Robust Queueing for a Series of Queues

Wei You (with Ward Whitt) IEOR, Columbia INFORMS 2017 Houston, TX

October 25, 2017

Outline

1 Introduction

- 2 Queues in Series
- 3 Departure Process

4 RQ for a Series of Queues

Motivation

- ► Theoretical analysis are limited for queueing network with general distributions.
- Direct simulation estimation may be computational expensive,
 - especially if doing many "what if" studies or when performing an optimization over model parameters.

Background

Traditionally, queueing systems are approximated by

- ► Parametric-decomposition methods using variability parameters: e.g., QNA by Whitt (1983);
- ▶ Relfected Brownian motion approximations: e.g., QNET by Dai and Harrison (1993);

More recently,

- ▶ Robust Queueing (RQ) by Bandi et al. (2015), analyzes the mean steady-state waiting time in a queueing network.
- ▶ Whitt and You (2017): RQ formulation for the workload (virtual waiting time) process in G/G/1 models.
 - ▶ Based on the Index of Dispersion for Work (IDW), see Fendick and Whitt (1989) for discussion of the IDW.

Robust Queueing for continuous-time workload

- ▶ $A_{\rho}(t) = A(\rho t)$: arrival counting process, A(t) with rate 1;
- $\{V_i\}$: mean-1 service times;
- $Y_{\rho}(t) \equiv \sum_{k=1}^{A_{\rho}(t)} V_k \equiv Y(\rho t)$: total input of work;
- $ightharpoonup X_{\rho}(t) \equiv Y_{\rho}(t) t$: net-input process.

The steady-state workload at time t

$$Z_{\rho} \equiv X_{\rho}(t) - \inf_{s \le t} \{X_{\rho}(s)\}.$$

Robust Queueing for continuous-time workload

Under RQ framework, instead of probabilistic distribution for the net-input process, we work with the uncertainty set.

$$\mathcal{U}_{\rho} \equiv \left\{ \tilde{X}_{\rho} : \mathbb{R}^{+} \to \mathbb{R} \mid \tilde{X}_{\rho}(s) \leq E[X_{\rho}(s)] + b\sqrt{\operatorname{Var}(X_{\rho}(s))}, s \in \mathbb{R}^{+} \right\}$$
$$= \left\{ \tilde{X}_{\rho} : \mathbb{R}^{+} \to \mathbb{R} \mid \tilde{X}_{\rho}(s) \leq -(1 - \rho)s + b\sqrt{\rho s I_{w}(\rho s)}, s \in \mathbb{R}^{+} \right\},$$

where

$$E[X_{\rho}(s)] = -(1 - \rho)s,$$

$$\operatorname{Var}(X_{\rho}(s)) = \operatorname{Var}(X_{\rho}(s) - s) = \operatorname{Var}(Y_{\rho}(s)) = \operatorname{Var}(Y(\rho s))$$

and $I_w(t)$ is the index of dispersion for work (IDW), i.e.,

$$I_w(t) \equiv \frac{\operatorname{Var}(Y(t))}{t}.$$

Robust Queueing for continuous-time workload

The RQ algorithm

$$Z_{\rho}^* = \max_{X \in \mathcal{U}_{\rho}} Z_{\rho}(X) \equiv X(t) - \inf_{s \le t} \{X(s)\}$$

where the uncertainty set is defined as

$$\mathcal{U}_{\rho} = \left\{ \tilde{X}_{\rho} : \mathbb{R}^{+} \to \mathbb{R} \mid \tilde{X}_{\rho}(s) \leq -(1 - \rho)s + b\sqrt{\rho s I_{w}(\rho s)}, s \in \mathbb{R}^{+} \right\},\,$$

Theorem (Whitt and You(2017))

The RQ solution is

$$Z^* = \sup_{s \geqslant 0} \left\{ -(1-\rho)s/\rho + \sqrt{2sI_w(s)} \right\}.$$

Under regularity conditions, the RQ solution is asymptotically exact for G/G/1 models under light-traffic and heavy-traffic limits.

A Series of Queues

Regularity assumptions

- each queue is FCFS with a single server and unlimited waiting space;
- stationary and ergodic external arrival process
 - ▶ with finite rate and variance.
- service times have finite variance;
- ▶ traffic intensity at each queue is less than 1.

