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 ON REINFORCEMENT-DEPLETION

 COMPARTMENTAL URN MODELS

 PETER DONNELLY,* Queen Mary College, University of London
 WARD WHITT,** AT&T Bell Laboratories

 Abstract

 We verify and extend a conjecture of Purdue (1981) concerning the stochastic
 monotonicity of absorption times in a class of compartmental urn models. We also
 describe the effect of increased variability in the reinforcement sizes. Finally,
 we investigate variability in the content process for large populations. In many
 applications, compartmental models substantially under-represent the variability
 observed in the data, so that there has been considerable interest in modifying the
 model to increase the variability. We show that the squared coefficient of variation of
 the content is not asymptotically negligible when both the size and the variability of
 the reinforcements are of the same order as the initial population.

 COMPARTMENTAL MODELS; FIRST-PASSAGE TIMES; STOCHASTIC ORDER; COUPLING;

 MAJORIZATION; LIMIT THEOREMS

 1. Introduction

 Compartmental models arise in a wide variety of physical and biological applications.
 A particular single compartment model with bulk arrivals and departures, the so-called

 reinforcement-depletion urn model, was introduced by Bernard (1977) in studying the
 dilution over time of a collection of radioactive atoms within some region. Suppose an
 urn initially contains b black balls and w white balls. At the nth stage (n = 1, 2, * * ) the

 black balls in the urn are reinforced by the addition of Rn extra black balls. The contents

 of the urn are then mixed and depletion occurs, as Rn balls selected at random,
 independently of all other events, are removed from the urn. Sometimes reinforcement-
 depletions are assumed to occur in discrete time and sometimes at the instances of a
 time-homogeneous Poisson process. We follow Bernard (1977) and work with discrete
 time, but our results apply to the other situation too. We are interested in the number of

 white balls that remain in the urn after n stages, which we denote by W,, and the time
 (stage) T when all the white balls have first been removed.

 Received 3 April 1986; revision received 23 August 1988.
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 P. DONNELLY AND W. WHITT

 In Bernard's original model the size of each reinforcement-depletion is constant, say
 r, and it is possible to derive relatively simple expressions for the mean and variance of

 W, namely,

 (1.1) E(W) = w(l -p)n

 and

 (1.2) Var(Wn) = w[(l -p) -(1 - ap)n] + w2[(1 -ap)" -(1 -p)2n],

 where

 r w+b
 (1.3) p= and a= + ;

 w+b+r w+b+r-1

 see Leitnaker and Purdue (1985). Shenton (1981) and Leitnaker and Purdue (1985) have
 also obtained the distribution of Wn,

 w(1.4-k kW = (+w+r-k-i
 (1.4) P(Wn=k)=( ) ? (_ ) (( /r

 \k i=o i / (b + w + r

 Analogous more complicated expressions exist in the case of random independent and
 identically distributed reinforcements (Leitnaker and Purdue (1985)).
 Another way to gain insight into this model is to seek qualitative results. Along these

 lines, Purdue (1981) conjectured that the absorption time Tis stochastically decreasing
 in r for the case P(Rn = r) = 1 for all n. Our first purpose is to prove that conjecture and

 more general stochastic comparisons. We begin in Section 2 by considering one stage of a
 reinforcement-depletion process, allowing the initial number of balls in the urn and the
 size of the reinforcement to be random and dependent. In Section 3 we obtain stochastic

 comparisons for a sequence of reinforcement-depletions, including results for the first-

 passage time T, the process { Wn: n > 0} and other more descriptive processes that keep
 track of all substitutions. Throughout, we exploit ordered couplings, i.e., constructions
 of random elements on a common probability space that individually have prescribed
 distributions and are ordered w.p. 1 (with probability 1); see Kamae et al. (1977).
 In Section 4 we discuss the effect of more variable reinforcements. These variability

 comparisons show that, in a certain sense, the white balls are more likely to be removed
 when there is less variability in the reinforcement sizes. We consider both variability in
 the distribution of reinforcement sizes and variability over time. In particular, we show
 that the moments E(Wm) conditioned on the reinforcement sizes are convex functions
 of each reinforcement size rj for all n and m. Thus, among all reinforcement size vectors
 (R,, - -, R) with independent marginals and means (r,, * * , rn), E(Wm) is minimized
 by using the deterministic reinforcement sizes (r, * -, rn). We also show that the
 moments E( W) conditional on the reinforcement sizes are Schur-convex; see Marshall
 and Olkin (1979). As a consequence, among all deterministic reinforcement sequences
 (r,, .. , rn) with r, + *. + rn = nr for some integer r, E(Wm) is minimized by using

