Chapter 6

Unmatched Jumps in the
Limit Process

6.1. Introduction

As illustrated by the random walks with Pareto steps in Section 1.4 and
the workload process with Pareto inputs in Section 2.3, it can be important
to consider stochastic-process limits in which the limit process has jumps,
i.e., has discontinuous sample paths. The jumps observed in the plots in
Chapter 1 correspond to exceptionally large increments in the plotted se-
quences, i.e., large steps in the simulated random walk and large inputs
of required work in the simulated workload process of the queue. Thus,
in the associated stochastic-process limit, the jumps in the limit process
are matched by corresponding jumps in the converging processes. However,
there are related situations in which the jumps in the limit process are not
matched by jumps in the converging processes.

Indeed, a special focus of this book is on stochastic-process limits with
unmatched jumps in the limit process. In the extreme case, the converging
stochastic processes have continuous sample paths. Then the sample paths
of the converging processes have portions with steep slope corresponding to
the limiting jumps. In other cases, a single jump in the sample path of the
limiting stochastic process corresponds to many small jumps in the sample
path of one of the converging stochastic processes. In this chapter we give
several examples showing how a stochastic-process limit with unmatched
jumps in the limit process can arise. Most of these examples will be treated
in detail later.

We give special attention to stochastic-process limits with unmatched
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jumps in the limit process because they represent an interesting phenomenon
and because they require special treatment beyond the conventional theory.
In particular, as discussed in Section 3.3, whenever there are unmatched
jumps in the limit process, we cannot have a stochastic-process limit in the
function space D with the conventional Skorohod (1956) J; topology. To
establish the stochastic-process limit, we instead use the M topology.

Just as in Chapter 1, we primarily draw our conclusions in this chapter by
looking at pictures. By plotting initial segments of the stochastic processes
for various sample sizes, we can see the stochastic-process limits emerging
before our eyes. As before, the plots often do the proper scaling automat-
ically, and thus reveal statistical regularity associated with a macroscopic
view of uncertainty. The plots also show the relevance of stochastic-process
limits with unmatched jumps in the limit process.

First, though, we should recognize that it is common for the limit process
in a stochastic-process limit to have continuous sample paths. For example,
that is true for Brownian motion, which is the canonical limiting stochastic
process, occurring as the limit in Donsker’s theorem, discussed in Chapters 1
and 4. In many books on stochastic-process limits, all the stochastic-process
limits that are considered have limit processes with continuous sample paths,
and there is much to consider.

Moreover, when a limit process in a stochastic-process limit does have
discontinuous sample paths, the jumps in the limit process are often matched
in the converging processes. We have already pointed out that only matched
jumps appear in the examples in Chapter 1. Indeed, there is a substantial lit-
erature on stochastic-process limits where the limit process may have jumps
and those jumps are matched in the converging processes. The extreme-
value limits in Resnick (1987) and the many stochastic-process limits in
Jacod and Shiryaev (1987) are all of this form.

However, even for the examples in Chapter 1 with limit processes having
discontinuous sample paths, we would have stochastic-process limits with
unmatched jumps in the limit process if we formed the continuous-time rep-
resentation of the discrete-time process using linear interpolation, as in (2.1)
in Chapter 1. We contend that the linearly interpolated processes should
usually be regarded as asymptotically equivalent to the step-function ver-
sions used in Chapter 1; i.e., one sequence of scaled processes should con-
verge if and only if the other does, and they should have the same limit
process. That asymptotic eqivalence is suggested by Figure 1.13, which
plots the two continuous-time representations of a random walk with uni-
form random steps. As the sample size n increases, both versions approach
Brownian motion. Indeed, as n increases, the two alternative continuous-
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time representations become indistinguishable.

In Section 6.2 we look at more examples of random walks, comparing
the linearly interpolated continuous-time representations (which always have
continuous sample paths) to the standard step-function representation for
the same random-walk sample paths. Now we make this comparison for
random walks approaching a limit process with discontinuous sample paths.
Just as in Chapter 1, we obtain jumps in the limit process by considering
random walks with steps having a heavy-tailed distribution, in particular,
a Pareto distribution. As before, the plots reveal statistical regularity. The
plots also show that it is natural to regard the two continuous-time repre-
sentations of scaled discrete-time processes as asymptotically equivalent.

However, the unmatched jumps in the limit process for the random walks
in Section 6.2 can be avoided if we use the step-function representation
instead of the linearly interpolated version. Since the step-function version
seems more natural anyway, the case for considering unmatched jumps in
the limit process is not yet very strong. In the rest of this chapter we give
examples in which stochastic-process limits with unmatched jumps in the
limit process cannot be avoided.

6.2. Linearly Interpolated Random Walks

All the stochastic-process limits with jumps in the limit process consid-
ered in Chapter 1 produce unmatched jumps when we form the continuous-
time representation of the original discrete-time process by using linear in-
terpolation. We now want to show, by example, that it is natural to regard
the linearly interpolated continuous-time representation as asymptotically
equivalent to the standard step-function representation in settings where
the limit process has jumps.

Given a random walk or any discrete-time process {Sy : k& > 0}, the
scaled-and-centered step-function representations are defined for each n > 1
by

Sn(t) = ¢, (Sim —mlnt]), 0<t<1, (2.1)

where |z] is the greatest integer less than x and ¢, — 0o as n — oco. The
associated linearly interpolated versions are

S, (t) = (nt — [nt])S,((|nt] +1)/n) + (1 + [nt] —nt)S,(|nt]/n) , (2.2)

for 0 <t < 1. Clearly the sample paths of S, in (2.1) are discontinuous for
all n (except in the special case in which Sy = Sp,1 < k < n), while the
sample paths of S,, in (2.2) are continuous for all n.
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6.2.1. Asymptotic Equivalence with M;

We contend that the two sequences of processes {S, : n > 0} and {Sn :
n > 0} in the function space D = D([0,1],R) should be asymptotically
equivalent, i.e., if either converges in distribution as n — oo, then so should
the other, and they should have the same limit. It is easy to see that the
desired asymptotic equivalence holds with the M; metric. In particular, we
can show that das, (Sn, Sn) = 0 as n — oo.

Theorem 6.2.1. (the M; distance between the continuous-time represen-
tations) For any discrete-time process {Sk : k > 0},

du, (Sn,Sp) <n™t forall n>1,

for Sy, in (2.1) and S, in (2.2).

Proof. For the M; metric, we can use an arbitrary parametric represen-
tation of the step-function representation S,,. Then, for any € > 0, we can
construct the associated parametric representation of S, so that it agrees
with the other parametric reprentation at the finitely many points in the do-
main [0, 1] mapping into the points (k/n,S,(k/n)) on the completed graph
of S, for 0 < k < n, with the additional property that the spatial com-
ponents of the two parametric representations differ by at most n™' + ¢
anywhere. Since € was arbitrary, we obtain the desired conclusion. =

We can apply Theorem 6.2.1 and the convergence-together theorem, The-
orem 11.4.7, to establish the desired asymptotic equivalence with respect to
convergence in distribution.

Corollary 6.2.1. (asymptotic equivalence of continuous-time representa-
tions) If either Sy, = S in (D, M;) or S, = S in (D, M), then both limits
hold.

