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Motivation

» The estimation of performance measures in a open network
of queues is important in many OR applications.

» Theoretical analysis are limited for queueing networks with
general distributions.
» Direct simulation estimation may be computational
expensive,
> especially if doing many “what if” studies or when
performing an optimization over model parameters.
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Background

Traditionally, queueing systems are approximated by
» Parametric-decomposition methods using variability
parameters: e.g., QNA by Whitt (1983);
» QNA is widely accepted, but is known to fail in certain
cases, see Suresh and Whitt (1990).
» It relies on the approximation of the variability parameters
for arrival, service and departures.

> Relfected Brownian motion approximations: e.g., QNET by
Dai and Harrison (1993);
» QNET algorithm computation time scales with the system.
» Sequential Bottleneck Decomposition by Dai, Nguyen and
Reiman (1994) proposed to relief the computation burden.
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Review of Robust Queueing Theory

More recently,

» Robust Queueing (RQ) by Bandi et al. (2015) analyzed the
mean steady-state waiting time in a queueing network.

We followed the RQ framework and developped
» RQ for the workload process in G/G/1 models;

» approximation of stationary departure processes, which
leads to RQ for queues in series.

» RQ for G;/G¢/1 models;

8]
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Review of Robust Queueing Theory

A Robust Queueing Theory proposed by Bandi et al. (2015)

» analyzed the mean steady-state waiting time in single
server queue with general interarrival and service
distributions;

» replaced probabilistic laws by uncertainty sets;
» used robust optimization and regression analysis.

» proposed an extension to feed-forward open queueing
networks with adversary servers;

3
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Review of Robust Queueing Theory

Bandi et al. consider a GI/GI/1 FCFS queue with
» {(Ui, Vi) }i>1: interarrival times and service times;
> A, p: arrival rate and service rate.

Lindley recursion
_ E + — s _ qa
Wy = (Wn—l + Va1 Un—l) OgI?an {Sk Sk} )
where S5 =0, S§ =0 and

n—1

Zm, Sg = YNNG < .

i=n—k i=n—k

» Loynes (1962) reverse-time construction;
» Lindley recursion holds for any sequence of {(U;, V;)}, not

just i.i.d. random variables.
B8
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Review of Robust Queueing

As in usual robust optimization applications, Bandi et al.
(2015) proposed to

» draw interarrival and service times from properly defined
uncertainty sets instead of probability distributions;

» use worst case scenario instead of probabilistic statements
(mean, distribution...) to characterize system performance.

8]
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Review of Robust Queueing

The worst case waiting time can be written as

Wy = sup sup W,(U,V)= sup sup max {S; — S;}
Uels Veus Uclda Veys 0sksn

Motivated by CLT, Bandi et al. proposed

a S¢—k/A
u :{(Ulv”-,Un) kkl—/z/}—f‘a,nggn}’
Sy —k/u
us:{(Vh---,Vn) kk1—/2/<rs70<k<n}.

» CLT suggest that I'y = byo, and 'y = bs0os.

8]
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Review of Robust Queueing

With an interchange of maximum, they reduce the problem to
Wi = max {mk + bWk}
b2 Vi1
<sup{mz + b\/z} = = ,
p e+ Vel = g = Wi-p)

where m = ™' = A1 <0, p=Apand b=T,+Ts >0, so
that b? = I'2 + 2T, I's + I'2.

» Closed-form solution depends only on p,I', and ;.

» The solution resembles classical heavy-traffic limit
approximations or bounds, e.g., Kingman Bound
W < plp~’ca+c5)
2u(1 = p)

8]
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Review of Robust Queueing: Extension to OQN

Bandi et al. obtain an algorithm for queueing networks by
assuming

» the network is feed-forward, i.e., no customer feedback;

» the servers are adversary, i.e, they pick service times such
that customer waiting times are maximized.

Under assumptions above, they

» proved a (robust) Burke’s theorem, i.e. departure falls in
the same uncertainty set as the one for arrival;

» apply linear regression to fit I, and 'y for external
arrival processes and service processes;

» used similar network calculus as in QNA to determine
parameters I', and I'y;
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Motivation
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Dependence in Queues

» Dependence rises naturally in queueing network:
» departure process is non-renewal beyond M/M/1 case;
» splitting creates dependent flows;
» superposition of different arrival streams is non-renewal

unless all processes are Poisson.
» Dependence has significant impact on performance
measures

» see discussion in Section 1B of Fendick and Whitt (1989);
» the level of impact will depend on the traffic intensity;

> As a result, methods (QNA, RQ by Bandi et al.) using a
single parameter to describe variability may fail.

