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Background

Motivation

I The estimation of performance measures in a open network
of queues is important in many OR applications.

I Theoretical analysis are limited for queueing networks with
general distributions.

I Direct simulation estimation may be computational
expensive,

I especially if doing many “what if” studies or when
performing an optimization over model parameters.
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Background

Background

Traditionally, queueing systems are approximated by

I Parametric-decomposition methods using variability
parameters: e.g., QNA by Whitt (1983);

I QNA is widely accepted, but is known to fail in certain
cases, see Suresh and Whitt (1990).

I It relies on the approximation of the variability parameters
for arrival, service and departures.

I Relfected Brownian motion approximations: e.g., QNET by
Dai and Harrison (1993);

I QNET algorithm computation time scales with the system.
I Sequential Bottleneck Decomposition by Dai, Nguyen and

Reiman (1994) proposed to relief the computation burden.
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Background

Review of Robust Queueing Theory

More recently,

I Robust Queueing (RQ) by Bandi et al. (2015) analyzed the
mean steady-state waiting time in a queueing network.

We followed the RQ framework and developped

I RQ for the workload process in G/G/1 models;

I approximation of stationary departure processes, which
leads to RQ for queues in series.

I RQ for Gt/Gt/1 models;
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Background

Review of Robust Queueing Theory

A Robust Queueing Theory proposed by Bandi et al. (2015)

I analyzed the mean steady-state waiting time in single
server queue with general interarrival and service
distributions;

I replaced probabilistic laws by uncertainty sets;

I used robust optimization and regression analysis.

I proposed an extension to feed-forward open queueing
networks with adversary servers;
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Background

Review of Robust Queueing Theory

Bandi et al. consider a GI/GI/1 FCFS queue with
I {(Ui, Vi)}i>1: interarrival times and service times;
I λ, µ: arrival rate and service rate.

Lindley recursion

Wn = (Wn−1 + Vn−1 − Un−1)+ = max
06k6n

{Ssk − Sak} ,

where Ss0 ≡ 0, Sa0 ≡ 0 and

Ssk ≡
n−1∑
i=n−k

Vi, Sak :=

n−1∑
i=n−k

Ui, 1 ≤ k ≤ n.

I Loynes (1962) reverse-time construction;
I Lindley recursion holds for any sequence of {(Ui, Vi)}, not

just i.i.d. random variables.
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Background

Review of Robust Queueing

As in usual robust optimization applications, Bandi et al.
(2015) proposed to

I draw interarrival and service times from properly defined
uncertainty sets instead of probability distributions;

I use worst case scenario instead of probabilistic statements
(mean, distribution...) to characterize system performance.
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Background

Review of Robust Queueing

The worst case waiting time can be written as

W ∗n ≡ sup
U∈Ua

sup
V∈Us

Wn(U,V) = sup
U∈Ua

sup
V∈Us

max
06k6n

{Ssk − Sak}

Motivated by CLT, Bandi et al. proposed

Ua =

{
(U1, . . . , Un)

∣∣∣∣Sak − k/λk1/2
> −Γa, 0 6 k 6 n

}
,

Us =

{
(V1, . . . , Vn)

∣∣∣∣Ssk − k/µk1/2
6 Γs, 0 6 k 6 n

}
.

I CLT suggest that Γa = baσa and Γs = bsσs.
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Background

Review of Robust Queueing

With an interchange of maximum, they reduce the problem to

W ∗n = max
0≤k≤n

{mk + b
√
k}

≤ sup
x≥0
{mx+ b

√
x} =

b2

4|m|
=

λb2

4(1− ρ)
,

where m = µ−1 − λ−1 < 0, ρ = λ/µ and b ≡ Γa + Γs > 0, so
that b2 = Γ2

a + 2ΓaΓs + Γ2
s.

I Closed-form solution depends only on ρ,Γa and Γs.

I The solution resembles classical heavy-traffic limit
approximations or bounds, e.g., Kingman Bound

W ∗ρ ≤
ρ(ρ−2c2

a + c2
s)

2µ(1− ρ)
.
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Background

Review of Robust Queueing: Extension to OQN

Bandi et al. obtain an algorithm for queueing networks by
assuming

I the network is feed-forward, i.e., no customer feedback;

I the servers are adversary, i.e, they pick service times such
that customer waiting times are maximized.

