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UNDERSTANDING THE EFFICIENCY OF MULTI-SERVER
SERVICE SYSTEMS*
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In the design and operation of service systems, 1t is important to determine an appropriate
level of server utilization (the proportion of time each server should be working). In a multi-
server queue with unlimited waiting space, the appropriate server utilization typically increases
as the number of servers (and the arrival rate) increases. We explain this economy of scale and
give a rough quantitative characterization. We also show how increased variability in the arrival
and service processes tends to reduce server utilization with a given grade of service. As part of
this analysis, we develop simple approximations for the mean steady-state waiting time and the
full steady-state waiting-time distribution. These approximations exploit an infinite-server ap-
proximation for the probability of delay and a single-server approximation for the conditional
waiting-time distribution given that waiting occurs. The emphasis is on simple formulas that
directly convey understanding.

(QUEUES; MULTI-SERVER QUEUES; SERVICE SYSTEMS; UTILIZATION; ECONOMY
OF SCALE; APPROXIMATIONS; PROBABILITY OF DELAY; PEAKEDNESS; HAYWARD’S
APPROXIMATION)

1. Introduction

This paper emerged from a question posed by a factory manager. He was contemplating
a new production line that would have four machines in one work area instead of just
one. From experience, he had learned that it was desirable to run the previous line so
that the single machine was utilized (i.e., busy processing) about 80% of the time. He
wisely speculated that he might expect to have a higher server utilization with more
machines. He asked if a higher utilization would indeed be appropriate and what it
might be.

When this question was posed to me, my first reaction was the cautious (and obviously
correct ) response “it depends,” but I also strongly believed that the answer is “yes” with
appropriate qualifications. Moreover, I believed that queueing theory provides the basis
for a simple quantitative answer.

Consider a service system with unlimited waiting space and the first-come first-served
discipline in steady state. Let s be the number of servers, p the server utilization (the
proportion of time each server is busy); and v a constant giving a rough indication of
the grade of service. As a rough rule of thumb, I proposed the utilization equation

(1—p)Vs=1. (1)

More specifically, I suggested that if the number of servers increased from s, to 5, then
the utilization should increase from p; to at least p, where (1 — p,)VS—, =~fori=1,2.
In other words, I suggested that (1) should serve as an approximation, and an approximate
lower bound, for the way p should increase with s.

Qualitatively, (1) is consistent with an important well-known principle in the design
and operation of service systems: The appropriate level of server utilization typically
increases with capacity. (Supporting stochastic comparisons for this efficiency principle
appear in Smith and Whitt 1981.) Quantitatively, (1) states that 1 — p should be ap-
proximately inversely proportional to Vs. For example, if p = 0.9 is deemed appropriate
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UNDERSTANDING EFFICIENCY OF MULTI-SERVER SERVICE SYSTEMS 709

for s = 1, then p = 0.99 should be roughly appropriate for s = 100. For the production
line example above, if p = 0.8 was appropriate for s = 1, then the grade of service is vy
= 0.2 and p = 0.9 (or something slightly higher) should be appropriate for s = 4.

This economy of scale associated with larger service systems is illustrated in Table 1,
which shows the number of servers with individual service rate u = 1 required to yield
at least a grade of service v = 0.2 when the total arrival rate is A = 100 and there are n
separate facilities each with arrival rate \/n, assuming that (1) is valid. Of course part
of the advantage of larger systems is due to the fact that servers must be provided in
integer quantities.

The first purpose of this paper is to provide theoretical, heuristic and empirical support
for the utilization equation (1). Formula (1) was chosen to give the value of p as a
function of s that tends to keep a measure of congestion fixed. The particular measure
of congestion is the probability of delay, i.e., P(W > 0) where W is the steady-state
waiting time before beginning service. We claim that if s and p are changed with (1)
holding for some fixed v then P(W > 0) should remain approximately unchanged. We
provide support for this idea in §2.

The problem stated above is finding the utilization p as a function of s for given grade
of service . This problem is closely related to the design problem of finding the number
of servers s as a function of the arrival rate A for given service-time distribution and given
grade of service . For this essentially equivalent problem, our reasoning yields the equa-
tion

s=Xx+ V. (2)

In §2 we develop (2) from an infinite-server approximation and show that (1) follows
from (2) when XA and s are large. This line of reasoning suggests that (1) and (2) should
be more accurate for large s, and this is so, but we believe they are useful more generally.

We hasten to point out that (1) and (2) are not new, but they do not seem to be nearly
as well known as they should be. For example, (1) is discussed by Halfin and Whitt
(1981)and (2)is discussed by Newell (1973, 1982), Grassman ( 1986, 1988 ) and Kolesar
(1986). The scaling in (1) and (2) has also been identified as important for multi-server
loss systems and stochastic networks; see Jagerman (1974), McKenna, Mitra and Ra-
makrishnan (1981), Whitt (1984), Hunt and Kelly (1989) and Reiman (1989, 1990).
Hence, our discussion of (1) and (2) should be regarded as a review and an elaboration.

A second purpose of the present paper is to go beyond (1) and (2). First, we want to
determine the effect of variability in the arrival and service processes. We also investigate
this in §2. Our analysis leads again to (2) but with the grade of service parameter v being
inversely proportional to \/;, where z is a measure of variability called the peakedness;
see Eckberg (1983, 1985) and Whitt (1984).