 478
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 On reinforcement-depletion compartmental urn models

 the constant deterministic sequence (r,* * , r). Related stochastic comparisons
 can be obtained from stochastic majorization, see Chapter 11 of Marshall and Olkin
 (1979). For additional background on stochastic comparisons, see Ross (1983) and
 Stoyan (1983).

 Finally, in Section 5 we address a problem of concern to Bernard (1977) and the other

 authors, the variability of Wn relative to the mean. In many applications, compartmental
 models substantially under-represent the variability observed in the data, so that there

 has been considerable interest in modifying the model to increase variability, as
 measured by the squared coefficient of variation (variance divided by the square of the

 mean) of Wn, denoted by c2( W). Bernard (1977) observed that c2( W) is negligible when

 P(Rn = r) = 1 for r = 1 and w is very large, and proposed the reinforcement-depletion
 model with P(Rn = r) = 1 for large r, e.g., of order w, to increase c2(Wn). However,
 Leitnaker and Purdue (1985), p. 195, showed that Bernard's scheme does not actually
 achieve its desired purpose. Indeed, as w - oo with the ratios b(w)/w --f >0 and
 r(w)/w -i > 0 in (1.3)

 p(w) -p= l/(1 + + ) and a(w)-&a= +[(1 +,)/( + + 8+)]=2-p,

 so that

 (1.5) Var(Wn) - w[(l - p - (1- - p)2n - nyp(l - p)2n-1]

 and

 Var(Wn) 1 -(1 -p)n - nyp(l _p)n-I
 (1.6) c2(W) -( -p -nyp(l - 0 asw- oo, [E(Wn)]2 w(1 -_)n

 where

 0~~(1.*7) 'Y* ~ -^1

 for each fixed n, wheref(w) - g(w) means thatf(w)/g(w) - 1 as w - oo. The third term
 in (1.5) comes from the w2 term in (1.2); i.e.,

 (1.8) ( ap) (I -p) p(l - (p) -n w+b+r- 1l

 so that

 (1.9) w2[(1 - ap) - (1 - p)2n] = -wnyp(1 - p)2n-I + 0(1) as w - oo.

 Of course, (1.6) is a limit as w - oo for fixed n. We might want to let n grow with w.
 However, from (1.8) we see that

 (1.10) (1 - ap)nh (1 -p)2n,

 so that

 Var( W) < E(W,) for all n and w.

 479
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 P. DONNELLY AND W. WHITT

 Hence, as long as E(W,) is large, c2(W,) is relatively small.
 To introduce additional variability in W,, Leitnaker and Purdue (1985) let the

 reinforcement sizes Rn be random. (In addition, they let the successive reinforcement
 sizes be i.i.d.) They argue that c2(Wn) becomes non-negligible when Var(R,)> 0 and
 w -> co, with the distribution of R evidently not changing with w. However, in Section 5

 we show that c2(W,) is also negligible in this revised model. On the positive side, we
 show that non-negligible c2( W) can be obtained by letting w - oo with Rn = wXn, where
 X, is a positive non-deterministic integer-valued random variable independent of w, i.e.,

 when we have both the large size of Rn suggested by Bernard and the variability suggested

 by Leitnaker and Purdue. There are of course other ways to introduce more content
 variability into the model, and other issues to consider; e.g., see Ball and Donnelly
 (1989).

 2. Ordered couplings of samples without replacement

 In this section we treat the special case of one stage of reinforcement and depletion.

 The analysis is based on the following sampling problem: suppose that we select a sample
 of size k at random without replacement from n balls, and afterwards we decide that we

 actually want a sample of size k + 1 chosen at random from these n balls plus one other.
 Can we validly obtain the second sample by adding a yet unselected ball to the first
 sample?