Note that the conclusion of Theorem 6.2.1 is much stronger than the
conclusion of Corollary 6.2.1. Corollary 6.2.1 concludes that S,, S, and S
all have approximately the same probability laws for all suitably large n,
whereas Theorem 6.2.1 concludes that the individual sample paths of S,
and S, are likely to be close for all suitably large n.

We used plots to illustrate the asymptotic equivalence of S, and S,, for
random walks with uniform steps, for which the limit process is Brownian
motion, in Figure 1.13. That asymptotic equivalence is proved by Corollary
6.2.1. (Since the limit process has continuous sample paths, the various
non-uniform Skorohod topologies are equivalent in this example.)
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Now we use plots again to illustrate the asymptotic equivalence of S,
and S,, in random walks with jumps in the limit process. Since the asymp-
totic equivalence necessarily holds in the M; topology by virtue of Corollary
6.2.1, but not in the J; topology, we are presenting a case for using the M;
topology.

6.2.2. Simulation Examples

We give three examples, all involving variants of the Pareto distribution.

Example 6.2.1. Centered random walk with Pareto(p) steps.
As in (3.5) (iii) in Section 1.3, we consider the random walk {S : £ > 0}
with IID steps
X, = U P (2.3)

for U, uniformly distributed on the interval [0,1]. The steps then have a
Pareto(p) distribution with parameter p, having ccdf F¢(t) = ¢7P for ¢t > 1.
We first consider the case 1 < p < 2. In that case, the steps have a finite
mean m = 1+ (p — 1)~! but infinite variance. In Figures 1.20 — 1.22, we
saw that the plots of the centered random walks give evidence of jumps.
The supporting FCLT (in Section 4.5) states that the step-function repre-
sentations converge in distribution to a stable Lévy motion, which indeed
has discontinuous sample paths.

Just as in Chapter 1, we use the statistical package S to simulate and plot
the initial segments of the stochastic processes. Plots of the two continuous-
time representations S, and S, for the same sample paths of the random
walk are given for the case p = 1.5 and n = 107 with j = 1,2, 3 in Figure 6.1.
For n = 10, the two continuous-time representations look quite different. In-
deed, at first it may seem that they cannot be corresponding continuous-time
representations of the same realized segment of the random walk, but closer
examination shows that the two continuous-time representations are correct.
However, for n = 100 and beyond, the two continuous-time representations
look very similar. For larger values of n such as n = 10* and beyond, the
two continuous-time representations look virtually identical.

So far we have considered only p = 1.5. We now illustrate how the plots
depend on p for 1 < p < 2. In Figure 6.2 we plot the two continuous-time
representations of the random walk with Pareto(p) steps for three values of
p, in particular for p = 1.1,1.5 and 1.9. We do the plot for the case n = 100
using the same uniform random numbers (exploiting (2.3)). In each plot
the largest steps stem from the smallest uniform random numbers. The
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Figure 6.1: Plots of the two continuous-time representations of the centered
random walk with Pareto(1.5) steps for n = 10/ with j = 1,2,3. The step-
function representation S, in (2.1) appears on the left, while the linearly
interpolated version S,, in (2.2) appears on the right.
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Figure 6.2: Plots of the two continuous-time representations of the centered
random walk with Pareto(p) steps with p = 1.1,1.5 and 1.9 for n = 102
based on the same uniform random numbers (using (2.3)). The step-function
representation S,, in (2.1) appears on the left, while the linearly interpolated
version S, in (2.2) appears on the right.

three smallest uniform random numbers in this sample were Us = 0.00542,
Uss = 0.00836 and U1 = 0.0201. The corresponding large steps can be seen
in each case of Figure 6.2. Again, we see that the limiting stochastic process
should have jumps (up). That conclusion is confirmed by considering larger
and larger values of n. As in Figures 6.1 and 6.2, the two continuous-time
representations look very similar. And the little difference we see for n = 100
deceases as n increases.

Example 6.2.2. Uncentered random walk with Pareto(0.5) steps. In Fig-
ures 1.19, 1.25 and 1.26 we saw that the uncentered random walk with
Pareto(0.5) steps should have stochastic-process limits with jumps in the
limit process. The supporting FCLT implies convergence to another stable
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Plots of the uncentered random walk with Pareto(0.5) steps for n = 10/
with j = 1,2,3. The step-function representation S, in (2.1) appears on the
left, while the linearly interpolated version S, in (2.2) appears on the right.

Lévy motion as n — oo (again see Section 4.5). Moreover, such a limit holds
for IID Pareto(p) steps whenever p < 1, because then the steps have infinite
mean.

Now we look at the two continuous-time representations in this setting.
We now plot the two continuous-time representations Qn and S,, associated
with the uncentered random walk with Pareto(0.5) steps for n = 10/ with
j =1,2,3 in Figure 6.2.2. Again, the two continuous-time representations
initially (for small n) look quite different, but become indistinguishable as
n increases. Just as in Chapter 1, even though there are jumps, we see
statistical regularity associated with large n. Experiments with different n
show the self-similarity discussed before.

Example 6.2.3. Centered random walk with limiting jumps up and down.
The Pareto distributions considered above have support on the inter-
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val [1,00), so that, even with centering, the positive tail of the step-size
distribution is heavy, but the negative tail of the step-size distribution is
light. Consequently the limiting stochastic process in the stochastic-process
limit for the random walks with Pareto steps can only have jumps up. (See
Section 4.5)

We can obtain a limit process with both jumps up and jumps down if we
again use (2.3) to define the steps, but we let Uy be uniformly distributed
on the interval [—1,1] instead of in [0,1]. Then we can have both arbitrar-
ily large negative jumps and arbitrarily large positive jumps. We call the
resulting distribution a symmetric Pareto distribution (with parameter p).
Since the distribution is symmetric, no centering need be done for the plots
or the stochastic-process limits.

To illustrate, we make additional comparisons between the linearly in-
terpolated continuous-time representation and the step-function continuous-
time representation of the random walk, now using the symmetric Pareto(p)
steps for p = 1.5. The plots are shown in Figure 6.3. We plot the two
continuous-time representations for n = 10/ with j = 2,3,4. From the
plots, it is evident that the limit process now should have jumps down as
well as jumps up. Again, the two continuous-time representations look al-
most identical for large n.

6.3. Heavy-Tailed Renewal Processes

One common setting for stochastic-process limits with unmatched jumps
in the limit process, which underlies many applications, is a heavy-tailed
renewal process. Given partial sums Sy = X7 + -+ + X,k > 1, from a
sequence of nonnegative random variables {Xy : k¥ > 1} (without an IID
assumption), the associated stochastic process N = {N(t) : t > 0} defined
by

N(t) =maz{k>0: 5, <t}, t>0, (3.1)

where Sy = 0, is called a stochastic counting process. When the random vari-
ables X are IID, the counting process is called a remewal counting process
or just a renewal process.

6.3.1. Inverse Processes

Roughly speaking (we will be more precise in Chapter 13), the stochastic
processes {Sg : k > 1} and N = {N(¢) : t > 0} can be regarded as inverses
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Figure 6.3: Plots of the two continuous-time representations of the random
walk with symmetric Pareto(1.5) steps for n = 107 with j = 2, 3, 4. The step-
function representation S, in (2.1) appears on the left, while the linearly
interpolated version S,, in (2.2) appears on the right.
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of each other, without imposing the IID condition, because
Sk <t ifandonly if N(t) > k. (3.2)

The M; topology is convenient for relating limits for partial sums to asso-
ciated limits for the counting processes, because the Mi-topology definition
makes it easy to exploit the inverse relation in the continuous-mapping ap-
proach.

