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Backgrounds
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Backgrounds: the time-varying queues

Queueing models with time-varying arrival rates are
traditionally analyzed by

> Deterministic methods: Edie (1954), Oliver and Samuel (1962);

» Numerical methods for time-varying ODEs: Koopman (1972),
Kolesar et al. (1975);

» Improved ODE approach: Rothkopf and Oren (1979),
Taaffe and Ong (1987), Ong and Taaffe (1989);

> Heavy-traffic limits: Mandelbaum and Massey (1995), Whitt
(2014, 2016);

> Fluid and diffusion approximations: Mandelbaum et al. (1998),
Massey and Pender (2013), Pender and Massey (2017);
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Backgrounds: robust optimization approaches

Robust optimization approach: replace probability laws by
tractable uncertainty sets and apply deterministic optimization.

» Robust inventory theory: Bertsimas and Thiele (2006),
Mamani et al. (2016);

» Robust Queueing (RQ): Bertsimas et al. (2011), Bandi et
al. (2015).

8]

£y W. Whitt, W. You Time-Varying Robust Queueing 4 /26



Our approach

» Recently, we developed new RQ algorithm to expose the
impact of dependence in the stationary G/G/1 model, see
Whitt and You (2017).

» In this talk, we take one step forward to consider the
Time-Varying Robust Queueing (TVRQ) for general
Gt/Gt/1 model.

» We focus on providing useful approximations for the

time-varying steady-state mean workload with structural
insights.
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Time-Varying Queueing Model
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The G;/Gt/1 model

» A(t) = N(A(t)): the arrival process
» N(t): rate-1 base arrival process, a general stationary and
ergodic point process.
» A(t): cumulative arrival-rate function

NG = /Ot)\(s)ds, £>0.

» {Vi}: stationary sequence of service times with mean 1.
» Service is offered at a variable rate of pu(t).
» M(t): cumulative service-rate function

M(t)E/Otu(s)ds, t>0.

» X(t): the net input of work, defined by
A(t)

‘ X(t)EZVk—M(t);
B k=1
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g Queueing Model

Reverse-time formulation of the workload process

To obtain the workload (virtual waiting time) at time ¢,
starting empty at time tg, one apply the one-sided reflection
mapping to X ()

Wito) = X(t) — inf {X(u)} = sup {X(¢) - X(u))}

to<u<t to<u<t

= sup {Xi(s)}

0<s<t—to
where X;(s) is the reverse-time net input starting backwards at
time t for a time period of length s, i.e.,
N (At(s))
Xi(s) = X(t)— X(t—s) Z Vi — Mi(s

with
A(s)=A(t) — At —s), s>0,
M(s)=M(t)— M(t—s), s=>0.
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Time-Varying Queueing Model
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The steady-state workload

To obtain the steady-state, we start the empty queue in a
remote past, i.e., let {g — —oo. Hence, the steady-state
workload at time t is formulated as

Wi = Wi(—o0) = Ssgg{Xt(S)}

» For TVRQ, we aim to provide approximations for the
steady-state mean workload E[W].
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£y W. Whitt, W. You Time-Varying Robust Queueing 8/ 26



Time-Varying Robust Queueing
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The Robust Queueing model

. N(A+(s))
Wy Ssupq Y Vi — My(s) p = sup{Xy(s)}.
'520 k=1 820
The idea of Robust Queueing is the replace the probabilistic law
of X(s) by uncertainty sets and analyze the worst case scenario.

» X, € U, for a suitable uncertainty set U; of net input
functions.
» The steady-state RQ workload is defined by

Wi (X) = igro){Xt(S)}

» We use the worse-case scenario to characterized the Robust
Queue:
Wi = sup Wt*(Xt)-
Xt€lUy

A
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Time-Varying Robust Queueing
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TVRQ formulation using IDW

Define the Index of Dispersion for Work (IDW) for the
underlying (time homogeneous) process

Var (Y09 v, 5,
I,(t) = - CE\Z: k) =t 'Var [ Y Vi
E [Zkzl Vk} ]

» Scaled version of the variance curve, independent of the
time unit we choose.

» Captures the stochastic variability in single-server queues.

» Usually bounded in practical cases.