 It is not difficult to see that we can. Indeed, with probability (k + 1)/(n + 1) we should

 augment our first sample by including the new (n + 1)th ball, and with probability
 (n - k)/(n + 1) we should augment our first sample by choosing at random one of the
 n - k balls among the first n not previously chosen. Clearly, every subset of size k + 1
 from the n + 1 balls has equal probability with this scheme. This construction is of some

 interest, because conditional on having obtained the sample of size k from the first n
 balls, we are much more likely ((k + 1)/(n + 1) versus 1/(n + 1)) to choose the new ball
 than any one of the first n - k balls not previously chosen.

 We now apply this elementary construction to treat one stage of reinforcement-
 depletion with deterministic reinforcement sizes and initial conditions. Consider two

 sequences of balls each labelled by the positive integers. The original balls in the urn
 come from the first sequence and the reinforcements come from the second sequence.
 The balls in the first sequence may be white or black; that does not matter, because we

 keep track of each ball. Let S(k, r) be the subset of r balls obtained by sampling at
 random without replacement from k + r balls, where the set of k + r balls contains the

 first k balls of the first sequence and the first r balls of the second sequence. Let Sc(k, r) be

 the complement of S(k, r), i.e., the k balls not selected from the designated set of k + r

 balls. Let Ii(k, r) = 1 ifthejth ball in the ith sequence is not in the sample S(k, r), and 0

 otherwise, forj = 1, 2,. * and i = 1, 2. Let Jj(k, r) = 1 ifthejth ball in the ith sequence
 is contained in SC(k, r), and 0 otherwise, for j = 1, 2,. and i = 1, 2. Note that
 Jij(k, r)= 0 while Ilj(k, r) = 1 for j > k + 1. Let I(k, r) represent the matrix
 {Iij(k, r): i = 1, 2; j > } and similarly for J(k, r). For any subset W of non-negative

 480
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 On reinforcement-depletion compartmental urn models

 integers, let Nw,(k, r) count the number of balls from the first k in the first sequence that

 are simultaneously in the set W and not in the sample S(k, r), i.e.,

 k k

 (2.1) Nwl(k,r)= Y Ij(k, r)= Y Jj(k, r).
 j-i ji-
 jEW jEW

 For example, W might be the set of indices of all white balls in the first sequence; then

 Nw, (k, r) is W,, the number of white balls remaining in the reference set of k + r balls

 after the sample S(k, r) has been removed (after one reinforcement-depletion cycle).
 Repeated use of the sampling construction above immediately yields the following
 result. (Part (b) can be obtained from part (a) by relabeling.)

 Theorem 2.1. It is possible to perform the sampling (yielding the proper distribu-
 tions) so that either (a) or (b) below holds (but not both at once):
 (a) For any k > 0, S(k, r) C S(k, r + 1), Ij(k, r) > Iij(k, r + 1) for i = 1, 2 and all
 j > 1, and Nw, (k, r) > Nw (k, r + 1) for all r > 0 w.p.1.

 (b) For any r > O, Sc(k, r) C S(k + 1, r), J,(k, r) _ Ji(k + 1, r) for i = 1, 2 and all
 j > 1, and Nw, (k + 1, r) > Nw, (k, r) for all k > 0 w.p. 1.

 Theorem 2.1 immediately yields stochastic comparisons. As in Kamae et al. (1977),
 we say that stochastic order holds for random elements X, and X2 of a complete
 separable metric space Z endowed with a closed partial order _ , and write X -<, X2, if
 Ef(XI) < Ef(X2) for all non-decreasing measurable real-valued functions on (E, ) for
 which the expectations are well defined. This is a convenient definition because such

 stochastic order implies that there exist ordered couplings, i.e., that there exist new
 random elements X, and X2 on a common probability space such that P(X, _ X2)= 1,
 d d d
 X = -X and X X, where means equality in distribution.
 The following corollary gives stochastic comparisons for subsets of the sequences (let
 I be the set of all finite subsets from the two sequences with the partial order of set
 inclusion) and the matrices I(k, r) and J(k, r) (here ; = R2 X R?1 with componentwise
 order, i.e, z' (z ) c z2 =((z ) if z2 _ z2 for all i and j). Let K and R, with superscript
 indices, be random variables yielding possible values for k and r.

 Corollary 2.1. (a) If R' ,t R2, then S(k,R') -t S(k, R2) and I(k, R2) I(k, R')
 for each k.