A Series of Queues

Simplifying assumption

▶ service times at each queue are i.i.d., independent of the external arrival process.

This implies that

$$I_w(t) = I_a(t) + c_s^2,$$

where c_s^2 is the service squared coefficient of variation (scv) and $I_a(t)$ is the index of dispersion for counts (IDC) of the arrival process

$$I_a(t) \equiv \frac{Var(A(t))}{E[A(t)]};$$

RQ algorithm

$$Z^* = \sup_{s>0} \left\{ -(1-\rho)s/\rho + \sqrt{2sI_w(s)} \right\}$$
$$= \sup_{s>0} \left\{ -(1-\rho)s/\rho + \sqrt{2s(I_a(s) + c_s^2)} \right\}$$

A Series of Queues

$$Z^* = \sup_{s \ge 0} \left\{ -(1 - \rho)s/\rho + \sqrt{2s(I_a(s) + c_s^2)} \right\}$$

For a series of queues, the arrival process at each queue is exactly the departure from the previous queue.

$$\longrightarrow \overline{\text{Queue 2}} \longrightarrow \overline{\text{Queue 3}} \longrightarrow$$

Hence, extending to a series of queues simplifies to analyzing the IDC of the *departure process* of a single-server queue.

Historical Remarks on Departure Processes

- ► In general, departure processes are complicated, even for M/GI/1 or GI/M/1 special cases;
- ▶ Even more, the IDC we used is defined for **stationary version** of the departure process, instead of the departure from a system starting empty.
 - ▶ It is important that we use stationary version of the IDC (IDW), otherwise RQ does not yield the correct light-traffic limit.

Historical Remarks on Departure Processes

Exact characterizations

- ▶ Burke (1956): M/M/1 departure is Poisson;
- ► Takács (1962): the Laplace transform (LT) of the mean of the departure process under **Palm distribution**;
- ▶ Daley (1976): the LT of the variance function of the **stationary** departure from M/G/1 and GI/M/1 models;
- ▶ BMAP/MAP/1 departure is a MAP with infinite order, see discussion in Green's dissertation (1999) and Zhang (2005).
 - ▶ MAP with infinite order is intractable in practice, one need to resort to truncation.

Heavy-traffic limits

- ▶ Iglehart and Whitt (1970), HT limits for departure process starting with empty system;
- ► Gamarnik and Zeevi (2006) and Budhiraja and Lee (2009), HT limit for **stationary** queue length process.

Historical Remarks on Departure Processes

Approximations

- ▶ Whitt (1982, 1983, 1984): QNA and related papers:
 - ▶ the **asymptotic method**: matching the long-run property of a point process

$$c_d^2 \approx c_a^2$$

▶ the **stationary interval method**: matching the stationary interval distribution, but ignore dependence between successive departures

$$c_d^2 = c_a^2 + 2\rho^2 c_s^2 - 2\rho(1-\rho)E[W] \approx \rho^2 c_a^2 + (1-\rho^2)c_s^2$$

Departure IDC: A GI/GI/1 Example

Approximation for Departure IDC

▶ The numerical experiment suggests:

$$I_{d,\rho}(t) \approx w_{\rho}(t)I_{a}(t) + (1 - w_{\rho}(t))I_{s}(t).$$

➤ To justify, we develop a heavy-traffic limit theorem for the weight function defined as

$$w_{\rho}(t) \equiv rac{I_{d,\rho}(t) - I_s(t)}{I_a(t) - I_s(t)}.$$

► To this end, consider the HT-scaled weight function

$$w_{\rho}^{*}(t) = w_{\rho}((1-\rho)^{-2}t).$$

▶ classical HT-scaling: scale time by $(1 - \rho)^{-2}$, scale space by $1 - \rho$, but space scaling canceled out.

Main Theorem for Stationary Departure Processes

Theorem (HT limit for the weight function)

For GI/GI/1 stationary departure process, under regularity conditions, we have

$$w_{\rho}^*(t) \Rightarrow w^*(t/c_x^2),$$

where $c_x^2 = c_a^2 + c_s^2$ and

$$w^*(t) = \frac{1}{2t} \left(\left(t^2 + 2t - 1 \right) \left(2\Phi(\sqrt{t}) - 1 \right) + 2\sqrt{t}\phi(\sqrt{t}) \left(1 + t \right) - t^2 \right)$$

for standard Normal cdf Φ and pdf ϕ .

