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Abstract

We propose a new estimator of steady-state blocking probabilities for simulations of stochastic

loss models that can be much more efficient than the natural estimator (ratio of losses to arrivals).

The proposed estimator is a convex combination of the natural estimator and an indirect estimator

based on the average number of customers in service, obtained from Little’s law (L = λW ). It

exploits the known offered load (product of the arrival rate and the mean service time). The variance

reduction is dramatic when the blocking probability is high and the service times are highly variable.

The advantage of the combination estimator in this regime is partly due to the indirect estimator,

which itself is much more efficient than the natural estimator in this regime, and partly due to

strong correlation (most often negative) between the natural and indirect estimators. In general,

when the variances of two component estimators are very different, the variance reduction from

the optimal convex combination is about 1− ρ2, where ρ is the correlation between the component
estimators. For loss models, the variances of the natural and indirect estimators are very different

under both light and heavy loads. The combination estimator is effective for estimating multiple

blocking probabilities in loss networks with multiple traffic classes, some of which are in normal

loading while others are in light and heavy loading, because the combination estimator does at

least as well as either component estimator, and provides improvement as well.

Subject classifications: Simulation, efficiency: variance reduction for estimates of blocking

probabilities; Queues, simulation: efficient simulation estimators for loss models;

Communications: efficient simulation of loss networks

Area of Review: Simulation



This paper proposes a method for reducing variance in the estimation of blocking probabilities

in simulations of stochastic loss models. A stochastic loss model has one or more arrival processes,

modeled as stochastic processes, and has the property that not all of these arrivals are admitted. We

are interested in a long-run-average or steady-state blocking probability, i.e., the long-run proportion

of arrivals from one arrival process that are not admitted. The mathematical model is quite general;

we assume that admitted arrivals each eventually spend some random time in service, possibly

after waiting, and then depart. Otherwise, we only assume appropriate long-run averages exist;

see (1)–(5) below. In particular, there are no Markov or independence assumptions; very general

dependence is allowed among interarrival times and service times.

The allowed model generality means that the model can be a complex loss network or resource-

sharing model, perhaps with alternative routing, such as a model of a communication network;

see Ross (1995). Simulations of large complex loss networks can be very time consuming, often

requiring hours or more. Thus, effective variance reduction methods can be very useful.

We propose an easily implemented estimator for blocking probabilities that can be remarkably

efficient compared to the natural estimator (ratio of losses to arrivals). By “efficient” we mean

low variance for given run length or, equivalently, short run length for given variance. The new

estimator is a convex combination of the natural estimator and an indirect estimator based on the

average number of customers in service, obtained from Little’s law (L = λW ).

It turns out that the improvement over the natural estimator provided by the proposed method

is especially dramatic when the holding times are highly variable and the blocking probability is

relatively high. This is a practically important case for communication networks because, first,

multiple services (e.g., voice and computer lines) lead to highly variable holding times and, second,

interest in system response to failures leads to considering scenarios with relatively high blocking

probabilities. Of course, the response to short-lived failures requires transient analysis, but since

serious link failures in telecommunications networks, such as are caused by backhoe accidents,

persist for a substantial time compared to call holding times, there is serious interest in the steady-

state behavior in the presence of failures. Since continued reliable service is desired, effort is made

to provide satisfactory service even in the presence of failures. Hence, simulation experiments are

frequently conducted to estimate steady-state blocking probabilities under relatively heavy loads.

The proposed procedure is also effective for complex loss networks with multiple traffic classes,

some of which are in normal loading while others are in light and heavy loading. The new com-

bination estimator tends to be close to the appropriate component estimator depending on the
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loading, and provides improvement as well. The combination estimator would be useful even if it

only selected the better component estimator, because their efficiency differs dramatically in light

and heavy loading.

There is a substantial literature on variance reduction, as can be seen from Chapters 2 and 8

of Bratley, Fox and Schrage (1987). Fleming, Schaeffer and Simon (1995) also treat a class of loss

models and achieve spectacular variance reduction in many cases by combining control variates and

importance sampling.

1. Alternative Estimators

We consider a general system to which arrivals come according to some stochastic process

{A(t) : t ≥ 0}, i.e., A(t) records the number of arrivals in the interval [0, t]. Some of these arrivals
are admitted to the system, after which they stay for a random time and then depart, while other

arrivals are blocked and lost. Let {L(t) : t ≥ 0} be the stochastic process representing losses,
i.e., L(t) is the number of losses in the interval [0, t]. Admitted customers may initially wait

before beginning service, but they eventually enter service and then depart. Let {Sn : n ≥ 1} be
the successive service times of the admitted calls. Let N(t) and W (t) represent the number of

customers in service and waiting, respectively, at time t.

We make no detailed stochastic modeling assumptions, such as independence or Markov as-

sumptions. We only assume that

t−1A(t)→ λ as t→∞ , (1)

L(t)/A(t)→ B as t→∞ , (2)

(S1 + . . . + Sn)/n→ µ−1 as n→∞ , (3)

n̂(t) ≡ t−1
∫ t

0
N(u)du→ n as t→∞ (4)

and
W (t)

t
→ 0 as t→∞ , (5)

all with probability 1 (w.p.1), where λ,B, µ−1 and n are positive finite real numbers. Equations

(1) and (2) together imply that L(t)/t→ λB as t→∞ w.p.1 as well. The limits λ,B, µ−1 and n in
(1), (2), (3) and (4) are the arrival rate, the (long-run-average or steady-state) blocking probability,

the mean service time and the long-run-average or steady-state number of customers in service,

respectively. Condition (5) implies that the long-run rate of customers entering service equals the
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long-run rate of admitted customers, λ(1 − B). Condition (5) is clearly satisfied by the classical
G/G/s/k model with s servers and k (finite) extra waiting spaces, but it is also satisfied for other

models. For example, the number of available servers could be random. There need not even be

separate identifiable servers for each customer. Alternatively, service might be completed in several

stages at separate facilities.

The point is that the framework provided by equations (1)–(5) is very general, so that the

proposed estimation procedure is widely applicable. Of course, wide applicability does not imply

that the proposed estimation procedure is necessarily effective in reducing variance. However, it is

our experience that the method is indeed effective for many parameter settings in many models.

In this setting our goal is to estimate the blocking probability B by simulation. The natural

estimator is

B̂N (t) = L(t)/A(t) . (6)

By (2), B is the limit of B̂N (t) as t → ∞, so that the natural estimator is consistent. However,
since the natural estimator is the ratio of two random quantities, it is a ratio estimator. Ratio

estimators have some complications; e.g., in general they are biased: If the processes {L(t) : t ≥ 0}
and {A(t) : t ≥ 0} have stationary increments, then EL(t)/EA(t) = B for each t, but in general
EB̂N (t) 6= B.
An estimator closely related to the natural estimator, which we call the simple estimator, is

B̂S(t) =
L(t)

λt
, (7)

where λ is the arrival rate in (1) . Assuming that the process {A(t) : t ≥ 0} has stationary
increments, λ = EA(1). Assuming that the process {L(t) : t ≥ 0} has stationary increments, the
simple estimator B̂S(t) is unbiased for each t: EB̂S(t) = EL(1)/λ = B. Thus, the simple estimator

might seem preferable to the natural estimator, but in Srikant and Whitt (1996) (hereafter referred

to as SW) we showed, through examples and theory (Section 7 of that paper), that the simple

and natural estimators tend to be nearly identical for large samples (in actual value as well as in

distribution).

In this paper we propose an alternative estimator that in some circumstances has significantly

lower variance and is nearly as easy to construct. Our starting point is the indirect estimator

B̂I(t) = 1−
n̂(t)

α
, (8)

where α ≡ λ/µ is the offered load and n̂(t) is as in (4). The indirect estimator B̂I(t) requires that
we know the parameters λ and µ−1, which is usually the case in simulations. (There are exceptions.
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For example, we would not know λ if the arrival process of interest itself comes from overflows from

another system with unknown blocking probability. This presumes that we are interested in the

proportion of these overflows that are subsequently blocked. We would not know µ−1 if the service

time included some unknown random waiting time.)

The indirect estimator also requires that we record the statistic n̂(t), but that is usually not

difficult to do. The indirect estimator is obtained from Little’s law (L = λW ); if λ,B, µ−1 and

n are the limits in (1)–(4), then the relation L = λW applied to the service facility (but not the

waiting room if there is any) yields λ(1 −B)µ−1 = n or, equivalently, B = 1− (n/α), from which
we obtain (8); see Whitt (1991, 1992).

Indirect estimation of queueing quantities by Little’s law was studied by Law (1975), Carson

and Law (1980) and Glynn and Whitt (1989), but they did not focus on loss models. SW studied

the performance of the estimators B̂I(t) and B̂N (t), and showed that B̂I(t) tends to be much more

(less) efficient than B̂N (t) in heavy (light) loading. The advantage of B̂I(t) over B̂N (t) in heavy

loading is much more dramatic than the previous results for indirect estimators for delay models;

e.g., the variance reduction might be by a factor of 1000 or more (e.g., see the case γ = +6.0 in

Table 1 of SW).

Our proposed estimator is the combination estimator

B̂C(t) = pB̂N (t) + (1− p)B̂I(t) , (9)

where p is appropriately chosen to reduce variance (see Section 2). The idea behind the combination

estimator in (9) is the observation that B̂I(t) is decreasing in n̂(t), while B̂N (t) should tend to be

increasing in n̂(t), so that B̂I(t) and B̂N (t) should be negatively correlated. We prove a supporting

covariance inequality for a class of GI/GI/s/0 models (having s servers, no extra waiting room and

independent sequences of i.i.d. interarrival times and holding times) in Section 7, but the ordering

is intuitively reasonable in general.

The general idea that variance can be reduced by combining different estimators as in (9) is

well known, e.g., see p. 63 of Bratley, Fox and Schrage (1987). However, it was not apparent that

the combination estimator in (9) can provide truly significant improvement for loss models, as is

demonstrated by our examples in Section 4. In the best case in our examples of GI/GI/s/0 models

with s = 100, the variance ratio is V arB̂N(t)/V arB̂C(t) ≈ 1800 (see Table 1). Only part of this
benefit would be achieved by the indirect estimator alone; in this case V arB̂N (t)/V arB̂I(t) ≈ 200.
The variance ratio of 1800 means that the run length for the combined estimator B̂C(t) could be
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about 1800 times shorter than the run length for the natural estimator B̂N (t) in order to produce

the same statistical precision. That variance reduction would reduce a 30 minute run to less than

1 second.

We show that the variance reduction provided by the indirect and combination estimators is

even greater when we add a finite waiting room. If a waiting room of size 100 is added to the

GI/GI/s/0 model with s = 100, then the variance reduction in the best case jumps from 103 to

106 or more; see Section 4.4. The advantage of the waiting room should be evident, because then

the mean occupancy n̂(t) is even less variable. (Recall that n̂(t) is the average number of customers

in service, not the average number of customers in the system.)