 (b) If Kl t K2, then SC(K', r) <S SC(K2, r) and J(K', r) -t J(K2, r) for each r.

 Proof. Use the assumed stochastic order for R' <t R2 in (a) and K' < t KA in (b) to
 construct new versions with the same distributions that are ordered w.p.l. Then apply
 Theorem 2.1 to get w.p.l order for the new versions of the displayed quantities. This
 w.p.l order in turn implies the order for the expectations in the definition of stochastic

 order. Since the coupling preserves the marginal distributions, the expectations are the
 same for all versions.

 Our next result is proved in the same way as Corollary 2.1, but now we assume
 stochastic order for the random vectors (Ki, - Ri). If K is independent ofR j for eachj,

 481

This content downloaded from 128.59.222.107 on Wed, 05 Jan 2022 17:21:11 UTC
All use subject to https://about.jstor.org/terms



 P. DONNELLY AND W. WHITT

 then the condition is equivalent to K'1 St and R2 stR' separately. However, the
 condition covers cases in which independence of Kj and R does not hold.

 Corollary 2.2. If (K, -R ) _st (K2, -R2), then N, (K', R ') < N, (K2, R2).

 Proof. Use the stochastic order condition to construct an ordered coupling
 (K', R' 12, R2) with K'1 K2 and R' > R2 w.p.1, and (KJ, R) d (KJ, RJ) forj = 1, 2.
 By Theorem 2.1(a), we can perform the reinforcement-depletion (tantamount to
 constructing a coupling) so that

 (2.2) Nw (K', R) _ Nw, (K, A2) w.p.l.

 By Theorem 2.1(b), we can perform the reinforcement-depletion (a different coupling)
 so that

 (2.3) Nw, (Kl, R2) < Nw, (K2, R2) w.p.l.

 We cannot combine (2.2) and (2.3) into a single coupling, but we can deduce the
 stochastic comparisons

 Nw1 (', R ') <St Nwl (Kl, 2) _St NWl (K2, R2).

 Since Nw,(KI, R) - Nw,(Ki, R) for each i, j, the desired stochastic comparison is
 established.

 3. A general sequence of reinforcement-depletions

 It is not difficult to extend Section 2 to a sequence of reinforcement-depletions where

 the successive sizes come from the general random sequence R = {Rn: n _ 1). Our basic
 assumption is that, conditional on the sizes R,, n > 1, the successive reinforcement-
 depletions are mutually independent. We put this in the framework of Section 2 by
 successively repeating the sampling experiment there, sampling Rn balls from K + R,
 balls in the nth period, where the set of K + Rn balls contains the first K (independent of

 n) balls from the first sequence and the first R, balls from the second sequence.
 To make a stochastic comparison, we assume that R' s,, R2, which is stochastic order

 for random elements of Z+ with componentwise ordering. If the reinforcement sizes
 R, n > 1, are mutually independent for each j, then this condition is equivalent to
 R <s, R,2 for each n (without any common distribution condition). (A trivial but
 relevant case is the deterministic case R = r' _< r2 =R2 for all n.) However, R1 St R2
 may hold without this independence, as is illustrated by results in Kamae et al. (1977),
 Sonderman (1980) and references cited there.

 Given R' <t R2, we can construct an ordered coupling (R', R2) with R' < R2 w.p.l and
 R' st R for j = 1, 2. For this ordered coupling, then, Theorem 2.1(a) holds every
 period. For each k, the sequence of periods n in which ball j appears in the sample
 S(k, RA ) is thus a subsequence of the sequence of periods n in which ballj appears in the
 sample S(k, R2). Stochastic conclusions then follow, just as in Section 2.

 We now indicate how to apply this construction to the original reinforcement-
 depletion model. For model k, k = 1, 2, let WkO and Bko be the random numbers of white

 482
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 On reinforcement-depletion compartmental urn models

 and black balls originally in the urn, let Kk = WkO + Bko, let W,k be the number of white

 balls in the urn after n reinforcement-depletion cycles, let Rk be the size of the nth
 reinforcement of black balls, and let Tk be the first time that there are no white balls in
 the urn.

 Theorem 3.1. If {Wl, K, - R: n > 1} - {W20, K2,- R2: n 1}, then

 {T,, W,:n nO})-s,{T2, W,: n _0}.

