for k& > 1, we need the derivatives of w¥)(1) for & > 0, but these derivatives can also be
calculated by solving Poisson equations. For example, by differentiating (1.2) for k = 0, we
see that

dw© dA
HA(t) = =7 (1) —=—(1) . 1.
o (DA() = —m () — (1) (1.5)
Similarly,
dw® d? d
DA(t) = —7O01) — M) —A(t 1.
o (DA() = -5 (1) —w () A(t) (1.6)
and 2.(0) (0) 2
d*m dm dA d*A
HA(t) = =2 H)—(t) — O ) ——(¢) . 1.
T (DA() o () () = 7)o (1) (1.7)
More generally (by induction),
di () ditlg(n=1) 2N dFr diRA
— ()A(t) = ———— () — 1) ———(t 1.
dti () dtit1 () = (k) dik dti=k (t) (18)

where w(=(1) = 0. In order for the (") vectors to have the required derivatives and for
the UA approximation to be well defined, we assume that the generator possesses all the
required derivatives at .

We remark that the derivatives of w(®)(1) are also of interest in the sensitivily analysis
of the stationary distribution to changes in the generator A(t), now regarded as the gen-
erator for a stationary CTMC subject to possible change in the transition intensities. It is
known that such sensitivity analysis can be performed by solving Poisson’s equation; e.g.,
see Schweitzer [23].

Thus, to calculate the first n+1 terms 7@ (¢), (1), .., 7 (1) in the UA approximation
(1.1), we need to solve Poisson’s equation (n + 1)(n 4 2)/2 times with different (known)
righthand sides. In (1.1) we are not interested in large n, because the full series is not a
convergent series. It is instead an asymptotic expansion; see (3.12) below. Indeed, higher-
order terms are likely to be sensitive to fine structure, so we only want to consider small n in
(1.1). Since we are primarily interested in small n, e.g. 1 < n <4, it is essentially no more
difficult to calculate the UA approximation than it is to calculate the PSA; i.e., to calculate
the steady-state distribution for a single generator. We can use the same algorithm each
time we need to solve Poisson’s equation.

As reviewed in Whitt [27], there are efficient algorithms for solving Poisson’s equation.
For finite-state CTMCs, the solution of Poisson’s equation can be expressed explicitly in
terms of the fundamental matrix, but that is usually not the best way to proceed compu-
tationally. For birth-and-death processes and skip-free CTMC’s, the solution can easily be
calculated recursively; see Remark 1 on p. 287 of Whitt [27]. For more on numerical methods
for solving Markov chains, see Stewart [25]. Thus, it tends to be much easier to compute the
UA approximation for some time point ¢ than it is to numerically solve the time-dependent
differential equation. The UA approximation allows us to focus on a single time point ¢
without having to calculate the probability vectors at previous time points.

However, for time-dependent birth-and-death processes and other relatively simple time-
dependent one-dimensional CTMUs, it is actually not extraordinarily difficult to numerically
solve for the complete time-dependent distribution (even though this is not often done in
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practice). Indeed, we do so to evaluate the performance of UA approximations. From that
more sophisticated computational perspective, PSA and the UA approximations become
more important to analyze larger time-dependent systems, such as time-dependent queueing
networks and loss networks. We are unaware of any attempts to calculate the actual time-
dependent distributions of such nonstationary networks with more than two or three nodes.

The UA approximation might also be useful for hybrid numerical schemes. We might
opt to solve the Kolmogorov equations, but only in an interval [t — A, ] before a time ¢ of
interest. We could then use the UA approximation for the initial distribution at time ¢ — A.

We also gain insight without performing any calculations. We can see that PSA is
asymptotically correct as the arrival rates change more slowly. To see this, suppose that the
derivative A’(1) depends on a parameter v by A (1) = yA{ (). From (1.5), we see that then
ﬂ(wo)/(t) = '711'50)/(75). Then, from (1.2) and (1.4) for & = 1, we see that ﬂ(vl)(t) = ’y'n'gl)(t), S0
that ﬂfyl)(t) — 0 as v — 0. Similar reasoning applies to higher order terms.

In practice, we rarely know high derivatives of the time-dependent generator A(t) pre-
cisely. Thus, we may wish to approximate the time-dependent generator A(t) at a given
time point ¢ by a linear or quadratic function. Then we can use estimation procedures as in

Massey, Parker and Whitt [15] to estimate the parameters of the approximating generator
from data. When A(?) is linear, (1.8) simplifies to

di () ditlg(n=1) diTte() A
T (H)A(t) = W(t) —Jw(t)%(t) :

(1.9)

We have yet to explain where the UA approximations in (1.1)—(1.9) come from. They are
derived from UA asymptotic expansions, which we will explain in the rest of this paper. UA
expansions were first developed and applied to the time-dependent M/M/1 queue, which we
denote by M;/M;/1 queue, by Massey [13], Keller [11] and Massey [14]. The UA technique
was developed to create a mathematical framework that justified and refined the analysis
of time-dependent queues by Newell [21]. That application dramatically shows the insights
provided by the UA expansion. Under appropriate regularity conditions, the two-term UA
approximations for the mean and the probability that the server is busy at time ¢ are

p(t) P04+ p(1))
E[O(1)] ~ . 1.10
=200 T W= o) )
and o)
p
P(Q(t) > 0) = p(t) — ,
Q= 0= 20 =i e
where p(t) = A(t)/u(t) with A(¢) being the arrival rate and p(t) the service rate.
To have (1.10) and (1.11), we need to assume that p(t) < 1 and more: for stability at ¢,
we need to assume that p*(¢) < 1, where

(1.11)

) — s LA

Js Aujau 1.12
o<s<t fi p(u)du (1.12)

see Massey [14].
Consistent with intuition, formulas (1.10) and (1.11) show that PSA tends to overesti-
mate (underestimate) congestion when the time-dependent traffic intensity p(t) is increasing
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(decreasing). Reasoning heuristically, in this context we might judge PSA (the first terms)
and the UA refinements to be good approximations if each succeeding term is no more than
10% of the preceding term. From (1.10) and (1.11), we can see when this occurs for different
functions A(t) and p(1).