However, it turns out that the benefit of the combination estimator is not uniform in the model

parameters. The combination estimator tends to provide dramatic improvement under heavy loads,

significant improvement under normal loads, and moderate improvement under light loads. We

show that the performance of the combination estimator can be explained by the variance ratio

r2 ≡ V arB̂I(t)/V arB̂N (t) and the correlation ρ ≡ Corr(B̂I(t), B̂N (t)). In Section 2 we show that,
in general, the variance reduction of a combination estimator is about 1 − ρ2 when the variance
ratio r2 is either very large or very small. As shown by SW, the variance ratio r2 tends to be

very large under light loads and very small under heavy loads. Loss model examples show that

the correlation ρ tends to be quite strongly negative under all loadings, but especially under heavy

loads (e.g., see Table 1).

As shown for indirect estimators such as B̂I(t) by Glynn and Whitt (1989), a key ingredient in

the proposed estimator B̂C(t) is exploiting the known parameters λ and µ
−1. However, there are

other ways to take advantage of this knowledge, in particular, through linear control estimators.

Thus, we also consider linear control estimators, using estimators of the arrival rate and mean

service time as control variables. (Glynn and Whitt (1989) show that from the perspective of

asymptotic efficiency it suffices to consider linear control estimators in the class of suitably smooth

nonlinear control estimators.) For this purpose, let

λ̂(t) = t−1A(t) (10)

and

µ̂−1(t) = (1/D(t))

D(t)
∑

i=1

Si , (11)

where as before Si is the service time of the i
th customer to complete service and D(t) is the number

of departures (of admitted customers after receiving service) in [0, t]. Linear control estimators can
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be considered with respect to each of the estimators B̂N (t), B̂I(t) and B̂C(t). One is

B̂LN (t) = B̂N (t) + a1(λ̂(t)− λ) + a2(µ̂−1(t)− µ−1) , (12)

where a1 and a2 are chosen appropriately. The corresponding linear control estimator constructed

from B̂I(t) is denoted B̂LI(t). The grand combination estimator is

B̂GC(t) = B̂C(t) + b1(λ̂(t)− λ) + b2(µ̂−1(t)− µ−1) (13)

= pB̂N (t) + (1− p)B̂I(t) + b1(λ̂(t)− λ) + b2(µ̂−1(t)− µ−1) ,

where the three parameters p, b1 and b2 are chosen appropriately.

The grand combination estimator B̂GC(t) in (13) (with the best parameters) clearly should be

most efficient overall, and that is our experience. However, we find that the combination estimator

B̂C(t) in (9) consistently performs nearly as well as the grand combination estimator B̂GC(t) in

(13), so that it should suffice to use the more elementary combination estimator.

Our examples show that linear control estimators can also significantly reduce variance. The

variance reduction for estimates of blocking probabilities tends to be greater than the variance

reduction for standard single-server queues using similar control variates; see Lavenberg, Moeller

and Welch (1982). However, the combination estimator B̂C(t) consistently does at least as well as,

and in some cases does significantly better than, the linear control estimators B̂LN (t) and B̂LI(t).

It is well known that the blocking probabilities in the M/GI/s/0 model (with Poisson arrival

process) are insensitive to the general holding-time distribution beyond its mean; e.g., see p. 271

of Wolff (1989). However, in SW we showed that the variances of the estimators B̂N (t) and B̂I(t)

do not have this insensitivity property. Indeed, for the M/GI/s/0 model these variances tend to

be proportional to 1 + c2s, where c
2
s is the squared coefficient of variation (SCV, variance divided

by the square of the mean) of the holding-time distribution. In contrast, the variance of the new

combination estimator B̂C(t) tends to be nearly insensitive to the holding-time distribution beyond

its mean; see Sections 4.1, 4.2 and 5. This partly explains the effectiveness of the combination

estimator.

In our previous paper we developed predictions for the variance of the estimators B̂N (t) and

B̂I(t) in the G/G/s/0 model, to be used before any data have been collected. We have yet to

develop such predictions for the new estimators proposed here. We only know that the variance

should be less than the minimum of the variances of B̂N (t) and B̂I(t) for the G/G/s/0 model.

Hence, the previous predictions can yield upper bounds for G/G/s/0 models.
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Our previous paper focused on the computational effort required to achieve a given statistical

precision with the basic estimators. We remark that the story for loss models (G/G/s/0) is quite

different from the story for delay models (G/G/s/∞); see Whitt (1989). In particular, for loss mod-
els there is no precipitous rise in required computational effort as the traffic intensity approaches 1.

Indeed, for loss systems the case in which the traffic intensity is 1 is called normal loading. Figure 1

of SW shows that the computational effort to achieve a given statistical precision (using a criterion

of absolute error) increases with the offered load for the natural estimator. However, Figure 2 of

SW shows that the computational effort decreases with the offered load for the indirect estimator.

Given that we use the better of the two basic estimators, normal loading (the middle) requires the

most computational effort. It is good, then, that the combination estimator provides significant

variance reduction there.

The methods here would be broadly applicable to estimate blocking probabilities from real-time

measurements of actual loss systems, provided that we could also estimate the offered load during

the measurement process. Hence, it is also natural to consider the modified indirect estimator

B̂M (t) = 1−
n̂(t)

α̂(t)
, (14)

where

α̂(t) = λ̂(t)µ̂−1(t) , (15)

and the associated modified combination estimator B̂MC(t), defined as in (4) with B̂M (t) in place of

B̂I(t). Unfortunately, however, we found that these modified estimators do not provide significant

improvement. The variance ratio V arB̂N (t)/V arB̂MC(t) in our examples was consistently about

1. Hence we do not display results for these estimators.

It is of course possible that we could obtain good estimates of λ and µ−1 from previous measure-

ments. In a network application we might monitor the system and have available estimates of λ−1

and µ−1. There might then be a failure event, which would make it desirable to estimate blocking

probabilities. Assuming that the parameters λ and µ−1 are not altered by the failure event, we can

use the previous estimates of λ−1 and µ−1 in the combination estimator to estimate the blocking

probability from measurements after the failure event.

We now investigate the general combination variance reduction approach more carefully.
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2. Variance Reduction for Combination Estimators

Part of the benefit of the combination estimator B̂C(t) in heavy loads comes from the indirect

estimator B̂I(t), which SW have shown to be significantly more efficient than the natural estimator

B̂N (t) in heavy loads. To understand the two different contributions to efficiency in heavy loads,

it is useful to represent the variance ratio as the product of two separate variance ratios, i.e.,

V arB̂C(t)

V arB̂N (t)
=
V arB̂C(t)

V arB̂I(t)

V arB̂I(t)

V arB̂N (t)
. (16)

It is interesting to see how the variance ratio V arB̂C(t)/V arB̂I(t) is affected by the fact that

the variance ratio V arB̂I(t)/V arB̂N (t) is quite small. In this section we show that the variance

ratio V arB̂C(t)/V arB̂I(t) depends on two key factors: the variance ratio V arB̂I(t)/V arB̂N (t) and

the correlation Corr(B̂I(t), B̂N (t)).

To express the problem generically, let p be an arbitrary constant, let X and Y be arbitrary

random variables with a common mean and let

Z = pX + (1− p)Y . (17)

Let σ2X = V arX, σ
2
Y = V arY , r = σY /σX and ρ = Cov(X,Y )/σXσY . Clearly, the variance ratio

is r2 and the correlation is ρ. By direct calculation,

V arZ ≡ V (p) = σ2Y
(

p2

r2
+ (1− p)2 + 2p(1− p)ρ

r

)

. (18)

Differentiating, we find that V ′′(p) > 0 for all p, so that the minimum is found by setting V ′(p) = 0.

The minimum variance of the combination variable Z is attained at

p∗ =
r(r − ρ)
1 + r2 − 2ρr (19)

and is

V (p∗) =
σ2Y (1− ρ2)
1 + r2 − 2rρ . (20)

Note that in general we can have p∗ < 0 and p∗ > 1 in (19), but if ρ ≤ 0, then necessarily 0 < p∗ < 1.
Assume that σ2Y ≤ σ2X , so that r ≤ 1. Then we want to compare V arZ to σ2Y , since it is more

efficient (has lower variance) than V arX. For this purpose, let the combination variance reduction

factor as a function of p be

R(p) =
V (p)

σ2Y
=
p2

r2
+ (1− p)2 + 2p(1 − p)ρ

r
(21)
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and let the optimal combination variance reduction factor be

R(p∗) =
V (p∗)

σ2Y
=

1− ρ2
1 + r2 − 2rρ . (22)

We can use (22) to bound below the possible variance reduction:

R(p∗) ≥ 1− ρ2
(1 + r)2

≥ 1− ρ
2

4
(23)

for r ≤ 1. If r = 1, then R(p∗) = (1 + ρ)/2, which is only significant when ρ is suitably close to its
lower limit −1. If ρ is indeed close to −1, then the lower bound can be approximated by

1− ρ2
4
≈ 1 + ρ

2
,

which agrees with what is achieved when r = 1.

We are especially interested in the case of small r. From (22), we see that

lim
r→0
R(p∗) = 1− ρ2 , (24)

which is independent of the sign of ρ. Note that the limit of R(p∗) as r → 0 differs from the lower
bound over all r in (20), which is attained at r = 1, only by a factor of 4. In the case of small

r, the variance reduction in (16) is approximately the product of 1− ρ2 and r2. The combination
estimator helps under heavy loads because ρ is then often quite close to −1.
We can also to see how p∗ behaves as r → 0. From (19), we see that

p∗(r)

r
→ −ρ as r→ 0 ,

so that we have p∗ ≈ −ρr for small r. More generally, if we let p/r → c as r → 0, then

R(p)→ c2 + 1 + 2cρ , (25)

by (21). We can use (25) to see how errors in p∗ affect the variance reduction. An ε asymptotic

relative error in p∗ corresponds to p/r → c as r→ 0 with c = −ρ(1 + ε). Then

R(p∗(1 + ε)) = 1− ρ2 + ε2ρ2 , (26)

so that an ε asymptotic relative error in p∗ yields an absolute loss of variance reduction (increase

in R) of ε2ρ2, which is less than ε2. Hence, for small r, an ε relative error in p∗ will have negligible

impact if ε2 is suitably small compared to 1− ρ2.
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If we do not know ρ, but we know r, then we could let p = r. From (21),

R(r) = 1 + (1− p)2 + 2(1 − p)ρ

= 1 + (1− p)2 − 2(1 − p) + 2(1− p)(1 + ρ)

= p2 + 2(1 − p)(1 + ρ) ≈ r2 + 1− ρ2 , (27)

which is not too different from 1 − ρ2 when r is sufficiently small. Indeed, if r2 ≈ 1 − ρ2, then
the variance reduction in (16) is approximately r4, i.e., each step then contributes equally and the

overall reduction is the one-step reduction squared.

3. Estimation Procedures

There are a variety of ways to implement the estimation procedures presented so far. What is

appropriate depends on the specific model. We now describe what we have done for the models

considered here (in Section 4). In Section 3.1 we discuss the required simulation run lengths and

the initial conditions. In Section 3.2 we discuss how we estimate variances and covariances. In

Section 3.3 we discuss how we estimate the optimal combination parameter p∗ in (19). Finally, in

Section 3.4 we discuss linear control estimators.

