ABSTRACT

Simulation is used to evaluate the performance of alternative service-rate controls designed to stabilize performance in a queue with time-varying arrival rate, service in order of arrival and unlimited waiting space. Both Markovian and non-Markovian models are considered. Customer service requirements are i.i.d. and specified separately from the service rate, which is subject to control. New versions of the inverse method exploiting tables constructed outside the simulation are developed to efficiently generate both the arrival times and service times. The simulation experiments show that a rate-matching service-rate control successfully stabilizes the expected queue length, but not the expected waiting time, while a new square-root service-rate control, based on a assuming that a pointwise-stationary approximation is appropriate, successfully stabilizes the expected waiting time when the arrival rate changes slowly compared to the expected service time. (draft: March 30, 2015)

1 INTRODUCTION

In this paper we study alternative service-rate controls to stabilize performance in a single-server queue with time-varying arrival rate and i.i.d. service requirements specified independently of the service rate actually provided. Our study parallels He, Liu, and Whitt (2015) and earlier papers cited there that develop time-varying staffing levels (number of servers) to stabilize performance in multi-server queues with flexible staffing.

The present problem of service-rate control is important for systems with only a few servers or with inflexible staffing. In many applications, even though the available service resources are fixed, it is possible to change the processing rate. Two important examples are hospital surgery rooms and airport security lines. The number of hospital surgery rooms often cannot be changed in the short term, but assigning more doctors and nurses can increase the operation completion rate in each surgery room. Similarly, the number of airport security lines may be fixed in the short term, but adding more inspection agents or relaxing inspection requirements can increase the passenger processing rate in each line. In these settings the possible service rates that can be achieved may be limited, but to gain insight into the potential benefits of controlling the service rate, we study the idealized case of a single server where the service rate is fully subject to control.

Specifically, we consider a class of general $GI_t/GI_t/1$ single-server queues with unlimited waiting space, service in order of arrival, a time-varying arrival rate, and a time-varying service rate that is subject to control. We use stylized sinusoidal arrival rate functions with a range of parameters. We consider arrival processes that are time-transformed stationary renewal processes, with the specified arrival rate function. We assume that the service requirements are i.i.d. random variables with a general distribution, specified
independently of the service rate control. The general GI arrival and service processes allow different levels of stochastic variability to go with the predictable deterministic variability of the time-varying rates.

We develop new methods to simulate these nonstationary non-Markovian queueing models. As in §7 of Massey and Whitt (1994), Gerhardt and Nelson (2009), Liu, Kuhl, Liu, and Wilson (2014) and He, Liu, and Whitt (2015), we represent the arrival process as the composition of a rate-1 stationary point process and the deterministic cumulative arrival rate function. For this study we use renewal processes for the base rate-1 process, but the method is more general. We efficiently generate both the service times and the arrival times by exploiting tabled inverse functions, as can be done in generating non-uniform random numbers; see §11.2 and §III.2 of Devroye (1986) and §3.8 of L’Ecuyer (2012).

We conduct simulation experiments to study the performance of the service-rate controls to stabilize performance in these systems. We consider four different service-rate controls: a rate-matching control that makes the service rate proportional to the arrival rate and three square-root service-rate controls. The first square-root service-rate control is a natural analog of the offered-load square-root-staffing formula used for many-server queues, where the offered load is the expected number of busy servers in an associated infinite-server system with the same arrival rate and a service-time distribution. Since the service-time distribution is unavailable in advance, we use the service-requirement distribution. The second square-root service-rate control is a variant of the first, in which the arrival rate is used in place of the offered load. The third square-root service-rate control is obtained by solving a quadratic equation, based on a steady-state heavy-traffic approximation assuming that a pointwise-stationary approximation (PSA) is appropriate; see Green, Kolesar, and Whitt (2007).

We show that the rate-matching control stabilizes the expected queue length, but not the expected waiting time, consistent with theoretical results established in Whitt (2014). We show that the expected waiting time tends to be inversely proportional to the arrival rate. We show that the first two square-root service-rate controls that are analogs of the square-root staffing formula for multiple server queues stabilize the mean waiting times to some extent, but not fully. We show that the final square-root control based on the PSA is effective for long cycles, where the PSA is effective, but not more generally.

The remainder of this paper is organized as follows. In §2, we discuss the simulation methodology for generating the nonstationary non-Markovian models. In §3 we define the different service-rate controls; in §4 we describe the simulation experiments; and in §5 we show some of the results.

