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Abstract

In this paper we describe the time-dependent moments of the workload process in the M/G/1

queue. The k th moment as a function of time can be characterized in terms of a differential

equation involving lower moment functions and the time-dependent server-occupation

probability. For general initial conditions, we show that the first two moment functions can be

represented as the difference of two nondecreasing functions, one of which is the moment

function starting at zero. The two nondecreasing components can be regarded as probability

cumulative distribution functions (cdf’s) after appropriate normalization. The normalized

moment functions starting empty are called moment cdf’s; the other normalized components are

called moment-difference cdf’s. We establish relations among these cdf’s using stationary-excess

relations. We apply these relations to calculate moments and derivatives at the origin of these

cdf’s. We also obtain results for the covariance function of the stationary workload process. It is

interesting that these various time-dependent characteristics can be described directly in terms of

the steady-state workload distribution.

Subject classification: queues, transient results: M/G/1 workload process. queues, busy-period

analysis: M/G/1 queue.



In this paper, we derive some simple descriptions of the transient behavior of the classical

M/G/1 queue. In particular, we focus on the workload process {W(t) : t ≥ 0 } (also known as the

unfinished work process and the virtual waiting time process), which is convenient to analyze

because it is a Markov process. Our main results describe the time-dependent probability that the

server is busy, P(W(t) > 0), the time-dependent moments of the workload process, E[W(t) k ],

and the covariance function of the stationary workload process.

Of course, the transient behavior of the M/G/1 queue (and more general models) has been

studied extensively, so that there is a substantial literature, including the early papers by

Kendall (1951, 1953), Taka ́ cs (1955, 1962b), Benes∨ (1957) and Keilson and Kooharian (1960);

the advanced books by Taka ´cs (1962a, 1967), Benes∨ (1963), Prabhu (1965, 1980), Kingman

(1972), Cohen (1982), Asmussen (1987) and Neuts (1989), and the more recent papers by Ott

(1977a,b), Harrison (1977), Middleton (1979), Rosenkrantz (1983), Blanc and van Doorn (1986),

Cox and Isham (1986), Gaver and Jacobs (1986, 1990), Baccelli and Makowski (1989a,b) and

Kella and Whitt (1991). A good basic reference is Kleinrock (1975).

Nevertheless, we believe that we have something to contribute. We focus on relatively simple

exact relations and approximations that are convenient for engineering applications. In

particular, we extend previous work for the same purpose in Abate and Whitt (1987a-c, 1988a-d).

Our earlier work described the transient behavior of one-dimensional reflected Brownian motion

(RBM) and various processes associated with the M/M/1 queue. The M/M/1 workload process

was discussed in §6 of Abate and Whitt (1988b). Since RBM and the M/G/1 processes can serve

as rough approximations for many other queueing processes, these results help describe how a

large class of queueing processes approach steady state. These results provide simple analytical

approximations in the spirit of the empirical work by Odoni and Roth (1983). The RBM and

M/M/1 approximations have also been applied to gain additional insight into queueing

simulations in Whitt (1989, 1991).
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There are two main objectives in relation to our previous work. First, we want to see how the

theory for RBM and M/M/1 extends to the M/G/1 model. As indicated in Remark 6.3(b) of Abate

and Whitt (1988b), much of the theory does extend and now we provide details. Second, we want

to see how well the RBM and M/M/1 approximations work for the M/G/1 model. We focus on the

first objective in this paper; we intend to focus on the second objective in a sequel. Our approach

to approximations is discussed in §1 of Abate and Whitt (1987a), §8 of Abate and Whitt (1988b)

and Abate and Whitt (1988c).

Moment CDFs and Moment-Difference CDFs

As in our previous work, the special case of starting out empty plays an important role. We

represent the k th moment function starting at x as

m k (t ,x) ≡ E[W(t) kW( 0 ) = x] = m k (t , 0 ) + d k (t ,x) (1)

and we show that the k th moment function starting empty, m k (t , 0 ), is nondecreasing in t for all k

while the k th moment difference function, d k (t ,x), is nonincreasing in t for k = 1 , 2. Indeed,

except for the monotonicity of d 2 (t ,x), which is covered by Theorem 13 here, this result was

already obtained for the M/G/1 workload process and other reflected Le ́ vy processes without

negative jumps in Theorem 7.3 of Abate and Whitt (1987b). (It is important to add the condition

of no negative jumps there!)

Since the functions m k (t , 0 ) and d k (t ,x) are monotone (the last only for k = 1 and 2), we can

express them as probability cumulative distribution functions (cdf’s) after appropriate

normalization. For m k (t , 0 ), we just divide by the steady-state limit m k (∞) ≡ m k (∞ , x).

Looking at the moment cdf’s

H k (t) ≡ m k (t , 0 )/ m k (∞) , t ≥ 0 , (2)

is convenient for interpretation, because we separate the steady-state value m k (∞) from the

proportion of the steady-state value attained at time t. Moreover, as before, the moment cdf’s
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have nice probabilistic structure. See §1 of Abate and Whitt (1987a) for more discussion.

Much of the probabilistic structure is expressed via the stationary-excess operator. For any

cdf F on the positive real line with mean f 1 , let F e be the associated stationary-excess cdf (or

equilibrium residual lifetime cdf) defined by

F e (t) = f1
− 1 ∫

0

t
[ 1 − F(u) ] du , t ≥ 0 ; (3)

e.g., see p. 193 of Karlin and Taylor (1975), Whitt (1985) and pp. 319 and 337 of Abate and

Whitt (1988b). Let f k and f ek be the k th moments of F and F e , respectively. Then

f ek = f k + 1 /(k + 1 ) f 1 . (4)

Let F (k) ( 0 ) and Fe
(k) ( 0 ) be the k th (right) derivatives at the origin of F and F e , respectively.

Then

Fe
( 1 ) ( 0 ) = 1/ f 1 and Fe

(k + 1 ) ( 0 ) = − Fe
( 1 ) ( 0 ) F (k) ( 0 ) . (5)

By Theorem 7.3 of Abate and Whitt (1987b),

H 1 (t) = ∫
0

∞

E[W(∞) ]
P(W(∞) > y)_ ____________ P(T y0 ≤ t) dy = ∫

0

∞
F y0 (t) dV e (y) , (6)

where V(t) = P(W(∞) ≤ t), V e is the stationary-excess cdf associated with V, T y0 is again the

first passage time from y to 0 and F y0 is its cdf, whose Laplace-Stieltjes transform is given by

(33) below. Moreover, here we show that the second-moment cdf is the stationary-excess of the

first-moment cdf, just as it is for the M/M/1 workload process; see Theorem 5 of Abate and Whitt

(1988b) and Theorem 4 below.

Paralleling (2), we also form the two moment-difference cdf’s

G 1 (t ,x) = 1 −
x

d 1 (t ,x)_ ______ and G 2 (t ,x) = 1 −
x 2

d 2 (t ,x)_ ______ . (7)

The moment-difference cdf’s also have nice structure. Indeed, by Theorem 7.3 of Abate and
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Whitt (1987b),

G 1 (t ,x) =
x
1_ _∫

0

x
P[T y0 ≤ t] dy , (8)

where T y0 is the first-passage time from y to 0. Here we show that the second-moment-difference

cdf G 2 is the stationary-excess of the first-moment-difference cdf G 1; see Theorem 13 below.

From (4), (6) and (8), we see that the moments of H i and G i for i = 1 , 2 can be determined in

terms of the moments E[Ty0
k ]; we determine the first four in Theorem 9 below.

Just as we did before for RBM and M/M/1, in this paper we also derive the moments and

derivatives at the origin of the M/G/1 moment cdf’s and moment-difference cdf’s, so that we can

also derive approximations for these cdf’s just as we did for the M/M/1 cdf’s in our previous

work; e.g., we can fit a cdf to the special characteristics. See Abate and Whitt (1987a, 1988c) and

Johnson and Taaffe (1989, 1990, 1991) for more discussion.