3.1. Run Length and Initial Conditions

We try to avoid most serious statistical problems by having relatively long runs. For the

M/M/s/0 model with s = 100 and service rate 1, we let the measurement interval be 104. When

the arrival rate is λ = 100, this means that the expected number of arrivals during the run is 106.

Since the steady-state blocking probability is then about 0.07, the expected number of losses is

7× 104.
In the M/M/s/0 model and more general GI/M/s/0 model (with renewal arrival process),

losses are regeneration points, so that segments between successive losses are i.i.d. Since B−1 is

one plus the expected number of arrivals between successive losses, B−1 could be estimated in this

framework by the sample mean of 7 × 104 i.i.d. random variables. We do not actually use this
estimation procedure and we do not restrict attention to GI/M/s/0 models, but this analysis shows

that the sample size is indeed quite large. We do not discuss the issue of required path length for

loss models at length here, because we already did so in SW.

We start each run with an empty system. Since that initial condition introduces bias, we have

a warmup period, i.e., we wait a fixed time before collecting any data. (The full run begins after
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the warmup period.) As shown in Section 11 of SW, the warmup period for loss models often

need not be extraordinarily long to make the initial bias negligible. For the M/M/s/0 model,

we let the warmup period be 50, which corresponds to 50 mean service times. This is more than

adequate for the M/M/s/0 model (then about 5 is adequate), but is appropriate for the more

variable hyperexponential service times that we also consider in some of our examples.

We note that finite-capacity models tend to require shorter warmup periods than infinite-

capacity models, because the maximum number of customers that can be in the finite-capacity

system is constrained. In an infinite-capacity system a longer time is required to reach levels that

are captured by the tail of the steady-state content distribution. As indicated in Section 11 of SW,

the selection of a warmup period can be aided by considering the behavior of associated infinite-

server models. In theM/G/∞ model with a holding-time cdf G having mean 1, the time-dependent
number of busy servers starting empty has a Poisson distribution with mean

EN(t) = n(1−
∫ ∞

t
Gc(u)du) , (28)

where n is the steady-state mean; see (21) on p. 740 of Eick, Massey and Whitt (1993). (In (73) of

SW, En̂(t) should be replaced by EN(t) or (73) should be

En̂(t)− n = −n
t

∫ t

0
Hce(u)du ,

where He is the stationary-excess service-time cdf there.) Since the Poisson distribution is fully

characterized by its mean, it is reasonable to measure the time to approach steady state in terms

of the time for the mean to approach within a proportion ε of its steady state mean. From (28),

n−EN(t)
n

= ε (29)

if and only if
∫ ∞

t
Gc(u)du = ε . (30)

Equation (30) leads us to choose a warmup period of 5 in the M/M/s/0 model. (Then the integral

reduces to e−t.)

It is significant that equation (28) remains valid in the much more general G/GI/s/0 model,

see Remark 2.3 of Massey and Whitt (1993), so that it is reasonable to use (30) for such more

general models. However, the Poisson distribution property is lost when the arrival process is not

required to be Poisson. Thus the full distribution may not be close to the steady-state distribution

when the means are close. Nevertheless, (30) seems like a useful practical criterion.
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3.2. Estimating Variances and Covariances

To estimate variances and covariances, we use simple batch means; i.e., we divide the total

run (after the warmup period) into k nonoverlapping batches of equal length and construct batch

means. We typically use k = 20. Since the runs are relatively long, there tends to be negligible

correlation between different batches. Since there are about 104 regeneration points within each

run in the GI/M/s/0 model, it is evident that the batches should be very nearly independent in

those cases.

It would also be possible to use other procedures, such as overlapping batch means or weighted

batch means; see Meketon and Schmeiser (1984) and Bischak, Kelton and Pollock (1993). Our

variance reduction technique does not require that we use simple batch means.

Given that we do use simple batch means, we estimate the covariance Cov(X,Y ) for arbitrary

random variables X and Y by

Ĉ(X,Y ) =
1

k − 1
k
∑

i=1

(Xi − X̄)(Yi − Ȳ ) , (31)

where (Xi, Yi) are the batch means from the i
th batch and (X̄, Ȳ ) are the averages of the batch

means. The variance estimate V̂ (X) is Ĉ(X,X). For instance, given a measurement interval [0, T ]

(after warmup), Xi and Yi might be the estimators B̂N (t) in (6) and B̂I(t) in (8) constructed over

the subinterval [(i− 1)T/k, iT/k].
If we want the variance and covariance estimates themselves to have lower variance, in addition

to making longer runs, we need to let the number of batches grow as we increase the run length; see

Glynn and Whitt (1991). As described in Glynn and Whitt (1991), the standard deviations of the

variance estimators V̂ (B̂N (t)) and V̂ (B̂I(t)) are about
√

2/(k − 1) times their means. To derive
this relation, we assume that the usual asymptotic normality for estimators as the run length grows

is valid. If the run is sufficiently long, then for the estimators B̂N (t) and B̂I(t) the batch means will

be approximately k i.i.d. normal random variables, each with mean B and variance kσ2/T , where

σ2 is the asymptotic variance (σ2N or σ
2
I ) and T is the total run length. Then the sample variance is

approximately distributed as kσ2χ2k−1/T (k − 1), where χ2k−1 is a chi-square random variable with
k − 1 degrees of freedom. The random variable χ2k−1 has mean k − 1 and variance 2(k − 1), so
that the sample variance has approximate mean kσ2/T and approximate variance 2k2σ2/T 2(k−1).
Hence, the standard deviation of the sample variance is indeed approximately

√

2/(k − 1) times
its mean. For k = 20, the ratio of the standard deviation to the mean is about 1/3. This analysis

shows how much statistical precision we can expect from the variance estimators. Obviously we
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can reduce the standard deviation of the variance estimator if we increase the number of batches.

However, the analysis only remains correct if the batches remain approximately independent.

3.3. Estimating p∗

In the general setting of (17), we estimate p∗ by using formula (19) with the estimates for r and

ρ, i.e.,

p̂ =
r̂(r̂ − ρ̂)
1 + r̂2 − 2ρ̂r̂ , (32)

where

r̂2 =
V̂ (Y )

V̂ (X)
and ρ̂ =

Ĉ(X,Y )
√

V̂ (X)V̂ (Y )
. (33)

By the same argument used to establish (19), p̂ is the value of p minimizing the sample variance

V̂ (p) ≡ 1

k − 1
k
∑

i=1

[pXi + (1− p)Yi − (pX̄ + (1− p)Ȳ )]2 . (34)

Hence, p̂ can also be found by computing V̂ (p) and searching for the minimum p.

To avoid bias in the step, we should estimate p∗ using a separate run, but in fact we do the

estimation of p∗ using the same run that we estimate B. This procedure clearly induces some

underestimation of the variances. In general, it is important to be aware of this possibility, but in

our context we found the effect to be minor. To reach this conclusion, we tested the procedure by

performing multiple independent replications. We found that the estimates of p from any of several

different runs produced similar variance reduction. Moreover, the fluctuation in variance estimates

typically was greater between runs than within one run over the various optimal p values. We will

illustrate this phenomenon later.

To further support estimating p∗ within the same run that we estimate B, σ2X and σ
2
Y , we show

that the procedure tends to be asymptotically correct as the sample size, say t, increases, provided

the number of batches increases with t. Now X and Y in (17) should be replaced by stochastic

processes X(t) and Y (t) (e.g., they might be sample means). In great generality, V arX(t)→ 0 and
V arY (t)→ 0 as t→∞, but tV arX(t)→ σ2X , tV arY (t)→ σ2Y and tCov(X(t), Y (t))→ ρσXσY as
t → ∞, so that V arY (t)/V arX(t) → r and Corr(X(t), Y (t)) → ρ as t → ∞. Under these limits,
p̂(t)→ p∗ and R(p̂(t))→ R(p∗) as t→∞.
In a specific application we have a fixed small r. By the analysis in (25)–(27), we need to ensure

that the error in ρ̂r̂ is then suitably small compared to r. If r is extraordinarily small, this step

could be difficult, but then σ2Y itself should be small.
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3.4. Linear Control Variates

The standard theory of linear control variates implies that the optimal value of a1 in the linear

control estimator (12) is

a∗1 = −Cov(B̂N (t), λ̂(t))/V ar(λ̂(t)) (35)

and similarly for the others, e.g., see p. 96 of Glynn and Whitt (1989) and references cited there.

The variance reduction (ratio of new to old variance) provided by using the optimal linear control

is 1− γ2, where γ is the correlation between the original estimator and the control. We obtain our
linear control estimators by estimating a∗1 in (35) by estimating the quantities in the numerator and

denominator. In the GI/GI/s/0 model the interarrival times and service times are independent,

so that it suffices to treat the two controls separately.

For the grand combination estimator B̂GC(t) in (14), the variance evidently is not in general a

convex function of the parameters (p, b1, b2). Hence, we found the optimal values of b1 and b2 for

each of a set of p-values and then optimized over p, again all within one run. This was easily done,

requiring negligible computation time, for p values from 0 to 1 increasing by 0.01.

4. Simulation Experiments

We will illustrate how the variance reduction procedures perform by considering several exam-

ples.

4.1. The GI/GI/s/0 Model

We first consider the standard s-server loss model having no extra waiting space and i.i.d. service

times that are independent of i.i.d. interarrival times. We first let s = 100 and µ = 1. We consider

three values of λ: λ = 140 (heavy loading), λ = 100 (normal loading) and λ = 80 (light loading).

We do simulation experiments for these three cases using exponential (M) and hyperexponential

(H2, mixture of two exponentials) distributions for the interarrival times and service times. The

exponential distribution has squared coefficient of variation (SCV, variance divided by the square

of the mean) 1, while the H2 distribution we consider has SCV 10. We let c
2
a and c

2
s denote the

SCV of the interarrival times and service times, respectively.

Our H2 distribution has “balanced means,” i.e., it has density

f(x) = pλ1e
−λ1x + (1− p)λ2e−λ2x, x ≥ 0 , (36)
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with pλ−11 = (1 − p)λ−12 . The other two parameters are determined by the mean m and the SCV
c2. In particular,

p = [1 +
√

(c2 − 1)/(c2 + 1)]/2 (37)

and

pλ−11 = (1− p)λ−12 = m/2 . (38)

The H2 distribution is a natural highly variable distribution to consider for service times because

it represents the mixture of two exponential distributions with different means. Such mixtures

naturally arise when the customers being considered actually represent the combination of two or

more different classes with different characteristics. Hyperexponential distributions also are natural

to consider for arrival processes too, because they are equivalent to on/off arrival processes, i.e., a

Markov modulated Poisson process with a two-state environment: There is an exponential holding

time in each environment state; in one environment state there are no arrivals, while in the other

environment state arrivals occur according to a Poisson process.

For these particular models it is not difficult to calculate the blocking probability analytically.