2 SIMULATION METHODS FOR NONSTATIONARY MODELS

In §2.1 we define the model. Then in §2.2 and §2.3 we describe the new methods to generate the arrival times and the service times, after which the simulation is elementary.

2.1 The Model

We construct the arrival and service processes by using deterministic time-transformations of general rate-1 processes. We first consider the arrival counting process A, where $A(t)$ counts the number of arrivals occurring in the time interval $[0,t]$. We define A using a cumulative arrival rate function

$$\Lambda(t) = \int_0^t \lambda(s) \, ds, \quad t \geq 0, \quad \text{where} \quad 0 < \lambda_L \leq \lambda(t) \leq \lambda_U < \infty,$$

and a general rate-1 counting process N_a with unit jumps. We define A by the composition

$$A(t) \equiv N_a(\Lambda(t)), \quad t \geq 0. \quad (2)$$

Given that $E[N_a(t)] = t$, $t \geq 0$ (the rate-1 property), A defined by (2) has the specified rate: $E[A(t)] = E[N_a(\Lambda(t))] = \Lambda(t)$. The deterministic function $\Lambda(t)$ specifies the predictable variability, while all the unpredictable stochastic variability is specified by the base counting process N_a. This construction is without
loss of generality, because given any \(A \) with unit jumps and \(E[A(t)] = \Lambda(t) \), we can let \(N_u = A(\Lambda^{-1}(t)) \), \(t \geq 0 \), where \(\Lambda^{-1} \) is the inverse of \(\Lambda \), which is well defined. Hence, (2) holds with \(E[N_u(t)] = t, t \geq 0 \).

We now turn to the service process. Paralleling our model of the arrival process, we assume that the service requirements are generated by a counting process \(N_s \) with unit jumps, which is independent of \(N_u \). We define the evolution of the queueing model, given the arrival process \(A \), the service requirement process \(N_s \) and the time-varying service-rate control \(\mu(t) \), by jointly defining the number in system \(Q(t) \) and the departure counting process \(D(t) \). In particular, we require that these processes satisfy the two equations

\[
Q(t) = A(t) - D(t) \quad \text{and} \quad D(t) \equiv N_s\left(\int_0^t \mu(s)1_{\{Q(s) > 0\}} \, ds\right), \quad t \geq 0, \tag{3}
\]

The representation (3) can be justified by applying mathematical induction to the successive event changes in \(Q(t) \); see §2.1 of Pang, Talreja, and Whitt (2007). Note that the process \(D \) has the service rate \(\mu(t) \) whenever the system is not empty: \(E[D(t)] = \int_0^t \mu(s)1_{\{Q(s) > 0\}} \, ds, t \geq 0 \).

We let the service requirements \(S_k \) be i.i.d random variables with a general cdf \(G \) having mean 1 and finite second moment. If the mean were not actually 1 initially, we could rescale both these service requirements and the service-rate control to make it so, so that is without loss of generality. The associated rate-1 counting process is the equilibrium version of the renewal counting process, which differs from the ordinary renewal counting process only by having the first interval having the stationary-excess cdf \(G_e(t) = \int_0^t [1 - G(s)] \, ds, t \geq 0 \), instead of the cdf \(G \) of all other intervals. The same holds for the arrival process. We will generate \(N_u \) using i.i.d. random variables with mean 1; then the associated rate-1 process is the equilibrium renewal process.

Often an exceptional first interval is not too important, and can be considered part of the initial conditions, along with starting the queueing system empty. We then can generate both the arrival process and the service process using ordinary renewal processes with mean-1 inter-renewal times. Then the arrival rate is asymptotically correct as \(t \to \infty \).

To simulate the model, we first generate the successive arrival times and then the successive service times. It is then straightforward to construct the associated queueing processes. We next describe the two generation steps.

2.2 Generating the Arrival Process

Let \(A_k \) and \(T_k \) be the arrival times of the \(k \)th arrival in the processes \(A \) and \(N_u \). The basic construction in (2) implies that \(T_k = \Lambda(A_k) \), so that \(A_k = \Lambda^{-1}(T_k) \), \(k \geq 1 \). In our applications using a base renewal process, the times \(T_k \) are directly available; e.g., we can generate \(n \) i.i.d. uniform random variables on \([0,1]\) and calculate \(\tilde{U}_k = G^{-1}(\tilde{U}_i), 1 \leq k \leq n \), to get random variables with the desired cdf \(G \), where \(n \) is large enough to ensure that arrivals cover our considered time interval; see Devroye (1986), L’Ecuyer (2012). Then the renewal times of the base process \(N_u \) are their partial sums \(T_k = \sum_{i=1}^k \tilde{U}_i, 1 \leq k \leq n \). If desired, we can obtain an independent random variable approximately distributed as \(G_e \) to use as the first time by fixing a large time \(t \), beyond our range of interest, and letting the random variable be the observed excess after \(t \) in the ordinary renewal process. The challenge is to apply the inverse function \(\Lambda^{-1} \) to each time \(T_k \) in order to generate \(A_k \).