Moreover, it is not possible to use the standard J; topology to establish
limits of scaled versions of the counting processes, because the J; topolgy
requires all jumps in the limit process to be matched in the converging
stochastic processes. The difficulty with the J; topology on D can easily be
seen when the random variables X}, are strictly positive. Then the count-
ing process N increases in unit jumps, and scaled versions of the counting
process, such as

N, (t) = ¢, (N(nt) —m 'nt), t>0, (3.3)

n

where ¢, — oo, have jumps of magnitude 1/c,, which are asymptotically
negligible as n — oo . Hence, if N, in (3.3) is ever to converge as n — oo to
a limiting stochastic process with discontinuous sample paths, then we must
have unmatched jumps in the limit process. Then we need the M; topology
on D.

What is not so obvious, however, is that N, will ever converge to a
limiting stochastic process with discontinuous sample paths. However, such
limits can indeed occur. Here is how: A long interrenewal time creates a long
interval between jumps up in the renewal process. The long interrenewal
time appears horizontally rather than vertically, not directly causing a jump.
However, during such an interval, the scaled process in (3.3) will decrease
linearly at rate n/mcy,, due to the translation term not being compensated
for by any jumps up. When n/c, — oo (the usual case), the slope approaches
—o0. When the interrenewal times are long enough, these portions of the
sample path with steep slope down can lead to jumps down in the limit
process.

A good way to see how jumps can appear in the limit process for N,
is to see how limits for N,, in (3.3) are related to associated limits for S,
in (2.1) when both scaled processes are constructed from the same under-
lying process {S; : £ > 0}. A striking result from the continuous-mapping
approach to stochastic-process limits (to be developed in Chapter 13) is an
equivalence between stochastic-process limits for partial sums and associ-
ated counting processes, exploiting the M; topology (but not requiring any
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direct independence or common-distribution assumption). As a consequence
of Corollary 13.8.1, we have the following result:

Theorem 6.3.1. (FCLT equivalence for counting processes and associated
partial sums) Suppose that 0 < m < oo, ¢, — 00, n/c, — oo and S(0) = 0.
Then

S,=S in (D,M) (3.4)

for Sy in (2.1) if and only if
N,=N in (D,M) (3.5)
for Ny, in (3.3), in which case
(Sn,Ny) = (S,N) in (D*WM), (3.6)
where the limit processes are related by
N(t) = (m 'Som le)(t) =m 'S(m~1t), t>0, (3.7
or, equivalently,
S(t) = (mN o me)(t) = mN(mt), t>0, (3.8)
where e(t) =t, t>0.

Thus, whenever the limit process S in (3.4) has discontinuous sample
paths, the limit process N in (3.5) necessarily has discontinuous sample paths
as well. Moreover, S has only jumps up (down) if and only if N has only
jumps down (up). Whenever S and N have discontinuous sample paths, the
M topology is needed to express the limit for N, in (3.5). In contrast, the
limit for S, in (3.4) can hold in (D, Jy).

6.3.2. The Special Case with m =1

The close relation between the limit processes S and N in (3.4) — (3.8)
is easy to understand and visualize when we consider plots for the special
case of strictly positive steps X with translation scaling constant m = 1.
Note that the limit process N in (3.7) becomes simply —S when m = 1.

Also note that we can always scale so that m = 1 without loss of gen-
erality: For any given sequence {Xj : £ > 0}, when we multiply X by m
for all k, we replace S, by mS,, and N,, by N,, om~'e. Hence, the limits S
and N are replaced by mS and N o m~le, respectively.
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Hence, suppose that m = 1. A useful observation, then, is that N(Sg) =
k for all k. (We use the assumption that the variables X are strictly
positive.) With that in mind, note that we can plot N(¢) —t versus ¢, again
using the statistical package S, by plotting the points (0,0), (Sk, N(Sk) —
1 —S;) and (Sk, N(Sg) — Si) in the plane R? and then performing linear
interpolation between successive points.

Roughly speaking, then, we can plot N (t)—t versus ¢ by plotting N (Sy)—
Sy, versus Si. On the other hand, when we plot the centered random walk
{Sk — k : k> 0}, we plot (S — k) versus k. Since N(Si) = k, we have

N(Sk) — Sp =k — Sp = —(S — k) .

Thus, the second component of the pair (Si, N(Sg) — Sk) is just minus
1 times the second component of the pair (k, Sy — k). Thus, the plot of
N (t) —t versus t should be very close to the plot of —(S; — k) versus k. The
major difference is in the first component: For the renewal process, the first
component is Si; for the random walk, the first component is k. However,
since n™1S, — 1 as n — oo by the SLLN, that difference between these two
first components disappears as n — oo.

Example 6.3.1. Centered renewal processes with Pareto(p) steps for 1 <
p < 2. By now, we are well acquainted with a situation in which the limit
for S, in (3.4) holds and the limit process S has discontinuous sample paths:
That occurs when the underlying process {Sy : k£ > 0} is a random walk
with IID Pareto(p) steps for 1 < p < 2. Then the limit (3.4) holds with
m = 1+(p—1)~! and S being a stable Lévy motion, which has discontinuous
sample paths. The discontinuous sample paths are clearly revealed for the
case p = 1.5 in Figures 1.20 — 1.22 and 6.1.

To make the relationship clear, we consider the case m = 1. We obtain
m = 1 in our example with IID Pareto(1.5) steps by dividing the steps by 3;

ie., we let X}, = U,;2/3/3. For this example with Pareto(1.5) steps having
ccdf decay rate p = 3/2 and mean 1, we plot both the centered renewal
process (N(t) —t versus t) and minus 1 times the centered random walk
(—(Sk — k) versus k). We plot both sample paths, putting the centered
renewal process on the left, for the cases n = 107 with j = 1,2,3 in Figure
6.4. We plot three possible representations of each for n = 10* in Figure
6.5. (We plot the centered random walk directly; i.e., we do not use either
of the continuous-time represenations.)

For small n, the sample paths of the two centered processes look quite
different, but as n increases, the sample paths begin to look alike. The
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Figure 6.4: Plots of the centered renewal process (on the left) and minus
1 times the centered random walk (on the right) for Pareto(1.5) steps with
mean m = 1 and n = 10/ for j = 1,2, 3.

jumps in the centered random walk plot are matched with portions of the
centered-renewal-process plot with very steep slope. As n increases, the
slopes in the portions of the centered-renewal-process plots corresponding
to the random-walk jumps tend to get steeper and steeper, approaching the
jump itself.