Expressions in Terms of the Steady-State Workload Moments

An interesting feature of the M/G/1 model in contrast to many other stochastic models is that

the steady-state workload distribution depends on all the ingredients of the model, in particular,

the full service-time distribution; see Whitt (1983). Thus, the steady-state workload distribution

determines the service-time distribution and, in principle, the transient behavior. Consistent with

this property, we show that the moments of the moment cdf’s have relatively nice expressions

directly in terms of the steady-state workload moments v k ≡ m k (∞). (In part, this is explained

by (6) above.) The steady-state moments in turn can be expressed in terms of the service-time

moments via the Taka ́ cs (1962b) recurrence formula, (20) below.

For one example, let h k j be the j th moment of the moment cdf H k in (2), let

v k ≡ m k (∞) ≡ E[W(∞) k ] be the k th moment of the steady-state workload cdf V and let v ek be

the k th moment of the steady-state workload stationary-excess cdf V e . Let the service rate be 1

and let the arrival rate and traffic intensity be ρ, which we assume is less than one. Then, by the



- 5 -

Corollary to Theorem 8 below,

h 11 =
1 − ρ

v e1_ _____ =


 1 − ρ

1_ _____






 2v 1

v 2_ ___




. (9)

Note that h 11 provides a summary description of the time it takes for the mean

E[W(t)W( 0 ) = 0 ] to approach its steady-state value m 1 (∞).

For a second example, let {W ∗ (t) : t ≥ 0 } be a stationary version of the workload process,

with W ∗ ( 0 ) =
d

W(∞), where =
d

denotes equality in distribution. Then the covariance function is

C w (t) = E[W ∗ ( 0 ) W ∗ (t) ] − (E[W ∗ ( 0 ) ] )2 , t ≥ 0 , (10)

and the asymptotic variance is

σw
2 ≡ 2∫

0

∞
C w (t) dt ; (11)

e.g., see p. 1345 of Whitt (1989). In the same spirit as (9), we show that

σw
2 =

1 − ρ
v 3 − v 2 v 1_ ________ ; (12)

see Theorem 12 below. Formula (12) extends Benes∨ (1957), Ott (1977a) and Theorem 8 of

Abate and Whitt (1988b). Note that σw
2 /VarW ∗ ( 0 ) ≡ (v 3 − v 2 v 1 )/[ ( 1 − ρ) (v 2 − v1

2 ) ]

provides a summary description for the time t it takes for the dependence between W ∗ ( 0 ) and

W ∗ (t) in the stationary version to die out. Note that this summary measure differs from h 11 in

(9), but both are of order ( 1 − ρ) − 2 as ρ → 1.
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Organization of this Paper

Here is how the rest of this paper is organized. In §1 we define the M/G/1 workload process

and introduce our notation. In §2 we present a simple derivation of differential equations for the

M/G/1 moment functions. This produces a nice simple derivation of the Taka ́ cs (1962b)

recurrence relation for the steady-state moments. In §3 we apply the differential equations to

establish the key relations among the moment cdf’s. In §4 we review the relations among the

basic transforms describing the M/G/1 transient behavior. In §5 we apply these transform

relations to derive the moments of the moment cdf’s. In §6 we describe the covariance function

in (10) above. In §7 we establish properties of the moment-difference cdf’s in (7). In §8 we

mention complementary-cdf cdf’s. Finally, in §9 we present previously omitted proofs.

1. The M/G/1 Model

In this section we quickly review the M/G/1 model and introduce our notation. As usual, the

M/G/1 queue has a single server, unlimited waiting space, a Poisson arrival process and i.i.d.

service times that are independent of the arrival process. The standard queue discipline is first-in

first-out, but since we are focusing on the workload process, the specific queue discipline will not

matter.

Let A ≡ {A(t) : t ≥ 0 } be the Poisson arrival counting process and let it have intensity ρ.

Let {S n : n ≥ 1 } be the i.i.d. sequence of service times and let S be a generic service-time

random variable (having the distribution of S 1). We assume that S has cdf G with mean 1. Thus

the traffic intensity is ρ, the same as the arrival rate. We are interested in the stable case, so we

assume that ρ < 1.

Let the total input process be X ≡ {X(t) : t ≥ 0 }, where

X(t) = S 1 + . . . + S A(t) , t ≥ 0 , (13)
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with S 0 = 0. Note that X(t) represents the total input of work in the interval ( 0 , t]. The process

X is a compound Poisson process. Let the net input process be Y ≡ {Y(t) : t ≥ 0 }, where

Y(t) = X(t) − t , t ≥ 0 . (14)

Let the workload process be W ≡ {W(t) : t ≥ 0 }, defined by

W(t) =






Y(t) −

0 ≤ s ≤ t
inf Y(s)

Y(t) + W( 0 )

if
0 ≤ s ≤ t

inf Y(s) ≤ − W( 0 ) ,

if
0 ≤ s ≤ t

inf Y(s) > − W( 0 )
(15)

where W( 0 ) is an initial workload that is independent of {A(t) : t ≥ 0 } and {S n : n ≥ 1 }. Note

that W is obtained from Y and W( 0 ) by simply applying the one-dimensional one-sided reflection

map; e.g., see p. 19 of Harrison (1985).

It is significant that Y is a Le ́ vy process without negative jumps. The results here hold when Y

is replaced by another Levy process without negative jumps, but we do not discuss that case; see

Harrison (1977), Middleton (1979), Prabhu (1980) and Kella and Whitt (1991) for related

material.

2. The Moment Differential Equation

Let m k (t) ≡ m k (t ,x) be the k th moment function defined in (1) and let p 0 (t) be the

emptiness probability function, i.e.

p 0 (t) ≡ p 0 (t , x) = P(W(t) = 0W( 0 ) = x) . (16)

In this section we will obtain simple expressions for the derivatives of the moment functions m k

in terms of the emptiness probability p 0 . We focus on the emptiness probability itself in

Section 4. Thus, the emptiness probability is fundamental. This idea does not seem to be as well

known as it should be, but it certainly is not new. Indeed, this idea is a major theme in

Benes∨ (1963).
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To describe the transient behavior of the workload process, it is customary, following Taka ́ cs

(1955, 1962a,b), to start with an integro-differential equation for the cdf P(W(t) ≤ x) or its

Laplace transform, but we will show that it is relatively easy to treat the moment functions

directly. (This observation has been made with the closure approximations for queues with time-

dependent arrival rates, e.g., see Rothkopf and Oren (1979). The results in this section also hold

for time-dependent arrival rates.)

First we establish (review) necessary and sufficient conditions for the moment functions to be

finite, for fixed t and in the limit as t → ∞. Let = = > denote convergence in distribution. All

omitted proofs appear in Section 9.

Proposition 1. (a) m k (t) < ∞ if and only if m k ( 0 ) < ∞ and E[S k ] < ∞.

(b) W(t) = = > W(∞) as t → ∞ where P(W(∞) < ∞) = 1.

(c) If m k ( 0 ) < ∞, then m k (t) → m k (∞) ≡ E[W(∞) k ] as t → ∞, where m k (∞) < ∞ if and

only if E[S k + 1 ] < ∞.

Note from Proposition 1 that one higher moment of S must be finite to have m k (∞) < ∞ than

is required to have m k (t) < ∞ for t < ∞.

We now consider the derivative with respect to time of the k th moment function, denoted by

mk′ (t). An expression for the derivative of the first moment function follows from a basic

conservation law, i.e., rate in equals rate out; e.g., see p. 55 of Taka ́ cs (1962a). In particular,

since the rate in of work is t − 1 E X(t) = ρ and the rate out at time t is 1 − p 0 (t),

m1′ (t) = ρ − 1 + p 0 (t) , t > 0 , (17)

or, equivalently,

m 1 (t) = m 1 ( 0 ) + (ρ − 1 ) t + ∫
0

t
p 0 (u) du , t > 0 . (18)

Since W(t) = = > W(∞) as t → ∞, p 0 (t) → p 0 (∞) as t → ∞. By Little’s law (L = λW)
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applied to the server, we know that p 0 (∞) = 1 − ρ. Hence, m1′ (t) → 0 as t → ∞.