In our simulation experiments, the arrival rate function is sinusoidal, with

\[
\lambda(t) = 1 + \beta \sin(\gamma t) \quad \text{and} \quad \Lambda(t) = t + (\beta/\gamma)(1 - \cos(\gamma t)), \tag{4}
\]

but the inverse evidently is not directly available. Hence, we calculate the inverse function outside of the simulation and have it available to apply by table lookup. We take care to do this efficiently.

First, we exploit the fact the arrival rate function is periodic. That allows us to only table the inverse over a single cycle. We use the property that \(\Lambda(kC) = kC, k \geq 1 \), where \(C \) is the periodic cycle length. As a consequence, \(\Lambda^{-1}(kC) = kC, k \geq 1 \), and

\[
\Lambda^{-1}(kC + t) = kC + \Lambda^{-1}(t), \quad 0 \leq t < C. \tag{5}
\]
Thus we only need to table the inverse function \(\Lambda^{-1} \) over a single cycle \([0, C]\).

We next develop an efficient way to construct the table of \(\Lambda^{-1} \) over a single cycle \([0, C]\). We specify a large number \(n_x \) of equally spaced points of one cycle \([0, C]\), yielding the spacing \(\eta = C/n_x \). We then evaluate \(\Lambda(t) \) for each of the \(n_x \) time points \(t = j\eta \).

To have an efficient way of calculating the inverse, we construct an approximation \(J \) of the inverse function \(\Lambda^{-1} \) over \(n_y \) equally spaced points in the interval \([0, \Lambda(C)] = [0, C] \) with spacing \(\delta = C/n_y \). We then approximate the inverse at each point \(j\delta \) by the inverse function value \(k\eta \), which is the closest point greater equal to the true inverse value, This produces a strictly increasing function \(b \) (vector) mapping the finite subset \(\{ j : 0 \leq j \leq n_y \} \) into the finite subset \(\{ k : 0 \leq k \leq n_x \} \), so that

\[
J(j\delta) = b(j)\eta, \quad 1 \leq j \leq n_y.
\]

We extend \(J \) to the interval \([0, C]\) by letting \(J(t) = J(\lfloor t/\delta \rfloor \delta) \), where \(\lfloor x \rfloor \) is the floor function, producing the greatest integer less than or equal to \(t \).

We then specify \(\eta \) and \(\delta \) to ensure that \(J \) is a suitably accurate approximation of \(\Lambda^{-1} \). By the construction above, it follows that the uniform error bound

\[
\|J - \Lambda^{-1}\| \leq \varepsilon
\]

is achieved if

\[
\eta = \varepsilon/(1 + \omega) \quad \text{and} \quad \delta = \lambda_U \eta, \quad \text{where} \quad \omega = \lambda_U/\lambda_L > 1,
\]

with \(\lambda_L \) and \(\lambda_U \) being the lower and upper rate bounds in (1).

To construct the vector \(b \) above and thus the function \(J \) in (6), we need two vectors of size \(n_x \) and \(n_y \), where \(n_x + n_y = C(1 + \omega)(1 + (1/\lambda_U))/\varepsilon \). Thus, we need storage of order \(O(n_x + n_y) = O(C/\varepsilon) \). Since we are able to make a single pass through the data, the computational complexity is of order \(O(n_x + n_y) = O(C/\varepsilon) \). With the table, we do not need to do any search for each arrival to get its approximate inverse function value. It only takes two operations for each arrival. Therefore the computation time for calculating arrival times from the table is linear in the number of arrivals.

2.3 Generating the Service Times

We use a similar inverse function method to generate the service times, but the method is more complicated, because to apply (3) we need to keep track of when the server is busy. Thus, we start by developing a recursion.

Let \(B_k, D_k, V_k \) and \(W_k \) be the times that arrival \(k \) who arrives at \(A_k \) begins service, departs, spends in service and waits before starting service, respectively. Then we have the basic recursion: \(B_k = \max\{D_{k-1}, A_k\} \)

\[
D_k = B_k + V_k \quad \text{and} \quad W_k = B_k - A_k,
\]

where the arrival times \(A_k \) have been generated already. Given that the system starts empty, we can initialize the recursion with \(D_0 = 0 \) and \(B_1 = A_1 \), so that the only variable not formulated in the recursion is the service time \(V_k \).