First, for the M/GI/s/0 model, the blocking probability can be calculated easily from Erlang’s

formula. Second, for the H2/M/s/0 model and H2/H2/s/0 model, the blocking probability can

be calculated exactly by using continuous-time Markov chains. For s = 100, the number of states

needed for the H2/H2/s/0 model is of order 10
4, which is manageable. However, it is clear that

the variance reduction behavior will be similar for other distributions for which it is not possible

to compute the blocking probability analytically. We use the analytic results for Poisson arrivals

to help validate our results.

In this example, we let each simulation run length be 200,000 time units, which corresponds to

an expected number of arrivals equal to 200,000 λ, (2 × 107 when λ = 100). We use 400 batches
and delete an initial period of length 50 to allow the system to approach steady state.

Simulation results are displayed in Table 1. In each case we display the natural estimate B̂N (t)

and its estimated standard deviation SD B̂N (t). We also display the estimated variance ratios

V arB̂N (t)/V arB̂(t) for several alternative estimators B̂(t). In our simulation experiments we

actually considered combination and linear control estimators based on B̂S(t) as well as B̂N (t), but

as in our previous paper we found that B̂S(t) and B̂N (t) tend to be interchangeable, so we only

report results for B̂N (t).

As in SW, we find that the performance of the estimators in GI/GI/s/0 model depends on the

loading. Roughly speaking, the loading can be regarded as light, normal or heavy when α < s−2√α,
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s− 2√α ≤ α ≤ s+ 2√α, or α > s+ 2√α. A starting point is the result from our previous paper
that B̂I(t) is much more efficient than B̂N (t) in heavy loading, much less efficient in light loading,

and about equally efficient in normal loading.

Here are the conclusions we draw from Table 1: First, the efficiency of the grand combination

estimator B̂GC(t) and the combination estimator B̂C(t) in (9) are essentially the same. Thus, we

conclude that the combination estimator already includes the benefits from using controls λ and

µ−1. In every case, the combination estimator is at least as efficient as all the other estimators.

For each other estimator, there is some case in which the combination estimator is substantially

better.

As indicated earlier, the variance reduction is dramatic in heavy loading. This is due in part to

the advantage of the indirect estimator, but the combination feature also contributes significantly.

The variance reduction provided by the combination feature is also substantial in normal loading.

In normal loading the combination improves the indirect estimator more than the indirect estimator

improves the natural estimator (but much of the gain would be captured by the indirect estimator

plus a linear control). The variance reduction tends to increase as the service time gets more

variable. The effect of arrival process variability is less clear.

The linear control estimators B̂LN (t) and B̂LI(t) consistently offer improvement over the basic

estimators B̂N (t) and BI(t), respectively. In heavy loading, B̂LI(t) is nearly as good as B̂C(t),

while in light loading B̂LN (t) is nearly as good as B̂C(t). In normal loading B̂C(t) seems to be

slightly better than B̂LN (t) and B̂LI(t), with B̂LI(t) being slightly better than B̂LN (t). A key point

is that everything is not captured by the linear controls: The differences between the natural and

indirect estimators are not removed by simply using linear controls.

In Table 2 we give variance ratios for the M/M/s/0 model with µ = 1 as a function of λ and

s. The intent here is to show the impact of system size as well as loading. With one exception

(normal loading λ = 100 to 1000), large s means larger variance ratios, but the loading is clearly a

more important factor. If we hold the blocking probability fixed, then size becomes a clearer factor;

then larger size consistently yields larger variance ratios.

In order to validate our results, we performed independent replications. Table 3 displays the

sample means and sample standard deviations of key quantities for four cases in Table 1 based

on 20 independent replications or runs each of length t = 104 using 20 batches. (Thus the total

simulation time and the length of each batch is the same.) In each case, the sample mean is

the average of the 20 numbers obtained from the 20 runs, while the sample standard deviation is
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the estimated standard deviation of the quantity from a single run (not the estimated standard

deviation of the sample mean, which would be smaller). Thus, the standard deviation estimates

show the variability of the estimates from each run.

First, in these cases the exact blocking probabilities can be computed from Erlang’s blocking

formula. The exact blocking probabilities are B = 0.07570 for λ = 100 and B = 0.30124 for

λ = 140. From Table 3 we see that there is no discernible bias in the estimators B̂N (t) and

B̂C(t). The standard deviations of the estimators B̂N (t) and B̂I(t) are also consistent with the

predictions in SW, which justifies our choice of run length. Note that the standard deviation of

the blocking probability is about 1% of the estimated value, whereas the standard deviations of the

standard deviation estimates are larger (relatively); e.g., for the natural estimator they are about

15%. Similarly, the standard deviations of the estimates p̂, r̂, ρ̂ and R̂ are also larger.

The main conclusions about variance reduction can be validated by comparing the sample means

of the estimated standard deviations (of B̂N (t) and B̂C(t)) to the sample standard deviations of the

estimated means. Table 3 shows that these are close. The sample means of the estimated standard

deviation of B̂C(t) are consistently slightly less than the sample standard deviation of the estimated

mean of B̂C(t), revealing the underestimation of variance that occurs due to estimating p
∗ in the

same run. Table 3 shows that the average predicted variance reductions in the four cases were

13, 410, 33 and 1634, respectively. After squaring the ratios of the displayed standard deviations,

we see that the corresponding ratios of the sample variances of the means are 10, 367, 23 and

1067, respectively. Thus, the predicted variance reduction from the output of one run is slightly

optimistic, but clearly genuine.

In order to gain further insight into the effect of estimating the optimal weight p∗ from the same

run in which we estimate B̂N (t) and B̂I(t), we plot in Figure 1 the variance V (p) as a function of

p for 5 different replications of the M/H2/s/0 heavy-loading (λ = 140) example from Tables 1 and

3. The example shows that the estimate p̂ from any one run would yield similar predicted variance

reduction in any other run. Figure 1 is consistent with the slight underestimation of variance

observed in Table 3.

A major conclusion of our previous paper was that, unlike the blocking probabilities them-

selves, the statistical precision of the basic estimators B̂N (t) and B̂I(t) in the M/GI/s/0 model

strongly depends on the holding-time distribution beyond its mean. However, we observed a near

insensitivity to the holding-time distribution (beyond the mean) in the standard deviations of the

estimators B̂C(t) and B̂GC(t) in the M/GI/s/0 model. In Section 5 we show that the insensitivity
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is asymptotically correct as λ → ∞. From statistical analysis of the simulation results, we are
able to conclude, with very high probability, that in general full insensitivity does not hold for the

standard deviations of the estimators B̂C(t) and B̂GC(t), but it is a close approximation.

To illustrate, in Table 4 we display the sample means of four estimators based on 10 runs of

length 10,000 each for the M/GI/s/0 model with two holding-time distributions. The first holding

time distribution is Erlang (E10) with c
2
s = 0.1, while the other is H2 with c

2
s = 10.0. As before,

we consider heavy loading, normal loading and light loading; i.e., we consider s = 100, µ = 1 and

three values of λ: λ = 140, λ = 100 and λ = 80. The estimated standard deviations are quite close

for B̂C(t) and B̂GC(t), but not for the other two estimators.

4.2. Loss Networks

To show that the estimation procedures also apply to more elaborate loss networks, as in Ross

(1995), we also considered three-link triangle networks. Direct traffic is offered to each link, but if

these requests are blocked, then they can be routed on the other links if there is space. We assume

that each request uses one circuit, with alternate routed traffic requiring one circuit on both of the

other two links. Alternate routed calls hold the circuits on both links for the duration of the call.

Both circuits become free when the call is complete.

We also allow trunk reservation on each link. A trunk reservation parameter tri on link i means

that alternate routed traffic is only accepted on that link if there are at least tri free circuits on

that link. There must be sufficient free capacity on both links in order for a candidate alternate

routed call to be admitted.

We consider examples with independent Poisson call arrival processes and exponential call

holding times. For this continuous-time Markov chain model, we used uniformization to construct

an associated discrete-time Markov chain with the same steady-state probabilities; e.g., see Keilson

(1979). To simulate the full process, we would have to include i.i.d. exponential times between

transitions (real or fictitious), but since we only wanted to estimate steady-state quantities, we

directly simulated the discrete-time Markov chain. (This step itself serves to reduce variance; see

Fox and Glynn (1986).)

In the specific examples we now discuss, the three links all have capacity 100 and trunk reser-

vation parameter tr, and the holding times all have mean 1. The model is thus specified by the

three arrival rates λi and the common trunk reservation parameter tr.

We apply the estimation procedures to estimate the blocking probabilities of each class and the
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overall (total) blocking probability. The results for six cases are displayed in Table 5. These results

were obtained from single runs with 107 arrivals after a warmup period of 105 arrivals. Since the

simulation is in discrete time, the integral in (4) is replaced by a sum.

In the first two cases the arrival rate is 140 on each link, with the common trunk reservation

parameter being 5 in the first case and 0 in the second. If the trunk reservation parameter is high

enough, then the example becomes like three separate links in heavy loading. However, the first

example with tr = 5 differs noticeably from the M/M/s/0 heavy-loading cases in Tables 1–3. The

combination estimator yields significant variance reduction when tr = 5, but not as great as for

only one link.

However, there is a dramatic change when tr = 0. Evidently, the alternate routed calls make

the occupancy levels for the individual classes much more variable, so that the indirect estimator

becomes less efficient. The combination estimator does no worse than the natural estimator, but

it only provides significant improvement for the overall blocking probability. This case also shows

that the correlation ρ can be positive. (Positivity was confirmed by independent replications.)

The third case in Table 5 is a balanced network with normal loading. In this case, the trunk

reservation parameter tr = 5 is sufficiently small that the model is very different from three separate

links. Nevertheless, the combination estimator reduces variance by factors of about 4 and 13 for

the individual classes and the total network. In this case the variance reduction is primarily due

to the combination procedure (R < r2).

The remaining three cases in Table 5 are unbalanced networks. For these cases, the advantage of

the combination estimator fluctuates widely. Moreover, it is difficult to predict in advance whether

the indirect or natural estimator is better. These examples show that the combination estimator

can be good even if it just automatically selects the better of these two basic estimators. Of course,

it does this and somewhat better still.

4.3. Finite Waiting Rooms

Our final example involves the addition of a finite waiting room. The addition of a finite

waiting room clearly has negligible effect in light loading, but it can have a dramatic impact under

heavy loading. To illustrate, we first consider the M/M/s/k model with s = 100, k = 100 and

λ = 140. This is the same heavy-loading example considered in Tables 1–3, except that we have

added a waiting room of size 100. The waiting room slightly reduces the blocking probability from

0.3012 to 0.2857, but it has an enormous impact on the variance reduction. Since the number of
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busy servers remains at 100 much more frequently, the variance of the indirect estimator drops

dramatically. In several independent runs of length 104, the estimated standard deviation of the

indirect estimator was 3 × 10−6 while the estimated standard deviation of the estimated natural
estimator was 1.2× 10−3. This is a variance reduction of 1.6× 105. In this example, there was not
much for the combination estimator to add. It yielded essentially the same estimated mean and

standard deviation, and ρ̂ = −0.054. The corresponding example with hyperexponential service
times having c2s = 10 yielded a variance reduction for the indirect and combination estimators of

1.6 × 106. In this case the combination estimator itself provided slight further improvement; the
estimated correlation was ρ̂ = −0.192.
With a finite waiting room, the indirect estimator can be much better than the natural estimator

even with only a single server. To illustrate, we consider an M/M/1/k model with µ = 1.0 and

k = 100. Based on runs of length 107, the variance reductions for the indirect and combination

estimators were both 7.8 × 104 when λ = 2.0 and were 17.6 and 25.8, respectively, when λ = 1.1.