Under assumptions above, they

I proved a (robust) Burke’s theorem, i.e. departure falls in
the same uncertainty set as the one for arrival;

I apply linear regression to fit Γa and Γs for external
arrival processes and service processes;

I used similar network calculus as in QNA to determine
parameters Γa and Γs;
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Motivation

Dependence in Queues

I Dependence rises naturally in queueing network:
I departure process is non-renewal beyond M/M/1 case;
I splitting creates dependent flows;
I superposition of different arrival streams is non-renewal

unless all processes are Poisson.

I Dependence has significant impact on performance
measures

I see discussion in Section 1B of Fendick and Whitt (1989);
I the level of impact will depend on the traffic intensity;

I As a result, methods (QNA, RQ by Bandi et al.) using a
single parameter to describe variability may fail.
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Motivation

An Example

Last queue of 5 queues in series (tandem queues)

E10

λ = 1
1

H2(10), ρ1 = 0.99

2

E10, ρ2 = 0.98

3

H2(10), ρ3 = 0.7

4
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5
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Motivation

The Heavy-traffic Bottleneck Phenomenon

D or H2(4)

λ = 1
1

M,ρ1 = 0.6

8

M,ρ1 = 0.6

9

M,ρ1 = 0.9

Table: The heavy-traffic bottleneck example

H2, c
2
a = 4 D, c2

a = 0

Queue 9 Simulation 29.1480± 0.0486 5.2683± 0.0025
M/M/1 8.1 (-72.21%) 8.1 (53.75%)
QNA 8.9 (-69.47%) 8.0 (51.85%)
RQ 36.98 (26.86%) 4.9509 (-6.02%)

Queue 8 Simulation 1.4403± 0.0005 0.7716± 0.0001
M/M/1 0.9 (-37.51%) 0.9 (16.64%)
QNA 1.04 (-27.79%) 0.88 (14.05%)
RQ 1.267 (-12.03%) 0.853 (10.51%)
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Motivation

Our Motivation

We want to build new RQNA algorithm

I with improved performance in single-server queues:
I capture dependence in the G/G/1 models;
I obtain correct heavy-traffic and light-traffic limits;
I provide useful approximations across all traffic intensities;

I to fit most open queuing networks:
I go beyond feed-forward networks;
I analyze traditional servers, as oppose to adversary servers;
I go beyond Markovian routing (work in progress);

I that run fast and effective.
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Robust Queueing with Dependence

Continuous-time workload process

I {(Ui, Vi)}: interarrival times and service times;
I λ, µ: arrival rate and service rate;
I A(t): arrival counting process associated with {Uk};
I Y (t): total input of work defined by Y (t) ≡

∑A(t)
k=1 Vk;

I X(t): net-input process defined by X(t) ≡ Y (t)− t;
The steady-state workload at time 0 in the queue staring empty
at the remote past −∞:

Z ≡ X(0)− inf
−∞≤t≤0

{X(t)}.

= sup
0≤s≤∞

{X(0)−X(−s)} ≡ sup
0≤s≤∞

{X0(s)}

I X0(s): the net-input over time [−s, 0].
I With an abuse of notation, we omit the subscript in X0(s).

W. Whitt, W. You Robust Queueing with Dependence 16 / 58



Robust Queueing with Dependence

Continuous-time workload process

We now insert the traffic intensity ρ into the model.

I Start with unit-rate arrival counting process A(t) and
mean-1 service times;

I Assume that Aρ(t) with rate ρ in the ρ-th model satisfies:

Aρ(t) = A(ρt).

I The total input process and net-input process:

Yρ(t) = Y (ρt), and Xρ(t) = Y (ρt)− t.

I The steady-state workload:

Zρ = sup
0≤s≤∞

{Yρ(s)− s} = sup
0≤s≤∞

{Xρ(s)}.
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Robust Queueing with Dependence

Stochastic versus Robust Queues

Zρ = sup
0≤s≤∞

{Xρ(s)}.

Stochastic Queue

I Xρ(s) ≡
∑N(ρs)

k=1 Vk − s, where N(t) and {Vk} are stationary
point process and stationary sequence separately.