Our main result in this section is a higher-moment extension of (17). When we let t → ∞, we

immediately obtain the Taka ́ cs (1962b) recurrence formula for the steady-state moments; see

(5.112) on p. 201 of Kleinrock (1975), Lemoine (1976) and p. 185 of Asmussen (1987). Of

course, the first steady-state moment is the Pollaczek-Khintchine mean value formula for the

workload. The proof is very simple except for a few technical details; we sketch it here. We

provide the extra technical details in §9. Let m 0 (∞) = 1 and let =
d

denote equality in

distribution.

Theorem 2. (a) If m k (t) < ∞ for some k, k ≥ 2, then the derivative mk′ (t) exists and

mk′ (t) = ρE[S k ] − ( 1 − ρ) km k − 1 (t) + ρ
j = 2
Σ

k − 1 
j
k
E[S j ] m k − j (t) . (19)

(b) If m k + 1 ( 0 ) < ∞ and E[S k + 1 ] < ∞ for some k, k ≥ 1, then mk + 1′ (t) → 0 as t → ∞ and

m k (∞) =
1 − ρ

ρ_ _____
j = 1
Σ
k 

j
k
 j + 1

E[S j + 1 ]_ _______ m k − j (∞) , k ≥ 1 . (20)

Sketch of Proof (See §9 for more.) (a) We calculate m k (t + ε) − m k (t) to order ε by

conditioning and unconditioning on W(t). We say that f (ε) = o(ε) if f (ε)/ε → 0 as ε → 0.

Note that X(t + ε) − X(t) is independent of W(t). Moreover, X(t + ε) − X(t) =
d

X(ε). To

order ε, there is either one arrival in A(ε) or none. Hence, ignoring complications when

0 < x < ε, we have

E[W(t + ε) kW(t) = x > 0 ] = ρ εE[ (x + S − ε) k ] + ( 1 − ρ ε) E[ (x − ε) k ] + o(ε)

= ρ ε
j = 0
Σ
k 

j
k
x j E[S k − j ] + ( 1 − ρ ε) x k − εkx k − 1 + o(ε)

and

E[W(t + ε) kW(t) = 0 ] = ρ εE[S k ] + o(ε) .
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Next, upon unconditioning, ignoring the problems involving interchanging the expectation with

the limit as ε → 0, we obtain

m k (t + ε) − m k (t) = ρ ε
j = 0
Σ
k 

j
k
E[S j ] m k − j (t)

(21)

+ ( 1 − ρ ε) m k (t) − εkm k − 1 (t) − m k (t) + o(ε) .

We obtain (19) from (21) by noting that the three terms involving m k (t) cancel, combining the

two terms involving m k − 1 (t), pulling out the term involving m 0 (t), dividing by ε and letting

ε → 0.

(b) We apply mathematical induction. When we are considering mk + 1′ (t) given the condition

E[W( 0 ) k + 1 ] < ∞ and E[S k + 1 ] < ∞, we have m j (t) → m j (∞) < ∞ for each j < k by the

induction assumption, because E[W( 0 ) j + 1 ] < ∞ and E[S j + 1 ] < ∞ for all j ≤ k. Assuming now

that mk + 1′ (t) → 0 as t → ∞ (which we will prove later), we see from (19), with k replaced by

k + 1, that m k (t) → m k (∞) as t → ∞, where

m k (∞) =
(k + 1 ) ( 1 − ρ)

ρ_ _____________ E[S k + 1 ] +
(k + 1 ) ( 1 − ρ)

ρ_ _____________
j = 2
Σ
k 

 j
k + 1

E[S j ] m k + 1 − j (∞)

=
1 − ρ

ρ_ _____
j = 2
Σ

k + 1

k + 1
1_ ____ 

 j
k + 1

E[S j ] m k + 1 − j (∞) ,

which becomes (20) upon making the change of variables l = j − 1; e.g., then

k + 1
1_ ____ 

 j
k + 1

 =
l + 1

1_ ____ 
l
k
 .

From (17) and (19), we see that the moment functions m k depend on the arrival rate ρ and the

service-time distribution only via ρ, the service-time moments and the emptiness probability

p 0 (t). Moreover, (17) and (19) provide a recursive formula for m k (t) in terms of ρ, E[S j ],

1 ≤ j ≤ k, and p 0 .
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We conclude this section by mentioning that the proof of Theorem 2 also applies to the

M/M/1 queue length moments, so that we can obtain different proofs of our previous results.

3. The Moment CDFs

We now focus on the special case in which we start empty, i.e. P(W( 0 ) = 0 ) = 1. Then, as

we show below, W(t) is stochastically increasing in t and we can regard appropriately normalized

moment functions as probability cumulative distribution functions (cdf’s) on the positive half

line. (A real-valued function F on the positive half line is a cdf if it is nonnegative and

nondecreasing with F(∞) ≡
t → ∞
lim F(t) = 1. By convention, we take it to be right-continuous.

Recall that one random variable Z 1 is stochastically less than or equal to another Z 2 , denoted

by Z 1 ≤ st Z 2 , if E[g(Z 1 ) ] ≤ E[g(Z 2 ) ] for all nondecreasing real-valued functions g for which

both expectations exist. A family of random variables {Z(t) : t ≥ 0 } is stochastically increasing

if Z(t 1 ) ≤ st Z(t 2 ) for 0 ≤ t 1 < t 2 . The following result is well known, but worth emphasis.

Proposition 3. If P(W( 0 ) = 0 ) = 1, then the workload process {W(t) : t ≥ 0 } is

stochastically increasing.

Proof. Since the net input process {Y(t) : t ≥ 0 } has stationary independent increments

W(t) =
d

M(t) ≡
0 ≤ u ≤ t

sup {Y(u) } , t ≥ 0 , (22)

when W( 0 ) = 0 by (15). Obviously M(t) is nondecreasing in t w.p.1. Hence, E[g(M(t) ) ] is

nondecreasing in t for each nondecreasing real-valued function g. Finally, by (22),

E[g(W(t) ) ] = E(g(M(t) ) ].

Henceforth in this section we assume that P(W( 0 ) = 0 ) = 1. For emphasis, we thus write

p 00 for p 0 . As a consequence of Proposition 3, we can form cdf’s associated with the moment

functions m k (t) as defined in (2) whenever m k (∞) < ∞. Moreover, as a consequence, of

Proposition 3, p 00 (t) is nonincreasing in t. Since p 00 ( 0 ) = 1 and p 00 (∞) = 1 − ρ, we can
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form a 0th-moment or server-occupation cdf H 0 by setting

H 0 (t) = [ 1 − p 00 (t) ]/ρ , t ≥ 0 . (23)

It is significant that the emptiness probability function p 00 is a well-studied object. In

particular, it is a standard p function associated with a regenerative phenomenon in the sense of

Kingman (1972); see p. 38 there. It follows from Theorem 2.3 on p. 32 of Kingman that p 00 is

Lipschitz continuous with modulus ρ, i.e.

p 00 (t 2 ) − p 00 (t 1 ) ≤ ρt 2 − t 1 (24)

for all positive t 1 and t 2 , because p00′ ( 0 ) = − ρ. Consequently, p 00 is absolutely continuous

with respect to Lebesgue measure, which implies the same for H 0 in (23), so that H 0 has a

density h 0 with

H 0 (t) = ∫
0

t
h 0 (u) du , t ≥ 0 , (25)

and 0 ≤ h 0 (t) ≤ 1 for all t. However, as illustrated by considering the case of deterministic

service times, see p. 39 of Kingman (1972), H 0 is not necessarily differentiable at all t. (These

important properties of the emptiness probability function p 00 were also obtained directly by

Ott (1977a).)

As in our previous papers, we relate the different moment cdf’s to each other by using the

stationary-excess operator in (3). Our main result in this section follows directly from

Theorem 2. It is a generalization of the M/M/1 result in Theorem 5 of Abate and Whitt (1988b).