TABLE 1
The Number of Servers with Individual Service Rate u = | Required 1o Yield a Grade of Service v = 0.2
Jor a Total Arrival Rate of 100 When There Are n Separate Service Facilities Each
with Arrrval Rate 100/n, Based on (1)

Number of
Number of s from Servers
Separate Arrival Rate Equation Per Total Number
Facilities Per Facility (2) Facility of Servers

1 100 102 102 102

4 25 26 26 104

25 4 4.4 5 125

100 1 1.2 2 200
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We also want to consider other measures of congestion besides the probability of delay
P(W > 0), such as the mean waiting time EW and the tail probability P(W > ¢) for ¢
> (0. We do this in §3. Our strategy is to use the infinite-server approximation for the
probability of delay P(W > 0) and a single-server approximation for the conditional
probability P(W > t| W > 0). (There is some history for this too; e.g., see Newell 1973
and Hokstad 1978.) This leads to an interesting new simple approximation for EW that
uses both the peakedness mentioned above and the limiting value of the index of dispersion
for counts (IDC) in Sriram and Whitt (1986 ) and Fendick and Whitt (1989). This seems
to be the first time that these approximation tools have been used together.

The analysis of E[W| W > 0] and P(W > t| W> 0) in §3 indicates that these measures
of congestion actually decrease as s increases under ( 1). This is the reason we regard (1)
as a lower bound for the way p should increase with s for a given grade of service v. The
way p should increase with s depends on the performance measure of interest.

We end this paper in §4 with our conclusions. For related material in much the same
spirit, see Newell (1973, 1982).

2. The Probability of Delay

In this section we give support for formulas (1) and (2). In §2.1 we show how to derive
(1) from (2). In §2.2 we review a heavy-traffic limit theorem supporting (1) and (2) in
a special case. In §2.3 we introduce an infinite-server (IS) approximation to heuristically
derive (2). In the next four subsections, we apply the IS approximation to treat
M/D/s, M/G/s, G/D/s and G/G/s models, respectively. We also consider numerical
examples to provide empirical validation. We include separate treatment of special cases,
because the entire analysis is much easier to present and understand for the special cases.
In §2.8 we discuss other simple approximation formulas following from this analysis of
the probability of delay. Finally, in §2.9 we provide theoretical support for our IS ap-
proximation.

2.1. The Connection Between (1) and (2)

Henceforth in this paper let the service rate of each server be 1, which corresponds to
measuring time in the scale of mean service times. As before, let the arrival rate be A,
By Little’s law (L = AW) applied to the servers, the server utilization p coincides with
the traffic intensity, i.e., p = \/s; e.g., see Example 11-8, p. 400, of Heyman and Sobel
(1982). Consequently, (1) is equivalent to

A=s—~Vs. (3)

Formula (3) is not quite the same as (2), but it nearly is when v is small compared
to vs.

PROPOSITION 2.1. Formula (2) implies that

2 2
Y Y
P A Y 4
A s+2 v s+4, 4)
so that
,YZ
s—'yVESASS—'yVEJr—Z—. (5)

PROOF. Solve (2) for A to obtain (4). Since Vx +y < Vx + \/; for positive x and
y, (4) implies the lower bound in (5) as well as the obvious upper bound. [
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2.2. Heavy-Traffic Limits

Direct support for the utilization equation (1) is provided by a heavy-traffic limit
theorem in Halfin and Whitt (1981). They consider a GI/M/s queue with different
possible values of s and p (e.g., obtained by changing the service rate as well as s). (One
would expect that similar results hold for more general models, but they evidently have
not yet been established.) Let W, be a random variable with the steady-state waiting-
time distribution for each positive integer s and each p, 0 < p < 1.

PROPOSITION 2.2 (Halfin and Whitt 1981). The limit P(W,,> 0) = a as s = w,
where 0 < a < 1, holds if and only if

(l‘—p)v;—"y as s> o0,
where 0 < v < .

Halfin and Whitt (1981 ) also derive an explicit, but somewhat complicated, expression
for the limiting probability of delay « in Proposition 2.2, which has been found to be a
good approximation; see Whitt (1985), where other approximations are also developed
and evaluated. In particular,

a = [1 + V2xB8(B) exp(82/2)] ", (6)

where ®(x) = P(N(0, 1) < x) with N(m, ¢?) being a normal random variable having
mean m and variance o2, and 8 = 2y/(1 + ¢2) with ¢2 being the squared coefficient of
variation (SCV, i.e., the variance divided by the square of the mean) of an interarrival
time; see Proposition 1 and Theorem 4 of Halfin and Whitt (1981). The limits are stated
for the continuous-time queue length process, but also apply to the embedded sequence
at arrival epochs, as shown in the proof of Theorem 3 there.

Proposition 2.2 says that ( 1) is asymptotically correct as s gets large. Below we present
heuristic arguments that are intended to provide an intuitive explanation. Similar asymp-
totic results have been obtained for the blocking probability in loss models; see Jagerman
(1974) and Whitt (1984).

2.3. The Infinite-Server (IS) Approximation

To understand the basic equation (2), we believe that it is helpful to consider an
associated model with infinitely many servers, in which every customer begins service
immediately upon arrival. The associated IS model should have the same arrival process
and the same service-time distribution as the s-server model of interest. The idea is that
we should be able to deduce (2) by analyzing the much-easier-to-analyze IS model.