The fourth power of 1 —p(¢) in the denominator of the second term in (1.10) is reminiscent
of the fourth power in the asymptotic variance of the sample mean for the stationary M/M/1
queue; see Example 1 on p. 281 of Whitt [27]. The similar result can be understood by the
role of Poisson’s equation in both contexts.

It is also possible to analyze the M;/M;/1 queue in more detail when it is unstable,
as shown by Mandelbaum and Massey [12]. They combine the UA analysis with strong
approximations to establish functional strong laws of large numbers and functional central
limit theorems.

The UA expansions have also been applied to the M;/G /oo queue and networks of such
infinite-server queues by Eick, Massey and Whitt [4] and Massey and Whitt [16], [17], p. 323.
The linearity of infinite-server models produces very appealing simple formulas for the UA
expansion. As shown in Massey and Whitt [20], these formulas provide useful insight into
the behavior of associated finite-server systems, with or without additional waiting space.

Our goal here is to develop the UA theory for finite-state CTMCs in general. In order to
motivate the UA expansion, we start in Section 2 by reviewing the constant-rate CTMC the-
ory. In Section 3 we introduce UA expansions and state three fundamental CTMC theorems
that generalize basic results for the constant-rate case. There is some overlap between our
theoretical results in Section 3 and a recent paper by Khasminskii, Yin and Zhang [10], which
we discovered after completing our work. The proofs are quite different and Khasminskii et
al. do not discuss computation; e.g., they do not discuss (1.1) - (1.8). We also take a more
probabilistic approach to UA analysis and explore further its significance to time-varying
Markov chains. In Section 4 we work out an explicit example of uniform acceleration for the
special case of a two-state CTMC. In Section 5 we obtain results for time-varying finite-state
birth-and-death processes. As an illustrative numerical example, in Section 6 we apply the
UA theory to treat the time-dependent Erlang loss model. Finally, in Section 7 we give
proofs of the theorems in Sections 3 and 5.

2 Background on the Constant-Rate Case

One of our goals is to relate the UA expansions for nonstationary CTMCs to classical theo-
rems for stationary CTMCs. Hence in this section we briefly review the theory for stationary
CTMCs. Let {Q(t) | t >0} be a time-homogeneous CTMC with state space {0,1,...,(}.
For all t > 0, we represent the distribution of Q(t) as a probability vector p(t), where

p(t)

2 PQ(t) =i)e;, (2.1)

=0

with e; being the ¢-th unit basis vector. The Kolmogorov forward equations for the distri-
bution of ((t) can be written as

©p(1) = p()A. (22)



where the off-diagonal terms of the operator (square matrix) A are nonnegative and inter-
preted as transition rates: a;j, the (7, j) entry of A, is the instantaneous transition rate from
¢ to 7 when ¢ # 5. The ¢-th diagonal term satisfies

a;; = —a; = — Z agj. (23)
JigFe
Thus a; is the reciprocal of the mean holding time in state :. The operator A is called
the transition rate matriz or the infinitesimal generator of the CTMC {Q(¢) |t >0 }. We
assume that it is irreducible; i.e., with positive probability you can get from any state to any
other state.
Using the matrix exponential, we can write the solution for p(¢) as

p(1) = p(0)exp(tA). (2.4)

In this setting there are three fundamental theorems for time-homogeneous or constant-rate
CTMC transition probabilities. The first theorem is the uniformization property; e.g., see
Chapter 2 of Keilson [9].

Theorem 2.1 (Uniformization) If A > supgc;, ai, then Py =1+ A/) is an aperiodic,
stochastic matriz and

0 6—/\25 A"
exp(tA) = > %PQ (2.5)
n=0 :

Formula 2.5 says that the random sample paths of a CTMC can be represented as a
discrete-time Markov chain (DTMC) with single-step transition matrix Py, with the discrete
steps occurring at the jump times of a time-homogeneous Poisson process having rate A.

Since the generator A is irreducible, there exists a unique probability vector o such that

wA = 0. (2.6)

Also note that (2.2) and (2.6) are special cases of Poisson’s equation. In general, if we are
given a vector y whose components sum to zero, then there exists a vector x such that

y = xA. (2.7)

Moreover, x is unique up to the vector addition of some scalar multiple of . This is
immediate (see [27]) when we write the solution as

X = y/ (177 — exp(tA))dt + (x - 17). (2.8)
0
The second theorem is the stationarity property.

Theorem 2.2 (Stationarity) If p(0) = &, then p(t) = & for all t > 0.

Theorem 2.2 states that if the CTMC is initialized to be in equilibrium, then it stays in
equilibrium for all time. (For the basic CTMC chain theory here, see Chung [2].)
Finally, the third theorem is the ergodic property.

Theorem 2.3 (Ergodicity) For any initial probability vector p(0),
lim p(t) = . (2.9)

t—o00

In the next section we develop time-varying analogs of these three theorems.



3 Uniform Acceleration Expansions

Now let { Q(t) | t > 0 } be a CTMC with time-varying rates, again with state space {0,1,...,(}.
If p(t) is the probability vector for the distribution of Q(¢), then instead of (2.2) we have

(1) = PIOA(), (3.1)

where we now have a family of generators { A(¢) | ¢ > 0 }, which we assume is measurable
(with respect to the Borel field on [0,00)) and bounded as a function of time. Just like
(2.2), (2.6), and (2.7), (3.1) is a form of Poisson’s equation, but we do not know the deriva-
tive %p(t). Thus the exact solution of (3.1) corresponds the solving a system of ordinary
differential equations.

