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Abstract

The product-form structure of Markov open queueing networks stemming from

Jackson (1957) motivated decomposition approximations for open networks with non-

Poisson arrival processes and non-exponential service times. Whitt and You (2021) de-

veloped a new decomposition approximation, where each queue is treated as a G/GI/1

model and each flow is partially characterized by its rate and a scaled version of the

variance-time curve, called the index of dispersion for counts (IDC). A robust queueing

technique is used to generate approximations of the mean steady-state performance at

each queue from the IDC of the total arrival flow and the service specification at that

queue. There remain many opportunities to improve the algorithm and extend it to

more general models.
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1 Introduction

One of the great successes of queueing, for both theory and applications, was the development

of the theory of product-form Markovian queueing networks, e.g., as in Kelly [9], stemming

from the seminal paper of Jackson [8]. The product-form theory motivated considering

decomposition approximations for more general open queueing networks, e.g., with non-

exponential service-time distributions and non-Poisson arrival processes, as developed by

[10, 14]. In these early decomposition approximations, the arrival processes were partially

characterized by their rate and a single variability parameter, corresponding to the variance

of an interarrival time in a renewal-process approximation.

In [23] we developed a new decomposition algorithm to approximate the steady-state

performance of a single-class open queueing network of single-server queues with unlimited

waiting space, the first-come first-served discipline and Markovian routing. The algorithm

allows non-renewal external arrival processes, general service-time distributions and customer

feedback. Each flow is partially characterized by its rate and a scaled version of the variance-

time curve, called the Index of Dispersion for Counts (IDC). To elaborate, let A be an arrival

counting process at a queue, i.e., A(t) counts the total number of arrivals in the interval [0, t].

We assume that A is a stationary point process as in [5, 12]. We partially characterize A by

its rate and its IDC, a function of non-negative real numbers IA : R+ → R
+ defined as in

§4.5 of Cox and Lewis [3] by

IA(t) ≡
Var(A(t))

E[A(t)]
, t ≥ 0. (1)

A reference case is the Poisson process, where IA(t) = 1 for all t ≥ 0. As regularity conditions,

we assume that E[A(t)] and Var(A(t)) are finite for all t ≥ 0. For renewal processes, it

suffices to assume that the time between renewals has a finite second moment. The required

IDC functions for the external arrival processes can be calculated from the model primitives

or estimated from data. Approximations for the IDC functions of the internal flows are

calculated by solving a set of linear equations. The theoretical basis is provided by heavy-

traffic limits for the flows established in our previous papers [18, 19, 22].

Building on the ideas of Bandi et al. [1], in [19] we developed a new Robust Queueing

(RQ) technique to generate approximations of the mean steady-state performance at each

queue from the IDC of the total arrival flow and the mean µ−1 and squared coeeficient of

variation (scv) c2s of the service-time distribution at that queue. To obtain the RQ algorithm,

we start with a reverse-time construction of the workload process as in §3 of [19]. Given the

net-input process N(t) ≡ Y (t)− t, t ≥ 0, the workload at time t, starting empty at time 0,
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is obtained from the reflection map Ψ applied to N , i.e.,

Z = Ψ(N)(t) ≡ N(t)− inf
0≤s≤t

{N(s)}, t ≥ 0. (2)

With a slight abuse of notation, let Z(t) be the workload at time 0 of a system that started

empty at time −t. Then Z(t) can be represented as

Z(t) ≡ sup
0≤s≤t

{N(s)}, t ≥ 0, (3)

where N is defined in terms of Y as before, but Y is interpreted as the total work in service

time to enter over the interval [−s, 0]. That is achieved by letting Vk be the kth service time

indexed going backwards from time 0 and A(s) counting the number of arrivals in the interval

[−s, 0]. The workload process Z(t) defined in (3) is nondecreasing in t and hence necessarily

converges to a limit Z. In the ordinary stochastic queueing model, N(s) is a stochastic

process and hence Z(t) is a random variable. However, in Robust Queueing practice, N(s) is

viewed as a deterministic instance drawn from a pre-determined uncertainty set U of input

functions, while the workload Z∗ for a Robust Queue is regarded as the worst case workload

over the uncertainty set, i.e.

Z∗ ≡ sup
Ñ∈U

sup
x≥0

{Ñ(x)}.

Motivated by the central limit theorem, we use the uncertainty set

U ≡
{

Ñ : R+ → R : Ñ(s) ≤ E[N(s)] + b
√

Var(N(s)), s ≥ 0
}

, (4)

where N(t) is the net input process associated with the stochastic queue, so

E[N(t)] = E[Y (t)− t] = ρt− t,

Var(N(t)) = Var(Y (t)) = (Ia(t) + c2s)ρt/µ.

The RQ approximation based on this partial model characterization is

E[Zρ] ≈ Z∗
ρ ≡ sup

Ñρ∈Uρ

sup
x≥0

{Ñ(x)} = sup
x≥0

{−(1− ρ)x+ b
√

ρx(IA(x) + c2s)/µ}, (5)

where b =
√
2; see Theorem 2 of [19]. For additional discussion about the motivation for

our approach, including why robust optimization can yield good approximations as well as

bounds, see [19] and §EC.3 of the e-companion to [19].
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2 Problem Statement

The problem we pose here is to improve the RQNA in [23] and extend it to more general

models.

2.1. Improvements. 2.1.1. Allowing multiple bottleneck queues. The RQNA developed

in [23] exploits the special case of the FCLT for the flows in Theorem 3.1 of [22] in which

only a single queue in the network is a bottleneck. That leads to tractable approximations

involving one-dimensional Reflected Brownian Motion (RBM) supporting the approximations

in [23, 24]. The proposed improvement is to allow more bottleneck queues and thus exploit

multidimensional RBM. That evidently requires an algorithm for multidimensional RBM as

well as new approximation formulas, but there is great promise of better approximations for

non-tree network models.