Robust Queue

I X̃ρ lies in a suitable uncertainty set Uρ of total input
functions to be defined later.

I There is no distribution involved, we hence focus on the
deterministic worse-case scenario

Z∗ρ ≡ sup
X̃ρ∈Uρ

sup
0≤s≤∞

{X̃ρ(s)}.
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Robust Queueing with Dependence

Robust Queueing for continuous-time workload

Now, we define the uncertainty set for the net-input process.

Uρ ≡
{
X̃ρ : R+ → R

∣∣∣∣ X̃ρ(s) ≤ E[Xρ(s)] + b
√

Var(Xρ(s)), s ∈ R+

}
=
{
X̃ρ : R+ → R

∣∣∣ X̃ρ(s) ≤ −(1− ρ)s+ b
√
ρsIw(ρs), s ∈ R+

}
,

where
E[Xρ(s)] = −(1− ρ)s,

Var(Xρ(s)) = Var(Xρ(s)− s) = Var(Yρ(s)) = Var(Y (ρs))

and Iw(t) is the index of dispersion for work (IDW) for the base
net-input process Y (t), i.e.,

Iw(t) ≡ Var(Y (t))

t
.
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Robust Queueing with Dependence

Robust Queueing for continuous-time workload

RQ for workload

Z∗ρ = sup
Xρ∈Uρ

sup
0≤s≤∞

{Xρ(s)},
where

Uρ =
{
Xρ : R→ R

∣∣∣ Xρ(s) ≤ −(1− ρ)s+ b
√
ρsIw(ρs)

}
.

Lemma (Dimension reduction)

The infinite-dimensional RQ problem can be reduced to
one-dimensional

Z∗ρ = sup
0≤s≤∞

sup
Xρ∈Uρ

{Xρ(s)}

= sup
0≤s≤∞

{
−(1− ρ)s+ b

√
ρsIw(ρs)

}
.

Furthermore, if ρ < 1 and Iw(t)/t→ 0 as t→∞, then Z∗ρ <∞.
W. Whitt, W. You Robust Queueing with Dependence 20 / 58



Robust Queueing with Dependence

Robust Queueing for continuous-time workload

In summary, the RQ algorithm for single-server queues

Z∗ρ = sup
0≤s≤∞

{
−(1− ρ)s+ b

√
ρsIw(ρs)

}
.

This formulation requires IDW Iw as model input

I Iw is defined for the stationary net-input process;

I Iw can be calculated in special cases, estimated by
simulation or approximated;

I same Iw used for all ρ ∈ [0, 1);

I enables convenient generalization to queueing networks.
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Robust Queueing with Dependence

Remarks on the RQ algorithm

Z∗ρ = sup
s≥0

{
−(1− ρ)s+ b

√
ρsIw(ρs)

}
.

I Choose b =
√

2 so that RQ is exact for M/GI/1 models.

I Slightly more general version, for ρ = λ/µ

Z∗(λ, µ, Iw) = sup
s>0

{
−(1− ρ)s/ρ+

√
2sIw(µs)/µ

}

Theorem (RQ correct in Heavy-traffic and light-traffic)

Under regularity assumptions, the RQ algorithm with b =
√

2
yields the exact mean steady-state workload in both light-traffic
and heavy-traffic limits for G/G/1 models.
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Numerical Examples

Numerical Example: 5 queues in series

E10
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Numerical Examples

Numerical Examples - 5 Queues in series
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RQ

Simulation

I RQ automatically “matches” IDW to the mean workload
for all traffic intensities.
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Numerical Examples

More Numerical Examples

U ∼ F

λ = 1
1

V1 ∼ G

ρ1

2

V2 ∼ G

ρ1

3

V3 ∼ G

ρ1

4

V4 ∼ G

ρ1

Test

V5 ∼M

ρ

Now, we look at a batch of examples:
I consider 4 identical queues in tandem:

I same service distributions G;
I same traffic intensity ρ1 = 0.7 or 0.9;

I attach a test queue to the end of the 4 identical queues;
I traffic intensity ρ at the test queue range from 0 to 1;

I arrival distribution F picked from: E4, LN025, LN4, H4;

I service distribution G picked from: E4, LN025, LN4, H4,M;

I a total of 2× 4× 5 = 40 examples.