What we want to determine is the function s(\) such that the probability of delay in
the s(A)-server queue is approximately some prescribed value, independent of the arrival
rate A. We contend that in some rough sense the level of congestion experienced by the
first s servers in the IS model should be about the same as the level of congestion in the
s-server model. For example, if all s servers are essentially never busy in the IS model,
then the same will be true in the s-server model. As an approximation, it seems reasonable
to conclude that the probability of delay P(W > 0) in an s-server model should remain
roughly constant as a function of s and A\ when the probability of having more busy
servers than s in the IS model remains constant. Let N be the steady-state number of
busy servers in the IS model. We do not claim that P(N = s) actually equals P(W > 0)
in the s-server model, but that if we increase A as we increase s so that P(N = 5) remains
fixed, then we contend that P(W > 0) should approximately remain fixed too.

In summary, our basic hypothesis is that the probability of delay in the s(\)-server
model should be approximately some prescribed value independent of X if the probability
of having s(\) busy servers in the associated IS model is approximately some prescribed
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value independent of A\. We do not claim that these two prescribed probabilities are
necessarily equal, which would determine the grade of service +y in (2), but only that we
can use the IS model to support formula (2), without identifying v. We consider this
basic IS approximation hypothesis as an intuitively reasonable starting point, without
requiring proof. We substantiate it empirically below when we evaluate the resulting
approximations. In §2.9 we also provide theoretical support for the IS approximation.

Of course, IS approximations have been considered before, e.g., by Newell (1973,
1982) and Grassman (1988). However, note that these were direct approximations,
specifying v as well as supporting (2).

2.4. Deterministic Service Times and Poisson Arrivals (M /D /o)

We now apply the basic hypothesis in §2.3 and consider an IS model. To start with,
suppose that all customers have deterministic service times of length 1. Let 4(7) count
the number of arrivals in (0, t]. Here is the key property.

PROPOSITION 2.3. If all the service times are 1 in an IS model, then N(t) = A(t)
—A(t—1).

PROOF. We assume that a departure at time ¢ is not counted, while an arrival at time
¢ is. Hence the interval includes ¢ but not ¢ — 1. Each customer arriving before time
¢ — 1 will be gone by time ¢, while each customer arriving in the interval (z — 1, ¢] will
still be there at time t. O

To be even more concrete, we suppose that the arrival process is a Poisson process
with rate A.

PROPOSITION 2.4. In an M/D /o model with service times of length 1, N(t) has a
Poisson distribution with mean \ for each t > 1.

PROOF. Apply Proposition 2.3, noting that A(#) — 4(¢ — 1) has the same distribution
as A(1). O

This Poisson property leads directly to (2). First, it is well known that the variance
equals the mean for a Poisson distribution. Second, it is known that the Poisson distri-
bution can be approximated by a normal distribution when X is suitably large, by virtue
of the central limit theorem; see Chapters VI and X of Feller (1968). (For this model,
large \ is used only at this step.) Hence, the number of busy servers is approximately
normally distributed with mean and variance X for suitably large A. Since the mean and
variance of N(?) are both A, the standard deviation is VA and the SCV is 1/X. Hence, as
X increases, the distribution of N(7) becomes more concentrated about its mean (in a
relative sense).

We consider this asymptotic concentration of the distribution about its mean as A
increases the primary explanation for the economy of scale associated with more servers.
Since the steady-state number of busy servers tend to concentrate around A as A increases,
we can choose s to be very close to A (and obtain high p), i.e., we can achieve (1) and
(2) for a given grade of service 7.

Since the steady-state number of busy servers, N, is approximately normally distrib-
uted with mean \ and standard deviation \/T,

N—XN_ s—A s— A
= =P|l——= ~1—®—], 7
7= P(N=ys) P( x > \/X) 1 ( }\) (7N

where ® is again the standard normal cdf. Now we define v in terms of = in (7) by
solving

1 — ®(y) = (8)
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TABLE 2

Descriptive Characteristics of an M/D/s Queue (Poisson Arrival Process, c2 = 1) as a Function of the Grade of
Service v and the Number of Servers s, Assuming That the Unlization Equation (1) Holds

Grade Number of Servers, s
of Congestion
Service Measures 1 4 25 100
p 0.90 0.95 0.98 0.99
vy =0.1 P(W>0) 0.900 0.884 0.874 0.870
\/;E[Wf W > 0] 5.00 5.07 5.10 5.12
o 0.80 0.90 0.96 0.98
y=02 P(W=>0) 0.800 0.775 0.759 0.754
VSE[W|W > 0] 2.50 2.58 2.61 2.62
o 0.50 0.75 0.90 0.95
¥=05 P(W > 0) 0.500 0.490 0.479 0.475
VSE[W | W > 0] 1.00 1.09 1.12 1.13
o 0.00 0.50 0.80 0.90
vy=1.0 P(W >0} 0.163 0.190 0.195
VSE{W|W > 0] 0.61 0.63 0.63

Finally, from (7) and (8) we obtain (s — \)/ Va= v, which coincides with (2). However,
we have yet to give a definite interpretation for v in the s-server model.

To show the accuracy of (1), we consider some numerical examples. First, Table 2
displays descriptive characteristics of the Af/D/s queue as a function of the grade of
service v and the number of servers s under the assumption that ( 1) holds. All numerical
values were obtained from the tables of Kiihn (1976) and Seelen, Tijms and van Hoorn
(1985). (Results for the conditional mean E{W | W > (] also appear in the tables; they
will be discussed in §3.)

We claimed that the probability of delay P(W > 0) should be nearly constant as we
change s in this situation. This is borne out by Table 2, but the relationship weakens as
the load decreases (as v increases and thus A decreases). This is consistent with the
heuristic argument here and the limit theorem in §2.2, which indicate that (1) should
become more appropriate as A increases.