In terms of a formal solution, we can express p(t) as

p(t) = p(0)EA(?), (3.2)

where E (1) is the time-ordered exponential of { A(s) | 0 < s <1 }; see Dollard and Fried-
man [3]. The time-ordered exponential Ea(#) is the unique matrix solution to

BA() = BA(A() (33)

and Ea (0) = I, the identity matrix. We must define Ea(?) in this manner since in general

t

Ea(l) # exp (/0 A(s)ds) . (3.4)

We now want to give a generalization of the uniformization formula (2.5). Just as
in the constant-rate case, the time-inhomogeneous CTMC can be represented as a time-
inhomogeneous DTMC where the discrete steps occur at the jump times of a homogeneous
Poisson process with rate A. The DTMC will have a transition matrix Py(s) = I+ A(s)/A
if the jump is at time s. Since the generators are assumed to be bounded, we can find one
rate A uniformizing the transition rates at all times.

We now want to find an expression for the time-dependent transition probability matrix,
i.e., the time-ordered exponential Ep(¢). This can be done by averaging over the number
of points in [0,¢] and their location. The number of points has a Poisson distribution.
Conditional on there being exactly n such points in [0,¢], they are distributed as the order
statistics of n i.i.d. random variables uniformly distributed over [0,¢]. Given that there are n
jumps at the points s1,...,s,, the transition probability is Py(s1)Px(sz2)...Pa(s,). Hence,
we obtain the following formula, which will play a key role in our convergence proof for UA
expansions. Later, we give a direct analytical proof of this formula. The analytical proofs
show that Theorem 3.1 extends beyond the probabilistic setting in which A (%) is a generator.

Theorem 3.1 (Time-Varying Uniformization) Let { A(s) | 0 < s <{*} be a bounded
family of generators. If X is a positive constant with

A> sup sup a;(s) (3.5)
0<s<t* 0<i<h
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then for all t € [0,1%),

EA(t):i_o: Gl R A | F —n!dsl---dsn, (3.6)

0<51 < <5, <t =1
where Py(s) =14 A(s)/A is a stochastic matriz.

For a stationary model (with constant transition rates), we typically focus on the long-run
limiting behavior. We do so, not because we are interested in the distant future, but because
we believe the limiting behavior will adequately describe the present or near future. We
anticipate that the system of interest will currently be in equilibrium or steady state. The
fact that the limiting distribution is also the equilibrium distribution gives us a reasonable
model of current and near future behavior.

With time-varying rates, we could also focus on long-run limiting behavior. For a “stable”
system with time-varying rates, long-run limits of subsequences and averages describe the
range of excursions over time and the long-run average behavior; e.g., see Heyman and Whitt
[8]. For an unstable system, long-run limits describe the way the stochastic processes grow
as time evolves; e.g., see Massey and Whitt [18].

However, with time-varying rates, limits as £ — oo tend to be less relevant for describing
the present or near future. If we let ¢ — oo within this situation, then we would be approx-
imating the current behavior of the system with arrival and service rates that have not yet
happened. Hence, it is natural to consider a different kind of asymptotics.

Now suppose that the rates of the generator A(t) vary so slowly in time that the process
(Q(t) can achieve equilibrium before there is any significant change in the rates. We can
formalize this by changing A(t) to A(et), where € > 0. (In replacing A(t) by A(et) we
are focusing on the behavior in the neighborhood of time 0. If we wanted to focus on the
behavior in the neighborhood of time #y, then we would replace A(t) by A(to+ €t).) We will
let p(¢; €) be the corresponding probability vector that solves the differential equation

() = plt; )A(el). (3.7
When € = 1, we have our original process, but as € | 0, we have a process with slowly varying
rates. In fact if we let € = 0, then we could simply let £ — oo and use the steady-state analysis
associated with the generator A(0), i.e., we would be using PSA at time ¢ = 0.

In the formalism of asymptotic expansions, this would give us the leading term of the
inner expansion for the transition probabilities. What we will call uniform acceleration will
correspond to the outer expansion. (For a discussion of inner and outer limits in the context
of boundary layer theory, we refer the reader to Chapter 9 of Bender and Orszag [1].) We
still take the limit as ¢ — oo, but we simultaneously let € | 0 such that 7 = et for some fixed
7 > 0. In effect we are holding the time scale for A fixed as we obtain a steady-state limit
for Q. If we now switch to the time scale of 7, then the probability vector p(7;¢€) will solve
the forward equations

d

651)(7; €) = p(r;€)A(7). (3.8)

Note that (3.8) corresponds to uniformly accelerating the rates, i.e., replacing A(t) by A(t)/e
n (3.1). What we have done is to switch from the time scale of the Markov chain to the
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time scale of the generators. Observe that if A is constant over time, then we can write the

solution of (3.8) as
-

p(rie) = p(0)exp (ZA) (3.9)

€
and we see that in the constant-rate case, the uniform acceleration limit of taking ¢ | 0 gives
exactly the same results as the steady-state limit of 7 — oc.

We remark that Khasminskii et al. [10] study both the inner and outer expansions.
However, unlike for the outer expansion, the inner expansion seems to offer no computational
advantage in this setting over solving for the time-dependent probabilities in the original
system.