We assess the performance of RQ algorithm at the test queue.
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Numerical Examples

More Numerical Examples

I |RE|=|REρ|: relative error (as a function of traffic
intensity) between the RQ approximation and the
simulation estimation;

I max(|RE|): for fixed example, the maximum relative error
across different traffic intensities;

I avg(|RE|): for fixed example, the simple average of the
relative error across different traffic intensities;

I Max and Mean run over different example instances;

========================== rho = 0.7 ============================

* Max max(|RE|) for RQ = 33.01%. Mean max(|RE|) for RQ = 16.85%.

* Max avg(|RE|) for RQ = 15.47%. Mean avg(|RE|) for RQ = 7.50%.

============================= End ===============================

========================== rho = 0.9 ============================

* Max max(|RE|) for RQ = 37.36%. Mean max(|RE|) for RQ = 17.66%.

* Max avg(|RE|) for RQ = 11.69%. Mean avg(|RE|) for RQ = 6.52%.

============================= End ===============================
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A Road Map for RQNA

Generalization to RQNA

I The RQ algorithm serve as the building blocks for an
Robust Queueing Network Analyzer (RQNA) algorithm;

I How do we establish connections between blocks?
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A Road Map for RQNA

Generalization to RQNA

Recall that
I RQ relies on estimating the IDW at the queue of interest;
I IDW is crucial for RQ to produce useful approximations.

A simplifying assumption
I If we assume that service times are i.i.d., independent of

everything else, then

Iw(t) = Ia(t) + c2
s,

where c2
s is the squared coefficient of variation (scv) of the

service distribution and Ia(t) is the index of dispersion for
counts (IDC) associated with the arrival counting process
A(t)

Ia(t) =
V ar(A(t))

E[A(t)]
.
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A Road Map for RQNA

Generalization to RQNA

To extend the RQ algorithm, we need to

I (for external arrival processes) provide effective algorithm
to calculate/estimate the IDC of a stationary point process;

I (for internal arrival streams) produce effective
approximations internal arrival IDC at any queue within a
open queueing network;
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A Road Map for RQNA

Generalization to RQNA: External Arrival Process

To calculate/estimate the IDC of a stationary point process,

I let A(t) be a base process with rate 1 and

V (t) ≡ V ar(A(t))

where the variance is taken under stationary distribution.

I for stationary point process, we have E[A(t)] = t;
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A Road Map for RQNA

Generalization to RQNA: External Arrival Process

I estimate via numerical inversion:

V̂ (s) =
λ

s2
+

2λ

s
m̂(s)− 2λ2

s3
,

V (t) = λ

∫ t

0
(1 + 2m(u)− 2λu)du.

I m(t) = E0[A(t)] under Palm distribution P 0, i.e.,
conditioning on having an arrival at time 0.

I renewal function in the case of renewal processes, let
f̂(s) =

∫∞
0
e−stdF (t), then

m̂(s) =
f̂(s)

s(1− f̂(s))

I estimate via Monte Carlo with some variance reduction
techniques.
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A Road Map for RQNA

Generalization to RQNA: Internal Flows

The total arrival process at any queue:

I superposition of external arrival and splittings of
departure processes.

Queue 1
p1,o

Superposition

Queue 2
λo,2

λo,1

Departure
p2,o

p2,1

Splitting
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A Road Map for RQNA

Splitting and Superposition

I Superposition of independent streams:

Ia,i(t) =

k∑
i=0

λj,i
λi
Ia,j,i(λj,it).

I adds nonlinearity

I Splitting under Markovian routing:

Ia,j,i(t) = pj,iId,j(t) + (1− pj,i), for j ≥ 1

I The remaining challenge is to characterize departure
processes.
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Departure Process

Historical Remarks on Departure Processes

I In general, departure processes are complicated, even for
M/GI/1 or GI/M/1 special cases;

I Even more, the IDC we used is defined for stationary
version of the departure process, instead of the departure
from a system starting empty.