2.5. General Service-Time Distributions (M| G/x0)

The distribution of the (steady-state) number of busy servers in an IS model with
Poisson arrivals actually depends on the service-time distribution only through its mean.
Consequently, the analysis of §2.4 extends to general service-time distributions. To see
this directly, suppose that each service time assumes the values d, with probability p,, 1
<1i=<n,where 2%, p,d, = 1, so that the mean service time is again 1. Since the arrival
process is Poisson, this model is equivalent to an IS model with the superposition of #
independent Poisson arrival processes, where the ith arrival process has rate Ap, and
deterministic service times of length d,. Hence, for 1 > max {d,:1<i<n}, the number
of busy servers has the distribution of the sum of n independent Poisson variables where
the ith variable has mean Ap,d,. Since the sum of independent Poisson variables has a
Poisson distribution with a mean equal to the sum of the means, we see that indeed the
steady-state number of busy servers depends on the service-time distribution only through
its mean.

The distribution of the number of customers in the system when there is a Poisson
arrival process and only s servers is not independent of the service-time distribution
beyond the mean, but this analysis shows that it will tend to be nearly so when s is large.
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TABLE 3

Descriptive Characteristics of the M{M/s Queue as a Function of the Grade of Service vy and the Number of
Servers s, Assuming That the Utilization Equation (1) Holds

Grade Number of Servers, s
of Congestion
Service Measures 1 4 25 100
P 0.90 0.95 0.98 0.99
v =0.1 P(W>0) 0.900 0.891 0.885 0.883
VSE[W | W > 0] 10.00 10.00 10.00 10.00
P 0.80 0.90 0.96 0.98
y=02 P(W > 0) 0.800 0.788 0.779 0.755
VSE[W | W > 0] 5.00 5.00 5.00 5.00
0 0.50 0.75 0.90 0.95
v =05 P(W > 0) 0.500 0.509 0.508 0.507
VSE[W|W > 0] 2.00 2.00 2.00 2.00
P 0.00 0.50 0.80 0.90
v =10 P(W > 0) 0.174 0.209 0.217
VSE[W | W > 0] 1.00 1.00 1.00
p 0.00 0.60 0.80
¥ =20 P(W > 0) 0.0124 0.0196
VSE[W|W > 0] 0.50 0.50

Table 3 displays descriptive characteristics for the M/M/s model, assuming that (1)
holds. As in Table 2, the probability of delay P(W > 0) is indeed nearly constant ins
when 7 is suitably small. For v = 1.0, formula (1) differs significantly from (4), which
is the direct consequence of (2) derived in §2.1. For v = 1.0, (4) yields p = 0.905, 0.82
and 0.61 for s = 100, 25 and 4. For vy = 2.0, (4) yields p = 0.82 and 0.67 for s = 100
and 25. Under (4), P(W > 0) actually decreases slightly as s increases when vy = 1.0 or
2.0.If v, A and s are all large, then it is evident that the probability of delay is approximately
constant as A increases under (4).

2.6. General Arrival Processes (G/D/w0)

Now suppose that the arrival process is general (a stationary point process) with A(¢)
again representing the number of arrivals in the interval (0, t]. Asin §2.4, let the service
times be deterministic with mean 1. By Proposition 2.3, the steady-state number of busy
servers in the IS model is equal to the number of arrivals in (¢ — 1, £}, which here is
distributed as A(A).

Now we want to consider what happens when the arrival rate A gets large. We need
to be careful about how the arrival process changes as X increases. For example, we could
just scale time or we could consider the superposition of many slower component pro-
cesses. There is no difficulty when the arrival process is a Poisson process as in §2.4 and
§2.5, because then both methods produce a Poisson process, but this is not the case with
non-Poisson processes. We assume that the arrival rate \ is increased simply by scaling
time in a given general arrival process, so that A(A) represents the number of busy servers
as a function of A. (That is, we start with 4(1) for A = 1 and obtain A(N) for general A.)

For large A, we characterize the distribution of the number N of busy servers by assuming
a central limit theorem for the general counting process A(?). In particular, we assume
that
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. A() —t )
lim Pl ——— < x| = ®(x) (9)
=~ ( cht
for all x, where
. Var A(1)
2 = _— 10
¢a = Im =20 (10)

For a renewal process, c2 is the SCV of an interarrival time.

Assumption (9) can be expected to hold for any stationary point process arising in
practice. In particular, (9) holds whenever a corresponding central limit theorem holds
for the associated partial sums of the interarrival times; see Theorem 6 of Glynn and
Whitt (1988). Moreover, many sufficient conditions exist for the central limit theorems
for partial sums of dependent random variables; e.g., see Theorem 20.1 of Billingsley
(1968). (See §4.6 of Newell 1982 for related discussion.) For complicated stationary
point processes, the only difficulty is identifying the constant cXin (10).

Paralleling (7), from (9) we obtain

x=P(N=s)= P(A\) = 5)

AN =X s— A s— A
=P > ~1—¢ . 11
( Veaa VC§>\) ( c%k) ()

Combining (8) and (11), we obtain the generalization of (2)
s=N+yVar, (12)

where z = ¢2in (10). In practice it remains to identify the parameter cZ.

Tables 4 and 5 display the probability of delay P(W > 0) as a function of s assuming
(1) holds in GI/D/s models. Table 4 illustrates a low-variable arrival process with cl
= (.25, while Table 5 illustrates a high-variability arrival process with ¢2 = 4.0. These
numerical results are obtained from the tables of Seelen, Tiyms and van Hoorn ( 1985).
These tables also support ( 1), but show that the quality of the approximation deteriorates
as the variability increases.

