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Backgrounds

Backgrounds: the time-varying queues

Queueing models with time-varying arrival rates are
traditionally analyzed by

I Deterministic methods: Edie (1954), Oliver and Samuel (1962);

I Numerical methods for time-varying ODEs: Koopman (1972),
Kolesar et al. (1975);

I Improved ODE approach: Rothkopf and Oren (1979),
Taaffe and Ong (1987), Ong and Taaffe (1989);

I Heavy-traffic limits: Mandelbaum and Massey (1995), Whitt
(2014, 2016);

I Fluid and diffusion approximations: Mandelbaum et al. (1998),
Massey and Pender (2013), Pender and Massey (2017);
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Backgrounds

Backgrounds: robust optimization approaches

Robust optimization approach: replace probability laws by
tractable uncertainty sets and apply deterministic optimization.

I Robust inventory theory: Bertsimas and Thiele (2006),
Mamani et al. (2016);

I Robust Queueing (RQ): Bertsimas et al. (2011), Bandi et
al. (2015).
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Backgrounds

Our approach

I Recently, we developed new RQ algorithm to expose the
impact of dependence in the stationary G/G/1 model, see
Whitt and You (2017).

I In this talk, we take one step forward to consider the
Time-Varying Robust Queueing (TVRQ) for general
Gt/Gt/1 model.

I We focus on providing useful approximations for the
time-varying steady-state mean workload with structural
insights.

W. Whitt, W. You Time-Varying Robust Queueing 5 / 26



Time-Varying Queueing Model

The Gt/Gt/1 model

I A(t) = N(Λ(t)): the arrival process
I N(t): rate-1 base arrival process, a general stationary and

ergodic point process.
I Λ(t): cumulative arrival-rate function

Λ(t) ≡
∫ t

0

λ(s) ds, t ≥ 0.

I {Vk}: stationary sequence of service times with mean 1.
I Service is offered at a variable rate of µ(t).

I M(t): cumulative service-rate function

M(t) ≡
∫ t

0

µ(s) ds, t ≥ 0.

I X(t): the net input of work, defined by

X(t) ≡
A(t)∑
k=1

Vk −M(t);
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Time-Varying Queueing Model

Reverse-time formulation of the workload process

To obtain the workload (virtual waiting time) at time t,
starting empty at time t0, one apply the one-sided reflection
mapping to X(t)

Wt(t0) = X(t)− inf
t0≤u≤t

{X(u)} = sup
t0≤u≤t

{X(t)−X(u))}

≡ sup
0≤s≤t−t0

{Xt(s)}

where Xt(s) is the reverse-time net input starting backwards at
time t for a time period of length s, i.e.,

Xt(s) ≡ X(t)−X(t− s) d
=

N(Λt(s))∑
k=1

Vk −Mt(s)

with
Λt(s) ≡ Λ(t)− Λ(t− s), s ≥ 0,

Mt(s) ≡M(t)−M(t− s), s ≥ 0.
W. Whitt, W. You Time-Varying Robust Queueing 7 / 26



Time-Varying Queueing Model

The steady-state workload

To obtain the steady-state, we start the empty queue in a
remote past, i.e., let t0 → −∞. Hence, the steady-state
workload at time t is formulated as

Wt ≡Wt(−∞) = sup
s≥0
{Xt(s)}

I For TVRQ, we aim to provide approximations for the
steady-state mean workload E[Wt].
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Time-Varying Robust Queueing

The Robust Queueing model

Wt
d
= sup

s≥0


N(Λt(s))∑
k=1

Vk −Mt(s)

 ≡ sup
s≥0
{Xt(s)}.

The idea of Robust Queueing is the replace the probabilistic law
of Xt(s) by uncertainty sets and analyze the worst case scenario.

I X̃t ∈ Ut for a suitable uncertainty set Ut of net input
functions.

I The steady-state RQ workload is defined by

W ∗t (X̃t) ≡ sup
s≥0
{X̃t(s)}

I We use the worse-case scenario to characterized the Robust
Queue:

W ∗t = sup
X̃t∈Ut

W ∗t (X̃t).
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Time-Varying Robust Queueing

TVRQ formulation using IDW

Define the Index of Dispersion for Work (IDW) for the
underlying (time homogeneous) process

Iw(t) ≡
Var

(∑N(t)
k=1 Vk

)
E
[∑N(t)

k=1 Vk

] = t−1Var

N(t)∑
k=1

Vk

 .