 Proof. To put this in the framework we have introduced, let the subset of indices
 corresponding to the white balls be Wk. Then Wkn can be expressed as

 Kk n

 (3.1) Wkn = f Ilj(Kk R ) n_ 1.
 jlr m-l
 jeWk

 The ordered coupling corresponding to the condition yields Wl0 _ W20, Kl' K2 and
 AR >_ Rn for all n. We thus can assume that W' c W2 and do. Since Iij(kl, r') - I1j(k2, r2)
 ifj - k' < k2 and r' > r2,

 tI n tI n

 Win= fi Il j(l, 1i) < Z fI I,, (K R2 )
 j-1 m-i j-l m-i
 jeW jewI

 2 n

 _- ] II I(/(K3,/2m) = -W2_ for all n >_- 1,
 jEW2

 from which the stochastic comparison follows.

 The conclusion of Theorem 3.1 implies the stochastic order of the first passage times

 T,I S T2 conjectured by Purdue (1981); the conditions in Theorem 3.1 are also more
 general.

 4. The effect of more variable reinforcement sizes

 Recall that one random vector (Ri, .* * , R 1) is said to be less variable than another,

 (R2, ...* , R2), if

 (4.1) E[f(RI, , RI)] E[f(R2, *, R,2)].

 for p11 real-valued convex functions f; see p. 26 of Stoyan (1983). Note that for (4.1) to
 hold for all suchf, and hence for two random vectors to be comparable in variability, we

 must have E(Rl)=E(R?), i = 1, 2,. * *, n. (Consider the functions ff(xl, * *,xn) = xi
 and gi = - f, i = 1, 2, * * , n.) One example to bear in mind is that (ER,, *, ER,) is
 always less variable than (R,,- ? ., R,).

 Another comparison of random vectors is given by stochastic majorization. Say that
 (R, * * , Rn ) is stochastically majorized by (R, * ., R2 ) if

 (4.2)

 483
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 for all real-valued, Schur-convex functions h. For a definition of Schur-convexity
 and further details about stochastic majorization, see Marshall and Olkin (1979). When
 the random vectors are deterministic, stochastic majorization reduces to ordinary
 majorization. For one vector to majorize another, it is necessary that they have identical

 sums of components. For example (r, r, * * , r) is always majorized by (rl, * * , r,) when
 r, + * * + r, = nr.

 In order to apply these ideas in this context, we first show that certain conditional
 moments of the content process W, are convex, and Schur-convex in their arguments. As
 before, let Wo and Bo be the initial numbers of white and black balls in the urn.

 Theorem 4.1. For each m > 1 and n > 1, the conditional mth moment

 E( Wn I WO = w, Bo = b, Ri = r,,* * * , R, = r,) is a convex function of rj for each j and a
 Schur-convex function of (r,, * * , r,).

 Proof. For 1 _ i _ w, let Xi = 1 if the ith white ball remains after n stages, and 0
 otherwise. Let A be the event { W0 = w, Bo = b, Ri = r,, * * , Rn = r, }. Then

 E( W |m A) = E (XI, X.2. . . Xim I A)

 where the sum extends over all possible m-tuples of integers with 1 _ ij _ w. The
 number of factors in the product reduces when the same index appears more than once.

 Each reduced term containing 1 different Xi variables is of the form

 , (w w++ b w + b 1) w+b-l+ I
 2 ,,,Xj.1=1 w+b+rjj w+b+rj-1 w+b+rj-l+l

 which is a convex function of rj for eachj. For eachj, use the fact that the product of two,
 and thus any number, of positive decreasing convex differentiable real-valued functions
 is convex. For Schur-convexity, apply B.l.d. on p. 62 of Marshall and Olkin (1979).

 Theorem 4.1 allows us to make further comparisons between processes. Consider
 two sequences of reinforcements RI,R ,..., and R ,R2,... and common initial
 numbers Wo, Bo of white and black balls, and denote the resulting processes by
 {Wi: n=l, 2,. .}and{W2:n =l, 2,. .}.

 Corollary 4.1. Suppose that Wo, Bo, Rk, n > 1, are mutually independent
 for k = 1, 2. If Rf is less variable than R2 for i = 1, 2, * * , n, then E(W~ ) ' E(W )
 for all m.

