Resource Pooling and Staffing in Call Centers with Skill-Based Routing

Ward Whitt

IEOR Department, Columbia University

http://www.columbia.edu/~ww2040
Joint work with:

Rodney B. Wallace

IBM and George Washington University

Thesis: Performance Modelling and Design of Call Centers with Skill-Based Routing

Advisors: William A. Massey (Princeton), Thomas A. Mazzuchi (GW) and Ward Whitt (Columbia)
Multiple Types of Calls and Agents

skill-based routing

call types

server pools
First Contribution:
Routing and Provisioning Algorithm

Minimize the Required Staff and Telephone Lines
While Meeting the Service level Agreement (SLA)

\[P(\text{Delay} \leq 30 \text{ seconds}) \geq 0.80 \]
\[P(\text{Blocking}) \leq 0.005 \]

(service level may depend on call type)
Second Contribution:

Demonstrate Resource-Pooling Phenomenon

A small amount of cross training (multiple skills) produces almost the same performance as if all agents had all skills (as in the single-type case).

Simulation Experiments
Precedents

Joining One of Many Queues

A small amount of flexibility produces almost the same performance as if there is maximal flexibility.

- Azar, Broder, Karlin and Upfal (1994),
- Vvedenskaya, Dobrushin and Karpelovich (1996),
- Turner (1996, 1998),
- Mitzenmacher (1996) and
- Mitzenmacher and Vöcking (1999)
Outline

1. SBR Call-Center Model
2. Resource-Pooling Experiment
3. Provisioning Algorithm
4. Simulation to Show Performance
1. C agents, $C + K$ telephone trunklines, and n call types.

2. **Non-preemptive Priorities (NPrPr)** - Calls are processed in priority order. Calls are worked to completion once they are handed to an agent.

3. **Longest-Idle-Agent Routing (LIAR) Policy** - Calls are forwarded to the agent who has been waiting the longest since his last job completion and has the highest skill to handle the request.
Agent-Skill Matrix - $C \times n$

4. **Agent-Skill Profile** - Predefined in an agent-skill matrix $A \equiv (a_{ij})$ as

$$a_{ij} = \begin{cases}
 k & \text{when agent } i \ \text{supports call type } k \\
 0 & \text{otherwise.}
\end{cases}$$

where $i = 1, \ldots, C$, $1 \leq k \leq n$, and $1 \leq j \leq n$.

Examples:

$$A_{5\times 1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad A_{3\times 2}^{(1)} = \begin{pmatrix} 1 & 0 \\ 2 & 0 \\ 2 & 0 \end{pmatrix}, \quad A_{4\times 2} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 2 & 1 \end{pmatrix}, \quad A_{6\times 4} = \begin{pmatrix} 3 & 4 & 1 & 0 \\ 1 & 4 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 3 & 1 & 2 & 4 \\ 1 & 0 & 4 & 0 \end{pmatrix}$$
What to do when an Arrival occurs

Arrival Event →

Update System States
Determine Call Type
Schedule Next arrival →

Are all agents busy?

Yes → Search Idle Agent Queue for First Available Agent →

Primary Skill Agent Idle?

Yes →

route_cust_to_agent()

No →

n-th Skill Level Agent Idle?

Yes →

route_cust_to_agent()

No →

place_cust_in_q()

Return
What to do when an Agent becomes free

Agent i Departure Event

- Are all the queues empty?
 - Yes: make_server_idle()
 - No: Check each Supported Queue in Priority Order for First Waiting Customer

- Is Primary Skill Queue Empty?
 - Yes
 - No: Is nth Skill Level Queue Empty?
 - Yes
 - No: get_waiting_cust()
Resource-Pooling Experiment
Model Assumptions

1. **Arrival Process** - n types of calls arrive at the call center according to n mutually independent Poisson processes with rate λ_i, $1 \leq i \leq n$. [$n = 6$, $\lambda_i = 1.40$ for all i]

2. **Service Time Process** - Call holding (service) times are mutually independent exponential random variables with mean $1/\mu_i$ which are independent of the arrival process, $1 \leq i \leq n$. [$1/\mu_i = 1/\mu = 10$ minutes for all i]

3. **Offered Loads** - $\alpha_i = \lambda_i/\mu_i$ [$\alpha_i = 14$ for all i, so the total offered load is $\alpha = 84$]

4. **Agents and Telephone lines** [$C = 90$ and $K = 30$ ($C + K = 120$)]
Agents are given k skills, $1 \leq k \leq 6$

Three Loads: Target (84), Light (77.4), Heavy (90)
SBR Provisioning

- Solves the problem of determining the minimum number of agents C and the minimum number of telephone trunklines $C + K$ needed to meet service level targets.

- Exploits resource pooling results.

- Exploits $M/M/C/K$ results to determine initial estimate for (C, K).

- Uses fair agent skill assignment scheme to construct agent skill matrix satisfying general agent skill profile.