3
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Motivation
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An Example

dem queues

H(10), p1 = 0.99 H,(10), ps = 0.7

— 1 PO—_2PO—_3 FO—_4 FO—_5 +»o—»

E1o,p2 = 0.98 E10,p4 = 0.5

E

o

~

normalized workload
w
Normalized mean workload
n w

-

0
0 02 04 06 08 1 0 1 2 3

traffic intensity -log,o(1-p)
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The Heavy-traffic Bottleneck Phenomenon

DOI‘H2 Mp1—06 Mp1—09

_1—>:|*O—> —_8 pPO—_9 PO—

M, p1 = 0.6

Table: The heavy-traffic bottleneck example

Ho,c2=4 D,c2=0
Queue 9 | Simulation | 29.1480 + 0.0486 5.2683 + 0.0025
M/M/1 8.1 (-72.21%) 8.1 (53.75%)
QNA 8.9 (-69.47%) 8.0 (51.85%)
RQ 36.98 (26.86%) 4.9509 (-6.02%)
Queue 8 | Simulation | 1.4403 +0.0005  0.7716 + 0.0001
M/M/1 0.9 (-37.51%) 0.9 (16.64%)

QNA 1.04 (-27.79%)  0.88 (14.05%)
RQ 1.267 (-12.03%)  0.853 (10.51%)
6_5
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Motivation
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Our Motivation

We want to build new RQNA algorithm
» with improved performance in single-server queues:

» capture dependence in the G/G/1 models;
» obtain correct heavy-traffic and light-traffic limits;
» provide useful approximations across all traffic intensities;

» to fit most open queuing networks:

» go beyond feed-forward networks;
» analyze traditional servers, as oppose to adversary servers;
» go beyond Markovian routing (work in progress);

» that run fast and effective.
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Robust Queueing with Dependence
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Continuous-time workload process

>
>
>
>

{(U;, V;)}: interarrival times and service times;

A, p: arrival rate and service rate;

A(t): arrival counting process associated with {Uy};

Y (t): total input of work defined by Y (t) = Zfitl) Vi

X (t): net-input process defined by X (t) =Y (t) — t;

The steady-state workload at time 0 in the queue staring empty
at the remote past —oo:

Z=X0)— inf {X(t)}

—00<t<0

= sup {X(0) - X(=s)} = sup {Xo(s)}

0<s<o0 0<s<o0

v

» Xo(s): the net-input over time [—s, 0].
» With an abuse of notation, we omit the subscript in Xo(s).

A
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Robust Queueing with Dependence
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Continuous-time workload process

We now insert the traffic intensity p into the model.

» Start with unit-rate arrival counting process A(t) and
mean-1 service times;

» Assume that A,(t) with rate p in the p-th model satisfies:
Ap(t) = A(pt).
» The total input process and net-input process:
Yo(t) =Y(pt), and X,(t) =Y (pt) — ¢.
» The steady-state workload:

Z,= sup {Y,(s) —s}= sup {X,(s)}.

0<s<o0 0<s<00

33
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Robust Queueing with Dependence
[e]e] lelele]e]

Stochastic versus Robust Queues

Zy= sup {X,(s)}

0<s<00
Stochastic Queue
» X,(s) = ;Cvz(’fs) Vi — s, where N (t) and {V}} are stationary
point process and stationary sequence separately.
Robust Queue

» X p lies in a suitable uncertainty set U, of total input
functions to be defined later.

» There is no distribution involved, we hence focus on the
deterministic worse-case scenario

Z,= sup sup {(X,(s)}.
X,cu, 0<s<o0

8]
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Robust Queueing with Dependence
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Robust Queueing for continuous-time workload

Now, we define the uncertainty set for the net-input process.

U, = {X'p :RT - R ) X,(s) < E[X,(s)] + by/Var(X,(s)),s € R"'}

= {X'p :RT =R ‘ X,(s) < —(1— p)s +by/psLy(ps),s € R"'} )
where

E[X,(s)] = =(1 = p)s,

Var(X,(s)) = Var(X,(s) — s) = Var(Y,(s)) = Var(Y (ps))
and I,,(t) is the index of dispersion for work (IDW) for the base
net-input process Y (t), i.e.,
Var(Y (t))

I,(t) = .