It is natural to wonder how the plots look as the decay rate p changes
within the interval (1,2), which is the set of values yielding a finite mean
but an infinite variance. We know that for smaller p the jumps are likely
to be larger. To see what happens, we plot three realizations each of the
centered renewal process and minus 1 times the centered random walk for
Pareto steps having decay rates p = 7/4 and p = 5/4 (normalized as before
to have mean 1) for n = 10* in Figures 6.6 and 6.7. From Figures 6.5 —
6.7, we see that the required space scaling decreases, the two irregular paths
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Figure 6.5: Plots of three independent realizations of the centered renewal
process (on the left) and minus 1 times the centered random walk (on the
right) for Pareto(1.5) steps with mean m = 1 and n = 10*.
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Figure 6.6: Plots of three independent realizations of the centered renewal
process (on the left) and minus 1 times the centered random walk (on the
right) associated with Pareto(p) steps in (2.3) with p = 7/4, m = 1 and
n = 10%.

become closer, and the slopes in the renewal-process plot become steeper,
as p increases from 5/4 to 3/2 to 7/4. For p = 5/4, we need larger n to
see steeper slopes. However, in all cases we can see that there should be
unmatched jumps in the limit process. =

For the Pareto-step random walk plots in Figures 6.4 — 6.7, we not only
have —S,, = —S and N,, = —S, but also the realizations of N,, and —S,,
are becoming close to each other as n — oco. Such asymptotic equivalence
follows from Theorem 6.3.1 by virtue of Theorem 11.4.8. Recall that we can
start with any translation scaling constant m and rescale to m = 1.

Corollary 6.3.1. (asymptotic equivalence) If, in addition to the assump-



6.3. HEAVY-TAILED RENEWAL PROCESSES 249

\
\
)

1000
1000

\

CenteredCounts

500
MinusCenteredSums

°

2000 4000 6000 8000 0 2000 4000 6000 8000 10000

4

v —

/
y

2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

//
o

2000 4000 6000 8000 0 2000 4000 6000 8000 10000

CenteredCounts

600 -400 200 O 200 400
MinusCenteredSums

600 -400 200 0 200 400

o

1500
1500

CenteredCounts

500 1000
MinusCenteredSums
1000

500

°

time. k

Figure 6.7: Plots of three independent realizations of the centered renewal
process (on the left) and minus 1 times the centered random walk (on the
right) associated with Pareto(p) steps in (2.3) with p = 5/4, m = 1 and
n = 10%



250 CHAPTER 6. UNMATCHED JUMPS

tions of Theorem 6.3.1, the limit S,, = S in (3.4) holds and m = 1, then

Cl]\/[1 (Nn, —Sn) =0.

To summarize, properly scaled versions (with centering) of a renewal
process (or, more generally, any counting process) are intimately connected
with associated scaled versions (with centering) of random walks, so that
FCLTs for random walks imply associated FCLTs for the scaled renewal
process (and vice versa), provided that we use the M; topology. When
the limit process for the random walk has discontinuous sample paths, so
does the limit process for the renewal process, which necessarily produces
unmatched jumps. We state specific FCLTs for renewal processes in Section
7.3.

6.4. A Queue with Heavy-Tailed Distributions

Closely paralleling the heavy-tailed renewal process just considered, heavy-
traffic limits for the queue-length process in standard queueing models rou-
tinely produce stochastic-process limits with unmatched jumps in the limit
process when the service times or interarrival times have heavy-tailed dis-
tributions (again meaning with infinite variance). In fact, renewal processes
enter in directly, because the customer arrival process in the queueing model
is a stochastic counting process, which is a renewal process when the inter-
arrival times are IID.

We start by observing that jumps in the limit process associated with
stochastic-process limits for the queue-length process almost always are un-
matched jumps. That is easy to see when all the interarrival times and
service times are strictly positive. (That is the case w.p.1 when the interar-
rival times and service times come from sequences of random variables with
distributions assigning 0 probability to 0.) Then the queue length (i.e., the
number of customers in the system) makes changes in unit steps. Thus, any
jumps in the limit process associated with a stochastic-process limit for a
sequence of queue-length processes with space scaling, where we divide by
¢p, with ¢, — 0o as n — oo, must be unmatched jumps.

The real issue, then, is to show that jumps can appear in stochastic-

process limits for the queue-length process. The stochastic-process limits
we have in mind occur in a heavy-traffic setting, as in Section 2.3.
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6.4.1. The Standard Single-Server Queue

To be specific, we consider a single-server queue with unlimited waiting
room and the first-come first-served service discipline. (We will discuss this
model further in Chapter 9. The model can be specified by a sequence of
ordered pairs of nonnegative random variables {(Uy,Vy) : kK > 1}. The
variable U, represents the interarrival time between customers k& and k —
1, with U; being the arrival time of the first customer, while the variable
Vi represents the service time of the customer k. The arrival time of the
customer k is thus

T, =Ui+ -+ Uy, kZl, (4.1)

and the departure time of the customer k is
Dy=Tp +Wi+V,, kE>1, (4.2)

where Wy, is the waiting time (before beginning service) of customer k. The
waiting times can be defined recursively by

Wi= Wi+ Via —UY, E>2, (4.3)

where [z]T = maz{z,0} and W; = 0. (We have assumed that the system
starts empty; that of course is not critical.)

We can now define associated continuous-time processes. The counting
processes are defined just as in (3.1). The arrival (counting) process {A(t) :
t > 0} is defined by

A(t) =maz{k >0: T, <t}, t>0, (4.4)
the departure (counting) process {D(t) : t > 0} is defined by
D(t) =maz{k>0: Dy <t}, t>0, (4.5)
and the queue-length process {Q(t) : t > 0} is defined by
Q(t) = A(t) —D(), t>0. (4.6)
Here the queue length is the number in system, including the customer in
service, if any.
The standard single-server queue that we consider now is closely related
to the infinite-capacity version of the discrete-time fluid queue model con-

sidered in Section 2.3. Indeed, the recursive definition for the waiting times
in (4.3) is essentially the same as the recursive definition for the workloads
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in (3.1) of Section 2.3 in the special case in which the waiting space is un-
limited, i.e., when K = oo. For the fluid queue model, we saw that the
behavior of the workload process is intimately connected to the behavior of
an associated random walk, and that heavy-tailed inputs lead directly to
jumps in the limit process for appropriately scaled workload processes. The
same is true for the waiting times here, as we will show in Section 9.2.

6.4.2. Heavy-Traffic Limits

Thus, just as in Section 2.3, we consider a sequence of models indexed by
n in order to obtain interesting stochastic-process limits for stable queueing
systems. We can achieve such a framework conveniently by scaling a single
model. We use a superscript n to index the new quantities constructed in
the n*” model.

We start with a single sequence {(Uy, Vi) : kK > 1}. Note that we have
made no stochastic assumptions so far. The key assumption is a FCLT for
the random walks, in particular,

(S%,8Y) = (S%,8Y) in (D*WM), (4.7)

where

Lnt]

et Z Ui — |nt])

[nt]

ZV [nt])

The standard stochastic assumption to obtain (4.7) is for {U} and {V}}
to be independent sequences of ITD random variables with

and

EVi =EU, =1 forall k>1. (4.8)

and other regularity conditions (finite variances to get convergence to Brow-
nian motion or asymptotic power tails to get convergence to stable Lévy
motions).
Paralleling the scaling in (3.13) in Section 2.3, we form the n’® model by
letting
U,? = ank and ‘/kn = Vk, k >1 y (4.9)

where
by =1+ mecp/n for n>1. (4.10)
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We assume that ¢,/n | 0 as n — oo, so that b, | 1 as n — oo. The scaling
in (4.9) is a simple deterministic scaling of time in the arrival process; i.e.,
the arrival process in model n is

A™t) = A(b '), t>0,

for by, in (4.10).
We now form scaled stochastic processes associated with the sequence of
models by letting
Wa(t) = ;' Wik, (4.11)

and
Qn(t) =, Q" (nt), t>0. (4.12)
We now state the heavy-traffic stochastic-process limit, which follows

from Theorems 9.3.3, 9.3.4 and 11.4.8. As before, for z € D, let Disc(x) be
the set of discontinuities of z.