We can use the uniformization expansion to give a probabilistic interpretation of uniform
acceleration. First, in general the solution to (3.8) is

p(7;¢) = p(0)EA(7;¢), (3.10)

where E4 (7;¢€) is the time-ordered exponential associated with A(7)/e. Now if we use a
Poisson process with rate A/e to perform the uniformization, we obtain by Theorem 3.1

Corollary 3.2 Under the hypotheses of Theorem 3.1, we have for all € > 0

< M/ \r/e)" r n!
Ea(r,¢) = E M / / HP)\(SZ') T—ldsl cods,. (3.11)

!
n=0 n: 0<s1<Ksn ST 4=1

Hence the parameter ¢ only appears in the uniformizing Poisson rate A/e and nol in the

DTMC stochastic matrices P(s).

We say that p(e€) is an asymptotic probability vector if

p(e) 2> ¢"p, ase |0, (3.12)
n=0

which is shorthand for

5 p(e) — [Po+ ep1+ -+ €"py)
1m
ElO en—l—l

= Pnt1 (3.13)

for all non-negative integers n. In (3.12), po is a probability vector, but p, satisfies
p.1" =0 foralln>1, (3.14)

where T denotes matrix transpose. As noted in the introduction, the series in (3.12) need
not be convergent for any € > 0.

We state the remaining two theorems here and prove them in the final section. First, we
will say that { A(s) | 0 < s <7 }is a smooth family of operators if every entry of A(-) is an
infinitely differentiable function of time.

Theorem 3.3 (Time-Varying Stationarity) Suppose that { A(s) | 0 < s < 7* } is a smooth
family of irreducible Markov generators.



1. ForallT €[0,7%), we can construct a unique sequence of vectors ®™ (1) forn =0,1,...
which are solutions to the following set of Poisson’s equations:

7O(7)A(r) = 0, (3.15)
where (1) - 1T =1 and
d
7 (r)A(r) = d—w—l)(T), for all n > 1, (3.16)
T

where n(”)(r) 1T =0.

2. Let p(€) be an asymptotic probability vector of the form

p(e) = i_o: "w™(0) as €] 0, (3.17)

where w(0) satisfies (3.15) and (3.16) for 7 = 0, and let p(7;¢) be the unique prob-
ability vector that solves the forward equations (3.8) with p(0;€) = p(e).

Then, for all 7 € [0,7*), p(7;€) is also an asymplotic probabilily vector of the form,
NGEEDD 6”7!'(”)(7'). as € | 0, (3.18)
n=0

where ©\") satisfies (3.15) and (3.16).

As we will see later, the proof of this theorem is straightforward. It is analogous to
stationary behavior in the sense that the vector functions (", which comprise the coef-
ficients of the asymptotic probability vector, when used initially (at time 0) will give the
future asymptotic expansion terms for all time. Below, we show that no other collection of
vector functions has this property and the initial distribution used has no relevance to the
asymptotic behavior of the transition probabilities.

Theorem 3.4 (Time-Varying Ergodicity) Let { A(s) | 0 < s < 7%} be a smooth family
of generators, let p(7;€) be the probability vector that solves (3.8) for 7 € [0,7%), and let
p(0;€) be any asymptotic probability vector. Then, for all T € [0,7%), (3.18) holds where
7" satisfies (3.15) and (3.16).

In Theorem 3.4 we have assumed that p(0;¢) is an asymptotic probability vector. This
assumption includes an ordinary probability vector as a special case. Then p, =0 for n > 1
in (3.12). The fact that the initial distribution has no impact on the UA expansion may
be disturbing. The idea is that the relevant history before ¢ is captured by A(%) and the
derivatives of A at t. Previous time-varying ergodicity results are contained in Zeifman [28]
and Khasminskii et al. [10].

The UA asymptotic expansion based of Theorems 3.3 and 3.4 is (3.18). The associated
UA approximation is the first n terms of (3.18) for some n. In our UA approximations for a
fixed time-dependent generator A(t), we simply set e = 1 in the UA asymptotic expansion as
in (1.1). If we want to see how the quality of the UA approximations improve as € | 0, then
we can start with a fixed generator A(t) and consider the family of CTMC’s indexed by e
with infinitesimal generators A(t)/e. Note that the approximations with the pair (A(t)/e, €)
are independent of €, so that there is no loss of generality in letting e = 1 above. With e = 1
set, the UA approximation will perform better when A(t) changes more slowly.
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4 Time-Varying Two-State Markov Chain

To illustrate the behavior of UA asymptotics, consider a two-state Markov chain. Its forward
equations are

%po(t) = a(t)pa(t) — ao(t)po(t) (4.1)
%pl(t) = ao(t)po(t) — ar(t)pi(t). (4.2)

Since po(t) + p1(t) = 1, we can write p;(¢) as the solution of an ordinary differential equation
of degree 1 and obtain

p(t) = /Ot ao(s) exp <— /:[ag + al](r)dr) ds 4 p1(0) exp <— /Ot[ao + al](s)ds) . (43)

By induction, we can write p;(t) as

0= 5 [ B n(frseion)]

4 [ 0 ta(s) exp (= [ Tao + al(r)dr ) ds+ pu(0)exp ([ lao + ar](s)ds)

for all integers m > 0, where D is the differential operator

d [(z)

Df(e) = _%ao(l’) + a1(x)

(4.5)

and D° is the identity operator.
Now, if we apply the UA scaling, then we obtain

0= 5y [l B (2 o]

+ e /Ot D™ ag(s) exp <—% /:[ao + aﬂ(r)dr) ds
+ p1(0; €) exp <—% /Ot[ao + al](r)dr) .

Hence in the limit as € | 0, we obtain the following UA expansion,

D"ag(t)
(t)

ORI (4.7)

m(t;e) = Z €"
n=0
Notice that p;(0;€) does not appear in the UA expansion of pi(¢;€). Given the explicit

form of the solution for py(¢,€) in (4.6) we see that pi(¢;€) is not an analytic function of €
as € approaches 0, because an expression like exp(—1/¢) will have an essential singularity at

e = 0.
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5 Time-Varying Finite-State Birth-Death Models

In this section we give some results for the special case of finite-state birth-death processes
(with time-varying rates). The following complements characterizations of the solutions of
Poisson’s equation in [27].