TABLE 4

Descriptive Characteristics of a GI/D/s Queue (Renewal Arrival Process) with Interarrival-Time Squared
Coeffictent of Variation ¢ = 0.25 as a Function of the Grade of Service vy and the Number of Servers s,
Assuming That the Utilization Equation (1) Holds

Grade Number of Servers, s
of Congestion
Service Measures 1 4 25 100
P 0.90 0.95 0.98 0.99
¥ =0.1 P(W>0) 0.775 0.762 0.754 0.751
VSE[W|W > 0] 1.29 1.30 1.31 1.31
0 0.80 0.90 0.96 0.98
y=02 P(W>0) 0.578 0.565 0.557 0.554
VEE[WI wW>0] 0.67 0.68 0.68 0.69
o 0.50 0.75 0.90 0.95
vy=0.5 P(W>0) 0.163 0.187 0.195 0.198
VSE[W | W > 0] 0.30 0.31 0.32 0.32
p 0.00 0.50 0.80 0.90
y=1.0 P(W>0) 0.008 0.018 0.021
VSE[W | W > 0] 0.19 0.19 0.19
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TABLE 5
Descriptive Characteristics of a GI{D[s Queue (Renewal Arrival Process) with Interarrival-Time Squared
Coefficient of Variation ¢ = 4.0 as a Function of the Grade of Service v and the Number of Servers s,
Assumung That the Utilization Equation (1) Holds

Grade Number of Servers, s
of Congestion
Service Measures 1 4 25 100
P 0.90 0.95 0.98 0.99
v=0.1 P(W > 0) 0.969 0.958 0.943 0.937
VSE[W | W > 0] 18.2 19.2 19.1 20.1
P 0.80 0.90 0.96 0.98
v =02 P(W > 0) 0.931 0915 0.888 0.877
VSE[W{W > 0] 8.0 9.2 9.9 10.1
P 0.50 0.75 0.90 0.95
v=05 P(W > 0) 0.718 0.769 0.730 0.712
VSE[W|W > 0] 1.84 3.12 3.92 4.10
0 0.00 0.50 0.80 0.90
vy=10 P(W > 0) 0.421 0.496 0.484
VsE[W| W > 0] 1.04 1.87 2.10

2.7. General Arrival and Service Processes (G/G /o)

The situation is more complicated when both the service times and the arrival process
are general, so we will not try to give a detailed supporting argument. However, it is
known that the steady-state number of busy servers in the IS model is typically asymp-
totically normally distributed as A increases. (The first proof seems to be by Borovkov
1967.) This is relatively easy to see when the service-time distribution is concentrated on
only finitely many points as in §2.5, then the argument is essentially the same as in §2.6;
see Glynn and Whitt (1991).

By Little’s law, the mean number of busy servers is always . In great generality, the
variance is z\ where z is a constant called the peakedness reflecting the variability of the
arrival and service processes; see Eckberg (1983), (1985) and Whitt (1984). Indeed, an
asymptotic expression for z for large A when the service times are i.i.d. and independent
of the arrival process is

z= 1+(c3—1)J;w[1—G(x)]2dx, (13)

where G is the cdf of the service-time distribution (assumed to have mean 1) and c3 is
given by (9). For example, if G is exponential, then [;° [1 — G(x)]?dx = }, so that z
= (¢2+ 1)/2. The maximum value of [ [1 — G(x)]*dx associated with mean 1 occurs
with a deterministic service-time distribution, yielding z = c¢2. (Hence, (13) reduces to
(10) for the G/ D/ case.)

In summary, we use the following result. To state it, let NV, be the steady-state number
of busy servers in the G/G /oo model with arrival rate X. As in §2.6 we assume that the
arrival process changes with A by simple scaling.

PROPOSITION 2.5 (Borovkov 1967). Fora G/G/co model,

s—A
P(Ny=2s)—1—- & as A= o
(M=) (ﬂ)

for z in (13).
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TABLE 6
Descriptive Characteristics of a GI/M/s Queue (Renewal Arrival Process) with Interarrival-Time Squared
Coefficient of Variation c2 = 0.25 as a Function of the Grade of Service v and the Number of Servers s,
Assuming That the Utilization Equation (1) Holds

Grade Number of Servers, s
of Congestion
Service Measures 1 4 25 100
p 0.90 0.95 0.98 0.99
v =0.1 P(W>0) 0.843 0.849 0.850 0.850
V§E[W| W > 0] 6.38 6.31 6.28 6.26
o 0.80 0.90 0.96 0.98
vy =02 P(W > 0) 0.694 0.710 0.716 0.717
VSE[W | W > 0] 3.27 3.19 3.15 3.14
o 0.50 0.75 0.90 0.95
vy=05 P(W > 0) 0.302 0.371 0.398 0.406
VSEIW | W > 0] 1.43 1.32 1.28 1.26
o 0.00 0.50 0.80 0.90
¥y=10 P(W > 0) 0.066 0.112 0.125
VSE[W|W > 0] 0.72 0.65 0.64

The main point is that the analysis of §2.4 applies once again, with the sole modification
that the standard deviation VA should be replaced by VzX. Instead of (2), we obtain (12)
with zin (13).

Tables 6 and 7 display the probability of delay P(W > 0) as a function of s assuming
that (1) holds in GI/M/s models. Table 6 illustrates a low-variability arrival process
with ¢2 = 0.25, while Table 7 illustrates a high-variability arrival process with ¢2 = 4.0.
The behavior is evidently consistent with Tables 2-5.