Recall that v k is the k th moment of V(t) = P(W(∞) ≤ t).

Theorem 4. (a) If E[S k + 1 ] < ∞, then H k is a proper cdf.

(b) H 1 = H 0e .

(c) H 2 = H 1e .
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(d) H 3 = ( 1 + α 3 ) H 2e − α 3 H 2 ,

where

α 3 =
v 3

3v 1 v 2_ _____ .

(e) H 4 = ( 1 + α 4 + β 4 ) H 3e − α 4 H 3 − β 4 H 2 ,

where

α 4 =
v 4

4v 1 v 3_ _____ and β 4 =
v 4

6v2
2

_ ___ .

Proof. By Proposition 3, H k is a proper cdf provided that v k ≡ m k (∞) < ∞, which holds if and

only if E[S k + 1 ] < ∞ by Proposition 1. To obtain the explicit expressions, apply (13) and

Theorem 2, noting that h k (t) ≡ mk′ (t)/ m k (∞) is the probability density function of the k th

moment cdf H k , while

h ke (t) = h ke ( 0 ) [ 1 − H k (t) ] , t ≥ 0 , (26)

is the probability density function of h ke by (3)–(5). For example, from (17),

h 1 (t) m 1 (∞) = m1′ (t) = ρ − 1 + p 00 (t) = ρ[ 1 − H 0 (t) ] ,

so that, by (26),

h 1 (t) m 1 (∞)/ρ = h 0e (t)/ h 0e ( 0 ) ,

µ 0e ≡ ∫
0

∞
x dH 0 (s) = 1/ h 1 ( 0 ) = m 1 (∞)/ρ

and indeed h 1 = h 0e . The various expressions, including the constants in parts (d) and (e), are

obtained by algebraic manipulation. Given the stated results, it is easy to see how to group terms

in order to verify the formulas.

From Theorem 4, we see that the moment cdf’s H k for k ≤ 4 can be expressed directly in

terms of the 0th-moment cdf H 0 . Moreover, by (4) and (5), the moments of H k and the
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derivatives of H k at t = 0 can be expressed directly in terms of the corresponding quantities of

H 0 .

4. Basic Laplace Transform Relations

In Section 3 we saw that the moment cdf’s H k can be expressed in terms of the emptiness

function p 00 or the associated server-occupation cdf H 0 . In this section we review the basic

Laplace transform relations that enable us to determine p 00 and H 0 . Unfortunately, however, the

situation is not quite as simple as in the M/M/1 case, because we characterize p 00 only via a

functional equation for its Laplace transform. In very few cases (M/M/1 is one) can we obtain a

direct expression for this transform. Nevertheless, in the next section we apply these transform

relations to determine the moments of H 0 and thus the moments of the moment cdf’s H k for

k ≤ 4. The functional equations can also be solved iteratively in order to numerically invert the

transforms; see Sections 1.2 and 2.2 of Neuts (1989) and Abate and Whitt (1992, 1993).

For any cdf F, let f̂ be its Laplace-Stieltjes transform (LST), defined by

f̂ (s) = ∫
0

∞
e − stdF(t) ,

which coincides with the Laplace transform of its density f when F(t) = ∫
0

t
f (u) du for all t; i.e.,

then

f̂ (s) = ∫
0

∞
e − stf (t) dt .

Thus ĝ and ĝ e are the LSTs of the service-time cdf G and the associated service-time stationary-

excess cdf G e , respectively.

As before, let V be the cdf of W(∞) whose LST is given by the Pollaczek-Khintchine

transform formula
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v̂(s) =
1 − ρ ĝ e (s)

1 − ρ_ __________ ; (27)

see (5.108) on p. 200 of Kleinrock (1975). Let B be the cdf of a busy-period distribution and

recall that its LST b̂ is characterized by the Kendall functional equation

b̂(s) = ĝ(s + ρ − ρ b̂(s) ) ; (28)

see (59) in Kendall (1951), the discussion by I. J. Good on p. 182 there, and (5.137) on p. 212 of

Kleinrock (1975).

Let η and ζ be two functions defined by

η(s) = s − ρ + ρ ĝ(s) and ζ(s) = s + ρ − ρ b̂(s) . (29)

The functions η and ζ are inverse functions in the sense that, for any s,

η(ζ(s) ) = s , (30)

as easily can be seen from (28) and (29). Note that we can rewrite (28) and (29) as a functional

equation for ζ, namely

s + ρ − ζ(s) = ρ ĝ(ζ(s) ) . (31)

The function ζ in (29) is known to be the exponent of the first passage time LST. In

particular, as before, let T x0 be the first passage time from x to 0 and let F x0 be its cdf. The cdf

F x0 is related to the probability of emptiness p x0 (t) ≡ P(W(t) = 0W( 0 ) = x) by

p x0 (t) = (F x0 ∗ p 00 ) (t) ≡ ∫
0

t
p 00 (t − u) dF x0 (u) , (32)

where ∗ denotes convolution, as is easily verified by first principles; i.e., to be at 0 at time t you

have to reach 0 for a first time somewhere in the interval ( 0 , t].

The LST of the first-passage time cdf F x0 is
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f̂ x0 (s) ≡ ∫
0

∞
e − st dF x0 (t) = e − xζ(s) (33)

for ζ in (29), and the Laplace transform of p x0 (t) is

p̂ x0 (s) ≡ ∫
0

∞
e − stp x0 (t) dt =

ζ(s)
e − xζ(s)
_ ______ ; (34)

see (9) on p. 52 of Taka ́ cs (1962a), p. 229 of Kleinrock (1975) and p. 70 of Prabhu (1980).

Hence, if W( 0 ) has cdf F 0 , then

p̂ 0 (s) ≡ ∫
0

∞
e − stp 0 (t) dt =

ζ(s)

f̂ 0 (ζ(s) )_ _______ ; (35)

see (9) on p. 52 of Taka ́ cs (1962a).

As a consequence of (34), we have the Laplace transform of the emptiness function p 00 , i.e.,

p̂ 00 (s) ≡ ∫
0

∞
e − stp 00 (t) dt =

ζ(s)
1_ ____ =

s + ρ − ρ b̂(s)

1_ ____________ . (36)

The final expression confirms that p 00 is a standard p function associated with a regenerative

phenomenon; see (4) on p. 38 of Kingman (1972).

By combining (28), (29) and (36), i.e., by replacing b̂(s) by ĝ(ζ(s) ) in (36), we see that p̂ 00

satisfies the functional equation

p̂ 00 (s) =
s + ρ − ρ ĝ( 1/ p̂ 00 (s) )

1_ ___________________ . (37)

The functional equations (28), (31) and (37) are obviously equivalent; i.e., a solution to one yields

a solution to all.

To do further analysis, it is convenient to introduce an additional random quantity. As in our

previous papers, let T ε0 be the first passage time to 0 starting in equilibrium; let F ε0 (t) and

f̂ ε0 (s) be its cdf and LST, respectively. Consistent with previous notation, let ( f ε0 ) k be the k th

moment of F ε0 .
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Theorem 5. (a) The LST of the equilibrium time to emptiness is

f̂ ε0 (s) = 1 − ρ + ρ b̂ e (s) =
s

( 1 − ρ) ζ(s)___________ = v̂(ζ(s) ) = v̂(sf̂ ε0 (s)/( 1 − ρ) ) ;

(b) (F ε0 ) e = B ee;

(c) ( f ε0 ) k = ρb ek for all k ≥ 1.