Proposition 5.1 Lel A be the generator for a birth-death process on the state space {0,1,... 0}
with birth rate vector A = [X(0),...,A({ — 1),0] and death rate pp = [0, pu(1),...,u(0)]. If
y = [y(0),y(1),...,y(0)] is an arbitrary ({ + 1)-dimensional vector whose components sum
to zero, and x = [x(0),z(1),...,2(l)] is the unique solution to Poisson’s equation XA =y
where the components of X sum to zero also, then

= v ()
P TEY T (5-1)

where y*(1) = y(0) + -+ + y(¢) and B(2) is the blocking probability (probability of i) for the
embedded birth-death process on the smaller stale space {0,1,...,i} which can be expressed

as
Bli / 5.2
)= ko:“k‘l'l ]OkO’uk—I_l 52)

Corollary 5.2 Using the previous hypothesis, consider birth-death processes with rates
At;2) = A)r;  and  p(t;e) = p(t)s; (5.3)

forall v =0,1,...,0, where X(t), p(t), r;, and s; are all non-negative quantities. If we sel

p(t) = A(t)/pu(t), then as € | 0, we have

P(Q(t;¢) = i) = m"(t;0) + O(e) (5.4)
foralle=0,1,....¢, where
01 kHl SZI ZP kH e (5.5)
Moreover,
LN ) Sal®) —ale) & 4 2
P(Q(t;¢) =) = Bulp(t)) [1 YOI EO 5( ) 4_1_'[15]‘(/)@)) + O(€7)
" (5.6)
where B
Bilp(t)) = 7O(t;4), Bi(p(t)) = 1 — Bi(p(1)), (5.7)
and .
ai(p(t) = 3 jm (1) (5:8)



Note that as in (1.10) and (1.11), the second term of (5.6) is of the form —ep'(t)c(t) for
c(t) > 0.

The time-dependent Erlang model is the special case of a time-dependent birth-death
process with birth rates A(¢;k) = A(¢) for 0 < k& < £ — 1, and death rates p(t;k) = ku(t)
for some non-negative functions A(¢) and p(t). Without loss of generality (by performing
a deterministic time transformation), it suffices to let u(f) = p for all ¢ > 0. Hence we
construct the time-dependent Erlang model by defining the off-diagonal terms for its family
of generators { A(t) | t > 0} to be, for all ¢ # j,

At) j=i+1and i</,
a;j(ty=q ipg j=i—1and >0, (5.9)
0 otherwise.

The proof of the next result follows immediately from Corollary 5.2.

Corollary 5.3 For the time-varying Frlang model, we have as € | 0,

SN PSR 1y = :
PQ(tse) = 0) = Biln(1) [1‘%@);(1‘ o)) L e +o@)] . 6.10)

where for all x > 0, B;(x) is the Erlang blocking formula for ¢ channels with offered load z,
i€
i

Bi(z) = Z—:/Z;;U—j : (5.11)

We can use the asymptotic expansion for P(Q(¢;¢) = £) to compute the corresponding
expansion for E[Q(Z; €)] by using the identity.

€

M(t)%E[Q(t;e)]- (5.12)

E[Q(t; )] = p(t) (1 = P(Q(t;¢) = 1)) —

6 A Numerical Example

We now consider an example of the time-varying Erlang loss model. We show how the
probability P(Q(t) = ¢) can be approximated by our UA asymptotics. To test how well the
approximations work, we will compare them to P(Q(t) = ¢) itself, obtained by numerically
integrating the forward equations (3.1) that the vector p(t) satisfies. This results in numeri-
cally solving £+ 1 coupled ordinary differential equations over the time interval [0,¢]. For the
UA approximation, we exploit (1.1)-(1.8). In a subsequent paper, we will discuss in greater
detail the computational aspects of UA expansions and how various numerical tricks can
be used to efficiently compute UA expansions for time-varying birth-death processes. Such
calculations are significantly faster than numerically integrating forward equations.

For our numerical example, the specific model parameters are A(¢) = 15 + 5sin(.5t),
p =1 and £ = 20. We start the process at ¢ = 0 and run it for 22 time units. We treat the
first 12 time units as a warmup period and only plot the results for the final 10 time units.
There is no special reason for the warmup period of 12; it seemed adequate to eliminate the

13



GRAPH FUNCTION

KEY PLOTTED
Exact P(Q12+:) =1)
Approx 0 || =3 (12 + )

Approx 2 || =

(0)
0
Approx 1 71';0)(12 +)+ Wél)(12 + )
02+ + 70124 ) + 712+ )

Table 1: Key to graph labels

initial effect, but that is not necessary. Figure 1 compares the exact blocking probability to
graphs of the first three terms of the UA expansion. (Approximation 2 is the dashed dark
line, while the exact value is the solid dark line). The legend keys for the graph are given in
Table 1.

Recall that the first term 7750) in the UA expansion is the PSA approximation. Hence
Figure 1 also contains a comparison between the exact blocking probability and its PSA
estimate. Now this estimate is merely the Erlang blocking formula, which is a monotone
function applied to A(+). Therefore the PSA approximation and the arrival rate function will
have the same times for extreme values (times for maxima and minima.) We immediately
see that PSA can fail as a good estimate of the exact blocking probability because it does
not account for the natural lag between the times of peak blocking and peak arrivals. (See
[20] for more discussion.) In the two-term UA approximation, we see that the lag disappears.
Finally the three-term UA approximation corrects for the height of the approximate peak.
This phenomenon does not always occur though. We intend to evaluate the quality of UA
expansions as approximations in greater depth in a subsequent paper.