Theorem 6.4.1. (heavy-traffic limit for the waiting times and queue lengths)
Suppose that the stochastic-process limit in (4.7) holds and the scaling in
(4.9) holds with ¢, — 0o and c,/n — 0. Suppose that almost surely the sets
Disc(S") and Disc(S”) have empty intersection and

P(S“(0) = 0) = P(S*(0) = 0) = 1.

Then
W, =>W=¢S"—-S"—me) in (D,M), (4.13)
where ¢ is the one-sided reflection map in (5.4) in Section 3.5,
(Wi, Qn) = (W, W) in (D*,WM) (4.14)
and
dyy (Wi, Qr) = 0. (4.15)

We now explain why the limit process Q for the scaled queue-length
processes can have jumps. Starting from (4.6), we have

Qn = An - Dn 3 (4'16)

where

A, (t) = ¢, (A™(nt) —nt), t>0 (4.17)

and
D, (t) = ¢, (D" (nt) —nt), t>0. (4.18)
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Just as for the renewal processes in the previous section, an especially long
service time (interarrival time) can cause a period of steep linear slope down
in D, (A,), which can correspond to jumps down in the associated limit
process. The jump down from D, (A,) corresponds to a jump up (down)
in the limit process for Q.

6.4.3. Simulation Examples

What we intend to do now is simulate and plot the waiting-time and
queue-length processes under various assumptions on the interarrival-time
and service-time distributions. Just as with the empirical cdf in Example
1.1.1 and the renewal process in Section 6.3, when we plot the queue-length
process we need to plot a portion of a continuous-time process. Just as
in the two previous cases, we can plot the queue-length process with the
statistical package S, exploiting underlying random sequences. Here the
relevant underlying random sequences are the arrival times {7} and the
departure times { Dy}, defined recursively above in (4.1) and (4.2).

Since the plotting procedure is less obvious now, we specify it in detail.
We first form two dimensional vectors by appending a +1 to each arrival
time and a —1 to each departure time. (Instead of the arrival time T;,, we
have the vector (T},,1); instead of the departure time D,,, we have the vector
(Dp,—1).) We then combine all the vectors (creating a matrix) and sort on
the first component. The new first components are thus the successive times
of any change in the queue length (arrival or departure). We then form the
successive cumulative sums of the second components, which converts the
second components into the queue lengths at the times of change. We could
just plot the queue lengths at the successive times of change, but we go
further to plot the full continuous-time queue-length process. We can plot
by linear interpolation, if we include each queue length value twice, at the
jump when the value is first attained and just before the next jump. (This
method inserts a vertical line at each jump.)

We now give an S program to read in the first n interarrival times, service
times and waiting times and plot the queue-length process over the time
interval that these n customers are in the system (ignoring all subsequent
arrivals). At the end of the time interval the system is necessarily empty.
Our construction thus gives an odd end effect, but it can be truncated.
Indeed, in our plots below we do truncate (at the expected time of the n'
arrival).

Here is the S function:
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QueueLength <- function(U, V, W) {
QueueLength <- vector(“numeric”, 2«length(U) + 1)

T <- cumsum(U) #construct arrival times
D<-T+W+V # departure times

TT <- cbind(T, +1) #append +1 to arrivals
DD <- ¢bind(D, —1) #append —1 to deps.
m <- rbind(TT, DD) #merge into one matrix
msort <- m[sort.list(m[, 1]),] #sort on first comp.
timel <- msort[, c(1)] #extract change times
QLchg <- msort[, c(2)] #queue length changes
QL1 <- cumsum(QLchg) #successive q. lths.
time2 <- ¢(0, timel, timel) #times for lin.interp.
time <- sort(time?2)

n <- length(timel) #q. lths. for lin. int.

QL <- ¢(0, QL1)

for (k in seq(n)) {

QueueLength[[2 x k£ — 1]] <- QL[[k]]

QueueLength[[2 * k]] <- QL[[%]] }

QueueLength[2 x n + 1] <- QL[n + 1]

plot(time, QueueLength, type = “I”) #do the plotting

}

We now consider a few examples. We use the Kendall notation to de-
scribe the model: X/Y/c specifies a model with ¢ servers, arrival process of
type X and service process of type Y. For either X or Y, GI denotes an IID
sequence with a general distribution, while M (for Markov) denotes (in ad-
dition) the exponential distribution. We use P, for the Pareto distribution
with parameter p.

Example 6.4.1. The M/M/1 Queue.

We first consider the standard M/M/1 queue. Thus, here we assume that
the interarrival times and service times come from mutually independent
sequences of ITD exponentially distributed random variables. It suffices to
specify the means of the interarrival time and the service time. Using the
scaling in equations (4.9) and (4.10), we need to specify the constant m and
the space-scaling sequence {c, : n > 1}.

At this point, we know what to do: There are no heavy-tailed distribu-
tions, so we should let ¢, = y/n. We also let m = 1. Thus, we fully specify
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the sequence of M/M /1 models indexed by n by letting
EU}=1+1/y/n and EVQ=1 forall k¥ and n. (4.19)

With that choice, the plotter can do the appropriate scaling automatically.

We are primarily interested in the queue-length process, but we also plot
the waiting times, because it is instructive to compare the plotted queue-
length process to the plotted waiting times. Hence, we plot both the waiting
times of the first n customers (linearly interpolated) and the queue-length
process over the time interval [0, nEUT] for the cases n = 107 with j = 1,2,3
in Figure 6.8.

For small n, the queue-length process looks very different from the wait-
ing time sequence, but as n increases, the sample path of the queue length
process becomes very similar to the sample path of the waiting times, except
possibly for the final portion, where the queue length experiences some of
the end effect. To confirm what we see in Figure 6.8, we plot three possible
realizations of the waiting times and the queue lengths for n = 10* in Figure
6.9.

From our experience so far, we should know what to expect: The plots
are approaching plots of reflected Brownian motion with drift —1 (which
does not have any jumps). Now the conditions and conclusions of Theorem
6.4.1 hold with ¢, = v/n and W = ¢(cB —me), where B is standard Brow-
nian motion, e is the identity map, ¢ : D — D is the one-sided reflection
map and 02 = Var(U;) + Var(Vy) = 2. We apply Donsker’s theorem —
Theorem 4.3.2.

Moreover, the plots show that the distance between the two scaled pro-
cesses is indeed asymptotically negligible. Since the limit process here has
continuous sample paths, we can express this asymptotic equivalence using
the uniform norm over [0, 1]:

|Wp,—Qn|[=0 as n—oo. (4.20)

Example 6.4.2. The M/P;5/1 Queue.