I It is important that we use stationary version of the IDC
(IDW), otherwise we do not have correct light traffic limit.
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Departure Process

Historical Remarks on Departure Processes

Exact characterizations
I Burke (1956): M/M/1 departure is Poisson;
I Takács (1962): the Laplace transform (LT) of the mean of

the departure process under Palm distribution;
I Daley (1976): the LT of the variance function of the

stationary departure from M/G/1 and GI/M/1 models;
I BMAP/MAP/1 departure is a MAP with infinite order, see

discussion in Green’s dissertation (1999) and Zhang (2005).
I MAP with infinite order is intractable in practice, one need

to resort to truncation.

Heavy-traffic limits
I Iglehart and Whitt (1970), HT limits for departure process

starting with empty system;
I Gamarnik and Zeevi (2006) and Budhiraja and Lee (2009),

HT limit for stationary queueing length process.
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Departure Process

Historical Remarks on Departure Processes

Approximations

I Whitt (1982, 1983, 1984): QNA and related papers:
I the asymptotic method: matching the long-run property

of a point process
c2d ≈ c2a

I the stationary interval method: matching the stationary
interval distribution, but ignore dependence between
successive departures

c2d = c2a + 2ρ2c2s − 2ρ(1− ρ)E[W ] ≈ ρ2c2a + (1− ρ2)c2s
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Departure Process

A numerical example

E10

c2a = 0.1
Queue 1
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ρ, c2s = 10

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Time

0

1

2

3

4

5

6

7

8

9

10

ID
C

s

Arrival

Service

Simulation:  = 0.5

Simulation:  = 0.7

Simulation:  = 0.9

Simulation:  = 0.98

W. Whitt, W. You Robust Queueing with Dependence 37 / 58



Departure Process

Our approach

I Start with the Laplace transform for M/G/1 and GI/M/1
models in Daley (1976);

I proves HT limits for M/G/1 and GI/M/1 special cases;

I convert general GI/GI/1 to M/G/1 or GI/M/1 special
cases using space-time scaling;

I obtain from the HT limit an approximation for departure
IDCs in the form of convex combination.
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Departure Process

Laplace Transform of the Variance Function

Let D(t) be the stationary departure process with finite
variance, let Vd(t) = V ar(D(t)), then

V̂d(s) =
λ

s2
+

2λ

s
m̂d(s)−

2λ2

s3
,

Vd(t) = λ

∫ t

0
(1 + 2md(u)− 2λu)du.

where md(t) = E0[D(t)] is the mean process under Palm
distribution P 0, i.e., conditioning on having an arrival at time 0.
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Departure Process

Laplace Transform of the Variance Function

Takàcs (1962): For M/GI/1

m̂d(s) ≡
∫ ∞

0
e−stmd(t)dt =

ĝ(s)

s(1− ĝ(s))

(
1− sΠ(ν̂(s))

s+ λ(1− ν̂(s))

)
,

I ĝ(s) = E
[
e−sV

]
is the LT of the service pdf g(t);

I ν̂(s) is the root with the smallest absolute value in z of the
equation

z = ĝ(s+ λ(1− z))
I Π(z) is the probability generating function of the

distribution of the stationary queue length Q

Π(z) ≡ E
[
zQ
]

=
(1− λ/µ)(1− z)ĝ(λ(1− z))

ĝ(λ(1− z))− z
.
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Departure Process

Laplace Transform of the Variance Function

Daley (1976): For GI/M/1

V̂d(s) =
λ

s2
+

2λ

s3

(
µδ − λ+

µ2(1− δ)(1− ξ̂(s))(µδ(1− f̂(s))− sf̂(s))

(s+ µ(1− ξ̂(s)))(s− µ(1− δ))(1− f̂(s))

)
,

I λ is the arrival rate,
I µ is the service rate (with λ < µ);
I f̂(s) = E

[
e−sU

]
is the LT of the interarrival-time pdf f(t);

I ξ̂(s) is the root with the smallest absolute value in z of the
equation

z = f̂(s+ µ(1− z))
I δ = ξ̂(0) is the unique root in (0, 1) of the equation

δ = f̂(µ(1− δ)).
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Departure Process

The Heavy-Traffic Scaling

Formula for both M/GI/1 and GI/M/1 are complicated

I We resort to proving a heavy traffic limit theorem.