8]
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Time-Varying Robust Queueing
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TVRQ formulation using IDW

Motivated from CLT, we define

U, = { L Xi(s) < E[Xy(5)] + by/Var (Xo(s) }

Under our stochastic settings, we have

E[Xi(s)] = Ae(s) — Mi(s),
N(A(s))

Var(X¢(s) Var( Z Vk> Ay (s) 1w (Ae(s)),

The uncertainty set for TVRQ can be written as

Z/It:{X:X()<At( +bm}.
ébﬁ
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Time-Varying Robust Queueing
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The TVRQ algorithm

One can prove the following exchange of supremum

W = sup sup {X(s)} = sup sup {X(s)}
Xely s>0 s>0 X el

» The TVRQ algorithm for the time-varying steady-state
workoad at time ¢ in the general G;/G¢/1 model

Wi = sup {At(s) — My(s) + by/Ae(s) Ly (At(s))} .
s>0

» Easily solvable one-dimensional optimization problem.

» We shall focus on the Periodic Robust Queueing (PRQ) for
the rest of the talk, where A\ and p are periodic functions.
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Periodic Robust Queueing
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Periodic queues - non-conventional heavy-traffic limits

» The heavy-traffic limits for periodic queueing models were
established in Whitt (2014) and Ma and Whitt (2016).

Cumulative rate functions in the p-th model:
Ay p(t) = pt+ (1= p) " Aaq (L= p)%t), 20,
M, ,(8) =t+ (1—p) "My, ((1 - p)*t), >0,

1

g () = /0 an(s)ds, Mo (U BRGER / h(¢) dt = 0,

0

t 1
Mg~ (t) = /0 Par(s)ds, par(t) =r(yt), and /0 r(t)dt =0.

» h and r are periodic functions with period 1.

> v is the cycle-length parameter.
RN
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Periodic Robust Queueing
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Periodic queues - non-conventional heavy-traffic limits

Theorem (Heavy-traffic limits for the G;/G1;/1)
Under regularity conditions,

Wap = ¥ (Ady — e — Mgy + ¢ B)

v

This implies that the TVRQ also generates approximation for
the reflective periodic Brownian motion (RPBM).
Diffusion approximation

v

Wipy = Sl>110’ {A%p,y(s) = My py(s) + CxB(S)}
2

> Parametric PRQ
Wi = §1>118 {Ayp(8) = My py(8) +cov/5}

(Functional) PRQ

éﬁ W3y =8up Ay py(s) = My, 4(s) + \/A%p,y () 1w (Ay, py(5)) ¢ -
s>0
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Periodic Robust Queueing
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Diffusion approximation versus PRQs

Base arrival process = superposition of 10 i.i.d. LN(16) renewal
service = H,(4), (p, 7, p') = (0.6, 102, 0.8)
T T T
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Periodic Robust Queueing
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The heavy-traffic limit for PRQ

Theorem (heavy traffic limit for PRQ)

For Gy/G}/1 periodic queue, if the IDW I,,(t) converges to a
finite I,(c0) = 2, then the heavy traffic limit for PRQ is

. 20-0) L, :
lim g == Wiy = O+ 5as 0} ()

» f(t) = —t + 2/t captures the corresponding G/G/1 model.
> gv,py is a periodic function that captures the time-varying
feature of the model

. 4 Y
sl = gz | g (H05) = o))

S W
1 t

8]
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Periodic Robust Queueing
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The heavy-traffic limit for PRQ

» The PRQ also provides useful structural insights into the
original stochastic model for different long-run traffic
intensity p and cycle-length parameter ~.

Denote the instantaneous traffic intensity at a location y within
a cycle by p(y), let
pl = sup{p(y)}-

Three scenarios
1. Underloaded queues: p' < 1.
2. Critically-loaded queues: p! = 1.
3. Overloaded queues: p! > 1.

We shall see that the space scaling needed are quite different in
these cases and PRQ successfully captured this structure.

3
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Periodic Robust Queueing
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The heavy-traffic limit for PRQ - overloaded

Theorem (long-cycle heavy-traffic limit for PRQ in an
overloaded queue)

For Gi/G4/1 periodic model, the PRQ problem with the
heavy-traffic scaling and p' > 1 has the limit

t>0

(1—-p) 171?017 W3, = sup {—t + /y:(h(s) - r(s))ds} .

> We need a space scaling of v to obtain a proper limit.
» The limit depend on the traffic intensity only through a scaling
of 1 —p.

» The limit does not depend on the stochastic structure of the
associated queueing model.