We now modify the previous example by letting the service-time distri-
bution be Pareto(p) with p = 1.5 and mean 1. (In the framework of Section
1.3.3, we can use 3 U~ %/3, where U is uniform on the interval [0, 1], which
has ccdf F¢(t) = (3t)~3/2 for ¢ > 1.) With this heavy-tailed service-time
distribtuion, we must scale space differently, because the space scaling in the
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Figure 6.8: Plots of the waiting times of the first n arrivals (on the left) and
the queue-length process over the interval [0,nEU]] (on the right) in the
M/M/1 queue with scaling in (4.19) for n = 107 with j = 1,2, 3.
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Figure 6.9: Three possible realizations of the waiting times of the first n
arrivals (on the left) and the queue-length process over the interval [0, n EUT]
(on the right) in the M/M/1 queue with scaling in (4.19) for n = 10%.
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FCLT for the random walk involves ¢, = n?/3 instead of ¢,, = n'/2. Hence,
instead of the scaling in (4.19), we now use

EUF =1+4+n"'2 and EV{"=1 forall k and n. (4.21)

The new scaling makes the traffic intensity p, smaller than in Example
6.4.1 for any given n. For example, for n = 10,000, before we had p, =
1/1.01 = 0.990, while now we have p, ~ 1/1.046 ~ 0.956.

We plot three possible realizations of the waiting times of the first n
customers (on the bottom or left) and queue-length process over the interval
[0,nEU}!] (on the top or right) for n = 10%, in Figure 6.10. The first two
plots look much like the M/M/1 plots in Figure 6.9 except now we can see
upward jumps. But the third plot is very different!

There is now much more variability in the sample paths because of the
possibility of the occasional very large jumps. The range of values is excep-
tionally small in case 2 and exceptionally large in case 3. The possibility of
exceptionally large jumps produces large variations from plot to plot, as we
saw for the random walks in Figure 1.21.

When we look at the third plots closely, it is not evident that the waiting-
time and queue-length plots are for the same sample path. For instance, the
second big jump in the waiting times occurs at about index 3100, whereas
the corresponding second steep incline in the queue-length path begins at
about time 4100. However, upon reflection, we see that these actually are
consistent, because the waiting time of the customer having the second large
service time is about 1000. Since the arrival rate is 1, that customer arrives
at about time 3100. Hence that customer enters service, and begins occu-
pying the server, at about time 4100. Thus the queue length should start
building up at about time 4100, as it does.

The upward jumps are less sharp for the queue-length process, which
we know actually increases by unit jumps, but the asymptotic behavior is
evident from the plots. In this case, we are seeing a reflected stable Lévy
motion with drift —1, which has discontinuous sample paths, instead of a
reflected Brownian motion. Again we can explain the statistical regularity
we see by Theorem 6.4.1. However, now the scaling involves ¢, = n?/3.

By Theorems 4.5.2 and 4.5.3, the limit process is W = ¢(cS” —e) =

op(S” — o le, where o = 1/302/3 for C, in (5.14) of Section 4.5.1, S?

is a centered a-stable Lévy motion with S¥(1) 4 Sa(1,1,0) and a = 3/2.
(Its steady-state distribution is given in Section 8.5.2.) Again, it is evident
that the two scaled processes W, and Q, should now be asymptotically
equivalent. =
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Figure 6.10: Three possible realizations of the waiting times of the first n
arrivals (on the left) and the queue-length process over the interval [0, n EUT]
(on the right) in the M/P; 5/1 queue with the scaling in (4.21) for n = 10%.
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Example 6.4.3. The P 5/M/1 Queue.

It is evident that a heavy-tailed service-time distribution should cause
greater congestion, but it may not be evident that a heavy-tailed interarrival-
time distribution can as well, because extra long interarrival times only serve
to empty out the queue. However, heavy-tailed interarrival-time distribu-
tions can cause congestion as well. The reason is that, for given fixed mean,
the occasionally exceptionally long interarrival times must be compensated
for in the distribution by shorter interarrival times, and these shorter inter-
arrival times lead to bursts of arrivals and thus increased queue lengths.

We illustrate by considering the P; 5/M/1 queue, which has IID Pareto(1.5)
interarrival times and IID exponential service times. This model is the dual
of the model in Example 6.4.2, with the role of the interarrival times and
service times switched (adjusted by scaling, so that the expected interarrival
times are bigger than the expected service times in both cases).

In Figure 6.11 we plot three possible realizations of the waiting times
of the first n arrivals (on the left) and the queue-length process over the
interval [0,nEU}'| (on the right) in the P; 5/M/1 queue with the scaling in
(4.21) for n = 10%.

As in Figures 6.8 — 6.10, the queue-length plots are similar to the waiting-
time plot, except possibly for the final portion of the queue-length plot,
where the queue experiences its end effect. However, unlike in the previous
figures, in Figure 6.11 we see evidence of jumps down.

Just as for the M/P; 5/1 model, the heavy-traffic FCLT in Theorem
6.4.1 applies to the P;5/M/1 and P, 5/P;5/1 models. Indeed, we again
have the same scaling, but now the limiting reflected stable Lévy motions
are different, having jumps down only for the P; 5/M/1 model and haviing
jumps both up and down for the P; 5/P; 5/1 model, instead of having jumps
up only for the M/P; 5/1 model.

For the P;5/M/1 model, the heavy-traffic stochastic-process limit for
the workload process is W,, = W, where again ¢, = n?/3, but now

W = ¢(—0S* —e) L 5p(~S* — o le) ,

[le

where o = 1/3002/3 for o = 3/2, just as in Example 6.4.2. Here —S"(1)
Sa(1,—1,0).
For the P; 5/P; 5/1 model, the limit process is

W = ¢(0S” — 08" —e) L 5p(S* — 8" — o te) |

where S? — S* £ S with S being a stable Lévy motion satisfying S(1) 4
22/38,(1,0,0); see (5.8) — (5.11) in Section 4.5.1.
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Figure 6.11: Three possible realizations of the waiting times of the first
n = 10* arrivals (on the left) and the queue-length process over the interval
[0,nEUT] (on the right) in the P 5/M/1 queue with the scaling in (4.21)
for n = 10%.
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We should not be fooled by the jumps down for the P; 5/M/1 model. Of
course, the jumps down do constitute reductions in congestion, but elsewhere
in the plot the sample path is rising, so that the range of values experienced
can be substantial. Indeed, that is demonstrated by the heavy-traffic FCLT,
which has space scaling by n?/3, just as for the M/P; 5/1 model in Example
6.4.2. =

6.5. Rare Long Service Interruptions

The queueing example just considered illustrates a common cause of
congestion in queues: stochastic vartiability in the interarrival times and
service times. However, congestion in queues can occur for other reasons:
For example, the servers may be subject to breakdown and failure, causing
service interruptions. In manufacturing systems, service interruptions due to
machine failures or the unavailability of parts are often the dominant sources
of congestion. With evolving communication networks, there is debate about
whether the most important source of congestion is the uncertain burstiness
of customer input or the uncertain failure of system elements. The biggest
problems tend to occur when both happen together.

We can better understand the impact of service interruptions upon per-
formance if we develop a probability model and establish appropriate stochastic-
process limits. One such model, considered by Kella and Whitt (1990), is
a queue with rare long service interruptions. The queue can be a standard
single-server queue with unlimited waiting space, the first-come first-served
service discipline and random arrivals and service times, as considered in the
previous section. We can supplement that model by allowing random service
interruptions. The interruptions can be triggered by queueing events; e.g.,
they could occur only when the queue becomes empty. Or they can occur
exogenously. We will consider the case in which they occur exogenously.