TABLE 7

Descriptive Characteristics of a GI{M/s Queue (Renewal Arrival Process) with Interarrival-Time Squared
Coeffictent of Variation c;; = 4.0 as a Function of the Grade of Service v and the Number of Servers s,
Assuming That the Utlhization Equation (1) Holds

Grade Number of Servers, s
of Congestion
Service Measures 1 4 25 100
p 0.90 0.95 0.98 0.99
v =0.1 P(W > 0) 0.957 0.947 0.935 0.929
VSE{W|W > 0] 234 242 24.7 24.9
o 0.80 0.90 0.96 0.98
v =02 P(W > 0) 0.908 0.892 0.871 0.861
VSE[W | W > 0] 10.8 11.7 12.2 12.4
P 0.50 0.75 0.90 0.95
v =05 P(W>0) 0.684 0.715 0.690 0.675
VSE[W|W > 0] 3.16 4.14 4.68 4.85
P 0.00 0.50 0.80 0.90
v =10 P(W > 0) 0.373 0.427 0.422
VSE[W | W > 0] 0.79 2.16 2.34
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TABLE 8
The Values of VzP (W = 0) as a Function of z and s When v = 0.1 in Tables 2-7
Arrival and Service
Characteristics Number of Servers, s
c? c? z 1 4 25 100
4 0 4.0 0.086 0.106 0.130 0.142
4 1 2.5 0.068 0.084 0.103 0.112
1 1 1.0 0.100 0.109 0.115 0.117
1 0 1.0 0.100 0.116 0.126 0.130
0.25 1 0.625 0.124 0.119 0.119 0.119
0.25 0 0.25 0.113 0.119 0.123 0.124

2.8. Other Implications

Formula (12) leads to a simple rough approximation for the probability of no delay,
P(W = 0). We assume, as a rough approximation, that P(W = 0) depends only on the
grade of service v when (12) holds. Then we apply the exact result P(W =0)=1—p
for the M/G/1 queue. Hence, for the general G/G/s queue satisfying (12) with vy < 1,
we propose the rough approximation

POW=0)~ v =

(L:_flv_;‘ (14)
z

7

The simple approximation (14) corresponds to using the value of P(W > 0) for s
= 1 for higher s in Tables 2-7. This approximation is not too bad when v is small, but
dramatically deteriorates as vy — 1.

Given that (1) holds, formulas (12) and (14) lead us to predict that P(W = 0) should
be approximately inversely proportional to Vz where z is the peakedness in (13). With
exponential service times, z = (¢2 + 1)/2; with deterministic service times, z = ¢;. To
test this hypothesis, Tables 8 and 9 display the values of V;P(W = 0) for the cases vy
= 0.1 and y¥ = 0.2 in Tables 2-7. From Tables 8 and 9, we see that formulas (12) and
(14) evidently capture the variability effect relatively well for the probability of delay,
although the quality of the approximation evidently deteriorates in the case of high
variability (¢ = 4.0) and few servers (s < 4).

Assume that (12) is valid, we see that we should obtain approximately the same grade
of service v with parameter triples (s, A, z) and (s/z, A/z, 1); just divide both sides of
(12) by z. In particular, let P(W > 0; A, s, z) represent the steady-state probability of

TABLE 9
The Values of Vzp (W = 0) as a Function of z and s When v = 0.2 in Tables 2-7
Arrival and Service
Characteristics Number of Servers, s
c? c? z 1 4 25 100

4 0 4.0 0.138 0.170 0.224 0.246
4 1 2.5 0.145 0.171 0.204 0.220
i 1 1.00 0.200 0.212 0.221 0.225
1 0 1.00 0.200 0.225 0.241 0.246
0.25 1 0.625 0.241 0.229 0.224 0.223
0.25 0 0.25 0.211 0.218 0.222 0.223
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delay in an s-server system with arrival rate A and peakedness z. (The mean service time
has been fixed at 1.) Then (12) supports the approximation

PW>0; N s,2z)=P(W>0;\/z,8/z,1). (15)

Since a Poisson process has z = 1, (15) means that we can use a model with a Poisson
arrival process to approximate a process with more complicated variability for computing
P(W > 0). In other words, we obtain a Hayward-type approximation for delay systems
paralleling the Hayward approximation for loss systems; see Fredericks ( 1980) and Whitt
(1984). Indeed, our analysis here is closely related to the asymptotic analysis in
Whitt (1984).

2.9. Theoretical Support for the IS Approximation

We have presented the IS approximation as an intuitively appealing starting point to
develop and understand (1) and (2). The IS approximation thus serves as a substitute
or complement to the more technical limiting result in Proposition 2.2. However, in
turn, Proposition 2.2 can be used to establish the asymptotic validity of the IS approxi-
mation in a special case. In particular, for GI/M/s models, Propositions 2.2 and 2.5
together show that the IS approximation in the form we presented it is asymptotically
correct as § —> 0.

To state the result, as a slight modification of §2.2, let W ;, be the steady-state waiting
time in a GI/ M /s model with service rate 1, s servers and arrival rate \. Let the renewal
arrival counting process change with X by having 4,(f) = 4,(\t), ¢ = 0. Let N, be the
steady-state number of busy servers in an associated GI/M/oo model with infinitely
many servers and the same arrival and service processes.