87
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The heavy-traffic limit for PRQ - overloaded

Underlying arrival process = LN(0.25), p, hT) =(0.7, 1.25)
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Periodic Robust Queueing
0000000 e000000000

The heavy-traffic limit for PRQ - overloaded

Underlying arrival process = H,(4), (v, hT) = (10'3, 1.25)
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Periodic Robust Queueing
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The heavy-traffic limit for PRQ - underloaded

For underloaded queues, we have the Point-wise Stationary
Approximation (PSA).

Theorem (long-cycle heavy-traffic limit for PRQ in an

underloaded queue)

For G¢/G4/1 periodic model with p' < 1, PRQ is asymptotically
correct as (v, p) — (0,1). Furthermore, we have the double limit
for PRQ

L ey
Wy=3- = p(y)) +o(l—p), as(v,p)—(0,1),

where I,(00) = c2 and p(y) is the instantaneous traffic
intensity.

2:» > No scaling for the cycle-length parameter v is needed.
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The heavy-traffic limit for PRQ - underloaded

Underlying arrival process = H2(4), pT =0.8
T T T T T

Simulation, (p,7) = (0.7,102)
Simulation, (p,7) = (0.9,10°)
Simulation, (p,7) = (0.95,104)| _|
= = PRQ, (p,7) = (0.7,10?)

= = PRQ, (p,) = (0.9,10%)

= = PRQ, (p,7) = (0.95,10%
Theoretical double limit

(0 c?)

y

Normalized mean workload, 2(1-p)E[W, ]/

0 I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Position y within a cycle

3
Ye.

4y W. Whitt, W. You Time-Varying Robust Queueing 22 / 26



Periodic Robust Queueing
00000000000 00000

The heavy-traffic limit for PRQ - underloaded

Vasrgous underlying arrival process, {, v, pT) =(0.9, 10’3, 0.8)

7\(I)aric»us service distri

(0, 1, p") = (09,10%,0.8)

= 45 Simulation, E, arrival = Simulation, E, service
;>* Simulation, H,(4) arrival §> 60 7\ Simulation, H,(4) service | 4
E 40 1 Simulation, LN(8) arrival | E I \ Simulation, LN(8) service
< 7 = = PRQ,E,arrival * ’ = = PRQ, E, service
T 35 . - 50 \ ) B
& Vi = == PRQ, H2(4)arr|val ~ 1 \ = == PRQ, H2(4)serv|ce
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» PRQ is very robust against different arrival and service

distributions.
2

3
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00000000000 e00000

The heavy-traffic limit for PRQ - critically-loaded

Recall that
» For underloaded case, we need a space scaling of 7" = 1;

» For overloaded case, we need a space scaling of 7';

For critically-loaded case: the space scaling depends on the
detailed structure of the arrival-rate and service-rate function.

» For the original stochastic model: the scaling in the
heavy-traffic FCLT is 7/ (?»*1) where p is obtained from
Taylor’s expansion, see Whitt (2016).

» What about PRQ? We get the same scaling!

RN
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Periodic Robust Queueing
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The heavy-traffic limit for PRQ - critically-loaded

Theorem (long-cycle heavy-traffic limit for PRQ in an
critically loaded queue)

Assume that
h(t) —r(t) =1 — ct? + o(t?), (2)

for some real numbers p > 0. Then the long-cycle heavy-traffic
limit of the PRQ solution at the critical point y = 0 is in the
order of O(y~P/(2p+1)),

» PRQ successfully captures the correct space scaling of a
critically-loaded queue in the long-cycle heavy-traffic limit.

&
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The heavy-traffic limit for PRQ - critically-loaded

s LN(®), (o, p) = (0.9, 1)
RS T T T T
0 IR S s Simulation, 7 = 102
, 1) © \\ === Simulation, 5 = 10
25l (72 N “ Simulation, v = 10| |
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Vi N \ \ = = PRQ,y=10*
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- »

o
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Position y within a cycle
> Arrival-rate function is a variant of sin(x), which has power
p = 2 for its first non-constant term in the Taylor’s expansion.

6{5 Thus 2/(2p + 1) = 2/5 appears in the space scaling.
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Thank you!
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The long-cycle fluid limit

Furthermore, one can prove that the PRQ is asymptotically
correct in the long-cycle fluid limit:

Theorem

For the periodic Gy/G1I;/1 model, PRQ with any b, 0 < b < oo,
is asymptotically exact as v | 0, i.e.,

pl
lim AW, 0 2 lim AW = A - M )
ng(l) YWorp,y 7&% TWopy ?2118 {Ayp(8) o (8)}

» A trivial limit of 0 if not overloaded.
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