Specifically, we will assume that the availability of the server is charac-
terized by an alternating renewal process; i.e., there are alternating periods
in which the server is available (up) or unavailable (down). For tractability,
we assume that the up and down times come from mutually independent
sequences of ITD positive random variables with finite means and variances.

A revealing stochastic-process limit can be obtained by considering the
queue in a heavy-traffic limit, in which the load is allowed to approach
the critical value for stability. If the interruptions remain unchanged, then
the service interruptions alter the conventional heavy-traffic limit with a
reflected Brownian motion limit process only by increasing the traffic inten-
sity and increasing the variance parameter of the Brownian motion, both of
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which cause increased congestion. However, we obtain a different nondegen-
erate limit, which is consistent with many applications, if we let the intervals
between interruptions and the durations of the interruptions increase in the
limit. If we let these quantities increase appropriately, with the duration
of an interruption being asymptotically negligible compared to the time be-
tween interruptions, then we can obtain a revealing nondegenerate limit.

In particular, an interesting limiting regime has the random up times be
of order n and the random down times be of order \/n as a function of the
number n of customers being considered. Then, with the customary scaling
of time by n and space by /n, the scaled up times become of order 1 and the
scaled down times become of order 1/y/n. That makes the scaled down times
asymptotically negligible. Thus, after scaling, the service interruptions occur
in the limit according to a stochastic point process, with a finite positive
expected number of interruptions in a finite time interval.

Since the scaled durations of the service interruptions are aymptotically
negligible, the service interruptions occur instantaneously in the limit. Nev-
ertheless, the service interruptions can have a significant spatial impact,
because the number of arrivals during the order \/n down time is also of
order y/n. Thus, after scaling space by y/n, the input during the down time
causes a random jump of order 1 in the scaled queueing process at each
interruption time.

The proposed scaling, with up times of order n and down times of order
\/n, thus produces random jumps of order-1 size, spaced at random order-1
intervals. In the limit, the proportion of time that the server is unavail-
able because of interruption is asymptotically negligible. Nevertheless, the
asymptotic impact of the interruptions can be dramatic. With this limit,
it is possible to compare the effects of the service interruptions (which ap-
pear in the limit process as jumps) to the customary stochastic fluctuations.
Depending on the specific parameter settings, one or the other may domi-
nate. In Section 14.7, following Kella and Whitt (1990) and Chen and Whitt
(1993), we consider networks of queues with rare long service interruptions.

When we consider limits for sequences of queue-length stochastic pro-
cesses affected by rare long interruptions of the kind just described, the
jumps in the limit process are typically not matched in the converging scaled
queue-length processes. In the queueing system, arrivals usually are com-
ing one at a time. During a service interruption, service stops, but the
arrivals keep coming. Thus the queue length process increases by many
unit steps during such periods. After scaling time and space, the n'? scaled
queue-length process increases more rapidly (due to the time scaling) but by
smaller asymptotically negligible amounts (due to the space scaling). Thus
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the resulting limit is a stochastic-process limit with unmatched jumps in the
limit process.

In the rest of this subsection we illustrate the kind of limiting behayv-
ior provided by rare long service interruptions. To do so, we simplify the
model: Even though service interruptions represent a different source of con-
gestion than variability in customer demand, we often can represent service
interruptions within the framework of a standard queueing model. We can
simply include the interruption in the service time of one of the customers.
Specifically, we can redefine the service-time distribution: The new service-
time distribution becomes a mixture: With probability p, the new service
time is the sum of an original service time and the interruption duration;
with probability 1 — p, the new service time reduces to an original service
time. We then choose the probability p to match the probability that a
customer is the first customer to experience a service interruption. If the
timing of service interruptions needs to be modeled very precisely, then we
can think of interruptions as special high-priority customers that preempt
regular customers (in line or in service), but the simple model above often
suffices

We have in mind rare long service interruptions occuring randomly, but
to illustrate the interruption phenomenon, we let the interruptions occur in
a fixed manner in our example below.

Example 6.5.1. The M/M/1 queue with two fized service interruptions.

We construct a simple example to illustrate the kind of limit behavior
associated with rare long service interruptions. Specifically, we consider the
M/M/1 queue with the heavy-traffic scaling in (4.19), just as in Example
6.4.1, except that now we let customers number n/4 and 3n/4 have service
times of 24/n and +/n, respectively, as a function of n. These special service
times are introduced to represent interruptions that occur approximately at
times ¢/4 and 3t/4 in the scaled processes plotted over the interval [0, 1].
(By the SLLN, the scaled arrival time of customer number n/4 approaches
t/4 as n — o0.) Note that the spacings between the interruptions is indeed
order n, while the durations of the interruptions (as captured by the special
service times) are of order /n, as specified above.

We plot the waiting times of the first n customers and the queue-length
process for the time interval [0, nEUT'], the expected time for the n customers
to arrive, for n = 107 with j = 2,3,4 in Figure 6.12. In Figure 6.12 the
impact of the interruptions is clearer for the waiting times than for the
queue lengths, especially for smaller n. For the queue-length process, the
portion of the plot corresponding to the jump gets steeper as n increases.
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Figure 6.12: Plots of the waiting times of the first n arrivals (on the left) and
the queue-length process over the interval [0, nEU}'| (on the right) for in the
M/M/1 queue with scaling in (4.19) and service interruptions of length 2,/n
and /n associated with customers n/4 and 3n/4 for n = 10/ with j = 2,3, 4.

As before, we see that the queue-length and waiting-time plots coalesce as
n increases. Now both scaled processes approach reflected Brownian motion
with drift —1, modified by jumps of size 2 at time ¢ = 1/4 and of size 1 at
time ¢ = 3/4. For the scaled queue-length process, the limit process must
have unmatched jumps. =

Example 6.5.2. The P 5/M/1 queue with two fixed service interruptions.

Now, as in Example 6.4.3 we consider the P; 5/M/1 queue with heavy-
traffic scaling in (4.21), modified by having customers number n/4 and 3n/4
experience interruptions. We choose the P;5/M/1 model instead of the
M|/ Py 5/1 model, because it naturally (without the interruptions) produces
jumps down instead of up. Thus, it will be easier to recognize the new jumps
up caused by the service interruptions.
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In addition, the durations of the interruptions need to be scaled differ-
ently from the scaling in Example 6.5.1. In order to be consistent with the
heavy-traffic limiting behavior in Example 6.4.3, we now need to scale the
durations of the interruptions by n?/3 instead of n'/2. In particular, now
we let the service times of customers number n/4 and 3n/4 be 2n%/® and
n?/3, respectively. We plot three possible realizations of the waiting times
of the first n customers and the queue-length process over the time interval
[0,nEUP], ignoring all arrivals after the first n, for the case n = 10* in
Figure 6.13.