I A family of models indexed by ρ
I M/GI/1: (λ, µ) = (ρ, 1);
I GI/M/1: (λ, µ) = (1, ρ−1);
I simplify by fixing the GI distribution;
I both can be easily generalized for non-unit rates.
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Departure Process

The Heavy-Traffic Scaling

To obtain a proper heavy-traffic limit, we define

D∗ρ(t) ≡ (1− ρ)[Dρ((1− ρ)−2t)− (1− ρ)−2λt],

I classical HT-scaling from Iglehart and Whitt (1970)
I scale time by (1− ρ)−2, scale space by 1− ρ;

I corresponding variance function:

V ∗d,ρ(t) ≡ (1− ρ)2Vd,ρ
(
(1− ρ)−2t

)
and LT

V̂ ∗d,ρ(s) ≡ (1− ρ)4V̂d,ρ
(
(1− ρ)2s

)
I prove the limit for the LT and then use continuity results

for the LT.
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Departure Process

The Heavy-Traffic Limit

Theorem (HT limit for the M/GI/1 and GI/M/1 departure
variance)

Under regularity conditions, V ∗d,ρ converges to

V ∗d (t) ≡ w∗
(
t/c2

x

)
c2
aλt+

(
1− w∗

(
t/c2

x

))
c2
sλt

where c2
x = c2

a + c2
s,

w∗(t) =
1

2t

((
t2 + 2t− 1

) (
2Φ(
√
t)− 1

)
+ 2
√
tφ(
√
t) (1 + t)− t2

)
and φ,Φ are the standard normal pdf and cdf, respectively.
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Departure Process

Extension to GI/GI/1 model

The HT limit theorem for departure variance extend naturally
to the GI/GI/1 model, yielding exactly the same result.

Regularity conditions

I the interarrival-time cdf has a pdf ;

I the interarrival times and service times have uniformly
bounded third moments.
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Departure Process

Extension to GI/GI/1 model

To start, we state the HT limit theorem for the departure
process

Theorem (HT limit for the stationary departure process)

Under assumptions on the last slide,

D∗(t) = caBa(t) +Q∗(0)−Q∗(t).

I Ba and Bs are independent standard Brownian motions;

I Q∗(t) = ψ(Q∗(0) + caBa − csBs − e) is the HT limit for
stationary queue length process: a stationary reflective
Brownian motion (RBM) Re with drift −1, variance
c2
x ≡ c2

a + c2
s;

I Q∗(0) ∼ exp(2/c2
x) is the exponential marginal distribution;

I Ba, Bs and Q∗(0) are mutually independent.
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Departure Process

Extension to GI/GI/1 model

Theorem (HT limit for the GI/GI/1 departure variance)

Under assumptions in Theorem plus uniform integrability
conditions, V ∗d,ρ converges to

V ∗d (t) ≡ w∗
(
t/c2

x

)
c2
aλt+

(
1− w∗

(
t/c2

x

))
c2
sλt

where c2
x = c2

a + c2
s,

w∗(t) =
1

2t

((
t2 + 2t− 1

) (
2Φ(
√
t)− 1

)
+ 2
√
tφ(
√
t) (1 + t)− t2

)
and φ,Φ are the standard normal pdf and cdf, respectively.

I Proof sketch at the end of the slides.
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Departure Process

Approximation for Departure IDC

Let Id,ρ be the departure IDC in the model with traffic intensity
ρ. Define the weight function

wρ(t) ≡
Id,ρ(t)− Is(t)
Ia(t)− Is(t)

=
Vd,ρ(t)− Vs(t)
Va(t)− Vs(t)

,

where Ia and Is are the IDC of the base arrival and service
processes (both with rate 1). The HT-scaled weight function

w∗ρ(t) = wρ((1− ρ)−2t).

I Same HT scaling as before, but space scaling canceled out.
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Departure Process

Approximation for Departure IDC

Corollary

Under the assumptions in the HT departure variance theorem,
we have w∗ρ(t)⇒ w∗(t/c2

x).