37
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Robust Queueing with Dependence
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Robust Queueing for continuous-time workload

RQ for workload

Zy = sup sup {X,(s)},
here XpeU, 0<s<co
w

U, = {Xp ‘R R ‘ X,(s) < —(1— p)s—i—b\/pslw(ps)}.

Lemma (Dimension reduction)

The infinite-dimensional RQ problem can be reduced to
one-dimensional

Z, = sup sup {X,(s)}

0<s<00 X,€Uy
= sup {—(1 —p)s+ b\/pst(ps)} .
0<s<0

615 Furthermore, if p <1 and I,,(t)/t — 0 as t — oo, then Z; < cc.
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Robust Queueing with Dependence
00000e0

Robust Queueing for continuous-time workload

In summary, the RQ algorithm for single-server queues

Z, = sup {—(1 —p)s+b\/psT(ps)}.

0<s<oo

This formulation requires IDW I, as model input
» [, is defined for the stationary net-input process;

» [, can be calculated in special cases, estimated by
simulation or approximated;

» same I, used for all p € [0, 1);

» enables convenient generalization to queueing networks.

37
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Robust Queueing with Dependence
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Remarks on the RQ algorithm

zZ; = sup{—(l —p)s+ b\/m} Y

s>0

» Choose b = v/2 so that RQ is exact for M/GI/1 models.
» Slightly more general version, for p = A/

Z* (s L) = sup { =(1 = p)s/p+ /25T, (us) /1 |

s>0

Theorem (RQ correct in Heavy-traffic and light-traffic)

Under reqularity assumptions, the RQ algorithm with b= /2
yields the exact mean steady-state workload in both light-traffic
and heavy-traffic limits for G/G/1 models.

3
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Numerical Examples
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Numerical Example: 5 queues in series

H3(10), p = 0.99 H(10),p = 0.7
Eio
}%3%3%30—*3%
E10,p—098 Elo,p—05
6 6

(9]

EN

n

Normalized mean workload
w

—_
—_

0 1 2 3 100 105
-10g,4(1-0) time
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Numerical Examples
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Numerical Examples - 5 Queues in series

Normalized mean workload

Simulation

0 0.5 1 15 2 25 3
~1og (1)

» RQ automatically “matches” IDW to the mean workload
615 for all traffic intensities.
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Numerical Examples
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More Numerical Examples

V1~G VzNG V;;NG Vi~ G Vs ~ M
p

Now, we look at a batch of examples:
» consider 4 identical queues in tandem:

» same service distributions Gj
» same traffic intensity p; = 0.7 or 0.9;

v

attach a test queue to the end of the 4 identical queues;
» traffic intensity p at the test queue range from 0 to 1;

arrival distribution F' picked from: E4, LN025, LN4, H4;
service distribution G picked from: E4, LN025, LN4, H4,M;
a total of 2 x 4 x 5 = 40 examples.

v

v

v

We assess the performance of RQ algorithm at the test queue.
B8
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Numerical Examples
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More Numerical Examples

» |RE|I=IRE,|: relative error (as a function of traffic
intensity) between the RQ approximation and the
simulation estimation;

» max(|RE|): for fixed example, the maximum relative error
across different traffic intensities;

» avg(|RE|): for fixed example, the simple average of the
relative error across different traffic intensities;

» Max and Mean run over different example instances;

rho = 0.7

33.01%. Mean max(|RE|) for RQ = 16.85%.

15.47%. Mean avg(|RE|) for RQ = 7.50%.
End

*

Max max(|RE|) for RQ
Max avg(|RE|) for RQ

*

rho = 0.9
37.36%. Mean max(|RE|) for RQ = 17.66%.
11.69%. Mean avg(|RE|) for RQ = 6.52%.
End

. Whitt, W. You Robust Queueing with Dependence 26 / 58
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Max max(|RE|) for RQ
Max avg(|RE|) for RQ

*
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A Road Map for RQNA
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Generalization to RQNA

» The RQ algorithm serve as the building blocks for an
Robust Queueing Network Analyzer (RQNA) algorithm;

» How do we establish connections between blocks?