5. Heavy Loading Asymptotics

We know that the indirect estimator becomes much more efficient than the natural estimator in

heavy loading. The examples have shown that the combination estimator can contribute even more

variance reduction in heavy loading. Since r is small in heavy loading, (24) in Section 2 implies

that the additional variance reduction provided by the combination estimator is then approximately

(1 − ρ2)−1, where ρ is the correlation between the basic estimators B̂N (t) and B̂I(t). A natural
question, then, is: What is the correlation ρ?

In this section we identify the limit of ρ as λ→∞. We first show that, in the general G/G/s/0
model, the correlation between the indirect estimator and another estimator approaches −1 as
λ→∞. This other estimator is the time congestion estimator

B̂T (t) = t
−1
∫ t

0
1{N(u)=s}du . (39)

The time-congestion estimator was considered in SW, where it was found to behave similarly to

the natural and simple estimators. Since the time-congestion estimator is similar to the natural

estimator, the simple analysis in this case supports our intuition in the actual case of interest (with

B̂N (t)).

When the arrival rate becomes very large, the system is nearly full all the time. There tends to
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be only one free server for a short time after each service completion. Therefore,

B̂I(t) = 1−
n̂(t)

α
≈ 1− (s− 1)

α
− BT (t)

α
. (40)

Hence we have established our first result.

Theorem 1. In the G/G/s/0 model,

lim
λ→∞

Corr(B̂I(t), B̂T (t)) = −1 .

We now study ρ (for the natural estimator) in the G/G/s/0 model with µ = 1. We assume

that the arrival process is an ergodic stationary point process independent of the service times,

which form a stationary sequence. We let λ → ∞ by scaling the interarrival times. We assume
that the service times satisfy a functional central limit theorem (FCLT), e.g., see Billingsley (1968)

and Whitt (1980). Let ⇒ denote convergence in distribution and let bxc be the greatest integer
less than or equal to x. Then the assumed FCLT is

n−1/2





bntc
∑

i=1

Si − nt


⇒
√

c2sW (t) as n→∞ , (41)

where {W (t) : t ≥ 0} is a standard (drift 0, variance 1) Brownian motion or Wiener process. This
condition is satisfied in the GI case provided that the service-time cdf has finite variance, in which

case c2s is the SCV.

As λ → ∞, the system alternates between s servers busy and (s− 1) servers busy. After each
service completion, there is a brief idle period until the next arrival. As λ → ∞, this idle period
tends to have the stationary-excess distribution of the interarrival-time distribution. To obtain

a meaningful statement, we should consider the system as λ → ∞ with time rescaled so that
the arrival rate is 1. Then, if Fa is the interarrival-time cdf with mean 1, then the idle time cdf

approaches

Fae(t) =

∫ t

0
[1− Fa(u)]du , t ≥ 0 , (42)

which has mean m2/2, second moment m3/3 and, thus, SCV

c2ae =
4m3
3m22

− 1 , (43)

where mk is the k
th moment of Fa, with m1 = 1. This occurs as λ → ∞, because there are then

many arrivals between each service completion. This makes the epoch of a service completion fall

at an arbitrary time in the stationary point process.
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We also assume that successive idle times become i.i.d. as λ→∞, which will occur if the arrival
process is only weakly dependent. In the following result, we assume the technical regularity

condition of uniform integrability; see p. 32 of Billingsley (1968). The proof and some other

asymptotic results of interest appear in an appendix (available on line).

Theorem 2. In the G/G/s/0 model, assuming uniform integrability of B̂2N (t) and B̂
2
I (t),

lim
t→∞

lim
λ→∞

Corr(B̂N (t), B̂I(t)) = −
√

c2s
c2s + c

2
ae

. (44)

It is interesting to see how the limit in (44) behaves in special cases. For an M arrival process

c2ae = c
2
a = 1; the minimum value of c

2
ae is 1/3 for a D arrival process. For the M/G/s/0 examples

in Table 1, c2s = 1 and c
2
s = 10, so that ρ→ −1/

√
2 ≈ −0.707 and −

√

10/11 ≈ −0.953, respectively.
These limiting formulas agree remarkably well with the estimates ρ̂ = −0.710 and ρ̂ = −0.937 in
the heavy-loading cases of Table 1. Formula (44) seems to provide useful rough approximations

even outside the heavy-loading regime, as shown by the normal and light loading cases in Table 1.

It is significant that Theorem 2 is consistent with the approximate insensitivity we observed

in Section 4.1 for the combination estimator in the M/G/s/0 model. Combining (17) of SW with

(44) above, we obtain

lim
λ→∞

V arB̂C(t;G/G/s/0)

V arB̂C(t;M/M/s/0)
≈ (1− ρ

2
G)

(1− ρ2M )
(c2a + c

2
s)

2
≈
(

c2ae
c2ae + c

2
s

)

(c2a + c
2
s) .

where µ and λ are fixed. In the case of M arrivals, c2ae = c
2
a = 1, so that the ratio becomes 1,

showing asymptotic insensitivity in the M/G/s/0 model.

6. The Importance of Knowing λ and µ

The estimators B̂I(t), B̂C(t) and B̂GC(t) all take advantage of our knowledge of λ and µ. To

apply these estimators to real-time system measurements instead of simulations, we would like to

achieve similar variance reduction using estimates of λ and µ, (i.e., via the modified indirect esti-

mator B̂M (t) in (14) and the associated modified combination estimator B̂MC(t)). Unfortunately,

however, the good performance of the indirect and combination estimators evidently depends on

knowing λ and µ. This is essentially the same conclusion reached in Glynn and Whitt (1989) about

indirect estimation via L = λW .

It is important to note that some attempts to achieve effective variance reduction when we do

not know λ and µ are mere illusions. In order to estimate the final variances of our estimators,

we consistently work with batch means. Thus the modified indirect estimator B̂M (t) in (14) is
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obtained by taking estimates of n̂i(t) and α̂i(t) within each batch and then forming the average

of the ratios n−1
∑n
i=1(n̂i(t)/α̂i(t)). Instead, we could determine the overall average α̂(t) for the

entire run and use that in each batch with the batch means of n̂i(t), i.e., n
−1∑n

i=1 n̂i(t)/α̂(t). This

alternative approach yields spectacular improvement in the direct sample estimates of the estimator

variance in heavy loading, but the observed gain is not genuine. The actual estimates produced

by this new version of the modified estimator B̂M (t) turn out to be very similar to the estimates

from the previous modified estimator. The putative decrease in sample variance occurs because we

have ignored the strong positive correlation between batches caused by using the common factor

α̂(t) in each batch. The lack of variance reduction is confirmed when we estimate the variance by

performing independent replications.

To illustrate, we give an example. Consider the M/M/s/0 model with λ = 140, s = 100 and

µ = 1, as in Tables 1–3. Since we are in heavy loading, we know that B̂I(t) will have lower variance

than B̂N (t), and we would like to achieve this gain with B̂M (t). In a run of length 10,000, we obtain

estimates B̂N (t) = 0.3020, SD(B̂N (t)) = 0.000993, while SD(B̂I(t)) = 0.000073. The two modified

estimators yielded estimates 0.301992 and 0.302004, and sample standard deviations 0.000994 and

0.000073. So at first glance, it looks as if we have succeeded with the modified estimator using the

α̂(t) for the entire run. However, multiple independent replications show that the real standard

deviation for both modified estimators is actually about SD(B̂N (t)) – just as is the case for B̂M (t).

The situation is different for the natural estimator B̂N (t) in (6). If we know λ, then we are able

to use the simple estimator B̂S(t) in (7) instead of the natural estimator. However, we have found

that the role of known λ and µ is very different in these cases. On the one hand, in our previous

paper we found that the estimators B̂S(t) and B̂N (t) are almost identical (both in actual value

and in variance), so that they can be used interchangeably with negligible difference. On the other

hand, B̂I(t) and B̂M (t) turn out to be very different, so that B̂M (t) fails to capture the advantage

of B̂I(t) in heavy loading. Similarly, B̂MC(t) fails to capture the advantages of B̂C(t).

There is a basis for understanding why these estimators perform as they do in the theory of

indirect estimation in Sections 1 and 8 of Glynn and Whitt (1989). There, generic estimators that

do not use known parameters are called direct estimators, while the corresponding ones that do are

called indirect estimators. The relation between the efficiencies of these estimators is characterized

in Theorem 9 of Glynn and Whitt (1989). In an appendix we apply this theorem to explain the

consequences of estimating λ and µ in these two settings.
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7. Correlation Inequalities

In Section 5 we identified the limiting correlation between B̂N (t) and B̂I(t) as the load increases.

In this section we establish qualitative results for all loadings. We provide theoretical evidence

showing that the estimators B̂N (t), n̂(t),−B̂I(t) and λ̂(t) are indeed all positively correlated in a
large class of loss models (for any loading), which is consistent with intuition. (Unfortunately we

are unable to treat µ̂−1(t).) In order to avoid having to treat ratios of random variables, we consider

the estimator B̂S(t) = L(t)/λt in (7) instead of B̂N (t). As indicated earlier, B̂S(t) and B̂N (t) are

very similar.

The specific class of models we consider here we denote by DFR/IFR/s/0; it is the special case

of the general GI/GI/s/0 model in which the interarrival-time distribution is DFR (has decreasing

failure rate) and the service-time distribution is IFR (has increasing failure rate). If F (t) is the

cumulative distribution function with density f(t), then the failure rate is

r(t) = f(t)/(1− F (t)) . (45)

The DFR (IFR) property means that r(t) is a decreasing (increasing) function; see Barlow and

Proschan (1975). The DFR class includes the hyperexponential (Hk, mixture of k exponentials)

distribution, while the IFR class includes the Erlang (Ek, convolution of k identical exponentials)

distribution. Both include the exponential distribution, so that the M/M/s/0 (Erlang) model is

covered. However, the examples with H2 service times in Section 3 are not included.

Here is our main correlation inequality result.

Theorem 3. In the DFR/IFR/s/0 model, the estimators B̂S(t), n̂(t), λ̂(t) and −B̂I(t) are all
positively correlated.

We prove Theorem 3 by representing the DFR/IFR/s/0 model as a limit of discrete-time models,

and by establishing a related result for discrete-time models. Theorem 1 of Whitt (1980) can serve

as the connecting continuity theorem. Related continuity results appear in Kalashnikov and Rachev

(1990). The proof of Theorem 3 appears in the appendix.