Proof. (a) By first principles, in equilibrium the probability that the server is idle is 1 − ρ and,

given that the server is busy, the remaining busy period has the busy-period stationary-excess

distribution, so that we obtain the first formula. Alternatively, from first principles and (33),

f̂ ε0 (s) = ∫
0

∞
f̂ x0 (s) dV(s) = ∫

0

∞
e − xζ(s) dV(x) = v̂(ζ(s) ) , (38)

but from (27) and (29),

v̂(s) =
η(s)

( 1 − ρ) s_ ________ , (39)

so that, by (30)

f̂ ε0 (s) =
η(ζ(s) )

( 1 − ρ) ζ(s)___________ =
s

( 1 − ρ) ζ(s)___________

=
s

( 1 − ρ) (s + ρ − ρ b̂(s) )_ _____________________ = 1 − ρ + ρ b̂ e (s) ,

with the last step holding because

b̂ e (s) = ( 1 − ρ)
s

( 1 − b̂(s) )_ _________ . (41)

We have thus established all formulas except the last one. However, from the second formula, we

see that ζ̂(s) = sf̂ ε0 (s)/( 1 − ρ), which establishes the final formula. (b) Apply (3), noting that

1 − F ε0 (t) = ρ[ 1 − B e (t) ]. (c) Apply the first formula in (a).

We now obtain expressions for the LSTs ĥ 0 (s) and ĥ 1 (s). See Corollary 5.2.1 and

Theorem 9.1 of Abate and Whitt (1988a) for related M/M/1 results. Note that ĥ 0 (s) = b̂(s) in
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that case.

Theorem 6. (a) ĥ 0 (s) =
f̂ ε0 (s)

b̂ e (s)_ _____ =
1 − ρ + ρ b̂ e (s)

b̂ e (s)_ ______________ .

(b) h 1 (s) = v̂ e (ζ(s) ) = ĥ 0e (s) =
f̂ ε0 (s)

b̂ ee (s)_ _____ =
f̂ ε0 (s)

( f̂ ε0 ) e (s)_ ________ .

Proof. (a) By (23),

ĥ 0 (s) =
ρ

1 − sp̂ 00 (s)_ __________ , (42)

so that, by (36) and (41),

ĥ 0 (s) =
ρ
1_ _




1 −

s + ρ − ρ b̂(s)

s_ ____________




=
1 − ρ + ρ b̂ e (s)

b̂ e (s)_ ______________ ,

which yields the first formula, by Theorem 5(a). (b) By (6),

ĥ 1 (s) = ∫
0

∞
f̂ y0 (s) dV e (y) = ∫

0

∞
e − yζ(s) dV e (y) = v̂ e (ζ(s) ) .

By Theorem 4(b), ĥ 1 = ĥ 0e . By (3) and the result from part (a), for some constant c,

ĥ 0e (s) =
s
c_ _ [ 1 − ĥ 0 (s) ] =

s
c_ _




1 −

1 − ρ + ρ b̂ e (s)

b e (s)_ ______________




=
f̂ ε0 (s)

cb̂ ee (s)_ ______ .

However, since ĥ 0e (s) f̂ ε0 (s) and b̂ ee (s) are proper cdf’s, we must have c = 1 and the desired

result.

Remark 4.1. The results in Theorem 6 suggest that 1/ f̂ ε0 (s) might be the LST of a bonafide cdf,

but this is not true. Indeed, 1/ f̂ ε0 (s) = sp̂ 00 (s)/( 1 − ρ) is the Laplace transform of

[δ 0 + p00′ (t) ]/( 1 − ρ) where δ 0 denotes a unit point mass at 0 and − ρ ≤ p00′ (t) ≤ 0.

5. Moments of the Moment CDFs

Even though the M/G/1 transient quantities of interest are only characterized implicitly via
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transform functional equations, we can obtain the moments by differentiating. For the busy-

period functional equation (28), this involves a reversion of series, as nicely described on p. 148

of Cox and Smith (1961).

As before, we shall denote the k th moment of a cdf F or its LST f̂ by f k . Since the steady-

state workload W(∞) has cdf V, this means that its k th moment is denoted by v k as well as

m k (∞). We show that it is convenient to express the moments b ek, h 0k and h 1k in terms of the

moments v k . To interpret the following results, recall that g 1 = 1 and, from (4) and (20),

v k =
1 − ρ

ρ_ _____
j = 1
Σ
k 

j
k
g e j v k − j . (43)

We first apply the relation

f̂ ε0 (s) = v̂(sf̂ ε0 (s)/( 1 − ρ) ) (44)

in Theorem 5 (a) to express the moments b ek in terms of the moments v k . Recall from

Theorem 5(c) that ( f ε0 ) k = ρb ek. Let ( fε0
∗ j ) k be the k th moment of the j-fold convolution of

F ε0 , i.e., of the transform f̂ ε0 (s) j . We give a recursive expression for ( f ε0 ) k = ρb ek for all k

and then a convenient explicit expression for the first four moments of the busy-period

stationary-excess cdf B e .

Theorem 7. (a) ( f ε0 ) k = ρb ek =
j = 1
Σ
k 

j
k
 ( 1 − ρ) j

v j________ ( fε0
∗ j ) k − j , k ≥ 1,

(b) b e1 =
ρ( 1 − ρ)

v 1_ ________ ,

(c) b e2 =
ρ( 1 − ρ)2

v 2 + 2v1
2

_ _________ ,

(d) b e3 =
ρ( 1 − ρ)3

v 3 + 9v 2 v 1 + 6v1
3

_ ________________ ,
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(e) b e4 =
ρ( 1 − ρ)4

v 4 + 16v 3 v 1 + 12v2
2 + 72v 2 v1

2 + 24v1
4

_ __________________________________ .

Proof. From Theorem 5(a),

f̂ ε0 (s) =
k = 0
Σ
∞

( − 1 ) k

k!

ρb ek s k
_ ______ , (45)

while

v̂(s) =
k = 0
Σ
∞

( − 1 ) k

k!

v k s k
_ ____ . (46)

Combining (44)–(46) and rearranging terms yields the results.

From Theorem 7(a), we see that ( f ε0 ) k is monotone in (v 1 , . . . , v k ), which in turn is

monotone in (g 1 , . . . , g k + 1 ) by (20). (We then think of the arrival rate fixed instead of the mean

service time.)

Since b 1 = ( 1 − ρ) − 1 and b ek = b k + 1 /(k + 1 ) b 1 , we have the following corollary to

Theorem 7.

Corollary. (a) b 2 =
ρ( 1 − ρ)2

2v 1_ _________ ,

(b) b 3 =
ρ( 1 − ρ)3

3 (v 2 + 2v1
2 )_ ___________ ,

(c) b 4 =
ρ( 1 − ρ)4

4 (v 3 + 9v 2 v 1 + 6v1
3 )_ ___________________

(d) b 5 =
ρ( 1 − ρ)5

5 (v 4 + 16v 3 v 1 + 12v2
2 + 72v 2 v1

2 + 24v1
4 )_____________________________________ .

Similarly, we apply the relation f̂ ε0 (s) ĥ 0 (s) = b̂ e (s) in Theorem 6(a) to obtain expressions

for the moments h 0k . As in Theorem 7, we give a recursive expression for h 0k for all k and then

convenient explicit expressions for the first four.

Theorem 8. (a) h 0k = b ek − ρ
j = 1
Σ
k 

j
k
b e j h 0 (k − j) , k ≥ 1 ,
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(b) h 01 = ( 1 − ρ) b e1 =
ρ
v 1_ __

(c) h 02 = ( 1 − ρ) b e2 − 2ρ( 1 − ρ) be1
2 =

ρ( 1 − ρ)

v 2_ ________

(d) h 03 =
ρ( 1 − ρ)2

v 3 + 3v 2 v 1_ __________

(e) h 04 =
ρ( 1 − ρ)3

v 4 + 8v 3 v 1_ ___________ + 12v 2 v1
2 + 6v2

2 .

Note that ρh 01 represents the expected total server utilization lost because of starting at 0

instead of in steady state; i.e., by (23),

ρh 01 = ρ∫
0

∞
[ 1 − H 0 (t) ] dt = ∫

0

∞
[ρ − ( 1 − ρ 00 (t) ) ] dt

=
t → ∞
lim E[∫

0

t
( 1 {W∗ (u) > 0 } − 1 {W(u) > 0W( 0 ) = 0 } ) du ,

where 1 B is the indicator function of the set B and W ∗ is the stationary version, as in (10).