37
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A Road Map for RQNA
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Generalization to RQNA

Recall that
> RQ relies on estimating the IDW at the queue of interest;
» IDW is crucial for RQ to produce useful approximations.
A simplifying assumption
» If we assume that service times are i.i.d., independent of
everything else, then

Io(t) = I(t) + ¢,

where c? is the squared coefficient of variation (scv) of the
service distribution and I,(t) is the index of dispersion for
counts (IDC) associated with the arrival counting process
A(t)

N Var(A(t))

Lal®) = ~Fra00)]

A
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A Road Map for RQNA
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Generalization to RQNA

To extend the RQ algorithm, we need to
» (for external arrival processes) provide effective algorithm
to calculate/estimate the IDC of a stationary point process;
» (for internal arrival streams) produce effective
approximations internal arrival IDC at any queue within a
open queueing network;

8]
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A Road Map for RQNA
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Generalization to RQNA: External Arrival Process

To calculate/estimate the IDC of a stationary point process,

» let A(t) be a base process with rate 1 and
V(t) = Var(A(t))

where the variance is taken under stationary distribution.

» for stationary point process, we have E[A(t)] = t;

8]
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A Road Map for RQNA
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Generalization to RQNA: External Arrival Process

» estimate via numerical inversion:

. Y £ s

V(s) = 2 + ?ﬁz(s) B

V(t) = A /0 (1 + 2m(u) — 27)du.

» m(t) = E°[A(t)] under Palm distribution P°, i.e.,
conditioning on having an arrival at time 0.
> renewal function in the case of renewal processes, let
= [, e *'dF(t), then

~

sfs) = —1&__
s(1— f(s))
» estimate via Monte Carlo with some variance reduction

techniques.

8]
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A Road Map for RQNA
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Generalization to RQNA: Internal Flows

The total arrival process at any queue:

» superposition of external arrival and splittings of
departure processes.

P21

P1o
M/—: Queue 1|| O !

Superposition
\ Departure
19) P2,
2 Queue 2 I O - ‘o
e Splitting

37
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A Road Map for RQNA
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Splitting and Superposition

> Superposition of independent streams:

=22

:02

7] i >\J Zt)

» adds nonlinearity

» Splitting under Markovian routing:

Ia,j,i(t) = pj’iIdJ'(t) + (]. = pj7i), for ] > 1

> The remaining challenge is to characterize departure
processes.

8]
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Departure Process
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Historical Remarks on Departure Processes

» In general, departure processes are complicated, even for
M/GI/1 or GI/M/1 special cases;
» Even more, the IDC we used is defined for stationary

version of the departure process, instead of the departure
from a system starting empty.

» It is important that we use stationary version of the IDC
(IDW), otherwise we do not have correct light traffic limit.

8]
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Departure Process
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Historical Remarks on Departure Processes

Exact characterizations
» Burke (1956): M/M/1 departure is Poisson;
» Takdcs (1962): the Laplace transform (LT) of the mean of
the departure process under Palm distribution;
» Daley (1976): the LT of the variance function of the
stationary departure from M/G/1 and GI/M/1 models;
» BMAP/MAP/1 departure is a MAP with infinite order, see
discussion in Green’s dissertation (1999) and Zhang (2005).
» MAP with infinite order is intractable in practice, one need
to resort to truncation.
Heavy-traffic limits
» Iglehart and Whitt (1970), HT limits for departure process
starting with empty system;
» Gamarnik and Zeevi (2006) and Budhiraja and Lee (2009),

HT limit for stationary queueing length process.
B8
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Departure Process
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Historical Remarks on Departure Processes

Approximations
» Whitt (1982, 1983, 1984): QNA and related papers:

» the asymptotic method: matching the long-run property
of a point process
L
» the stationary interval method: matching the stationary
interval distribution, but ignore dependence between
successive departures

ci = c+2p%c = 2p(1 = p) E[W] = p?c; + (1 - p*)c]

37
o
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Departure Process
000@00000000000000

A numerical example

- = ‘Arival e
====:Service
Simulation: p = 0.5

85 Simulation: p = 0.7
Simulation: p = 0.9
7r Simulation: p = 0.98 b

IDCs
o

~ -
0 L | i -

10° 10 102 10° 10* 10°
Time
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Departure Process
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Our approach

» Start with the Laplace transform for M/G/1 and GI/M/1
models in Daley (1976);

» proves HT limits for M/G/1 and GI/M/1 special cases;

» convert general GI/GI/1 to M/G/1 or GI/M/1 special
cases using space-time scaling;

» obtain from the HT limit an approximation for departure
IDCs in the form of convex combination.