8. Summary

In this paper we have proposed a new estimator for loss models, a combination of the natural

and indirect estimators in (6) and (8). In this combination the simple estimator in (7) can be sub-

stituted for the natural estimator, yielding very similar performance. The combination is a convex
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combination as in (9) in which the optimal weight p∗ depends on the variances and covariance of

the two component estimators, as described in (19). We have estimated p∗ using batch means from

one run, as indicated in (32). We showed that using the same run causes minor underestimation of

variances (see Table 3). This underestimation could be avoided, if deemed important, by estimating

p∗ in a separate pilot run.

In our previous paper we showed that the indirect estimator is much more (less) efficient than the

natural and simple estimators in heavy (light) loading. Here we observed that this same property

holds, with even more difference in heavy loading, when there is a finite waiting room.

In Section 2 we analyzed the benefit of a combination estimator in general, showing that the

variance reduction factor is about (1−ρ2)−1 when the two variances are very unequal. Examples in
Section 4 and theoretical results in Section 5 and the appendix show that ρ tends to be quite strongly

negative, especially under heavy loading, so that the combination estimator provides significant

variance reduction over the indirect estimator. In Section 5 we proved for the G/G/s/0 model that

the correlation approaches −
√

c2s/(c
2
s + c

2
ae) as the arrival rate increases, where c

2
s and c

2
ae are given

in (41) and (43).

Even in normal loading, the combination estimator can yield variance reduction because the

two component estimators tend to be negatively correlated. In Section 7 we established correlation

inequalities for a large class of models to provide theoretical support for this conclusion. These

analytical results do not nearly apply to all models for which the estimation procedure can be

applied, but they serve as useful theoretical reference points. The examples in Section 4 show that

the correlation is usually negative. (The balanced heavily loaded network without trunk reservation

in Section 4.2 is a counterexample to a more general result.)

Finally, in Section 6 we showed that the variance reduction achieved by the indirect and com-

bination estimators depends upon knowing the parameters λ and µ. Thus the variance reduction

technique tends not to be directly applicable to system measurements in which λ and µ need to be

estimated. Overall, the paper continues the longstanding tradition in the simulation literature of

showing that, with some thought, simulations can be conducted more efficiently and effectively.
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heavy loading: λ = 140

the c2a 1 1 10 10
cases c2s 1 10 1 10

estimated BN (t) 0.3010 0.3012 0.3468 0.3404
SD BN (t) 0.00018 0.00052 0.00031 0.00053

variance ratios
LN 147 41 24.1 30.7
I 114 209 7.7 17.8
LI 230 1606 23.3 100.8
C 253 1885 23.3 100.8
GC 253 1885 24.1 104.7

correlation ρ −0.710 −0.937 −0.681 −0.847
normal loading: λ = 100

the c2a 1 1 10 10
cases c2s 1 10 1 10

estimated BN (t) 0.0744 0.0751 0.1609 0.1411
SD BN (t) 0.00021 0.00043 0.00037 0.00056

variance ratios
LN 11.5 15.1 6.3 14.7
I 2.5 2.6 1.3 1.9
LI 11.5 21.6 6.5 17.7
C 12.3 28.4 7.1 20.4
GC 12.3 28.4 7.2 21.4

correlation ρ −0.727 −0.878 −0.682 −0.863
light loading: λ = 80

the c2a 1 1 10 10
cases c2s 1 10 1 10

estimated BN (t) 0.00394 0.00403 0.0587 0.0402
SD BN (t) 0.00046 0.000091 0.00025 0.00037

variance ratios
LN 1.39 2.2 2.16 3.9
I 0.021 0.015 0.020 0.22
LI 1.09 0.328 1.99 0.26
C 1.39 2.3 2.12 5.7
GC 1.39 2.3 2.18 6.0

correlation ρ −0.408 −0.695 −0.482 −0.807

Table 1. Simulation estimates for the GI/GI/s/0 model with s = 100 and µ = 1 using exponential

(SCV = 1) and hyperexponential (SCV = 10) distributions, based on simulation runs for t =

2× 105 (which corresponds to an expected number of arrivals equal to 2λ× 105) using 400 batches.



heavy loading

the λ = 20 λ = 140 λ = 1200
case s = 10 s = 100 s = 1000

B̂N (t) .5375 .3010 .1719

SD B̂N (t) .000424 .00106 .00118

variance ratios
LN 16.0 9 4
I 19.9 183 4
LI 45.3 412 1539
C 48.3 484 2049
GC 48.3 504 2049

normal loading

the λ = 10 λ = 100 λ = 1000
case s = 10 s = 100 s = 1000

B̂N (T ) .2144 .0751 .02338

SD B̂N (t) .000636 .00186 .000984

variance ratios
LN 5.3 19.9 10.2
I 2.5 3.3 3.0
LI 6.6 23.3 13.6
C 7.6 27.1 17.1
GC 7.6 32.9 18.1

light loading

the λ = 5 λ = 80 λ = 930
case s = 10 s = 100 s = 1000

B̂N (t) .01817 .00394 .001276

SD B̂N (t) .000226 .000221 .000251

variance ratios
LN 1.13 1.9 1.7
I 0.016 0.035 0.027
LI 0.93 0.28 0.14
C 1.13 1.9 2.0
GC 1.13 2.1 2.0

Table 2. Variance ratios for the M/M/s/0 model with µ = 1 as a function of λ and s. The

simulation run length is 106/s with 20 batches in each case (corresponding to an expected number

of arrivals equal to (λ/s)106).



M service H2 service
λ = 100 λ = 140 λ = 100 λ = 140

B̂N (t) mean 0.07588 0.30110 0.07563 0.30088
SD 0.00085 0.00115 0.00189 0.00196

B̂C(t) mean 0.07572 0.30126 0.07568 0.30125
SD 0.00027 0.000061 0.00039 0.000060

SD B̂N (t) mean 0.00086 0.00106 0.00199 0.00208
SD 0.00012 0.00017 0.00031 0.00031

SD B̂C(t) mean 0.00023 0.000057 0.00036 0.000054
SD 0.00007 0.000008 0.000053 0.000006

p̂ mean 0.363 0.0624 0.377 0.0645
SD 0.039 0.0090 0.025 0.0049

r̂ mean 0.626 0.088 0.628 0.0743
SD 0.095 0.0128 0.063 0.0053

ρ̂ mean −0.697 −0.728 −0.876 −0.917
SD 0.108 0.120 0.053 0.041

R̂ mean 0.227 0.404 0.299 0.362
SD 0.078 0.153 0.068 0.082

Var. Red mean 13.2 410.0 33.0 1634.0
SD 5.89 134.0 14.0 904.0

min 5.6 120.0 14.8 521.0
max 20.0 618.0 69.6 4896.0

Table 3. Sample means and standard deviations of estimates for theM/GI/s/0 model with s = 100

and µ = 1 based on 20 independent replications of runs each with 106 arrivals and 20 batches.



holding-time variability
loading estimator c2s = 0.1 c2s = 10.0

N .000583 .002009
heavy I .000054 .000140
λ = 140 C .000040 .000048

GC .000040 .000047

N .000691 .001929
normal I .000459 .001225
λ = 100 C .000289 .000330

GC .000228 .000321

N .000190 .000364
light I .001030 .003340
λ = 80 C .000165 .000230

GC .000161 .000223

Table 4. Average standard deviation estimates for four estimators in the M/GI/s/0 model for two

different holding-time distributions with s = 100, µ = 1 and three values of λ : λ = 140, λ = 100

and λ = 80, based on 10 independent replications, each of length 10,000 time units.



trk. res. 5 0 5 5 5 10

1 140.0 140.0 100 130.0 200.0 140.0
λi 2 140.0 140.0 100 90.0 40.0 80.0
3 140.0 140.0 100 110.0 40.0 120.0

1 0.3019 0.3893 0.0764 0.2308 0.2553 0.2959

B̂N (t) 2 0.3022 0.3892 0.0758 0.0420 0.00145 0.00475
3 0.3029 0.3892 0.0767 0.1509 0.00146 0.1998

total 0.3023 0.3893 0.0763 0.1527 0.1827 0.1935

1 0.00050 0.00047 0.00042 0.00044 0.00049 0.00038

SD B̂N (t) 2 0.00043 0.00036 0.00043 0.00030 0.000038 0.00016
3 0.00053 0.00041 0.00044 0.00043 0.000040 0.00062

total 0.00025 0.00028 0.00030 0.00028 0.00036 0.00029

1 0.185 0.861 0.947 0.526 0.237 0.284
r 2 0.195 1.540 0.895 1.606 20.38 5.464
3 0.161 0.924 0.926 0.700 26.26 0.266

total 0.130 0.315 0.543 0.490 0.288 0.727

1 −0.276 0.458 −0.530 −0.205 0.373 −0.505
ρ 2 −0.531 0.588 −0.493 −0.551 0.064 −0.466

3 −0.407 0.316 −0.554 −0.373 −0.221 −0.501
total −0.644 0.536 −0.695 −0.442 −0.203 −0.035
1 0.813 0.829 0.248 0.641 0.979 0.545

R 2 0.577 0.419 0.282 0.130 0.0024 0.022
3 0.721 0.709 0.241 0.428 0.0013 0.560

total 0.493 0.936 0.252 0.481 0.799 0.632

1 0.075 0.364 0.482 0.258 −0.037 0.164
p∗ 2 0.113 0.939 0.463 0.648 1.0007 0.901

3 0.079 0.442 0.475 0.373 0.9903 0.153
total 0.085 0.092 0.077 0.273 0.118 0.351

overall 1 36.0 1.6 4.5 5.6 18.2 22.7
variance 2 45.6 1.0 4.4 3.0 1.0 1.5
reduction 3 53.6 1.6 4.8 4.8 1.1 25.2
factor total 120.0 10.8 13.5 8.7 15.1 3.0

Table 5. Simulation results for six examples of three-link triangle networks with alternate routing.

The capacity of each link is 100 and all mean service times are 1. All runs have 107 arrivals with

400 batches after a warmup of 105 arrivals.



Figure 1. The variance V (p) is a function of p in five independent replications of the M/H2/s/0

example with λ = 140, µ = 1 and s = 100. Each replication was of length 104 (about 1.4 × 106

arrivals).
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Appendix

1. Summary

In this appendix we present additional supporting material. We start in Section 2 by discussing

additional experimental results demonstrating the wide applicability of the variance reduction pro-

cedure. Next in Section 3 we present additional heavy-loading asymptotic results, including a proof

of Theorem 2. In Section 4 we show how Theorem 9 of Glynn and Whitt (1989) can help explain

the importance of knowing the parameters λ and µ (instead of using their estimates). In Section 5

we discuss additional insights that can be gained by considering the special case of deterministic

service times. Finally, in Section 6 we prove the correlation inequalities in Theorem 3.

2. Experiments with Dependent Interarrival and Service Times

To show that the estimation procedure also applies to more complex models, we also considered

the G/G/s/0 model in which the service times and the arrival process are allowed to be dependent.

Specifically, we let the service time of each customer be exactly (λ/µ) times the last interarrival

time. This gives the service time the correct mean µ−1, but makes these two variables strongly

dependent (correlation 1).

No extra work was required to implement the various estimators for these modified models.