2.1.2. Sophisticated statistical fitting. There is also great potential to exploit large system

data sets together with advanced statistical techniques, e.g., machine learning, within this

framework to fit the covariance functions of the internal flows, e.g., Cov(Ai,j(t), Ak,l(t)), that

play a critical role in non-tree networks; e.g., see (28) of [23] and §§5.2-5.3 of [24]. The RQNA

provides an especially promising framework to conduct such investigations.

2.2 Extensions. There are also many opportunities to extend the basic model. Such

extensions are no doubt best motivated from the needs of concrete applications, as illustrated

by the extensions of QNA in [14] discussed in [11]. Here are some:

2.2.1. Allow multiple servers at each queue.

2.2.2. Allow multiple classes and/or more general routing.

2.2.3. Allow time-varying arrival processes.

2.2.4. Treat closed queueing network models.

3 Discussion

3.1. Performance Comparisons with Alternative Algorithms. Section 6 of [23] is devoted to

comparisons of RQNA predictions to simulation and other algorithms for difficult network

examples with extensive near-immediate feedback from [4], which are the most challenging

for RQNA. These examples are difficult for RQNA because the feedback induces strong de-

pendence among the flows and the service times, as illlustrated by the case of immediate

feedback; see §III of [14] and §4 of [23]. Our study shows that RQNA without our spe-

cial techniques to eliminate near-immediate feedback performs quite poorly, but when we

incorporate these special techniques from §4 of [23], RQNA (elim) performs as well as the

4



Sequential Bottleneck Decomposition (SBD) algorithm from [4], which in turn outperforms

QNA from [14] and QNET from [7].

As noted in Sections 1.2 and 7 of [23], RQNA has shown to be especially effective for

tree networks. Indeed, RQNA is provably superior for a single queue. First, Theorem 5 of

[19] shows that it is asymptotically exact in both light and heavy traffic for the G/GI/1.

Second, Corollary 2 of [20] shows that a GI/GI/1 queue is fully characterized by the four

tuple consisting of the rate and IDC of the arrival and service processes. Dramatic examples

are provided by Tables 2 and 3 from [20], which show comparisons for queues in series

exhibiting the heavy-traffic bottleneck phenomenon from [13]. These tables show the mean

waiting times at each of nine exponential queues in series fed by a rate-1 renewal arrival

process. The first eight queues have mean service time, and thus traffic intensity, 0.6, while

the last queue has mean service time, and thus traffic intensity, 0.9, making it a bottleneck.

The interarrival time has a hyperexponential (H2) distribution with a squared coefficient

of variation c2a = 8.0 but three possible values for the remaining third parameter: r = 0.1,

r = 0.5 (the common case of balanced means) and r = 0.9. (The case r = 0.1 makes the

process like a batch Poisson process, while the case r = 0.9 makes it like a Poisson process;

see §V of [15].)

These examples are discussed in the third paragraph of §1.2.2 of [23]. To highlight the

potential advantages of RQNA over the other methods, we now focus on the performance at

individual queues. For that purpose, Table 1 below compares the approximate mean waiting

times determined by the four methods RQNA, QNA, QNET and SBD to simulation for the

first and last queues for each value of r.

Since the first queue has a renewal arrival process, the approximations for QNA, QNET

and SBD all coincide with the heavy-traffic approximation used in (44) of [14], which is

independent of r. However, these three approximations differ at the last queue, which does

not have a renewal arrival process. The main point is that only RQNA captures the impact

of r (necessarily indirectly, because r is not used directly). From this perspective, RQNA

performs far better than the other methods. In this example, also SBD outperforms QNA

and QNET. For further perspective on the limitations of approximations for one GI/GI/1

queue based on the first two meoments, see [2].

3.2 Extensions. 3.2.1. Allowing multiple servers at each queue. As can be seen from §5.2
of [14], multiple servers at each node was allowed for QNA. An approach to robust queueing

with multiple servers was offered by [1], but does not seem very compelling. New ideas seem

to be needed to extend [18, 19] to multiple servers.
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Table 1: A comparison of four approximations of the expected mean waiting time

at one queue to simulation for the first and last queue of nine queues in series

from Tables 2 and 3 of [20]. The interarrival-time distribution is hyperexponential

(H2) with squared coefficient of variation c2a = 8.0 and third parameter r. All the

service-time distributions are exponential (M).

first queue ρ = 0.6 Sim RQNA QNA QNET SBD

r = 0.9 1.16 1.13 4.05 4.05 4.05

r = 0.5 3.36 3.95 4.05 4.05 4.05

r = 0.1 5.69 5.84 4.05 4.05 4.05

last queue ρ = 0.9 Sim RQNA QNA QNET SBD

r = 0.9 19.6 27.2 8.9 6.0 36.4

r = 0.5 29.2 29.1 8.9 6.0 36.4

r = 0.1 29.6 29.3 8.9 6.0 36.4

3.2.2. Allowing multiple classes and/or more general routing. A provision for multiple

classes, where each class had its own routing was provided in §2.3 of [14]. The algorithm

aggregated the input data to convert it into an associated approximate Markovian routing.

3.2.3. Allowing time-varying arrival processes. A significant start was provided for a

single queue with time-varying arrivals in [21], but much more is required to treat networks.

For additional background on queues with time-varying arrivals, see [6, 17] and references

there.

3.2.4. Treating non-Markov closed networks of queues. Various approaches were explored

in the 1980’s. Variants of the fixed-population-mean method were effective for large models;

e.g., see [16], especially §X.
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