37
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Departure Process
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Laplace Transform of the Variance Function

Let D(t) be the stationary departure process with finite
variance, let Vy(t) = Var(D(t)), then

, A 2X 2\
Vd(S) = 5_2 2 ?md(b’) — 5_3

)

Va(t) = A /O t(l + 2mg(u) — 2\u)du.

where mg(t) = E°[D(t)] is the mean process under Palm
distribution PP, i.e., conditioning on having an arrival at time 0.

8]
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Departure Process
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Laplace Transform of the Variance Function

Takacs (1962): For M/GI/1

N ) SL(o(5))
md(s):/o e md(t)dt—m(l s+ A1 —0(s )))7

» §(s) = E [e*"] is the LT of the service pdf g(t);
» U(s) is the root with the smallest absolute value in z of the
equation
z=g(s+ A1 - 2))
» TI(z) is the probability generating function of the
distribution of the stationary queue length @

= 5p9] = A=A =2000=2)

RN
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Departure Process
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Laplace Transform of the Variance Function

Daley (1976): For GI/M/1

LA 2) (M A+u(l 6)(1—£<s>><ua(1—f<s>>—sf<s>>>
s (s + u(1 = &(s)(s — p(1 = 0)(1 = f(s)) )

> )\ is the arrival rate,
> 1 is the service rate (with A\ < p);
» f(s)=E [e75U] is the LT of the interarrival-time pdf f(t);
» £(s) is the root with the smallest absolute value in z of the
equation k
z=f(s+p(l-2)

» § =£(0) is the unique root in (0,1) of the equation
6= flu(l—9)).
8]
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Departure Process
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The Heavy-Traffic Scaling

Formula for both M/GI/1 and GI/M/1 are complicated

» We resort to proving a heavy traffic limit theorem.
> A family of models indexed by p

M/GI/1: (A, p) = (p, 1);

GI/M/1: (A, p) = (1,p7");

simplify by fixing the GI distribution;

both can be easily generalized for non-unit rates.

v

vV vy

37
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Departure Process
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The Heavy-Traffic Scaling

To obtain a proper heavy-traffic limit, we define
Dy(t) = (1= p)[Dy((L = p) ) — (L= p) 2],

» classical HT-scaling from Iglehart and Whitt (1970)
» scale time by (1 — p)~2, scale space by 1 — p;

» corresponding variance function:

Vazp(t) =(1- p)2Vd,p ((1 — p)_zt)
and LT \ R
Vio(s) = (1= p)*Va, (1 = p)%s)

» prove the limit for the LT and then use continuity results
for the LT.

37
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Departure Process
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The Heavy-Traffic Limit

Theorem (HT limit for the M/GI/1 and GI/M/1 departure

variance)

Under regularity conditions, V; p converges to

Vi) = w* (t/c2) 2xt + (1 — w* (t/c2)) Xt

2 _ 2, 2
where c;, = c; + c3,

w*(t) = % ((t2 +2t—1) (2@(\/5) - 1) FoVEIS(VE) L+ t) — t2)

and ¢, are the standard normal pdf and cdf, respectively.

3
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Departure Process
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Extension to GI/GI/1 model

The HT limit theorem for departure variance extend naturally
to the GI/GI/1 model, yielding exactly the same result.

Regularity conditions
> the interarrival-time cdf has a pdf;

> the interarrival times and service times have uniformly
bounded third moments.

8]
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Departure Process
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Extension to GI/GI/1 model

To start, we state the HT limit theorem for the departure
process

Theorem (HT limit for the stationary departure process)

Under assumptions on the last slide,

D*(t) = caBa(t) + Q"(0) — Q*(2).

» B, and By are independent standard Brownian motions;

» Q*(t) = ¥(Q*(0) + caBa — csBs — €) is the HT limit for
stationary queue length process: a stationary reflective
Brownian motion (RBM) R, with drift —1, variance
c% = cg + cg;

» Q*(0) ~ exp(2/c2) is the exponential marginal distribution;

» B, Bs and Q*(0) are mutually independent.