Moreover, essentially the same variance reduction behavior was observed in these modified models

as was observed for the standard models.

Intuitively, having service times positively correlated with interarrival times should reduce con-

gestion, but our simulation results showed that the blocking probabilities in the modifiedM/M/s/0

and H2/H2/s/0 systems did not differ too much from the blocking probabilities in the standard

M/M/s/0 and H2/H2/s/0 systems. For example, for the modified M/M/s/0 model with s = 2,

µ = 1 and λ = 2, the estimated blocking probability was 0.380 compared to 0.400 in the standard

M/M/s/0 model; for s = 100, µ = 1 and λ = 140, the estimated blocking probability was 0.3008

compared to 0.3012. The decrease was statistically significant, but not large.

3. Heavy Loading Asymptotics

In this section we prove Theorem 2. To do so, we combine three new asymptotic results. Let

{Cs(t) : t ≥ 0} be the counting process of successive busy periods. As λ→∞, {Cs(t) : t ≥ 0} will
be the superposition of s stationary point processes generated by the service times at each server.

By (41) and Section 7 of Whitt (1980) (recall µ = 1),

n−1/2(Cs(nt)− snt)⇒
√

sc2sW (t) as n→∞ . (46)
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We first consider the natural estimator.

Theorem 4. In the G/G/s/0 model with µ = 1,

lim
λ→∞

λ(1− B̂N (t)) = t−1Cs(t) w.p.1. (47)

Proof. As λ→∞, there is one admitted arrival in each busy cycle, and the busy cycles approach
the busy periods. Thus,

λ(1 − B̂N (t)) ≈
λCs(t)

A(t)
→ Cs(t)

t
as λ→∞ w.p.1

by the ergodic theorem for the arrival process.
�

We now consider the indirect estimator.

Theorem 5. In the G/G/s/0 model with µ = 1,

lim
λ→∞

λ2(1− B̂I(t))− λs = t−1Y (t) ≡ −t−1
Cs(t)
∑

i=1

Xi w.p.1 , (48)

where {Xi} is an i.i.d. sequence independent of {Cs(t) : t ≥ 0} with Xi distributed as Fae in (42).
Proof. First note that

λ(1− B̂I(t)) = n̂(t) .

Then note that for large λ

n̂(t) ≈ s− t−1
Ds(t)
∑

i=1

Zi

where Zi is the length of the i
th idle period and Ds(t) is the counting process of the busy cycles.

Hence, when we rescale by multiplying by λ,

λ2(1− B̂I(t))− λs ≈ −t−1
Ds(t)
∑

i=1

λZi

As λ → ∞, the variables λZi become distributed the same as the variables Xi, {λZi} becomes
independent of Ds(t) and Ds(t)→ Cs(t).

�

We now establish a joint CLT for (Cs(t), Y (t)) where Y (t) is the limit in (48).

Theorem 6. In the G/G/s/0 model with µ = 1, if λ→∞ and then t→∞, then

t−1/2(Cs(t)− st , Y (t)− st)⇒ (
√

sc2sN1(0, 1) , −
√

sc2sN1(0, 1) +
√

sc2aeN2(0, 1)) (49)

for c2s in (41) and c
2
ae in (43), where N1(0, 1) and N2(0, 1) are independent standard (mean 0,

variance 1) normal random variables.

Proof. Our starting point is the joint FCLT

n−1/2(

bntc
∑

i=1

Xi − nt , Cs(nt)− snt)⇒ (
√

c2aeW1(t),
√

sc2sW2(t)) as n→∞

2



in the function space D[0,∞), where D[0,∞) is the space of right-continuous real-valued functions
with left limits everywhere in (0,∞), endowed with the Skorohod J1 topology (see Whitt (1980))
andW1(t) andW2(t) are independent standard Brownian motions. This initial FCLT holds because

of the independence which holds as λ→∞. Next we apply the continuous mapping theorem using
a random time change, as in Section 5 of Whitt (1980) and the projection at t = 1 to obtain (49);

i.e., we consider the process n−1/2(
∑bntc
i=1 Xi−nt) evaluated at the random time Cs(nt)/n and then

add the process n−1/2(Cs(nt)− snt) to obtain

n−1/2(
∑Cs(nt)
i=1 Xi − snt , Cs(nt)− snt)

⇒ (
√

c2aeW1(t) +
√

sc2sW2(t) ,
√

sc2sW2(t)) as n→∞ .

Since Y (t) = −∑Cs(t)i=1 , we have the desired result.
�

The limit in (49) leads to the approximations

Cov(Cs(t), Y (t)) ≈ −stc2s (50)

and

Corr(Cs(t), Y (t)) ≈ −
√

c2s
c2s + c

2
ae

(51)

assuming that t is suitably large. Moreover, Theorems 4 and 5 lead to the approximation

ρ ≈ Corr(B̂N(t), B̂I(t)) ≈ Corr(Cs(t), Y (t)) . (52)

Combining Theorems 4–6 and (50)–(52), and employing uniform integrability arguments (which

we omit), see p. 32 of Billingsley (1968), we obtain Theorem 2.

We can also use Theorems 2 and 4–6 to obtain insights about the performance of the linear

control estimators in heavy loading. Note that the limit Cs(t)/t in Theorem 4 is essentially the

estimator µ̂(t). Thus, as λ → ∞, Corr(B̂N(t), µ̂(t)) → 1 and B̂LN using the control µ becomes a
significant improvement over B̂N . On the other hand, Corr(B̂N(t), λ̂(t)) → 0, so that λ is not an
effective control for large λ. Since Corr(B̂N(t), µ̂(t)) → 1 as λ → ∞, we see that B̂LI using µ is
asymptotically equivalent to B̂C(t) as λ→∞, i.e., Corr(B̂I(t), µ̂(t)) has the same limit as in (44),
which is consistent with the numerical results in Table 1.

We conclude this section by noting that the uniformization approach for treating Markovian

networks in Section 4.3 makes ρ much more strong negatively. With the discrete time framework,

the random variablesXi in Y (t) in (48) become replaced with constants. This enables us to conclude

the following.
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Theorem 7. In theM/M/s/0 model, if the discrete-time process is simulated using uniformization,

then

lim
t→∞

lim
λ→∞

Corr(B̂N(t), B̂I(t)) = −1 .

To illustrate, we used the network simulation program with one link to simulate the M/M/s/0

model with s = 100, µ = 1 and 2 × 107 arrivals with 2000 batches. The estimates of ρ were
−0.690, −0.804, −0.874 and −0.967 for arrival rates 140, 500, 1000 and 5000, respectively. For the
M/M/s/0 with µ = 1, s = 2 and λ = 100, we obtained ρ̂ ≈ 0.9993.
4. The Importance of Knowing λ and µ

We now show how to apply Theorem 9 of Glynn and Whitt (1989) to explain the importance

of knowing λ and µ (instead of using estimates) in order to achieve the variance reduction with the

indirect estimator B̂I(t) and the combination estimator B̂C(t).

For completeness, we restate Theorem 9 of Glynn and Whitt(1989) here, with minor modifica-

tion in notation for our setting. The indirect estimation framework involves estimators (x̂t, ŷt) of

(x, y) such that

t1/2(x̂t − x, ŷt − y)⇒ N(0, C) ,

where x and y are vectors, and N(0, C) is a random vector with a multivariate normal distribution

having zero means and covariance matrix C. Let x and y be k and l dimensional, respectively. Let

C11, C12, C21 and C22 be the k× k, k× l, l× k and l× l submatrices of C associated with x and y.
Our goal is to estimate f(x, y) for a smooth real-valued function f , i.e., with gradient

5xf(x, y) =
(

∂f

∂x1
(x, y), . . . ,

∂f

∂xk
(x, y)

)t

and

5yf(x, y) =
(

∂f

∂y1
(x, y), . . . ,

∂f

∂yl
(x, y)

)t

.

The direct estimator is ẑDt ≡ f(x̂t, ŷt) and the indirect estimator is ẑIt ≡ f(x, ŷt). Let z ≡ f(x, y).
Let op(t

−1/2) refer to a term which converges to 0 in probability after dividing by t−1/2. Here is

the result:

Theorem 8. (Glynn and Whitt (1989)) Under the assumptions above,

(a) t1/2(ẑDt − z)⇒ N(0, σ̂2D) as t→∞,

(b) t1/2(ẑIt − z)⇒ N(0, σ̂2I ) as t→∞,

(c) ẑDt = ẑ
I
t + (x̂t − x)5x f(x, y) + op(t−1/2) as t→∞,
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where

σ̂2I = 5yf(x, y)tC22 5y f(x, y)

and

σ̂2D = 5xf(x, y)tC11 5x f(x, y) +5yf(x, y)tC21 5x f(x, y)

+5x f(x, y)tC12 5y f(x, y) +5yf(x, y)tC22 5y f(x, y) .

From Theorem 8 we see that the asymptotic efficiency (asymptotic variance) of the estimators

ẑDt and ẑ
I
t depends on the gradient5f(x, y) and the covariance matrix C. We now apply Theorem 8

to our estimators.

First, we relate the natural and simple estimators. The natural estimator B̂N (t) is the ratio

of the two estimators L(t)/t and λ̂(t). Therefore, the connecting function is f(x, y) = y/x where

x = λ and y = λB. The associated gradient of f is

5f(x, y) = (−y/x2, 1/x) = (−B/λ, 1/λ) . (53)

Theorem 8 (c) implies that

B̂N (t) = B̂S(t)−Bλ−1(λ̂(t)− λ) + op(t−1/2) . (54)

By assumption, t1/2(λ̂(t) − λ) ≈ N(0, C11), which is equal in distribution to
√
C11N(0, 1). When

A(t) is a Poisson process, C11 = λ. Using this as an approximation, we have

B̂N (t)− B̂S(t) ≈
−B√
λt
N(0, 1) , (55)

which tends to be small compared to B when λt is large. For instance, in the examples in Table 1

we had λt ≈ 106, so that 1/
√
λt = 10−3 there. Hence, we anticipate that B̂N (t) ≈ B̂S(t) when λ

is large. We can also reach this conclusion by focusing on the variances, using Theorem 8(a) and

(b), but this essentially repeats what was done in Section 7 of SW, so we stop.

Now we consider indirect estimation in the context of the indirect estimator B̂I(t). Since

B = 1−n/α for α = λ/µ, the connecting function is f(x1, x2, y) = 1−(y/x1x2) for x1 = λ, x2 = µ−1

and y = n. The gradient is

5f(x1, x2, y) =
(

y

x21x2
,
y

x1x
2
2

,
−1
x1x2

)

=

(

n

λ2µ−1
,
n

λµ−2
,
−1
λµ−1

)

. (56)

Theorem 8 (a) and (b) imply that

V arB̂I(t) =
1

α2
V ar(n̂(t)) (57)
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and

V arB̂M (t) − V arB̂I(t) =
n2

λ2α2
V ar(λ̂(t)) +

n2

α2µ−2
V ar(µ̂−1(t))

+
2n2

α3
Cov(λ̂(t), µ̂−1(t))− 2n

λα2
Cov(λ̂(t), n̂(t))− 2n

µ−1α2
Cov(µ̂−1(t), n̂(t)) . (58)

Assuming that the arrival process and holding times are mutually independent, we expect the

covariance term Cov(λ̂(t), µ̂−1(t)) in (58) to be negligible. Assuming that µ = 1 and α ≈ n, we
see that the prefactors of all terms not involving µ̂−1(t) are about the same size, namely, 1/α2.