- w^* is monotonically increasing and $0 \le w^* \le 1$;
- The limiting weight depend on interarrival and service distribution only through their scv's c_a^2 and c_s^2 .

Approximation for Departure IDC

► Conjecture: the Theorem holds for a general class of G/G/1 models, which is supported by extensive simulation experiments.

The theorem supports the following approximation

$$w_{\rho}(t) \approx w^*((1-\rho)^2 t/c_x^2),$$

and

$$I_{d,\rho}(t) = w_{\rho}(t)I_{a}(t) + (1 - w_{\rho}(t))I_{s}(t)$$

$$\approx w^{*}((1 - \rho)^{2}t/c_{x}^{2})I_{a}(t) + (1 - w^{*}((1 - \rho)^{2}t/c_{x}^{2}))I_{s}(t).$$

The GI/GI/1 Example Revisited

RQ for a Series of Queues

- ▶ $I_{a_1}(t)$: the IDC of the external arrival process to the first queue.
- ▶ $I_{s_i}(t)$: the IDC of the service process at queue i.
- ▶ For i = 1, 2, ..., n:

$$c_{x,i}^2 = I_{a,i}(\infty) + I_{s_i}(\infty);$$

•
$$\rho = 1/\mu_i$$
;

$$w_i^*(t) = w^*((1-\rho_i)^2 t/c_{x_i}^2)$$

$$I_{a,i+1}(t) = I_{d,i}(t) = w_i^*(t)I_{a,i}(t) + (1 - w_i^*(t))I_{s,i}(t)$$

• Return $\{I_{a,i}: i = 1, 2, \dots, n\}$

For any Queue i, apply the RQ algorithm

$$Z^* = \sup_{s \ge 0} \left\{ -(1 - \rho)s/\rho + \sqrt{2s(I_{a,i}(s) + c_s^2)} \right\}$$

to produce approximation of the mean steady-state workload.

Numerical example: 4 Queues in Series

$$E_4 \xrightarrow{L_4} 1 \xrightarrow{D_1 = 0.7} 0 \xrightarrow{D_2 = 0.9} 0 \xrightarrow{D_3 = 0.7} 0 \xrightarrow{D_3 = 0.7} 0 \xrightarrow{M, c_{s,1}^2 = 1} 0 \xrightarrow{M, c_{s,2}^2 = 4} 0 \xrightarrow{M, c_{s,3}^2 = 1} 0 \xrightarrow{M, c_{s,4}^2 = 1} 0 \xrightarrow{M, c_{s,4}^$$

	Workload	RQ Approx.	Relative Error
Queue 1	1.09613	1.0583	-3.45%
Queue 2	17.6133	17.2884	-1.84%
Queue 3	2.89796	3.1702	9.39%
Queue 4	24.0131	23.5623	-1.18%
Total	45.6205	45.0792	-1.19%

Numerical example: 4 Queues in Series

$$E_{4} \xrightarrow{M, c_{s,1}^{2} = 1} \xrightarrow{H_{2}, c_{s,2}^{2} = 4} \xrightarrow{M, c_{s,3}^{2} = 1} \xrightarrow{M, c_{s,4}^{2} = 1}$$

$$c_{a}^{2} = 0.25 \xrightarrow{\rho_{1} = 0.7} \xrightarrow{\rho_{1} = 0.7} \xrightarrow{\rho_{2} = 0.9} \xrightarrow{\rho_{3} = 0.7} \xrightarrow{\rho_{4} = 0.95}$$

By Brumelle's formula, we have

$$E[Z] = \rho E[W] + \rho \frac{E[V^2]}{2\mu} = \rho E[W] + \rho \frac{(c_s^2 + 1)}{2\mu}.$$

	Waiting Time	RQ Approx.	Relative Error
Queue 1	0.86584	0.8119	-6.23%
Queue 2	17.3204	16.9593	-2.08%
Queue 3	3.43984	3.8289	20.78%
Queue 4	24.3252	23.8524	-1.94%
Total	45.9513	45.4525	-1.09%

References

Key references:

- D. Daley, Queueing Output Processes, Advances in Applied Probability, 1976.
- D. Gamarnik, A. Zeevi, Validity of heavy traffic steady-state approximations in generalized Jackson Networks, *The Annals of Applied Probability*, 2006.
- W. Whitt, W. You, Heavy-traffic limit of the GI/GI/1 stationary departure process and its variance function, submitted to Stochastic Systems, 2017.