By combining (4), Theorem 4(b) and Theorem 8, we obtain expressions for the first three

first-moment cdf moments h 1k .

Corollary. (a) h 11 =
1 − ρ

1_ _____


 2v 1

v 2_ ___




=
1 − ρ

v e1_ _____,

(b) h 12 =
( 1 − ρ)2

1_ ________


 3v 1

v 3_ ___ + v 2





=
( 1 − ρ)2

v e2 + v 2_ ________,

(c) h 13 =
( 1 − ρ)3

1_ ________


 4v 1

v 4_ ___ + 2v 3 + 3v 2 v 1 +
2v 1

3v2
2

_ ___



.

Theorems 7 and 8 and their corollaries can obviously be extended to higher moments, but we

have yet to discover general expressions for the k th moment. Such general expressions (of a sort)

do follow from (6), however. For this purpose, we describe the moments of the first passage time

from x to 0, T x0; see p. 79 of Prabhu (1979).
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Theorem 9. The first four moments of the first passage time T x0 are:

(a) ( f x0 ) 1 =
1 − ρ

x_ _____,

(b) ( f x0 ) 2 =
( 1 − ρ)2

x_ ________ ( 2v 1 + x),

(c) ( f x0 ) 3 =
( 1 − ρ)3

x_ ________ ( 3v 2 + 6v 1 (v 1 + x) + x 2 ),

(d) ( f x0 ) 4 =
( 1 − ρ)4

x_ ________ ( 4v 3 + 36v 2 v 1 + 24v1
3 + 12v 2 x + 36v1

2 x + 12v 1 x 2 + x 3 ).

Proof. Differentiate the transform in (33) and reexpress in terms of the moments v i .

Combining (6) and Theorem 9, we obtain an alternate proof of the Corollary to Theorem 8.

We also obtain the following general result directly from (6).

Theorem 10. For all positive integers k,

h 1k = ∫
0

∞
E[Ty0

k ] dV e (y) .

General expressions in terms of g i or v i for arbitrary k in Theorems 7-10 remain a

mathematically interesting open problem.

We can also apply (6) and Theorem 4 to describe the derivatives of H k at the origin.

Theorem 11. (a) For all y > 0,

F y0 (t) = 0 , 0 ≤ t < y , (47)

so that

Fy0
( j) = 0 and H1

( j) ( 0 ) = 0

for all j ≥ 1.

(b) H2
( 1 ) ( 0 ) =

v e1

1 − ρ_ _____ , while H2
( j) ( 0 ) = 0 for all j ≥ 2.
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Proof. (a) Note that W(t) decreases at most at rate 1, so that P[T y0 < y] = 0. Formula (47)

with (6) implies the rest. (b) Apply (5) and Theorem 4(c).

We can also use Theorem 4, (4) and (5) to obtain Hk
( j) ( 0 ) for k ≠ 1 and j ≥ 1.

6. The Covariance Function

Let C w (t) be the covariance function of the stationary workload process, as defined in (10),

and let c w (t) be the associated correlation function defined by

C w (t) = Var (W(∞) ) c w (t) , t ≥ 0 . (48)

The functions C w (t) and c w (t) were studied by Benes∨ (1957) and Ott (1977a,b). Indeed, Ott

derived many structural properties for C w (t), including, the fact that C w (t) and Cw′ (t) are

monotone, which implies that 1 − c w (t) is a bonafide cdf, provided that E[S 3 ] < ∞ so that

Var (W(∞) ) < ∞. In this section, we complement these results by providing some additional

structure.

For any cdf F with mean f 1 , let F ∗ be the cdf defined by

F ∗ (t) = f1
− 1 ∫

0

t
udF(u) , t ≥ 0 . (49)

and let f̂
∗

be its LST. Note that F ∗ is the stationary total life distribution associated with F; see

p. 195 of Karlin and Taylor (1975). The distribution B ∗ , where B is the busy-period cdf, plays a

key role, as noted by Ott (1977a); see (2.23) there.

Theorem 12. 1 − c w (t) = U e (t) and

1 − ρ
2

(cs
2 + 1 )_ _______ cw′ (t) = U(t) , (50)

where U is the cdf with LST
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û(s) =
( 1 − ρ + ρ b̂

∗
(s) ) f̂ ε0 (s)

b̂e
∗

(s)_ _____________________ (51)

and first two moments

u 1 =
( 1 − ρ) v 1

v 2 − v1
2

_ _________ and u 2 =
( 1 − ρ)2 v 1

v 3 − v 2 v 1_ __________ , (52)

so that (12) holds, i.e.,

σw
2 ≡ 2∫

0

∞
C w (t) = 2 Var W(∞) u e1 =

1 − ρ
v 3 − v 2 v 1_ _________

=
( 1 − ρ)4

ρ_ ________


 2

( 1 − ρ)2
_ ________ g e3 +

2
5_ _ ( 1 − ρ) ρg e1 g e2 + 2ρ2 ge1

3




. (53)

Remark 6.1. Note that (53) agrees with (2.16) of Ott (1977a). In the M/M/1 case, g ek = g k for

all k, g 3 = 6, g 2 = 2 and g 1 = 1, so that σw
2 = ρ( 3 − ρ)/( 1 − ρ)4 . Also then

û(s) = b(s) h 1 (s).

Proof. Let m̂ 1 (s ,x) be the Laplace transform of the moment function m 1 (t ,x) starting in x.

Thus, the conservation law in (18) can be expressed as

m̂ 1 (s ,x) =
s
x_ _ −

s 2

( 1 − ρ)_ _______ +
s

p̂ x0 (s)_ ______ . (54)

As in Theorem 8 of Abate and Whitt (1988b), we can express the Laplace transform Ĉ w (s) by

sĈ w (s) = ∫
0

∞
s m̂ 1 (s ,x) xdV(x) − v1

2 . (55)

Combining (54) and (55), we obtain

sĈ w (s) = Var W(∞) −
s

( 1 − ρ) v 1_ _________ + ∫
0

∞
p̂ x0 (s) xdV(x) . (56)

Letting

û(s) =
( 1 − ρ) v 1

s_ _________∫
0

∞
p̂ x0 (s) xdV(x) , (57)
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we see that

sĈ w (s) = Var W(∞)



1 −

Var W(∞)

( 1 − ρ) v 1_ _________
s

( 1 − û(s) )_ _________




, (58)

so that it suffices to show that û defined in (57) coincides with û defined in (51) with first two

moments in (52).

Starting from û defined in (57), note that p̂ x0 (s) = ζ(s) − 1 e − xζ(s) by (34), so that

û(s) =
( 1 − ρ) v 1

s_ _________∫
0

∞

ζ(s)
e − xζ(s)
_ ______ xdV(s)

=
( 1 − ρ) v 1

s_ _________


 ζ(s)

− 1_ ____


 dζ

d_ __∫
0

∞
e − xζ(s) dV(s)

=
( 1 − ρ) v 1

s_ _________


 ζ(s)

− 1_ ____




v̂ ′ (ζ(s) ) . (59)

However, by Theorem 5 (a), f̂ ε0 (s) = v̂(ζ(s) ), so that

v̂ ′ (ζ) =
dζ
d_ __ f̂ ε0 (s) =

dζ
d_ __ ( 1 − ρ + ρ b̂ e (s) )

(dζ/ ds)
1_ _______

=
1 − ρ b̂ ′ (s)

ρ b̂e
′ (s)_ __________ =

1 + ρb 1 b̂
∗

(s)

− ρb e1 b̂e
∗

(s)_ ____________ . (60)

Hence,

û(s) =
( 1 − ρ) v 1

s_ _________


 ζ(s)

1_ ____









1 + ρb 1 b̂
∗

(s)

ρb e1 b̂e
∗

(s)_ ____________





=
( 1 − ρ + ρ b̂

∗
(s) ) f̂ ε0 (s)

be
∗ (s)_ _____________________ ,

with the second line holding because ( 1 − ρ) ζ(s)/ s = f̂ ε0 (s) by Theorem 5(a) and

ρb e1 / v 1 = 1. Finally, the moments u k are obtained by expanding the terms b̂e
∗

(s), b̂
∗

(s) and

f̂ ε0 (s) in (51). For this purpose, note that bk
∗ = b k + 1 / b 1 = (k + 1 ) b ek,
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bek
∗ = b e(k + 1 ) / b e1 = 2b k + 2 /(k + 2 ) b 2 and ( f ε0 ) k = ρb ek = ρb k + 1 /(k + 1 ) b 1 .