Just as we would expect from Figures 6.11 and 6.12, we see randomly
occurring jumps down because of the Pj 5 arrival process and jumps up of
magnitude 2 at time ¢ = 1/4 and 1 at time ¢t = 3/4. However, both kinds
of jumps are much sharper for the waiting times than for the queue-length
process. Hence, we evidently need larger n in this case to have the queue-
length plots be visually similar to the waiting-time plots. The supporting
FCLTs state that both scaled processes converge to a stable Lévy motion
(with jumps down only) modified by the addition of two jumps up, a jump
of size 2 at ¢ = 1/4 and a jump of size 1 at ¢ = 3/4; again, see Sections
4.5 and 14.7. Again, for the scaled queue-length process, that limit process
must have unmatched jumps. =

The simple models of service interruptions considered in Examples 6.5.1
and 6.5.2 are of course quite artificial. However, from these examples, we
can anticipate what we will see when we use the more realistic alternating
renewal process model for up and down times.

6.6. Time-Dependent Arrival Rates

In many service systems, congestion occurs primarily because of sys-
tematic, deterministic variations in the input rate over time. Many service
systems have arrival rates that vary systematically with time, so that there
are known busy periods with higher loads than average. However, every-
thing is not known. There remains uncertainty about the actual input; there
are unanticipated fluctuations about the known time-varying deterministic
rates.

To better understand the behavior of queues with time-varying arrival
rates, we need to focus directly on queueing models with time-varying arrival
rates. Just as for stationary queueing models, it can be helpful to consider
heavy-traffic limits for queues with time-varying arrival rates. With time-
varying arrival rates, we still scale time, but we think of expanding time
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Figure 6.13: Three possible realizations of the waiting times of the first n
arrivals (on the left) and the queue-length process over the interval [0, n EUT ]
(on the right) in the P;5/M/1 queue with scaling in (4.21) and service
interruptions of length 2n?/3 2/3 associated with customers n/4 and
3n/4 for n = 10%.

and n
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immediately prior to the time of interest. We increase the overall arrival
and service rate, which is tantamount to decreasing the rate of change in
the arrival-rate and service-rate functions, so that temporary periods of
overload or underload before the time of interest tend to persist longer and
longer.

With such scaling, a law of large numbers can be established, in which the
scaled queue-length process converges to a reflection of a deterministic net-
input process, where the limiting deterministic net-input process satisfies an
ordinary differential equation (ODE) driven by the original time-dependent
arrival and service rates. That limit is identical to the direct deterministic
ODE approximation we obtain if we ignore the stochastic aspects of the
model. In the direct deterministic approximation, the net input becomes
the solution an ODE driven by the time-dependent arrival and service rates;
i.e., if X is the arrival-rate function and p is the service-rate function, then the
deterministic approximation for the queue length is the function ¢ satisfying

q(t) = ¢(z)(t) = (t) — Oisr;f;tﬂU(S), t>0, (6.1)

where ¢ is again the one-sided reflection map, ¢(0) is the initial queue length
(assumed to satisfy ¢(0) = 0) and z is the deterministic net-input function,
satifying the ODE

i(t) = At) — p(t), t>0. (6.2)

When the deterministic fluctuations dominate the stochastic fluctuations,
such a deterministic analysis can be very useful to describe system perfor-
mance; e.g., see Oliver and Samuel (1962), Newell (1982) and Hall (1991).

However, in stochastic-process limits, we are primarily interested in going
beyond the deterministic ODE limit described above. For example, Man-
delbaum and Massey (1995) show that it is possible to establish a stochastic
(FCLT) refinement to the deterministic ODE limit. It again can be ob-
tained by applying the continuous-mapping approach to stochastic-process
limits. In this setting, the continuous-mapping approach involves conver-
gence preservation with nonlinear centering, and can be approached by iden-
tifying the directional derivative of the reflection map; see Chapter 6 of the
Internet Supplement.

The behavior of the limit process in the stochastic-process limit depends
on the deterministic function g. At any time, the deterministic function ¢
must be in one of three states (based on the history of the build up prior
to the time of interest): overloaded, critically loaded (when the cumulative
input rate is in balance with the output rate) or underloaded. (Roughly
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speaking, these regimes correspond to the three cases p > 1, p = 1 and
p < 1 in a stationary queueing model.)

With the usual stochastic assumptions (without any heavy-tailed distri-
butions), the stochastic-process refinement is a diffusion process centered
about the deterministic function q. The diffusion process corresponds to:
ordinary Brownian motion when ¢ is overloaded, reflected Brownian motion
when q is critically loaded, and the zero function when ¢ is underloaded.

Within each region, i.e., within any interval in which the determinisitic
function ¢ remains in one of its three basic states (overloaded, critically
loaded or underloaded), the limiting stochastic process has continuous sam-
ple paths, but at the boundaries between different regions the limiting
stochastic process can have jumps that are unmatched in the converging
processes. Thus, the boundary points between different regions for the de-
terministic function ¢ act as phase transitions for the queueing system. Rel-
atively abrupt changes in the queueing process can occur at these transition
times. And, once again, we have a stochastic-process limit with unmatched
jumps.

Example 6.6.1. A shift from critically loaded to underloaded.

We now give a simple example. In the standard situation we have in
mind, the arrival-rate function is changing continuously, so that we can
obtain the deterministic net-input function by solving the ODE in (6.2).
However, now we consider the more elementary situation in which there
is a sudden shift down in the arrival rate at one time. As in the standard
situation, we let the service rate be constant (although that is not required).

We let the queue initially be critically loaded, i.e., with p = 1, and then
in the middle of the time period, we reduce the arrival rate, making the
model underloaded. For simplicity, we again use the M/M/1 queue. We
let the mean service time always be 1. We actually deviate slightly from
the prescription for the arrival rate: We let the mean interarrival time for
the first n/2 customers be 1 and the mean interarrival time of the next n/2
customers be 2. Hence, after n/2 arrivals, the instantaneous traffic intensity
suddenly shifts from p = 1 to p = 0.5. Of course, with this definition, the
shift in arrival rate occurs at a random time instead of a deterministic time,
but after scaling time by n, that scaled random shift time converges to t/2
w.p.1. Thus, what we do is essentially the same as if we let the arrival-rate
shift occur exactly at time n/2 when we consider n arrivals.

For the specified model, we plot the waiting times of the first n cus-
tomers and the queue-length process over the time interval [0, n] for n = 10/
for 7 = 2,3,4 in Figure 6.14. As in previous plots, the situation is somewhat
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Plots of the waiting times of the first n arrivals (on the left)

and the queue-length process over the interval [0,n] (on the right) in the
M/M/1 queue with p =1 for the first n/2 arrivals and p = 1/2 for the last
n/2 arrivals for n = 10/ with j = 2,3, 4.

ambiguous for smaller n, but as n increases, we see statistical regularity.
As before, the scaled waiting-time and queue-length plots coalesce as n in-
creases. As n increases, a sharp jump down is visible when the traffic inten-
sity shifts from p = 1 to p = 1/2. As we indicated before, asymptotically,
this shift for the scaled processes occurs at time ¢t = 1/2.

Again, we are able to establish supporting FCLTs. Both the scaled
waiting-time process and the scaled queue-length process are approaching
reflecting Brownian motion over the subinterval [0,¢/2) and the 0 function
over the subinterval [¢/2,1]. As in the previous examples, the scaled queue-
length and waiting-time processes are asymptotically equivalent.

Thus, the limit process for the scaled queue-length process has an un-
matched jump at ¢ = 1/2. In this example, the limit for the waiting-time
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process also has an unmatched jump at the same time.