Y
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Extension to GI/GI/1 model

Theorem (HT limit for the GI/GI/1 departure variance)

Under assumptions in Theorem plus uniform integrability
conditions, V, , converges to

Vi) = w* (t/c2) 2at + (1 — w* (t/c2)) Xt

2 _ 2, 2
where ¢z = c; + ¢35,

w(t) = Qit ((t2 +2t—1) (2<I>(\/1_5) - 1) +2VE(VE) (1 + 1) — t2)

and ¢, ® are the standard normal pdf and cdf, respectively.

» Proof sketch at the end of the slides.

87
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Approximation for Departure IDC

Let I4, be the departure IDC in the model with traffic intensity
p. Define the weight function

(1) = 120 = 1s0) _ Viay(®) = Velt)
4 - Ia(t) - Is(t) B Va(t) - Vs(t) ’

where I, and I, are the IDC of the base arrival and service
processes (both with rate 1). The HT-scaled weight function

wi(t) = wp((1 - p) ).

» Same HT scaling as before, but space scaling canceled out.

8]

v W. Whitt, W. You Robust Queueing with Dependence 48 / 58



Departure Process
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Approximation for Departure IDC

Corollary

Under the assumptions in the HT departure variance theorem,
we have wi(t) = w*(t/c3).

The corollary supports the following approximation
wp(t) = w*((1 = p)*t/c3),
and

Lip(t) = wplt)a(t) + (1 = wp(t)) Is(2)
~ (1 - p)Pt/E)Ta(t) + (L= w* (1 — p)*t/R)) L (0):

87
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A Simple Example

10 T T T T

- = :Arival e
====:Service

Simulation: p = 0.5
81 |= = Approximation: p = 0.5
imulation: p = 0.7

7 |= = Approximation: p = 0.7
Simulation: p = 0.9

6 |~ — ' Approximation: p = 0.9
= Simulation: p = 0.98
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An Artificial Example

Sup of 10 LNg

= 0 25
p1 = 0.95, 03’1 =8 p2 = 0.9,03,2 =0.25 p3 =0.8, 0573 =38

Last queue of 3 queues in series, p =0.8

I B

| |===="Arrival IDC ’ |
7 Departure IDC 4
= *Service IDC 4
61 Approximation II 1
5r 1 1

IDCs
IN

.~

S
0 . . .
1072 10° 102 10% 108
Time
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The RQNA Algorithm
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Three Network Operators

In summary,

> Splitting under Markovian routing;:

laoji(t) = pjila; () + (1 —pji), for j=>1
> Superposition of independent streams:

k
A
) =50 ),
i
=0

» adds nonlinearity
» Departure 1IDC

Lip(t) = w (1= p)*t/c)La(t) + (1 = w*((1 = p)*t/c3)) Is ().
65
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The RQNA Algorithm
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The RQNA Algorithm

» Traffic-rate equations

» Total-arrival-IDC equations

)\o i
Ll,i(t) . )\_an,o,i(Ao,it) +

J

& Ao
22 (pjila;(Njat) + (1 — pji))

1)‘1'

8]
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The RQNA Algorithm
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The RQNA Algorithm

A],Z
Ai

(pjila;(Njat) + (1 — pja))

>\o 3 -
Ia,i(t) = TIa,o,i(Ao,it) + Z
i =

» Departure IDC, define p; = \;/p; and Cfc,i = c?w- + cii, then
Li(t) = w*((L = pi)*t/ 5 ) ai(8) + (L= w*((1 = pi)*t/c3 1)) s(2),

» Asymptotic-variability-parameter equations

Cc21 O'Z goz—i—z JZ pJan] (1_pj7i))

» obtained by letting ¢t — oo in the total-arrival-IDC
equations.

» coincides with (24) in Whitt (1983), where we take w; = 1
and v;; = 1 there.

33
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The RQNA Algorithm
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Solving the Total-Arrival-IDC equations

» Both the traffic-rate equations and asymptotic-variability
equations are linear equations.
» Total-arrival-IDC equations
» nonlinear due to the superposition operator;
» simpler case: feed-forward queueing network, can be solved
explicitly by iteration;
» general case: forms a contraction mapping, so unique
solution can be found by fixed-point-iteration method.