Consequently,

u 1 =
b e1

b e2_ ___ − 3ρb e1 =
( 1 − ρ) v 1

v 2 − v1
2

_ _________

and

u 2 =
b e1

b e3_ ___ − 10ρb e2 + 14ρ2 be1
2 =

( 1 − ρ)2 v 1

v 3 − v 2 v 1_ __________ .

7. Moment-Difference CDFs

As noted at the outset, the first two moment-difference functions d k (t ,x) in (1) are monotone,

so that we can define associated moment-difference cdf’s as in (7). The results beyond

Theorem 7.3 of Abate and Whitt (1987b) are contained in the following.

Theorem 13. (a) d 2 (t ,x) is decreasing and convex.

(b) G 2 = G 1e .

Proof. Let dk′ (t ,x) =
dt
d_ __d k (t ,x) and m ′ (t ,x) =

dt
d_ __m k (t ,x). From Theorem 2(a),

d2′ (t ,x) ≡ m2′ (t ,x) − m2′ (t , 0 ) = 2 ( 1 − ρ) [m 1 (t 1 0 ) − m 1 (t ,x) ]

= − 2 ( 1 − ρ) d 1 (t ,x) .

Since d 1 (t ,x) is positive and decreasing in t, d 2 (t ,x) is decreasing and convex in t. Moreover,

from (7),

G2′ (t ,x) ≡
dt
d_ __G 2 (t ,x) =

x 2

− d2′ (t ,x)_ ________

=
x 2

2 ( 1 − ρ) d 1 (t ,x)_ ______________ =
x

2 ( 1 − ρ)_ ________ [ 1 − G 1 (t ,x) ] ,

Since G2′ (t ,x) = c[ 1 − G 1 (t ,x) ] for some constant c, G 2 = G 1e (and the first moment of G 1

must be g11
x = x /2 ( 1 − ρ) ).
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Remark 7.1. It is not difficult to see that d 3 (t ,x) is not monotone and d 1 (t ,x) is not convex,

using Theorem 2(a) and (17).

From (8) and Theorems 9 and 13, it is easy to compute the moments of G i (t ,x) for i = 1 , 2.

Let the k th moment of G i (t ,x) be denoted by gik
x . We summarize the results in the following

theorem.

Theorem 14. (a) For all x > 0 and k ≥ 1,

g1k
x =

x
1_ _∫

0

x
E[Ty0

k ] dy .

(b) g11
x =

2 ( 1 − ρ)
x_ ________ ,

(c) g12
x =

( 1 − ρ)2

x_ ________



v 1 +

3
x_ _





(d) g13
x =

( 1 − ρ)3

x_ ________


 2

3v 2_ ___ + 3v1
2 + 2v 1 x +

4
x 2
_ __





(e) g14
x =

( 1 − ρ)4

x_ ________



2v 3 + 18v 2 v 1 + 12v1

3 + 4v 2 x + 12v1
2 x + 3v 1 x 2 +

5
x 3
_ __





Similarly, we can compute the derivatives at the origin. Let Gk
( j) (t ,x) be the j th derivative

with respect to t of G k (t ,x) in (7) evaluated at t.

Theorem 15. (a) For all x > 0,

G1
( 1 ) (t ,x) =

x

1 − ρ − p x0 (t)_ _____________ , (61)

so that G1
( 1 ) ( 0 ,x) = ( 1 − ρ)/ x.

(b) For all x > 0,

G2
( 1 ) (t ,x) =

x
2 ( 1 − ρ)_ ________ [ 1 − G 1 (t ,x) ] , (62)
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and

G2
( 2 ) (t ,x) = −

x 2

2 ( 1 − ρ)_ ________ [ 1 − ρ − p x0 (t) ] , (63)

so that G2
( 1 ) ( 0 ,x) = 2 ( 1 − ρ)/ x and G2

( 2 ) ( 0 ,x) = − 2 ( 1 − ρ)2 / x 2 .

Proof. (a) Note that

G1
( 1 ) (t ,x) =

dt
d_ __




1 −

x

d 1 (t ,x)_ ______




=
x

− m1′ (t ,x) + m1′ (t , 0 )_ __________________

=
x

ρ − 1 − p x0 (t)_ _____________ by ( 17 ) .

(b) Apply Theorem 13(b) and Theorem 14(b).

Remark 7.2. Additional properties of the moment-difference cdf’s can be obtained as in §10 of

Abate and Whitt (1987b); e.g., the cdf’s G 1 (t ,x) are stochastically increasing in x.

8. Complementary-CDF CDF’s

As in §1.7 of Abate and Whitt (1987a), we can focus on the full time-dependent distribution

starting empty instead of the time-dependent moments starting empty, by considering

complementary-cdf cdf’s. For this purpose, let

H y (t) =
P(W(∞) > y)

P(W(t) > yW( 0 ) = 0 )_ _____________________ , t ≥ 0 . (64)

To characterize the complementary-cdf cdf’s, let T 0y be the first passage time from 0 to the

open interval (y,∞) by the net input process Y in (14). Since ρ < 1, Y(t) → − ∞ as t → ∞, so

that T 0y has a defective distribution, i.e., P(T 0y < ∞) < 1. However, the complementary-cdf

cdf’s can be expressed in terms of the conditional cdf’s of T 0y given that T 0y < ∞.

Theorem 16. For each y > 0, H y is a bonafide cdf and
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H y (t) =
P(T 0y < ∞)

P(T 0y ≤ t)_ __________ = P(T 0y ≤ tT 0y < ∞) , t > 0 .

Proof. By Proposition 3, P(W(t) > yW( 0 ) = 0 ) is nondecreasing in t and, by (22),

P(W(t) > yW( 0 ) = 0 ) = P(M(t) > y) (65)

and

P(W(∞) > y) = P(M(∞) > y) . (66)

Moreover, M(t) > y if and only if T 0y ≤ t, which implies that M(∞) > y if and only if T 0y < ∞.

(We use the fact that T 0y is the first passage time to the open interval (y,∞).) Consequently,

P(M(t) > y) = P(T 0y ≤ t) (67)

and

P(M(∞) > y) = P(T 0y < ∞) . (68)

Combining (65)–(68) yields the result.

Unfortunately, however, the complementary-cdf cdf’s are more complicated than the moment

cdf’s; e.g., we have yet to determine the moments of H y . The situation is much nicer for RBM;

see §1.7 of Abate and Whitt (1987a).

9. Remaining Proofs

In this section we provide the remaining proofs. We start with some lemmas needed in the

proof of Proposition 1.

Lemma 1. For all positive integers n and k,

E[ (
j = 1
Σ
n

S j ) k ] ≤ n kE[S k ] .

Proof. By convexity and Jensen’s inequality, p. 47 of Chung (1974),
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E[ (n − 1

j = 1
Σ
n

S j ) k ] ≤ n − 1

j = 1
Σ
n

E[Sj
k ] = E[S k ] .

Lemma 2. For all t > 0 and all positive integers k,

E[X(t) k ] ≤ E[A(t) k ] E[S k ] .

Proof. Conditioning on A(t) and applying Lemma 1, we obtain

E[X(t) k ] = EE[ (
j = 1
Σ

A(t)
S j ) kA(t) ] ≤ E[A(t) k ] E[S k ].