PROPOSITION 2.6. For the GI/M/s and GI/ M /oo models above,
PW,>0)—> « as A= w0,
where 0 < a < 1, and
P(N,>s)—>1q as A= 0,

where 0 < n < 1, both hold if and only if (1 — p)VE —=>£>0as A= oo. If the limits
hold, then « is given by (6) with X = £ and n = 1 — ®(£/Vz).

PROOF. Apply Propositions 2.1 and 2.2 to treat W, and Proposition 2.5 to treat
N,. O

It is significant that, even for the special case of a Poisson arrival process, a # 7 in
Proposition 2.6, so that our particular form of the IS approximation in §2.3 with v acting
as a free parameter is important.

3. The Waiting-Time Distribution

To approximately analyze the full steady-state waiting-time distribution, we separate
the probability of delay P(W > 0) from the conditional distribution of the waiting time
given that all servers are busy. We note that an M/M/s model with utilization p and
individual service rate 1 behaves exactly like an M/M/1 model with utilization p and
service rate s whenever all servers are busy. We use a heuristic extension of this property
for general G/G/s models.

3.1. The M/M/s Queue

For s-server queues, we first consider an M /M /s model. Since the conditional waiting
time given that all servers are busy is then exponential with mean 1 /s(1 — p), we im-
mediately obtain the following result.
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PROPOSITION 3.1. For an M/M/s model,
PW>x|W>0)=¢ and (16)
E[W|W>0]=1/vV2, (17)

+Vs

assuming that (1) holds.

From (16) and (17) we see that these measures of congestion actually decrease as s
increases, assuming that (1) holds. Consistent with (17), Table 3 shows that
VsE [W|W > 0] is indeed constant as a function of s in the M/M/s model when
(1) holds.

3.2. The G/G/s Queue

As in §2.6 and §2.7, experience indicates that (16) and (17) need modification when
we do not have the M/M/s model. Indeed, experience with the M/G/1 special case
indicates that E(W | W > 0) should depend on the service-time distribution beyond its
mean even in the M/G/s case. As in §2.7, the general model is more complicated, so
that we do not intend to give a detailed supporting argument. Our main idea is to apply
a heavy-traffic diffusion approximation for the G/ G/s queue to approximately characterize
the conditional waiting-time distribution given that a customer must wait before beginning
service; see Iglehart and Whitt (1970), Newell (1982), Whitt (1982) and Heyman and
Sobel (1982) for more discussion. This leads to (W | W > 0) being distributed nearly the
same as in a G/G/ 1 system with the same arrival process and service-time distribution,
except that the service rate is s instead of 1. Paralleling the exact results for M/M/s
queues, this is a natural direct rough approximation.

Furthermore, the heavy-traffic analysis leads to (W | W > 0) having an exponential
distribution. Thus all that remains is to specify the mean. The heavy-traffic analysis
indicates that the mean should be proportional to the asymptotic value of the index of
dispersion for work (IDW), I,.(c0 ), discussed in Fendick and Whitt (1989). In particular,
if X (1) represents the total work in service time to arrive in the time interval (0, ], then
the IDW is the function

_ Var X (1)

TEX(D) t>0, (18)

L.(1)
where 7 is the mean service time. The asymptotic value I,(co) is the limit as 1 = oo.
For the G/D/s model, I,,(c0) = ¢ for c; defined in (10). For the GI/G /s special case
(the interarrival times and service times come from independent sequences ofii.d. random
variables), 1,,(c0) = ¢2 + ¢2 where c2 and ¢ are the SCVs of an interarrival time and a
service time. The asymptotic IDW value 1,.(c0) is useful when there is more complicated
dependence among the interarrival times and service times; e.g., see Fendick, Saksena
and Whitt (1989). Since the sequence of successive waiting times in the G/G/1 model
can be regarded as a random walk with possibly dependent steps and an impenetrable
barrier at the origin, the heavy-traffic diffusion approximation can be regarded as yet
another application of the central limit theorem (in addition to (7), (9), (11) and Prop-
ositions 2.2 and 2.5); see Section 10 of Billingsley (1968 ) and Iglehart and Whitt (1970).

Given (18), the heavy-traffic analysis suggests the approximations

PW>x|W>0)~e™  and (19)
E[W|W> 0] ~ 1/8Vs (20)

when (1) holds, where
B =2v/1,(0). (21)
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TABLE 10

The Normalized Conditional Mean Waiting Times from Tables 2-7 Assuming (1) Holds for the Case s = 25,
Supporting Approximation (20) and (21)

2vVs
(621 Cg)E[W| W 0]
2+ ¢?

Table i c? 2 v =0.1 v =02 v =05 v =1
2 1.00 1.00 1.000 1.00 1.00 1.00 1.00
3 0.25 1.00 0.625 1.00 1.01 1.02 1.04
4 4.00 1.00 2.500 0.99 0.98 0.94 0.86
5 1.00 0.00 0.500 1.02 104 112 1.26
6 0.25 0.00 0.125 1.05 1.09 1.28 1.52
7 4.00 0.00 2.000 1.00 0.99 0.98 0.94

1.00 2.50 1.750 0.98 0.96 0.89 0.80
0.25 2.50 1.375 0.98 0.96 0.89 0.80
4.00 250 3.250 0.98 0.96 0.91 0.81

Note that (19) and (20) agree with (16) and (17) for the M/M/s queue. For other
G1/G/s queues, approximation (20) with (21) is supported by the numerical results in
Tables 2-7.