 Corollary 4.2. If (R1,. * , Rl) is stochastically majorized by (R?,- ., R ,), then
 E(Wn) _< E(W2) for all m.

 Here are two important special cases:
 (i) Among all reinforcement size vectors (R1, , Rn) with independent marginals

 and means (rl, - *, r,), E(W') is minimized by using the deterministic reinforcement
 sizes (r,- -, r,).

 (ii) Among all deterministic reinforcement sequences (rl, , r,) with
 r, + * * * + r, = nr for some integer r, E(Wn) is minimized by using the constant
 sequence (r,- ., r).

 484
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 Remarks. (1) It is not difficult to see that E(Wn Wo-= -w, Bo- b,
 Rl = r, * * * Rn = rn) is not convex as a function of(r, . ? , rn), so we need the indepen-
 dence in Corollary 4.1.

 (2) The probabilities P(Wn = 0) = P(T < n) do not necessarily decrease in response
 to increased variability. For example, let w = 2, P(R- = 1)= 1 and P(R20)=
 P(R,2 = 2) = 1/2. Then RI is less variable than Ri2, but P(WI = 0)= 0 < P(W21 = 0).

 5. Variability of the compartment contents

 As indicated in the introduction, Bernard (1977), Purdue (1981) and Leitnaker and
 Purdue (1985) were interested in the variability of Wn = Wn(w) relative to the mean for
 large values of w, as measured for example by the squared coefficient of variation of Wn.

 Assume that there are initially b black balls and w white balls in the urn, and let the
 sequence of successive reinforcement sizes {Rn: n > 1} be i.i.d. The expressions for the
 mean and variance of Wn on p. 200 of Leitnaker and Purdue (1985) can be used to
 describe the asymptotic behavior of c2( Wn) as w - oo; they are

 (5.1) E(Wn )= w (-1) w) _i-O (b + w)'J

 and

 (5.2) Var(Wn)= V + V2- V3,

 where

 0i= ( [E(R) -n VI=w ' (-1)'i
 1 i-O (b + w)i

 - oo E(R[+k) n
 (5.3) V2= w(w- 1) 2 X (-1)i+k E(R f+

 .i-o k-o (b + w)'(b + w - 1)k

 V3w ( ) E(RI) -2n

 ,i-o (b + w).

 We assume that there is a constant r such that

 (5.4) E(Ri) < ri for all i > 1,

 so that all the sums in (5.1)-(5.3) are absolutely convergent for sufficiently large w, and

 we can easily do asymptotic analysis as w - oo. An obvious sufficient condition for (5.4)

 is P(R, _< r)= 1.
 We first describe the situation considered by Leitnaker and Purdue. We omit the proof

 using (5.1)-(5.4).

 Theorem 5.1. Suppose that the distribution of RI is independent of w. If w - oo with
 w/(b + w) - p > 0, then

 (5.5)

 485
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 and

 (5.6) Var(Wn) na2 n[p(l - p)E(Rl) + p2 Var(Rl)],

 so that

 (57) Var(2(W ) WVar(W;) na2 (5.7) c2(W)- [E(Wn)]2 w2

 and

 Var(w- Wn) a2
 (5.8) c2(W - W)-

 (E(w- Wn))2 np2[E(R1)]2

 Hence, for any fixed n, the squared coefficient of variation of the number of white balls

 remaining is asymptotically negligible as w - o, while the squared coefficient of
 variation of the number of white balls removed is not.

 These asymptotics should be intuitively clear, because as w gets large with n and the

 distribution of Ri fixed, the number of white balls removed, w - Wn(w), can obviously
 be bounded above by a quantity that is independent of w, i.e.,

 (5.9) w - Wn(w) - R, + ' - ? + Rn for all w.

 Hence, we trivially have

 (5.10) w-I'Wn(w)--l w.p.l asw- oo,

 Var(Wn) = Var(w - Wn) - E[(w - W)2] < E[(Ri + ... + Rn)2]

 (5.11) - n Var(RI) + n2[E(R,)]2,
 (5.12) E(W) > w - nE(R,),

 and

 n Var(Rl) + n2[E(R)] 2) (5.13) c2( Wn) < = O(w-2).
 [w - nE(R1)]2

 Moreover, the number of white balls removed, w - W(w), obviously approaches the
 number of successes in a random number of Bernoulli trials; i.e., we have the following

 elementary asymptotic result, which we also state without proof. Let = denote
 convergence in distribution.