37
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The RQNA Algorithm
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Numerical Examples

V1~ V2~G V3~G Vi~ G Vs ~ M
p

Now, we look at a batch of examples:
» consider 4 identical queues in tandem:

» same service distributions G;
» same traffic intensity p; = 0.7 or 0.9;

attach a test queue to the end of the 4 identical queues;
» traffic intensity p at the test queue range from 0 to 1;

arrival distribution F' picked from: E4, LN025, LN4, H4;
» service distribution G picked from: E4, LN025, LN4, H4,M;
a total of 2 x 4 x 5 = 40 examples.

v

v

v

We assess the performance of RQNA at the test queue and
compare it with RQ.

RN

&
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The RQNA Algorithm
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Numerical Examples Revisited

The case
* 4 identical queues in series, traffic intensity 0.70.

* Arrival distribution picked from: E4, LNO25, LN4, H4.

* Service distribution picked from: E4, LN0O25, LN4, H4, M.
* Number of cases in total: 20.
Summary

* Max max(|RE|) for RQNA = 31.90%. Mean max(|RE|) for RQNA = 17.38%.
* Max max(|RE|) for RQ = 33.01%. Mean max(|RE|) for RQ = 16.85%.
* Max avg(|RE|) for RQNA = 21.34J,. Mean avg(|RE|) for RQNA = 9.52}.
* Max avg(|RE|) for RQ = 15.47%. Mean avg(|RE|) for RQ = 7.50%.
* Min avg(|RE|) for RQNA = 0.95%. Min avg(|RE|) for RQ = 1.58}.

Compare to RQ
* Max increase of avg(|RE|) over RQ = 229.29%.

In this case, avg(|RE|) for RQNA is 5.20%.
* Max decrease of avg(|RE|) over RQ = 72.10%.
* RQNA outperfroms RQ in 8 out of 20 cases in terms of max(|RE|).
* RQNA outperfroms RQ in 6 out of 20 cases in terms of avg(|RE|).
End

33

N
|
=

. Whitt, W. You Robust Queueing with Dependence 57 / 58



The RQNA Algorithm
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Numerical Examples Revisited

The case
* 4 identical queues in series, traffic intensity 0.90.

* Arrival distribution picked from: E4, LNO25, LN4, H4.

* Service distribution picked from: E4, LN0O25, LN4, H4, M.
* Number of cases in total: 20.
Summary

* Max max(|RE|) for RQNA = 30.00%. Mean max(|RE|) for RQNA = 12.57%.
* Max max(|RE|) for RQ = 37.36%. Mean max(|RE|) for RQ = 17.66Y%.
* Max avg(|RE|) for RQNA = 10.56%. Mean avg(|RE|) for RQNA = 4.40%.
* Max avg(|RE|) for RQ = 11.69%. Mean avg(|RE|) for RQ = 6.52%.
* Min avg(|RE|) for RQNA = 2.43%. Min avg(|RE|) for RQ = 1.25}.

Compare to RQ
* Max increase of avg(|RE|) over RQ = 117.58%.

In this case, avg(|RE|) for RQNA is 2.76%.
* Max decrease of avg(|RE|) over RQ = 75.33%.
* RQNA outperfroms RQ in 12 out of 20 cases in terms of max(|RE|).
* RQNA outperfroms RQ in 13 out of 20 cases in terms of avg(|RE|).
End
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Extension to GI/GI/1 model

Proof sketch. From the HT limit
D*(t) = caBa(t) + Q(0) — Q*(¢)

plus u.i. condition,

Vi (t) = Var(caBa(t)) + Var(Q"(0)) + Var(Q"(?))
+cov(Q7(0), Q7 (#)) + cov(caBa(t), Q7(1),

» Var(c,B,(t)) = c2t;

> Var(Q*(t)) = Var(Q*(0)) = cz/4;

> cov(Q*(0),Q*(t)) = %c* (t/c%), where c* is the correlation
function discussed in Abate and Whitt (1987,1988).

» w* is closely related to c*

sy g L=< (@)
w(t)=1- T
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HT limit theorem for GI/GI/1 departure variance

Proof sketch contd. The remaining term

cov(caBa(t), Q" (£))-
is treated by scaling techniques. Recall that
Q*(t) =v(Q*(0) + ¢y B, — csBs — €)

» Scale the original system so that we have a modified
system with the same drift —1 but & = 1.

{Q7(0), caBa(t), csBs(t), _t}
d 2{Q*(0)

2 { L Bt/ ), 8.1/~ |
=2 { L 5 >,j—ZBs(u),—u},

i where u = t/c2.
% - :
» Apply results for special case M/GI/1 where ¢; = 1.
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