7 Proofs of Theorems

We now prove the theorems and corollaries in Sections 3 and 5. For this purpose, we introduce
norms on vectors and matrices. If x is an (¢ 4 1)-dimensional row vector, then our choice of
vector norms will be the £;-norm, i.e.,

SE (7.1)

If p is a probability vector, then |p| = 1. Our choice of operator norms will be the one
induced by the f;-norm on row vectors, or

‘
|A| = sup [xA| = max > _|aj]. (7.2)

Px|<1 Osi<t 00

When P is a stochastic matrix, |[P| = 1. So when { A(s) | 0 < s <t} is a family of Markov
generators, we have |Ea(¢)| = 1.

14



- Exact

0.157

0.101

0.057

0.0

0.0 2.5 5.0 7.5 10.0

Figure 1: Comparing the exact distribution to one, two and three terms in the UA expansion.
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We now give the proof of our time-varying analogue to the uniformization expansion.
Our proof exploits the probabilistic argument, but the argument can be extended beyond
probabilities; see Chapter 14 of Gantmacher [5].

Proof of Theorem 3.1: First we show that it is sufficient to have for all nonnegative
integers m,

LRI VAL i n!
EA(t) — Z% // HP,\(Si) t_ndsl...dsm
n=0 : 0<51 << <t 4=1
A / T / e_A(t_sl)EA(sl) H Py(siy1) ds1---dspyr.  (7.3)
0§51§~~~§sm+1 St i:l

The theorem follows from (7.3) by taking the limit as m — oo, since

m )\t)m—}-l
AT // AR Py (si1) din - dspgn| < O 7.4
oo a <t € A(Sl)g ,\(5 +1) S1 Sm41| > (m—l—l)! ( )
The identity (7.3) can be shown by induction, making the observation that
d
EEA(t) = —)AEA (1) + AEA (1)P\(?) (7.5)
yields the formula
t
Ea(l) = e M+ / AeNE=IE, (5)P)y(5)ds (7.6)
0

which completes the proof. g

Now we state and prove the following lemma and corollary to give a simple proof of the
time-varying analogue to stationarity.

Lemma 7.1 For any bounded family of generators { A(s) | 0 <s <t }, Ea(t) is an invert-
ible matriz and

CEA() = ~A()BA(L) (17)

Proof: Let a be any positive constant strictly greater than sup,c,<; |A(s)|. Integrating
(3.3), we have for all s where 0 < s <,

Ea(s) =1+ / Ea(r)A(r)dr. (7.8)
0
Now by Theorem 3.1 it is clear that E4 (r) is always a stochastic matrix, and so

|/OS Ea(r)A(r)dr| < /0 IA(r)|dr < as. (7.9)

Since the spectral radius of an operator is always bounded above by its operator norm, by
(7.8) and (7.9), we see that E(s) will always be invertible whenever 0 < s < 1/a.

By induction on n it follows that E(s) is invertible for all s belonging to the interval
n/a,(n +1)/a] if (n+1)/a < t. If welet s = u + r, then we can define by induction
hypothesis

A

E(u) =Ea(r) 'Ea(u + 1) (7.10)
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where 0 < u < 1/a and (n —1)/a < r < n/a. Differentiating with respect to u, we obtain

j_uﬁ](u) = E(u)A(u +r) and E(O) =L (7.11)

Now it follows that ]:](u) is a time ordered exponential that is also invertible for all u < 1/a.

Thus EA(s) is invertible and (7.7) easily follows. g

Corollary 7.2 Under the same hypothesis as Lemma 7.1, if X and y are veclor processes
such that for all t > 0 we have

%x(t) =x()A(t) + y(1), (7.12)
then .
x(1) = X(0)E(1) + | ¥(s)Ba(s) " Ea(t)ds (7.13)

Proof: By the uniqueness of the solution to the ordinary differential equation (7.12) we need
only differentiate (7.13) and show that (7.12) holds. g

Proof of Theorem 3.3: First, the various Poisson equations have unique solutions, e.g.,
see Section 4 of [27]. From the form of the solution, and the assumed differentiability of A
at t, the vectors (") have derivatives of all orders with 0 sums (except 7 (¢)17 = 1). Now
define the following sequence of vector processes

r(”)(t; €) = plt;e) — ééjﬂ(j)(t). (7.14)

Proving the theorem reduces to proving that r(™(t;¢) = O(e"*'). Using (3.8), (3.15), and
(3.16), we have

e%r(”)(t; €) = epltie) —e— > (1)

_ r™ (e )At) — T ()A(1). (7.15)

If we set t =0, then

r(”)((); €) = p(0;¢) — zn: ejﬁ(j)(O) = O(e"), (7.16)

=0

For all 0 < s <, use Lemma 7.1 to construct the operator Ea(s,¢;¢) = Ea(s;e) ' Ea(¢;¢€).
Also by Lemma 7.1, we see that it solves the differential equation

e;l—SEA(S, tie) = —A(s)Ea(s,1;¢€). (7.17)

17



If we apply Corollary 7.2 to the differential equation for r{™)(i;¢) given by its derivative
equalling (7.15), we obtain

t
r(”)(t; €) = —e”/ 1r(n+1) (s)A(s)EA(s,t;€)ds + r(”)((); e)Ea(t;¢€)
_ n+1/ x5 EA(S,t,e)ds—l-O( nt1)
t
= ! lﬂ'(”ﬂ)(t) — 7r(”+1)(0)EA(t; €) —/ (Z—ﬁ(”"'l)(s)) Ea(s,t; e)dsl
o \ds
+0(")
— O(6n+1),

The second and third steps follow from using (7.17) and integration by parts, which completes
the proof. g

To prove our theorem for the time-varying analogue of ergodicity, we introduce the co-
efficient of ergodicity, which is essentially Birkhoff’s contraction coefficient; see Seneta [22]
page 83, L4.3 on page 139, and page 145. For any square matrix P, let

n(P) = 5 max Z|pzk_p]k| (7.18)

2 0<z<]<£

Lemma 7.3 For all square matrices Py and Po,

7'1(P1 —|— Pg) S Tl(Pl) —|— Tl(PQ) (719)
and, for all scalars X,
71 (AP) = || (P). (7.20)
Moreover, if P is stochastic, then
|xP)| R
n(P) = sup —— =1— min min (pig, Pjk) - (7.21)
x:x~1T:0,x;é0 |X| 0§Z<]S£l§) !