Since the service requirement \(S_k \) is completed by the server busy working from time \(B_k \) to time \(B_k + V_k \), the service time \(V_k \) satisfies the equation

\[
S_k = \int_{B_k}^{B_k + V_k} \mu(s) \, ds, \quad k \geq 1.
\]

We can solve for service times explicitly by

\[
V_k = M^{-1}(S_k + M(B_k)) - B_k, \quad \text{where} \quad M(t) \equiv \int_0^t \mu(s) \, ds
\]

and \(M^{-1} \) is the inverse of \(M \), which is well defined providing that \(0 < \mu_L \leq \mu(t) \leq \mu_U < \infty \), paralleling (1), which we assume to be the case.
Again we work to reduce the computational burden. Just as for the arrival rate function, we see that the function \(M \) is typically periodic, so that we only need to compute \(M^{-1} \) over a single cycle. We avoid performing the integration in the direct definition of \(M \), so that we approximate the function \(M \) by the piecewise constant function \(M(x(i)) = \int_0^{(i)} \mu(s)ds \approx \sum_{j=1} \mu(x(j)) \tau \), implemented with the recursion \(M(x(i+1)) = M(x(i)) + \mu(x(i+1))\tau \) for suitably small \(\tau \), starting with \(M(x(0)) = 0 \). To obtain the \(M^{-1} \) value for each customer, we table the inverse function much as we did for \(\Lambda^{-1} \).

3 THE SERVICE-RATE CONTROLS

In this section, we specify the different service-rate controls that we consider.

3.1 The Rate-Matching Control

The first service-rate control is the rate-matching control

\[
\mu(t) \equiv \lambda(t)/\rho, \quad t \geq 0,
\]

where \(\rho \) is the desired traffic intensity. Clearly, the instantaneous traffic intensity is \(\rho(t) \equiv \lambda(t)/\mu(t) \) is constant. The simulation experiments show that this control stabilizes the expected queue length (in fact, the entire queue-length distribution), but not the expected waiting time.

3.2 Square-Root Controls Motivated by the Multi-Server Offered-Load Control

We consider two variants of the classical square-root staffing rule for multi-server queues, which lets the time-varying number of servers (staffing) be

\[
s(t) \equiv m(t) + \xi \sqrt{m(t)}, \quad t \geq 0,
\]

where \(\xi \) is a constant and the \(m(t) \) is the offered load, which is the expected number of busy servers in the infinite-server system with the same arrival process and service times. The first square-root control is the direct analog

\[
\mu(t) \equiv m(t) + \xi \sqrt{m(t)}, \quad t \geq 0,
\]

where both \(m(t) \) and \(\xi \) need to be modified. Since we have time-varying service rates, it is unclear what service times should be used in the infinite-server model. We use the service-requirement distribution directly. For the sinusoidal arrival rate function in (4), explicit formulas for \(m(t) \) is given in Eick, Massey, and Whitt (1993); for exponential service times, \(m(t) = 1 + (\beta/(1+\gamma^2))(\sin\gamma t - \gamma \cos\gamma t) \).

The second variant of (12) is (13) with \(\lambda(t) \) instead of \(m(t) \), i.e.,

\[
\mu(t) \equiv \lambda(t) + \xi \sqrt{\lambda(t)}, t \geq 0,
\]

Simulations experiments show that these service-rate controls adapted from the multi-server staffing formula stabilize the performance to some extent but are not truly effective for the single-server system.

3.3 The PSA-Based Square-Root Control

To obtain a service-rate control that is effective for stabilizing the mean waiting time, we start by assuming that the PSA approximation is appropriate, so that we can use a time-varying heavy-traffic approximation

\[
E[W(t)] \approx \rho(t)V/\mu(t)(1 - \rho(t)) = \lambda(t)V/(\mu(t)^2 - \mu(t)\lambda(t)), \quad t \geq 0,
\]

where \(V \) is a variability parameter, e.g., \(V = a^2 + c^2 \); see \$5.1 of Whitt (1983). (For \(M/GI/1 \), this is the exact steady-state formula.) To stabilize, we set \(E[W(t)] = w \) and obtain a quadratic equation for \(\mu(t) \), yielding

\[
\mu(t) \equiv \lambda(t) + (\lambda(t)/2) \left(\sqrt{(\lambda(t) + \xi)/\lambda(t)} - 1 \right), \quad t \geq 0.
\]
Simulation experiments verify that this control stabilizes the expected waiting time when the periodic cycles are not too short (when PSA is appropriate), but not when the cycles are short.