I Scaled version of the variance curve, independent of the
time unit we choose.

I Captures the stochastic variability in single-server queues.

I Usually bounded in practical cases.
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Time-Varying Robust Queueing

TVRQ formulation using IDW

Motivated from CLT, we define

Ut ≡
{
X̃t : X̃t(s) ≤ E [Xt(s)] + b

√
Var (Xt(s))

}
.

Under our stochastic settings, we have

E [Xt(s)] = Λt(s)−Mt(s),

Var(Xt(s)) = Var

N(Λt(s))∑
k=1

Vk

 ≡ Λt(s)Iw (Λt(s)) ,

The uncertainty set for TVRQ can be written as

Ut =
{
X : X(s) ≤ Λt(s)−Mt(s) + b

√
Λt(s)Iw (Λt(s))

}
.
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Time-Varying Robust Queueing

The TVRQ algorithm

One can prove the following exchange of supremum

W ∗t = sup
X∈Ut

sup
s≥0
{X(s)} = sup

s≥0
sup
X∈Ut

{X(s)}

I The TVRQ algorithm for the time-varying steady-state
workoad at time t in the general Gt/Gt/1 model

W ∗t = sup
s≥0

{
Λt(s)−Mt(s) + b

√
Λt(s)Iw (Λt(s))

}
.

I Easily solvable one-dimensional optimization problem.

I We shall focus on the Periodic Robust Queueing (PRQ) for
the rest of the talk, where λ and µ are periodic functions.
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Periodic Robust Queueing

Periodic queues - non-conventional heavy-traffic limits

I The heavy-traffic limits for periodic queueing models were
established in Whitt (2014) and Ma and Whitt (2016).

Cumulative rate functions in the ρ-th model:

Λγ,ρ(t) ≡ ρt+ (1− ρ)−1Λd,γ((1− ρ)2t), t ≥ 0,

Mγ,ρ(t) ≡ t+ (1− ρ)−1Md,γ((1− ρ)2t), t ≥ 0,

where

Λd,γ(t) ≡
∫ t

0
λd,γ(s) ds, λd,γ(t) ≡ h(γt),

∫ 1

0
h(t) dt = 0,

Md,γ(t) ≡
∫ t

0
µd,γ(s) ds, µd,γ(t) ≡ r(γt), and

∫ 1

0
r(t) dt = 0.

I h and r are periodic functions with period 1.
I γ is the cycle-length parameter.
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Periodic Robust Queueing

Periodic queues - non-conventional heavy-traffic limits

Theorem (Heavy-traffic limits for the Gt/GIt/1)

Under regularity conditions,

Ŵγ,ρ ⇒ Ψ (Λd,γ − e−Md,γ + cxB)

I This implies that the TVRQ also generates approximation for
the reflective periodic Brownian motion (RPBM).

I Diffusion approximation

W̃γ,ρ,y ≈ sup
s≥0

{
Λγ,ρ,y(s)−Mγ,ρ,y(s) + cxB̃(s)

}
I Parametric PRQ

W̃ ∗
γ,ρ,y ≡ sup

s≥0

{
Λγ,ρ,y(s)−Mγ,ρ,y(s) + cx

√
s
}
.

I (Functional) PRQ

W ∗
γ,ρ,y ≡ sup

s≥0

{
Λγ,ρ,y(s)−Mγ,ρ,y(s) +

√
Λγ,ρ,y(s)Iw (Λγ,ρ,y(s))

}
.
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Periodic Robust Queueing

Diffusion approximation versus PRQs
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Periodic Robust Queueing

The heavy-traffic limit for PRQ

Theorem (heavy traffic limit for PRQ)

For Gt/Gt/1 periodic queue, if the IDW Iw(t) converges to a
finite Iw(∞) = c2

x, then the heavy traffic limit for PRQ is

lim
ρ↑1

2

b2
· 2(1− ρ)

ρc2
x

·W ∗γ,ρ,y = sup
s≥0
{f(t) + g̃γ,1,y(t)} . (1)

I f(t) ≡ −t+ 2
√
t captures the corresponding G/G/1 model.

I gγ,ρ,y is a periodic function that captures the time-varying
feature of the model

g̃γ,ρ,y(t) =
4

b2c2
xγρ

2

∫ y

y− b
2c2xγρ

4
t
(h(s)− r(s))ds.
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Periodic Robust Queueing

The heavy-traffic limit for PRQ

I The PRQ also provides useful structural insights into the
original stochastic model for different long-run traffic
intensity ρ and cycle-length parameter γ.