- Simulation runs are performed to make improvements on the initial assignment using two heuristic algorithms.
The Initial Algorithm

1. GIVEN:
 \(i = 1, \ldots, n \)
 - Forecast Statistics \(\lambda_i, \mu_i \)
 - Service Levels \(\tau, \delta, \epsilon \)
 - Agents Skill Profile

2. Compute:
 \(\lambda = \sum_{i=1}^{n} \lambda_i \), \(1/\mu = \lambda \sum_{i=1}^{n} \lambda_i / \mu_i = \lambda \sum_{i=1}^{n} \rho_i \)

3. Determine \((C, K) \):
 1. Exact M/M/C/K
 2. Ad Hoc Erlang or
 3. Asymptotic

4. Determine \(C_i \) for \(i = 1, \ldots, n \):
 1. \(C_i = \rho_i + x\sqrt{\rho_i} \) or
 2. \(C_i = \rho_i / \rho \cdot C \)
 Note: \(C = C_1 + \ldots + C_n \)

5. Construct Agent Skill’s Matrix \(A_{Cas} \)

6. Initialize and Run SBR Simulator

7. Is \(P(D_i > \tau | Q < C + K) \leq \delta \) ?
 \(i = 1, \ldots, n \)
 - Yes
 \(K = K + 1 \)
 - No

8. Is \(P(Q = C + K) \leq \epsilon \)?
 - Yes
 Done
SBR Unbalanced Provisioning Example

- Call volume is $\lambda_1 = \lambda_2 = 0.425$, $\lambda_3 = 1.05$, $\lambda_4 = 1.375$, $\lambda_5 = 1.925$, and $\lambda_6 = 3.05$ calls/min.

- Service times are $1/\mu_1 = \ldots = 1/\mu_6 = 10$ mins

- Agents Skill Profile: Agents have 2 skills each.

- Service level targets
 1. Blocking service level target is 0.5%.
 2. 80% of the calls are answered within $\tau = 0.5$ minute.

- Square-root safety method for distributing agents into work groups is used.

- It is known that the total number of agents required is between 90 (best-case) and 106 (worse-case). Similarly, the telephone trunkline capacity is between 111 and 156.
<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>1 (90)</th>
<th>2 (91)</th>
<th>3 (92)</th>
<th>4 (93)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blocking (%)</td>
<td>0.53</td>
<td>0.42</td>
<td>0.36</td>
<td>0.30</td>
</tr>
<tr>
<td>4. $\mathcal{P}(\text{Delay} \leq 0.5</td>
<td>\text{entry})$</td>
<td>81.3</td>
<td>83.9</td>
<td>86.5</td>
</tr>
<tr>
<td>5. $\mathcal{P}(\text{Delay}_1 \leq 0.5</td>
<td>\text{entry})$</td>
<td>68.3</td>
<td>75.5</td>
<td>78.4</td>
</tr>
<tr>
<td>5. $\mathcal{P}(\text{Delay}_2 \leq 0.5</td>
<td>\text{entry})$</td>
<td>65.2</td>
<td>74.9</td>
<td>77.8</td>
</tr>
<tr>
<td>5. $\mathcal{P}(\text{Delay}_3 \leq 0.5</td>
<td>\text{entry})$</td>
<td>79.7</td>
<td>81.8</td>
<td>84.7</td>
</tr>
<tr>
<td>5. $\mathcal{P}(\text{Delay}_4 \leq 0.5</td>
<td>\text{entry})$</td>
<td>82.0</td>
<td>83.6</td>
<td>86.5</td>
</tr>
<tr>
<td>5. $\mathcal{P}(\text{Delay}_5 \leq 0.5</td>
<td>\text{entry})$</td>
<td>83.4</td>
<td>86.2</td>
<td>87.8</td>
</tr>
<tr>
<td>5. $\mathcal{P}(\text{Delay}_6 \leq 0.5</td>
<td>\text{entry})$</td>
<td>84.4</td>
<td>85.8</td>
<td>88.7</td>
</tr>
<tr>
<td>Performance Measure</td>
<td>Number of Iterations (Agents)</td>
<td>4 (93)</td>
<td>5 (92)</td>
<td>6 (92)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1. Blocking (%)</td>
<td></td>
<td>0.30</td>
<td>0.35</td>
<td>0.36</td>
</tr>
<tr>
<td>4. $P(\text{Delay} \leq 0.5</td>
<td>\text{entry})$</td>
<td></td>
<td>88.8</td>
<td>86.5</td>
</tr>
<tr>
<td>5. $P(\text{Delay}_1 \leq 0.5</td>
<td>\text{entry})$</td>
<td></td>
<td>80.5</td>
<td>78.0</td>
</tr>
<tr>
<td>5. $P(\text{Delay}_2 \leq 0.5</td>
<td>\text{entry})$</td>
<td></td>
<td>80.3</td>
<td>77.6</td>
</tr>
<tr>
<td>5. $P(\text{Delay}_3 \leq 0.5</td>
<td>\text{entry})$</td>
<td></td>
<td>88.0</td>
<td>86.1</td>
</tr>
<tr>
<td>5. $P(\text{Delay}_4 \leq 0.5</td>
<td>\text{entry})$</td>
<td></td>
<td>88.8</td>
<td>87.2</td>
</tr>
<tr>
<td>5. $P(\text{Delay}_5 \leq 0.5</td>
<td>\text{entry})$</td>
<td></td>
<td>89.8</td>
<td>87.7</td>
</tr>
<tr>
<td>5. $P(\text{Delay}_6 \leq 0.5</td>
<td>\text{entry})$</td>
<td></td>
<td>90.9</td>
<td>88.0</td>
</tr>
</tbody>
</table>
Unbalanced SBR Provisioning Example Summary

<table>
<thead>
<tr>
<th></th>
<th>Best Case</th>
<th>Actual Perf.</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(C, C + K)$</td>
<td>(90, 111)</td>
<td>(91, 111)</td>
<td>(106, 156)</td>
</tr>
<tr>
<td>Workgroup 1 C_1</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Workgroup 2 C_2</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Workgroup 3 C_3</td>
<td>11</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Workgroup 4 C_4</td>
<td>15</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Workgroup 5 C_5</td>
<td>21</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>Workgroup 6 C_6</td>
<td>33</td>
<td>28</td>
<td>36</td>
</tr>
</tbody>
</table>