 Theorem 5.2. As w - oo,

 (5.14) (w - Wn(W)) U1 + ... + U(R+ ...+R,

 where { U: n _ 1} is a sequence of i.i.d. random variables, independent of {Rn: n > 1},
 with P(U = 1) = 1 - P(Un = 0) = p.

 Note that the mean and variance of the limit in (5.14) agree with (5.5) and (5.6), as
 they should, because (5.14) and (5.4) imply convergence of moments.

 486

This content downloaded from 128.59.222.107 on Wed, 05 Jan 2022 17:21:11 UTC
All use subject to https://about.jstor.org/terms



 On reinforcement-depletion compartmental urn models

 We now show that we cannot obtain interesting behavior for W, as w - oo if we simply

 let n grow with w, so that the stage is in the same scale as the content size. From (5.7), we

 expect that C2(Wn) w- as w - oo with n/w > 0 and w/(b + w)- p > 0. In fact,
 this can be shown to be the case, again using (5.1)-(5.4). We use the fact that
 (1 + n -ln)n" -ex as n - if xn -x as n oo; see p. 169 of Chung (1974).

 Theorem 5.3. If w - oo with n/w - ~ > 0 and w/(b + w)- p > 0, then

 (5.15) E(Wn) - wexp(- p-E(R,)),

 and

 Var( W) -w exp(- paE(R ))

 (5.16) X (1 - exp( - pE(R1))(1 + p2[E(R) - Var(Rl)])),
 so that

 Var( W)
 (5.17) c2(Wn) E ] =O(w-') asw -oo. [E( Wn)]2

 So far, we have kept the distribution of R1 fixed as w - oo. Significantly greater
 variability is seen if the distribution of R1 grows with w. To treat this case, assume that

 (5.18) R = wXj,

 where Xj, j 1, are i.i.d. integer-valued random variables independent of w.

 Theorem 5.4. If (5.18) holds and w - oo with w/(b + w) - p > 0, then

 (5.19) E(Wn) w[E(Y)]"

 and

 (5.20) Var(Wn) w2{[E(y2)]n - [E(Y)]2n},

 so that

 (5.21) c2(Wn) - E(y2)"[E(Y)]2 - 2 1,

 where

 (5.22) Y=
 1 + pX,

 Proof. To establish (5.19), instead of (5.1), we use

 (5.23) w-E(W)=E(b +w+R)]

 see (22) of Leitnaker and Purdue. By (5.18), (5.23) and the dominated convergence
 theorem
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 w-E(W) EI + [w/(b wX [E(Y)]n as n -o.

 Similarly, using (23) of Leitnaker and Purdue,

 [1 [? ++b+w w-2Var(Wn) w= -E bw )1 L\b+w +R/J

 (w-l1)l/ b+w b b+w-l Mn

 b + w \2

 w L b+w+ Rl/ b+w-l +R

 E b + w +R ) [E(y2)]n - [E(Y)]2n

 Paralleling Theorems 5.1 and 5.2, we can also generalize Theorem 5.4 by obtaining
 asymptotic properties of the distribution of W,.

 Theorem 5.5. Under the conditions of Theorem 5.4,

 w -Wn Y, Y2 ... Yn asw- oo,

 where Yn, n > 1, are i.i.d. and distributed as Yin (5.22).

 Proof. By the law of large numbers for sampling without replacement, as w - o the
 proportion of available white balls removed on the ith reinforcement-depletion cycle is

 asymptotically Y,, as in (5.22), with successive cycles being independent. (Effec-
 tively, wX, balls are sampled without replacement from w(p- + Xi), where w -- o.)
 A direct proof follows from (1.1), (1.5) and Chebychev's inequality, after first con-
 ditioning on the Xi.

 From Theorem 5.4, we see that c2( W) > 0 if and only if Var(Y) > 0 or equivalently, if

 and only if Var(XI) > 0, in which case c2( W) is increasing with c2( Wn)-" oo as n - oo.
 A convenient special case occurs when P(X1 = c) = q = 1 - P(XI = 0). Then

 (5.24) E(Yk)=(l1 -q)+
 (1 + pc)k
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