4 THE EXPERIMENTS

4.1 Estimating Performance Measures

We mainly evaluate two performance measures for each service-rate control, the expected number of customers in the system, \(E[Q(t)] \), and the expected virtual waiting time \(E[W(t)] \). The virtual waiting time at time \(t \) is defined as the waiting time of a potential or hypothetical arrival (a virtual arrival) at time \(t \), where the waiting time is the time from arrival until starting service.

For each simulation replication, we consider a fixed time interval \([0, T]\) and calculate the performance measures at time points \(k\theta, 1 \leq k \leq 1000 \), where \(\theta = T/1000 \). We use \(T = 2 \times 10^4 \) for \(\gamma = 0.001 \) and \(T = 2 \times 10^3 \) for the other values of \(\gamma \). We use the longer time interval for very small \(\gamma \) because we want to see the performance over at least several cycles (which each are of length \(2\pi/\gamma \)). On the other hand, we cannot only fix the number of cycles, because we need enough absolute time to remove the impact of the initial transient.

To calculate these two performance measures, we first derive values of the cumulative arrival function \(A(t) \) and the cumulative departure function \(D(t) \) at time points \(j\theta, 1 \leq j \leq 1000 \) from customers’ arrival times \(A_k \) and departure times \(D_k \). Then we compute \(Q(t) = A(t) - D(t) \) and \(W(t) = (W_{A(t)} + V_{A(t)} - (t - A_{A(t)}))^+ \) at those time points, where the virtual waiting time \(W(t) \) actually depends on information after time \(t \), because the service time \(V_{A(t)} \) may depend on future service-rate function. But this future effect has been properly accounted for, because the service times have already been generated, according to §2.3.

We generate 10,000 independent replications to estimate mean values of performance measures and to construct their confidence intervals at each of those time points. This sample size is large enough to produce reliable estimation. We estimate the mean values \(E[Q(t)] \) and \(E[W(t)] \) by taking the average over all replications and construct 95% confidence intervals for these mean values. Since we have a very large sample sizes, \(z \) statistics are essentially the same as the natural \(t \) statistics.

4.2 The Study Cases

4.2.1 The Rate Functions

We use the sinusoidal arrival rate function in (4) with parameters \(\beta = 0.2 \) and \(\gamma = 10^j \) for \(-3 \leq j \leq 2\) to cover a range of different cycle lengths \(2\pi/\gamma \). The service rate controls are then as specified in §3. For the infinite-server offered load \(m(t) \) with this sinusoidal arrival rate function, formulas are given in Eick, Massey, and Whitt (1993).

4.2.2 Interval Distributions for the Base Renewal Processes

We use renewal processes with i.i.d. interval times having mean 1 for the base processes \(N_o \) and \(N_s \) used to construct the arrival and service process. We use the squared coefficient of variation (scv, variance divided by the square of the mean), \(c_2^2 \) and \(c_3^2 \), to characterize the variability. We consider three different distributions: exponential (\(c_2^2 = 1 \)), hyperexponential (mixture of two exponentials, \(H_2, c_2^2 > 1 \)) and Erlang (sums of two i.i.d. exponentials, \(E_2, c_2^2 = 0.5 \)) to represent a range of variability. The \(H_2 \) distribution has mean 1 and scv \(c_2^2 = 4 \), assuming balanced means \(p_1\lambda_1^{-1} = p_2\lambda_2^{-1} \) as in Whitt (1982); it has density \(h(x) = p_1\lambda_1 e^{-\lambda_1 x} + p_2\lambda_2 e^{-\lambda_2 x} \), where \(p_1 = (5 + \sqrt{15})/10 \), \(p_2 = 1 - p_1 \) and \(\lambda_i = 2p_i, i = 1, 2 \). The simulation experiments consider various combinations of these distributions for the arrival and service processes. Some results are for the Markovian \(M_i/M_i/1 \) model, while others are for the non-Markovian \(GI_i/GI_i/1 \) systems.
5 SIMULATION RESULTS

In this section, we display simulation results to show the performance of the different service-rate controls.