However, the prefactors of terms involving µ̂−1(t) are larger, showing the potential for the service

times to have a greater influence.

The case of primary interest, yielding the big advantage for B̂I(t) and B̂C(t), is heavy loading.

In heavy loading we will have n̂(t) ≈ s and V ar(n̂(t)) much reduced compared to V ar(λ̂(t))
and V ar(µ̂−1(t)). Similarly, covariance terms involving n̂(t) should be negligible. Thus, we can

apply (58) to deduce that V arB̂I(t) should be much smaller than V arB̂M (t), as is borne out by

experiments.

5. Deterministic Service Times

We can obtain additional insight into the variance reduction by considering the special case

of the G/D/s/0 model, which has deterministic service times. Without loss of generality, let the

service times all be of length 1. In general, we have the basic conservation law

N(t) = N(0) +A(t)−D(t)− L(t) , (59)

where D(t) records the number of departures in [0, t], i.e., the number of admitted arrivals that

have completed service. For simplicity, assume that N(0) = 0. Then, since we have deterministic

service times,

D(t) = A(t− 1)− L(t− 1) . (60)

Combining (59) and (60), we obtain

N(t) = [A(t)−A(t− 1)]− [L(t)− L(t− 1)] (61)

and

n̂(t) ≡ 1
t

∫ t

0
N(u)du =

1

t

∫ t

t−1
[A(u) − L(u)]du . (62)

Since A(t) and L(t) increase as t increases, (62) implies that

n̂(t) ≈ A(t)
t
− L(t)
t
. (63)
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We first apply (63) to analyze the modified estimator. In our context, assuming (63),

B̂M (t) = 1−
tn̂(t)

A(t)
=
L(t)

A(t)
= B̂N (t) , (64)

so that we can see why B̂M (t) tends to have approximately the same variance as B̂N (t) in general.

In the case of deterministic service times, equation (58) also simplifies because µ̂−1(t) is essen-

tially constant. Equation (58) becomes

V arB̂M (t) = V arB̂I(t) +
n2

λ4
V ar(λ̂(t))− 2n

λ3
Cov(λ̂(t) , n̂(t)) =

1

λ2
V ar

(

nλ̂(t)

λ
− n̂(t)

)

. (65)

If in addition λ = n, then (63) and (65) imply that

V arB̂M (t) ≈ λ−2V ar
L(t)

t
≈ V arB̂S(t) , (66)

which further connects B̂S(t), B̂N (t) and B̂M (t).

From (63), we can also characterize the variance of the simple estimator in heavy loading.

Assuming that n̂(t) ≈ n,
B̂S(t) =

L(t)

λt
≈ A(t)
λt
− n

so that

V arB̂S(t) =
V arλ̂(t)

λ2
.

If {A(t) : t ≥ 0} is a Poisson process, then V arB̂S(t) ≈ t/λ. In contrast,

V arB̂I(t) =
V ar n̂(t)

λ2
.

Since λ̂(t) will be more variable than n̂(t) in heavy loading, we see the advantage of the indirect

estimator.

6. Correlation Inequalities

In this section we prove Theorem 3 in Section 7. In particular, we establish the result by

considering discrete-time loss models and invoking continuity theorems.

We now consider the discrete-time loss model. As before, there are s servers with no extra

waiting room. We let arrivals occur before services in each period, so that blocking is determined

before processing any service times. (In a limiting continuous-time model, usually two events never

occur at the same time.)

Let ak be the potential number of arrivals in period k. (This could be only 1 or 0, but we allow

other possibilities.) Let ckj be the potential service completion indicator variable for server j in
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period k; i.e., ckj = 1 if the j
th customer has a potential service completion and ckj = 0 otherwise;

if server j is busy and if ckj = 1, then there is a service completion. (Each server serves at most one

customer in each period. We allow ckj = 1 when the server is idle; then there is no actual service

completion.)

Let xkj be the j
th server occupancy indicator variable for period k; i.e., xkj = 1 if the j

th server

is busy after both arrivals and service completions in period k, and xkj = 0 otherwise. Let ykj be

the jth server pre-service occupancy indicator variable for period k; i.e., ykj = 1 if the j
th server

is busy after the arrivals but before the service completions in period k. (Our approach allows

heterogeneous servers.)

We can describe the evolution of the system recursively through the equations

xkj = 1 if ykj = 1 and ckj = 0 , (67)

otherwise xkj = 0; and

ykj = 1 if xk−1,j = 1 or if xk−1,j = 0 and j −
∑j−1
i=1 xk−1,i < ak , (68)

otherwise ykj = 0.

Let nk be the number of busy servers and let bk be the number of blocked arrivals in period k.

These are defined by

nk =
s
∑

j=1

xkj , k ≥ 0 , (69)

and

bk = [ak + nk−1 − s]+, k ≥ 1 , (70)

where [x]+ = max{x, 0}.
We start our treatment of the discrete-time model with the following elementary monotonicity

result. See Berger and Whitt (1992) and references there for previous related work.

Theorem 9. For K ≥ 1, the variables xKj, yKj, nK and bK are nondecreasing functions of the
vector IK ≡ (x0j , ak,−ckj , 1 ≤ j ≤ s, 1 ≤ k ≤ K).
In the most elementary setting, which includes the discrete-time analog of theM/M/s/0 model

as a special case, we can regard the sequence IK ≡ {x0j , ak,−ckj, 1 ≤ j ≤ s, 1 ≤ k ≤ K} as being
composed of mutually independent random variables specified exogeneously. More generally, these

variables will be dependent.

Recall that a collection of random variables {Xi : i ∈ I} is associated if the covariances satisfy

Cov(f({Xi : i ∈ I}), g({Xi : i ∈ I})) ≥ 0 (71)
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for all nondecreasing real-valued functions f and g for which the covariance is well defined; e.g., see

p. 29 of Barlow and Proschan (1975), p. 224 of Baccelli and Bremáud (1994) or p. 230 of Glasserman

and Yao (1994). The following result is an immediate consequence of basic properties of associated

random variables. It closely parallels Theorem 8 of Glynn and Whitt (1989).

Theorem 10. If IK is an associated set of random variables, then so is {IK , xkj , ykj(1 ≤ j ≤
s), nk, bk, 1 ≤ k ≤ K}.
The obvious sufficient condition for the condition of Theorem 10 is for the random variables in

IK to be mutually independent. This covers the discrete-time analog of the M/M/s/0 model.

We now define the discrete-time statistical estimators. Let

b̂K = K−1
K
∑

k=1

bk (72)

n̂K = K−1
K
∑

k=1

nk (73)

âK = K−1
K
∑

k=1

ak (74)

Corollary. Under the condition of Theorem 10, b̂K , n̂K and âK are associated.

The corollary implies that λ̂(t), B̂S(t) and −B̂I(t) in the M/M/s/0 model are associated and
thus are positively correlated. The M/M/s/0 result requires representing the M/M/s/0 models as

a limit of a sequence of the discrete-time models.

We now want to treat models in which the variables in IK are not mutually independent.

It is natural to define the arrival variables ak exogeneously. A natural sufficient condition for

{a1, . . . , ak} to be associated is for the variables ak to be conditionally increasing in sequence, i.e.,
for E[f(ak)|a1, . . . , ak−1] to be nondecreasing in (a1, . . . , ak−1) for all nondecreasing f and all k,
2 ≤ k ≤ K; see Theorem 4.7 on p. 146 of Barlow and Proschan. Suppose that ak are binary
variables with the intervals between arrivals being i.i.d. Then the arrival process is a discrete-

time renewal process. Let pn be the probability that there are n periods between arrivals and let

pcn = 1 − (p1 + . . . + pn−1); i.e., pcn is the associated tail probability. It is easy to see that {ak} is
conditionally increasing in sequence if and only if {pn} is DFR (has decreasing failure rate), i.e., if

pn
pcn
≥ pn+1
pcn+1

(75)

because

P (an = 1|an−1 = an−2 = an−k+1 = 0, an−k = 1, aj , j ≤ n− k − 1) = pk/pck . (76)
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We now want to consider dependent service completion variables ckj. For this purpose, let wkj

be the server-j prolonged-service indicator variable defined by

wkj = 1 if ykj = 1 and ckj = 0 (77)

with wkj = 0 otherwise. If wkj = 0 and wk+1,j = . . . = wk+m,j = 1, then there is a customer

in service at server j in period k + m who has been in service for m periods. Note that wkj is

increasing in (ykj,−ckj), so that Theorem 10 remains valid if we include the additional variables
wkj, 1 ≤ j ≤ s, 1 ≤ k ≤ K.
Now note that all the variables can be defined recursively. The order can be x01, x02, . . . , x0s,

n0, a1, y11, y12, . . . y1s, −c11,−c12, . . . ,−c1s, w11, w12, . . . , w1s, x11, x12, . . . , x1s, n1, b1, a2, y21, y22, . . . , y2s,
−c21, . . . ,−c2s, w21, w22, . . . , w2s, x21, . . . , x2s, n2, b2, etc. Let H(φ−) be the history to just before
the symbol φ. For independent service processes, it is reasonable to assume that we have the

following conditional distribution property

(ckj|H(ckj−)) = (ckj|clj , wlj , 1 ≤ l ≤ k − 1)) w.p.1 . (78)

If the arrival process is exogeneously specified, then

(ak|H(ak−)) = (ak|a1, . . . , ak−1) w.p.1 (79)

which is what we considered above. The general theorem is as follows

Theorem 11. Suppose that (ak|Hk(ak−)) and (−ckj|Hk(ckj−)) are conditionally increasing in
sequence, then the conclusion of Theorem 10 holds.

Proof. Since the other variables defined in (67), (68), (69), (70) and (77) are all monotone in pre-

ceding ak and −ckj variables, the condition implies that the variables are conditionally increasing
in sequence.

Corollary. If (78) and (79) hold and if (ckj|c`j , w`j , 1 ≤ j ≤ k−1) and (ak|a1, . . . , ak−1) are condi-
tionally increasing, then the assumption of Theorem 11 holds, so that the conclusion of Theorem 10

holds.

If the service times at each server are i.i.d. then

(ckj |c`j , w`j , 1 ≤ ` ≤ k − 1) = (ckj |w`j , 1 ≤ ` ≤ k − 1) .

Moreover, paralleling the discussion of (76), (−ckj|w`j , 1 ≤ ` ≤ k−1) will be conditionally increasing
if and only if the service times are IFR.
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The DFR and IFR results above imply that the estimators are positively correlated in the

DFR/IFR/s/0 model. Given DFR interarrival times, and IFR service times, we can represent

the model as a limit of discrete-time models where the interarrival times are DFR and the service

times are IFR. Hence, we have proved Theorem 3.
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