Denote the instantaneous traffic intensity at a location y within
a cycle by ρ(y), let

ρ↑ = sup
y
{ρ(y)}.

Three scenarios

1. Underloaded queues: ρ↑ < 1.

2. Critically-loaded queues: ρ↑ = 1.

3. Overloaded queues: ρ↑ > 1.

We shall see that the space scaling needed are quite different in
these cases and PRQ successfully captured this structure.
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Periodic Robust Queueing

The heavy-traffic limit for PRQ - overloaded

Theorem (long-cycle heavy-traffic limit for PRQ in an
overloaded queue)

For Gt/Gt/1 periodic model, the PRQ problem with the
heavy-traffic scaling and ρ↑ > 1 has the limit

(1− ρ) lim
γ↓0

γ ·W ∗γ,ρ,y = sup
t≥0

{
−t+

∫ y

y−t
(h(s)− r(s))ds

}
.

I We need a space scaling of γ to obtain a proper limit.

I The limit depend on the traffic intensity only through a scaling
of 1− ρ.

I The limit does not depend on the stochastic structure of the
associated queueing model.
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Periodic Robust Queueing

The heavy-traffic limit for PRQ - overloaded
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Periodic Robust Queueing

The heavy-traffic limit for PRQ - overloaded
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Periodic Robust Queueing

The heavy-traffic limit for PRQ - underloaded

For underloaded queues, we have the Point-wise Stationary
Approximation (PSA).

Theorem (long-cycle heavy-traffic limit for PRQ in an
underloaded queue)

For Gt/Gt/1 periodic model with ρ↑ < 1, PRQ is asymptotically
correct as (γ, ρ)→ (0, 1). Furthermore, we have the double limit
for PRQ

W ∗y =
b2

2
· ρ(y)c2

x

2(1− ρ(y))
+ o(1− ρ), as (γ, ρ)→ (0, 1),

where Iw(∞) = c2
x and ρ(y) is the instantaneous traffic

intensity.

I No scaling for the cycle-length parameter γ is needed.
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Periodic Robust Queueing

The heavy-traffic limit for PRQ - underloaded
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Periodic Robust Queueing

The heavy-traffic limit for PRQ - underloaded
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I PRQ is very robust against different arrival and service
distributions.
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Periodic Robust Queueing

The heavy-traffic limit for PRQ - critically-loaded

Recall that

I For underloaded case, we need a space scaling of γ0 = 1;

I For overloaded case, we need a space scaling of γ1;

For critically-loaded case: the space scaling depends on the
detailed structure of the arrival-rate and service-rate function.

I For the original stochastic model: the scaling in the
heavy-traffic FCLT is γp/(2p+1), where p is obtained from
Taylor’s expansion, see Whitt (2016).

I What about PRQ? We get the same scaling!
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Periodic Robust Queueing

The heavy-traffic limit for PRQ - critically-loaded

Theorem (long-cycle heavy-traffic limit for PRQ in an
critically loaded queue)

Assume that
h(t)− r(t) = 1− ctp + o(tp), (2)

for some real numbers p ≥ 0. Then the long-cycle heavy-traffic
limit of the PRQ solution at the critical point y = 0 is in the
order of O(γ−p/(2p+1)).

I PRQ successfully captures the correct space scaling of a
critically-loaded queue in the long-cycle heavy-traffic limit.
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Periodic Robust Queueing

The heavy-traffic limit for PRQ - critically-loaded
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I Arrival-rate function is a variant of sin(x), which has power
p = 2 for its first non-constant term in the Taylor’s expansion.
Thus 2/(2p+ 1) = 2/5 appears in the space scaling.
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Periodic Robust Queueing

Thank you!
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Periodic Robust Queueing
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Periodic Robust Queueing

The long-cycle fluid limit

Furthermore, one can prove that the PRQ is asymptotically
correct in the long-cycle fluid limit:

Theorem

For the periodic Gt/GIt/1 model, PRQ with any b, 0 < b <∞,
is asymptotically exact as γ ↓ 0, i.e.,

lim
γ→0

γWγ,ρ,y
w.p.1
= lim

γ→0
γW ∗γ,ρ,y = sup

s≥0
{Λγ,ρ,y(s)−Mγ,ρ,y(s)}.

I A trivial limit of 0 if not overloaded.
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