The corollary supports the following approximation

wρ(t) ≈ w∗((1− ρ)2t/c2
x),

and

Id,ρ(t) = wρ(t)Ia(t) + (1− wρ(t))Is(t)
≈ w∗((1− ρ)2t/c2

x)Ia(t) + (1− w∗((1− ρ)2t/c2
x))Is(t).
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Departure Process

A Simple Example

E10

c2a = 0.1
Queue 1

H2(10)

ρ, c2s = 10

10
-2

10
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10
0

10
1

10
2

10
3

10
4

10
5

Time

0

1

2

3

4

5

6

7

8

9

10

ID
C

s

Arrival

Service

Simulation:  = 0.5

Approximation:  = 0.5

Simulation:  = 0.7

Approximation:  = 0.7

Simulation:  = 0.9

Approximation:  = 0.9

Simulation:  = 0.98

Approximation:  = 0.98
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Departure Process

An Artificial Example

E4

c2a = 0.25
Queue 1

LN8

ρ1 = 0.95, c2s,1 = 8

Queue 2

E4

ρ2 = 0.9, c2s,2 = 0.25

Queue 3

Sup of 10 LN8

ρ3 = 0.8, c2s,3 = 8

10
-2

10
0

10
2

10
4

10
6

Time

0

1

2

3

4

5

6

7

8

ID
C

s

Last queue of 3 queues in series,  = 0.8

Arrival IDC

Departure IDC

Service IDC

Approximation
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The RQNA Algorithm

Three Network Operators

In summary,

I Splitting under Markovian routing:

Ia,j,i(t) = pj,iId,j(t) + (1− pj,i), for j ≥ 1

I Superposition of independent streams:

Ia,i(t) =

k∑
i=0

λj,i
λi
Ia,j,i(λj,it).

I adds nonlinearity

I Departure IDC

Id,ρ(t) = w∗((1− ρ)2t/c2
x)Ia(t) + (1−w∗((1− ρ)2t/c2

x))Is(t).
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The RQNA Algorithm

The RQNA Algorithm

I Traffic-rate equations

λi = λo,i +

n∑
j=1

λj,i = λo,i +

n∑
j=1

λjpj,i,

I Total-arrival-IDC equations

Ia,i(t) =
λo,i
λi
Ia,o,i(λo,it) +

n∑
j=1

λj,i
λi

(pj,iId,j(λj,it) + (1− pj,i))
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The RQNA Algorithm

The RQNA Algorithm

Ia,i(t) =
λo,i
λi
Ia,o,i(λo,it) +

n∑
j=1

λj,i
λi

(pj,iId,j(λj,it) + (1− pj,i))

I Departure IDC, define ρi = λi/µi and c2
x,i = c2

a,i + c2
s,i, then

Id,i(t) = w∗((1−ρi)2t/c2
x,i)Ia,i(t)+(1−w∗((1−ρi)2t/c2

x,i))Is,i(t),

I Asymptotic-variability-parameter equations

c2
a,i =

λo,i
λi
c2
a,o,i +

n∑
j=1

λj,i
λi

(
pj,ic

2
a,j + (1− pj,i)

)
I obtained by letting t→∞ in the total-arrival-IDC

equations.
I coincides with (24) in Whitt (1983), where we take wj = 1

and vij = 1 there.
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The RQNA Algorithm

Solving the Total-Arrival-IDC equations

I Both the traffic-rate equations and asymptotic-variability
equations are linear equations.

I Total-arrival-IDC equations
I nonlinear due to the superposition operator;
I simpler case: feed-forward queueing network, can be solved

explicitly by iteration;
I general case: forms a contraction mapping, so unique

solution can be found by fixed-point-iteration method.
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The RQNA Algorithm

Numerical Examples

U ∼ F

λ = 1
1

V1 ∼ G

ρ1

2

V2 ∼ G

ρ1

3

V3 ∼ G

ρ1

4

V4 ∼ G

ρ1

Test

V5 ∼M

ρ

Now, we look at a batch of examples:
I consider 4 identical queues in tandem:

I same service distributions G;
I same traffic intensity ρ1 = 0.7 or 0.9;

I attach a test queue to the end of the 4 identical queues;
I traffic intensity ρ at the test queue range from 0 to 1;

I arrival distribution F picked from: E4, LN025, LN4, H4;

I service distribution G picked from: E4, LN025, LN4, H4,M;

I a total of 2× 4× 5 = 40 examples.

We assess the performance of RQNA at the test queue and
compare it with RQ.

W. Whitt, W. You Robust Queueing with Dependence 56 / 58



The RQNA Algorithm

Numerical Examples Revisited

============================ The case =============================

* 4 identical queues in series, traffic intensity 0.70.