5.1 The Rate-Matching Control

Figures 1 and 2 show the performance of the rate-matching control for the Markovian $M_t/M_t/1$ system. Figure 1 shows the time-varying means $E\{Q(t)\}$ and $E\{W(t)\}$ for three values of γ: 0.001, 0.1 and 10.0. In each case we show the performance over three cycles of length $2\pi/\gamma$, for which the total length is inversely proportional to γ. We show the 95% confidence interval for $E\{Q(t)\}$ as well as the estimate itself. Figure 1 shows that $E\{Q(t)\}$ is stabilized in all cases, but $E\{W(t)\}$ is not. Both means are stabilized for $\gamma = 10.0$ because the cycles are very short, making the arrival process nearly the same as a homogeneous Poisson process (implied by Theorem 1 of Whitt (1984)).

Figure 2 compares the estimated $E\{W(t)\}$ to the heavy-traffic approximation

$$E\{W(t)\} \approx E\{W(\infty)\} = \frac{\rho^2(c_a^2 + c_s^2)}{2(1-\rho)\lambda(t)},$$

from Whitt (2014). Figure 2 shows that this heavy-traffic approximation works well provided that γ is not too large (the cycles are not too short). A small time-shift error appears at $\gamma = 0.1$ and significant deviation appears for $\gamma \geq 1$. (Above we observed that the rapidly fluctuating arrival rate for the very short cycles makes the model nearly the same as if the arrival rate were constant, equal to its average.)

Figures 3 and 4 present performance results for $E\{Q(t)\}$ and $E\{W(t)\}$, respectively, using the rate-matching control applied to three non-Markovian $GI_t/GI_t/1$ systems and three values of γ. (We use (H_2/E_2) to specify that N_a is a H_2 renewal process, while N_s is an E_2 renewal process, and similarly for other cases.) As in stationary models, the performance tends to be proportional to the total variability $c_a^2 + c_s^2$. Otherwise, the story is essentially the same as for the $M_t/M_t/1$ model.

5.2 The Square-Root Controls Related to the Many-Server Staffing

Figures 5 and 6 presents performance results of the square-root controls related to the many-server staffing formula applied to the Markovian $M_t/M_t/1$ model with different values of γ. The first variant in (13) is shown in Figure 5, while the second variant in (14) is shown in Figure 6. When γ gets larger, $m(t)$ is more different from $\lambda(t)$ and performance is more different for these two controls.
These figures show that neither of these controls is consistently effective. When γ is very small, the offered load $m(t)$ is very close to the arrival rate $\lambda(t)$, explaining why the two left-most plots are very similar.

5.3 The PSA Square-Root Control

Figure 7 shows the results of the PSA square-root service-rate control in (16) applied to the $M_t/M_t/1$ system, while Figure 8 shows its application to corresponding (H_2/H_2), (H_2/E_2), and (E_2/E_2) systems. When $\gamma = 0.001$, so that the cycles are long and arrival rates change very slowly compared to...
service times, we see that $E(W(t))$ is stabilized, as intended (while $E(Q(t))$ is not). When $\gamma = 0.1$, so that the cycles are much shorter and PSA is no longer appropriate, $E(W(t))$ becomes periodic.
Figure 7: Estimated $E[Q(t)]$ and $E[W(t)]$ for the PSA square-root control in (16) in the $M_t/M_t/1$ model for two values of γ: 0.001 (left) and 0.1 (right).

Figure 8: Estimated $E(W(t))$ (left column) and $E(Q(t))$ (right column) for the PSA square-root control in (16) in three $G_t/G_t/1$ models, (H_2/H_2), (H_2/E_2) and (E_2/E_2), for two values of γ: 0.001 (top) and 0.1 (bottom).
ACKNOWLEDGMENTS

Support was received from NSF grant CMMI 1265070.

REFERENCES

He, B., Y. Liu, and W. Whitt. 2015. “Staffing a service system with non-Poisson nonstationary arrivals”. working paper, Department of Industrial and Systems Engineering, North Carolina State University.

AUTHOR BIOGRAPHIES

NI MA is a doctoral student in the Department of Industrial Engineering and Operations Research at Columbia University. She is currently working with Professor Ward Whitt on service engineering, using methodology in stochastic modeling, queueing theory, simulation and statistical analysis. Her email address is: nm2692@columbia.edu.

WARD WHITT is a Professor in the Department of Industrial Engineering and Operations Research at Columbia University. He joined the faculty there in 2002 after spending 25 years in research at AT&T. He received his Ph.D. from Cornell University in 1969. His recent research has focused on stochastic models of service systems, using both queueing theory and simulation. His e-mail address is: ww2040@columbia.edu.