Tables 2-8 show that VsE[W|W > 0] tends to be proportional to (¢ + ¢2)/2v as
suggested in (20) and (21). (Recall that I,(c0) = ¢Z + ¢? for a GI/G/s model.) It is
easy to see that (¢; + ¢7)/2 is more appropriate than the peakedness z in (13) as a
variability factor in E[W| W > 0] by comparing the M/D/s and M/ M/ s cases in Tables
2 and 3. For both these cases the peakedness is z = 1, but (¢2 + ¢2)/2 is 1 for M/ M/ s
and ! for M/D/s.

Table 10 displays normalized conditional mean waiting times from Tables 2—7 for the
cases in which s = 25. Also included are three cases in which ¢ = 2.5 to give a wider
range of variability parameters. Consistent with approximations (20) and (21), these
values are all nearly 1.00 for small v, but the quality of the approximation tends to
deteriorate as v increases.

Finally, combining (14) and (20), we obtain a rough approximation for the mean
when (12) holds with v < 1 that reflects the variability, i.e.,

(1- p)VE)( I(0) )
Vz 2(1=p)s)’
We believe that (22) is the first approximation for GI/ G /8§ queues to use both the peaked-
ness z and the asymptotic value of the IDW, 1,,(c0 ) (or the squared coeficients of variation
¢z and ¢ in the GI/G/s case). For an M/M/s queue, (22) reduces to
(- -pVs) 1=+
(1 =p)s Vs

EW = P(W> 0)E[W|W > 01=(1 - (22)

EW =

(23)

assuming that (1) holds.

3.3. Implications

Formulas (20)-(21) indicate that formulas (1)~(4) actually tend to provide lower
bounds on the economy of scale. If the average waiting time or a delay percentile is the
criterion, then the utilization can increase as a function of s somewhat faster than indicated
by (1) or (4). Indeed, if we are only concerned with the conditional waiting time given
that a customer must wait before beginning service, then our analysis indicates that (1)
should be replaced by
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(I=p)s=% (24)

for some constant v’ which is equivalent to s — A = 4". Our numerical analysis confirms
that (1) and (4) are quite accurate when the criterion is P(W > 0), and (24) is quite
accurate when the criterion is E{W | W > 0]. When the criterion is EW, the average of
the utilization estimates provided by (1) and (24) is a reasonable rough estimate. For
EW, a more accurate utilization equation might be (1 — p)s*/* = v’ for some con-
stant v”.

Formulas (4), (19) and (20) indicate that (1) should provide a lower bound on the
way p should grow with s to maintain a fixed grade of service, with almost any waiting-
time criterion. To see this, let the criterion be the mean EW and consider the case vy
= 0.5 in Table 3. Suppose that we start with s = 4 and change to s = 25. For s = 4 and
v =0.5,p=0.75and EW = 0.51; for s = 25, (1) yields p = 0.90 and EW = 0.21. From
the tables, EW = 0.30 and 0.59 for p = 0.92 and 0.94, so that EW = 0.51 for s = 25
when p is between 0.93 and 0.94. If we use (24) instead of (1), which is exact for the
conditional mean E{W|W > 0], then we obtain v’ = 1.0 when p = 0.75 for s = 4. We
also obtain p = 0.96 for s = 25 using (24). The appropriate utilization for s = 25 with
the criterion EW is thus about halfway between what is suggested by (1) and (24).

Now suppose that we consider changing from s = 25 to s = 100 with v = 0.5. For v
=0.5and s = 25, p = 0.90 and EW = 0.21; for s = 100, (1) yields p = 0.95 and EW
= 0.10. From the tables, EW = 0.19 and 0.36 for p = 0.96 and 0.97. Hence, (1) predicts
that we should go from p = 0.90 to p = 0.95 when we go from s = 25 to s = 100, but
with the criterion of the mean the actual utilization should be about p = 0.96 when s
= 100. If we use (24) instead of (1), then we obtain v’ = 2.5 when p = 0.90 and s = 25.
Hence, (24) dictates p = 0.975 for s = 100. Again we see that the appropriate value of
0.96 is about half way between what is suggested by (1) and (24).

4. Conclusions

The approximation strategy here has been to approximate the behavior of the com-
plicated s-server model by two more elementary models. We approximate the behavior
when all s servers are not busy by the associated infinite-server model with the same
arrival process and the same service-time distribution. We approximate the behavior
when all s servers are busy by the associated single-server model with the same arrival
process and a scaled version of the same service time distribution, i.e., each service time
is divided by s. We then use established heavy-traffic approximations for the two more
elementary models in the two regions. These heavy-traffic limit theorems essentially are
applications of the central limit theorem.

The approximation formulas here are intended only as simple rough approximations.
They are intended to quickly provide understanding, so that we can sensibly think about
alternative designs and operating policies. Queueing formulas and tables are available
for more precise results. There also are more accurate (and more involved) approximations
intended for greater numerical accuracy, e.g., Whitt (1985). Nevertheless, the simple
approximations seem remarkably accurate. However, the analysis and the numerical
examples indicate that the quality of the approximations deteriorates as s and A decrease
and as the grade of service v and the variability parameters z in (13) and I.(c0) in (18)
increase.

It is significant that the proper relation between the server utilization and the number
of servers depends on the performance measure of interest. The simple formulas (1),
(2) and (12) apply to the probability of delay, whereas the very different simple formula
(24) applies to the conditional distribution P(W > t| W > 0). The situation gets much
more complicated when we consider a performance measure such as the mean EW,
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which involves both. However, (1) and (24) seem to provide quick rough lower and
upper bounds for what happens with the mean EW.

'1 am grateful to my colleague Bill Kahan for discussions that motivated this paper and to a referee for
excellent suggestions about the presentation.
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