Proof of Proposition 1. (a) Let 1 B be the indicator function of the set B. Note that

[W( 0 ) − t] + + 1 {A(t) − A(t − 1 ) ≥ 1 } (S − 1 ) + ≤ W(t) ≤ W( 0 ) + X(t) ,

so that

j = 0
Σ
k 

j
k
[ (W( 0 ) − t) + j ] ( 1 − e − ρ ) E[ (S − 1 ) + (k − j) ] ≤ m k (t)

≤
j = 0
Σ
k 

j
k
m j ( 0 ) E[X(t) k − j ] . (69)

Since

E[Zr ]1/ r ≤ E[Zs ]1/ s for 1 ≤ r < s (70)

for any random variable Z, the right side of (69) is finite, and thus m k (t) < ∞, if m k ( 0 ) < ∞ and

E[X(t) k ] < ∞, but E[X(t) k ] < ∞ if E[S k ] by Lemma 2. On the other hand, by (70), for the left

side of (69) to be finite it is necessary and sufficient that E[ (W( 0 ) − t) + k ] < ∞ and

E[ (S − 1 ) + k ] < ∞. However, it is easy to see that if E[S k ] = ∞, then E[ (S − 1 ) + k ] = ∞.

Similarly, if E[ (W( 0 ) − t) + k ] = ∞, then E[W( 0 ) k ] = ∞.

(b) Let W(t ,x) be the workload process with W( 0 ) = x. By Proposition 3, W(t , 0 ) is

stochastically increasing, so that W(t , 0 ) = = > W(∞) and m k (t , 0 ) → m k (∞) as t → ∞ for all k.

Since ρ < 1, we can apply the strong law of large numbers to deduce that Y(t) → − ∞ w.p.1 as

t → ∞. Hence, W(∞) =
d

t ≥ 0
sup {Y(t) } is a proper random variable. By the coupling argument in
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Theorem 7.3 of Abate and Whitt (1987b), D(t ,x) ≡ W(t ,x) − W(t , 0 ) has decreasing sample

paths with D(t ,x) → 0 w.p.1 as t → ∞ for all x, because Y(t) → − ∞ w.p.1. Consequently,

W(t) = = > W(∞) as t → ∞ for all W( 0 ).

(c) Since E[D(t ,x) k ] ≤ m k ( 0 ) < ∞ and W(t ,x) k = (W(t , 0 ) + D(t ,x) ) k ,

m k (t ,x) =
j = 0
Σ
k 

j
k
E[W(t , 0 ) j ] E[D(t ,x) k − j ]

and m k (t) → m k (∞) as t → ∞ for all W( 0 ). It thus remains to show that m k (∞) < ∞ if and

only if E[S k + 1 ] < ∞. For this final result, we apply the classical random walk arguments; see

Kiefer and Wolfowitz (1956), Lemoine (1976) and Chapter VIII of Asmussen (1987). In

particular, we can apply PASTA (Poisson Arrivals See Time Averages) to see that W(∞) is

distributed the same as the stationary distribution of the discrete-time waiting-time process. Then

we apply Theorem 2.1 on p. 184 of Asmussen, noting that the condition E[ (X + ) k + 1 ] < ∞ there

is equivalent to E[S k + 1 ] < ∞.

We now prove a lemma to be used in the proof of Theorem 2.

Lemma 3. For all positive integers k,

E[X(ε) k ] = λ εE[S k ] + o(ε) as ε → 0 .

Proof. Conditioning on A(ε), we obtain

E[X(ε) k ] = E[E[ (
j = 1
Σ

A(ε)
S j ) kA(ε) ] ]

= E[S1
k ] P(A(ε) = 1 ) +

m = 2
Σ
∞

E[


j = 1
Σ
m

S j





k

] P(A(ε) = m) ,

where

E[S1
k ] P(A(ε) = 1 ) = E[S k ] (λ ε + o(ε) ) (71)

and, by Lemma 1,
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m = 1
Σ
∞

E[ (
j = 1
Σ
m

S j ) k ] P(A(ε) = m) ≤
m = 2
Σ
∞

m kE[S k ]
m!

(λ ε) me − λ ε
_ _________

≤ ε2 E[S k ] e λ

m = 2
Σ
∞

m k

m!
λme − λ
_ ______ ≤ ε2 E[S k ] e λ E[A( 1 ) k ] = O(ε2 ) . (72)

Combining (71) and (72) gives the desired result.

Proof of Theorem 2. (a) The main idea of the proof was sketched in §2. To be rigorous, we now

bound m k (t + ε) − m k (t) above and below by quantities that we can analyze more easily. The

upper bound has the input of work X(t + ε) − X(t) in (t , t + ε] come at the end of the interval;

the lower bound has it occur at the beginning of the interval. We write X(ε) for X(t + ε) − X(t)

below, with the understanding that it is independent of W(t). In particular, note that

m k (t + ε) − m k (t) ≤ E[ ( (W(t) − ε) + + X(ε) ) k ] − E[W(t) ] ,

where

E[ (W(t) − ε) + + X(s) ) k ] =
j = 0
Σ
k 

j
k
E[ (W(t) − ε) + j ] E[X(ε) k − j ]

= E[ (W(t) − ε) + k ] +
j = 0
Σ

k − 1 
j
k
E[ (W(t) − ε) + j ] (ρ εE[S k − j ] + o(ε) by Lemma 3

= E[W(t) k ] − kεE[W(t) k − 1 ] + ρ ε
j = 0
Σ

k − 1 
j
k
E[W(t) j ] E[S k − j ] + o(ε) ,

so that

ε
E[ ( (W(t) − ε) + + X(ε) ) k ] − E[W(t) k ]_ __________________________________ → ρ

j = 0
Σ

k − 1 
j
k
m j (t) E[S k − j ] − km k − 1 (t)

as ε → 0, as in (17). Next, note that

m k (t + ε) − m k (t) ≥ E[ (W(t) + X(ε) − ε] + k ] − E[W(t) k ] ,

where

E[ (W(t) + X(ε) − ε) + k ] = E[ (W(t) + X(ε) − ε) + kW(t) > 0 ] P(W(t) > 0 )
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+ E[ (X(ε) − ε) + k ] P(W(t) = 0 ) .

For ε < x,

E[ (W(t) + X(ε) − ε) + kW(t) = x] = E[ (x + X(ε) − ε) k ]

=
j = 0
Σ
k 

j
k
x j E[ (X(ε) − ε) k − j ]

= x k + kx k − 1 (ρ ε − ε) +
j = 0
Σ

k − 2
j
k
x j [ρ εE[S k − j ] + o(ε) ]

by Lemma (3), while

E[ (X(ε) − ε) + k ] = ρ εE[S k ] + o(ε) by Lemma 3.

Hence,

m k (t + ε) − m k (t) ≥ ρ ε
j = 1
Σ

k − 2
j
k
m j (t) E[S k − j ] − ( 1 − ρ) εkm k − 1 (t) + ρ εE[S k ] + o(ε) .

Since the upper bound and lower bound have identical limits, the derivative exists and equals the

common limit.

(b) By part (a), mk + 1′ (t) exists and has the form (19) with k replaced by (k + 1 ). By

Proposition 1, m j (t) → m j (∞) < ∞ for all j ≤ k. Hence, by (19), mk + 1′ (t) converges to a finite

limit, say mk + 1′ (∞). If E[S k + 2 ] < ∞, then m k + 1 (t) → m k + 1 (∞) by Proposition 1 and

mk + 1′ (∞) must be 0. However, the situation is more complicated if E[S k + 1 ] < ∞ = E[S k + 2 ],

because then m k + 1 (∞) = ∞. We treat this case by truncating the service-time distribution and

taking limits. Let S x = min {S ,x}. For each x > 0, E[Sx
k ] < ∞ for all k. Let W x (t) and mk

x (t)

be W(t) and m k (t) when the service-time distribution is S x . It is easy to see that W x (t)

approaches W(t) from below w.p.1 as x → ∞. Moreover, mk
x (∞) → m k (∞) as x → ∞ for each

k. Hence, by (15) with t = ∞, 0 = mk + 1
x′ (∞) → mk + 1′ (∞) as x → ∞.
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