Hence, for all stochastic matrices P, and Py, we have
71(P1P3) < 74 (Py)7(P2). (7.22)

Relations (7.19) and (7.20) in Lemma 7.3 imply that 7y acts as a vector space norm on square
matrices. By inequality (7.22), 7 acts as if it were an operator norm when we restrict it to
products of stochastic matrices. It follows from (7.21) that the coefficient 71(P) is an upper
bound on the moduli of all the eigenvalues of a stochastic matrix P except the largest one,
which is 1. Moreover, for any two probability vectors p and q, we have

(p —q)P| < (P)lp — gl (7.23)

Proof of Theorem 3.4: The proof for this theorem reduces to showing that for all prob-
ability vectors p and q, we have

(P~ a)Ea(t;e) =0 (7.24)

as € | 0. This limit is established by the following result, which gives us our time-varying
UA analogue for ergodicity.
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Theorem 7.4 [f {p(s;¢) |0 <s <t} and {q(s;¢) | 0<s <t} are both probability vec-
tors that solve the same set of accelerated forward equations for the family of continuous,
irreducible, Markov generators { A(s) | 0 <s <t} with p(0;¢) = p and q(0;¢) = q, then
there exists two positive constants oo and oy for all positive t and € such that

Ip(t;€) —alt;e)| = |(p — A)Ea(t; ¢)] < age™*[p —q. (7.25)

Moreover, if X > supgc,<, SUPg<icy @i(S), then there exists a constant 0 < o < 1, such that
we can sel ag =1+ 1/c* and for all 0 < X\, < A

on = min( A — A + A dog(A /), Allogal/L.). (7.26)

Proof: To show that (7.25) holds, suppose that for any constant A > supg<,<, supg<;<s @:(s),
there exists some positive integer /., depending only on ¢, such that

o= sup T (ﬁ P,\(Si)) <1 (7.27)

0<s1 S"'SSZ* <t =1
and for all 0 < A\, < A, we have
P(N(M) < At) < e~ (3=detdtosu/n)e, (7.28)

where { N(¢) | t > 0 } is a standard Poisson process (mean 1). We will prove both of these
below. We can then complete the proof since it follows from (7.27) that

n(Ea(t) < 30 P(N(M/e) = n) /</ n (H P(Si)) sy ds,
< 7;’:(3V()\t/e) <m)+ P(N(At]e) > m)olm/t]
for all m. Finally we set m = [A/e| where ), < ), and obtain
r(Ea(t;€)) < P(N(M/e) < At/e) + gt/ e)=2, (7.29)
By (7.28), we have
n(Ea(t;e) < o~ (A=At A Tog (/) )1 /e 4 oMt ()2 (7.30)

and so (7.25) follows once we set
1 .
g = 1—|—§ and oy :mm()\—)\*—l—)\*log()\*/)\), )\*|loga|/€*), (7.31)

where 0 < A, < A. Once we establish (7.27) and (7.28), this completes the proof. g

Since A, is arbitrary (within constraints), then a judicious choice of A, will maximize «;.
This maximum value cannot be attained when A, = 0 or A, = A, so the optimum value for

A« is in (0, X). Now we establish lemmas to prove (7.27) and (7.28).
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Lemma 7.5 [f{A(s) | 0 < s <t} is a continuous family of irreducible generators for the
state space {0,1,...,0} and X is a constanl where

A > sup sup a;(s), (7.32)
0<s<t 0<i<t

then there exists some positive integer £, , depending only on £, such that

o= sup T (ﬁ P,\(Si)) <1, (7.33)

0<s1 < <5, <E i=1
where Py(s) =1+ A(s)/A\.

Proof: If P is an irreducible stochastic matrix, then there is an integer n < ¢ such that
pl(»;b) > 0. For the special case of P = I+ A/A, where A is a CTMC generator and A >
maXo<i<¢ @i, all the diagonal entries of P are positive. So if P is irreducible and has this
special form then it follows that P’ is a strictly positive matrix since pgf) > pgf)p%_n) > 0.
Now for any stochastic matrix P on the set of states {0,1,...,¢}, define Z(P) to be its
incidence matriz where every entry p;; is replaced by 1 if p;; > 0 and 0 otherwise. For any

two stochastic matrices P; and P,, we have

When P has the above form, then it is aperiodic and its incidence matrix contains the
identity matrix I as a submatrix or

I(P) > I, (7.35)

where the ordering relation denotes that every entry of Z(P) is greater than or equal to
every entry of I. This means that the incidence matrix of an ordered product of stochastic
matrices Py, ..., P, of this type will have the following property:

7 (H Pa) >7 (H Pa) ) (7.36)
a=1 ael
where the product []%_, P, is defined to equal Py ---P,, I' is any ordered subset of the
indices {1,2,...,n}, and [[,er Pa is the corresponding ordered product of matrices.
Finally, let |Z,| equal the number of distinct incidence matrices that correspond to irre-
ducible stochastic matrices for the state space {0,1,...,¢}. Whenever we form a product of
l, = L -]Z,| such irreducible, aperiodic stochastic matrices, then by the pigeonhole principle,
there must be a subsequence of at least ¢ of these matrices with the same incidence matrix.
By the inequality (7.36), all the entries of such a matrix product will be strictly positive.
This shows that for all times 0 < 57 < --- <3y, <, we have

Gl (f_[ PA(SZ')) <L (7.37)

Since this is a continuous function of the s;, which range over a compact subset of [0,{], the
relation (7.33) holds. (The supremum is attained, but it must be less than 1.) g

Now we show that (7.28) holds. This follows from applying the Chernoff bound. (See
Chapter 1 of Shwartz and Weiss [24].)
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Lemma 7.6 Let { N(t) | t >0} be a standard (rate 1) Poisson process. For all A and .
with 0 < Ao < X, we have

P(N(AL) < M) < e~ (AdetdalogOu/ )t (7.38)
and so the probability P(N(At) < A\.t) decays exponentially fast ast — oo.
Proof: If § > 0, we can use Chebychev’s inequality to obtain
—ON (Mt —0t E [G_HN(M)] —(A=Xe=f—gA,)t
P(N(M) < At) =P (e > ¢ *)gwgu ), (7.39)
We can minimize this upper bound by setting § = log A/ )., which gives us (7.38).
By the Cauchy mean value theorem, we have
% < logAzlog ) i — ig A % (7.40)
Therefore,
A=+ Adog(A/A) = A= A= A(log A —log AL) (7.41)
= (A=X) |1 - A*w > 0, (7.42)
which completes the proof. g
Proof of Proposition 5.1: Poisson’s equation is
xA =y and x-1"T =0. (7.43)

Define R to be the matrix corresponding to the right shift operator on row vectors and L to
be the left shift operator on row vectors. For any given vector x, let A(x) be the diagonal
matrix such that the n-th diagonal term of A(x) equals the n-th component of x. If we set
A(l) = pu(0) = 0, then

A=AQAR+A(p)L-AAX+p). (7.44)
Now R and L have various algebraic properties such as RLR = R and LRL = L. Moreover

since (0) = 0, we have A(p) = A(p)LR. If we redefine A(€) to be strictly positive but use
A(XA)RL in place of A(A) we get

A = A(MARLR+ A(g)LRL — A(A)RL — A(p)LRLR
(A)RL(R —I) + A(p)LRL(I — R)

= (A(X) - A(wL)RL(R-T)

A
A

If we set

x* =x(AA) - A(p)L) and y =y(I-R)7, (7.45)

then Poisson’s equation reduces to

x*RL = -y~ (7.46)
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and

x*(A(A) - A(p)L) 1T = 0. (7.47)
The solution for all but 2*(£) is immediate, namely
o) = —y*(i) fori=0,...,0— 1. (7.48)
Since *(£) = 2(O)A(€) and y*(£) = Ty y(i) = 0, we can write x* as
— v 2 (Oes = —y* + 2(O)A(D)ey. (7.49)
Since e/Li = 0 for i > £, we have

:c(E))\(ﬁ)eg<A(A)—A(u)L)_l = x(ﬁ))\(ﬁ)eg(I—A(u/)\)L)_ AXN)™" (7.50)

= Zef( (/) ) A(1/X). (7.5

=0

Using (7.50) and substituting (7.49) into (7.47), we have

r(OA(Oes(AN) — A(p)L) 17 = geg( (/A) ) A(1/A)17
- gy*(A(,u/A)L) A(1/A)17
=§i}wm@mmwhwmf
- L LU (AN A0
:ié;wm(mm) A(L/A1T. (7.52)

For all « < 7, define

. i Ak) when i < j
. k=t )
Ali ) = { A(z) when ¢ = j. (7.53)

If u(i,7) is defined similarly, then evaluating the operators on both sides of (7.52) gives

z(£)A(0) 2230 % = ;Zi;y(])% (7.54)
which simplifies to
Lui 1,0 Syt () i+ 1,4)
MOL NG =) T &N &N - 1) (1)
For all 5, we have
Lo+ 1) (L) A1) 1
2N =0 N0 -0 & WL B 0



so that (7.55) simplifies to

) )
B0~ = NAG) (7.57)

which completes the proof. g

Proof of Corollary 5.2: Observe that the solution for WZ(O)(t;ﬁ) follows from the steady
state distribution for birth death processes. Using (5.7) and (5.8) gives us

i—1 j—1 i j—1

_ r . r
Bilp(1) = 1= Bilp(t)) = 2 p(tY TT -~ /2oy TT (7.58)
j=0 k=0 Sk+1/ =0 k=0 Sk+1
and '
>_Jp(t) H Zp H - (7.59)
j=0 i Sk
forallz=0,1,...,¢
From (5.5) and (7.58) we obtain the identity
‘
Z 7O (1;0) H (7.60)

Moreover, from (7.58), (7.59), and using the notion of the logarithmic derivative, we can
show that the 3,’s satisty the identity

e CB(x) = gia(x) — al). (7.61)

Applying the logarithmic derivative again to (7.60) and using the identity (7.61), we have

d . i ¢
E;W](O)(t;g) = jz:%ﬂ'](o)(t;ﬂ) :Z:

- (0w f;g; S a5 (p(1)) — a;(p(1))
= (S0 - 2 (ao0) = atotr))
- ( 1I _J(p(t))) ’;((f)) (as(p(8)) = ai(p(1)))

% AGB((0)
=1 ') (Belp(1)) — Bilplt L
0 :Op()A(f (,f((t)))ﬂ(i(iﬁg ) 11 B,(o(0)




which completes the proof. g
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