* Arrival distribution picked from: E4, LN025, LN4, H4.

* Service distribution picked from: E4, LN025, LN4, H4, M.

* Number of cases in total: 20.

============================ Summary ==============================

* Max max(|RE|) for RQNA = 31.90%. Mean max(|RE|) for RQNA = 17.38%.

* Max max(|RE|) for RQ = 33.01%. Mean max(|RE|) for RQ = 16.85%.

* Max avg(|RE|) for RQNA = 21.34%. Mean avg(|RE|) for RQNA = 9.52%.

* Max avg(|RE|) for RQ = 15.47%. Mean avg(|RE|) for RQ = 7.50%.

* Min avg(|RE|) for RQNA = 0.95%. Min avg(|RE|) for RQ = 1.58%.

========================== Compare to RQ ==========================

* Max increase of avg(|RE|) over RQ = 229.29%.

In this case, avg(|RE|) for RQNA is 5.20%.

* Max decrease of avg(|RE|) over RQ = 72.10%.

* RQNA outperfroms RQ in 8 out of 20 cases in terms of max(|RE|).

* RQNA outperfroms RQ in 6 out of 20 cases in terms of avg(|RE|).

=============================== End ===============================
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The RQNA Algorithm

Numerical Examples Revisited

============================ The case =============================

* 4 identical queues in series, traffic intensity 0.90.

* Arrival distribution picked from: E4, LN025, LN4, H4.

* Service distribution picked from: E4, LN025, LN4, H4, M.

* Number of cases in total: 20.

============================ Summary ==============================

* Max max(|RE|) for RQNA = 30.00%. Mean max(|RE|) for RQNA = 12.57%.

* Max max(|RE|) for RQ = 37.36%. Mean max(|RE|) for RQ = 17.66%.

* Max avg(|RE|) for RQNA = 10.56%. Mean avg(|RE|) for RQNA = 4.40%.

* Max avg(|RE|) for RQ = 11.69%. Mean avg(|RE|) for RQ = 6.52%.

* Min avg(|RE|) for RQNA = 2.43%. Min avg(|RE|) for RQ = 1.25%.

========================== Compare to RQ ==========================

* Max increase of avg(|RE|) over RQ = 117.58%.

In this case, avg(|RE|) for RQNA is 2.76%.

* Max decrease of avg(|RE|) over RQ = 75.33%.

* RQNA outperfroms RQ in 12 out of 20 cases in terms of max(|RE|).

* RQNA outperfroms RQ in 13 out of 20 cases in terms of avg(|RE|).

=============================== End ===============================
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Extension to GI/GI/1 model

Proof sketch. From the HT limit

D∗(t) = caBa(t) +Q∗(0)−Q∗(t)

plus u.i. condition,

V ∗d (t) = Var(caBa(t)) + Var(Q∗(0)) + Var(Q∗(t))

+ cov(Q∗(0), Q∗(t)) + cov(caBa(t), Q
∗(t)),

I Var(caBa(t)) = c2
at;

I Var(Q∗(t)) = Var(Q∗(0)) = c4
x/4;

I cov(Q∗(0), Q∗(t)) = c4x
4 c
∗(t/c2

x), where c∗ is the correlation
function discussed in Abate and Whitt (1987,1988).

I w∗ is closely related to c∗

w∗(t) = 1− 1− c∗(t)
2t

.
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HT limit theorem for GI/GI/1 departure variance

Proof sketch contd. The remaining term

cov(caBa(t), Q
∗(t)).

is treated by scaling techniques. Recall that

Q∗(t) = ψ(Q∗(0) + caBa − csBs − e)

I Scale the original system so that we have a modified
system with the same drift −1 but c̃2

a = 1.

{Q∗(0), caBa(t), csBs(t),−t}
d
= c2

a

{
Q∗(0)

c2
a

, Ba(t/c
2
a),

cs
ca
Bs(t/c

2
a),−

t

c2
a

}
≡ c2

a

{
Q∗(0)

c2
a

, Ba(u),
cs
ca
Bs(u),−u

}
,

where u = t/c2
a.

I Apply results for special case M/GI/1 where c2
a = 1.
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