Queueing network approximations:

- ▶ J. G. Dai and J. M. Harrison, The QNET method for two-moment analysis of closed manufacturing systems, *Annals of Applied Probability*, 1993.
- J. G. Dai, V. Nguyen, and M. I. Reiman, Sequential bottleneck decomposition: an approximation method for generalized Jackson Networks, *Operations Research*, 1994.
- W. Whitt, The Queueing Network Analyzer, Bell System Technical Journal, 1983.

References

000

Other references:

- P. Burke, The Output of a Queuing System, Operations Research, 1956.
- ▶ D. Green, Departure Processes from MAP/PH/1 Queues, thesis, 1999.
- L. Takács, Introduction to the Theory of Queues, Oxford University Press, 1962.
- S. Hautphenne, Y. Kerner, Y. Nazarathy, P. Taylor, The Second Order Terms of the Variance Curves for Some Queueing Output Processes, arXiv:1311.0069, 2013.
- D. Iglehart, W. Whitt, Multiple Channel Queues in Heavy Traffic II: Sequences, Networks, and Batches, Advances in Applied Probability, 1970.
- ▶ W. Whitt, Approximating a Point Process by a Renewal Process: Two Basic Methods, *Operations Research*, 1982.
- W. Whitt, Approximations for Departure Processes and Queues in Series, Naval Research Logistics Quarterly, 1984.
- Q. Zhang, A. Heindl, E. Smirni, Characterizing the BMAP/MAP/1 Departure Process via the ETAQA Truncation, Stochastic Models,

Thank you!

Dependent Service Times

$$I_{w}(t) \equiv \frac{Var(Y(t))}{E[V]E[Y(t)]}$$

$$= \frac{\mu^{2}}{\lambda t} \left(Var \left(E \left[\sum_{i=1}^{N(t)} V_{i} \middle| N(t) \right] \right) + E \left[Var \left(\sum_{i=1}^{N(t)} V_{i} \middle| N(t) \right) \right] \right)$$

$$= \frac{\mu^{2}}{\lambda t} \left(\frac{1}{\mu^{2}} Var \left(N(t) \right) + E \left[\frac{1}{\mu^{2}} N(t) I_{N(t)}^{s} \right] \right)$$

$$= I_{a}(t) + \frac{1}{\lambda t} E \left[N(t) I_{N(t)}^{s} \right],$$

where

$$I_k^s = \frac{kVar(S_k^s)}{(E[S_k^s])^2} = \frac{\mu^2}{k}Var(S_k^s)$$

is the index of dispersion for intervals (IDI) for the service sequence and $Var(S_k^s) = \sum_{i=1}^k V_i$.

Corollary (Asymptotic behavior of the departure variance)

$$V_d^*(t) \sim c_a^2 \lambda t + \frac{(c_s^2 - c_a^2) c_x^2}{2\gamma^2} - \frac{8(c_s^2 - c_a^2) c_x^5}{\gamma^5} \frac{1}{\sqrt{2\pi \lambda^3 t^3}} e^{-\frac{\lambda \gamma^2 t}{2c_x^2}} \ as \ t \to \infty.$$

Compare to Hautphenne et al. (2013):

$$V_d(t) = c_a^2 t + b_\theta + o(1)$$
, as $t \to \infty$.

- they have explicit expression for b_{θ} under all ρ in M/G/1;
- our have more detailed remainder for GI/GI/1 as $\rho \uparrow 1$;
- the two coincide as $\rho \uparrow 1$ in M/G/1.

Of course, our limit holds for all t, not just asymptotically.

An Artificial Example

A Path to RQNA

The total arrival process at any queue:

superposition of external arrival and splittings of departure processes.

Three Network Operators

In summary,

▶ Splitting under Markovian routing:

$$I_{a,j,i}(t) = p_{j,i}I_{d,j}(t) + (1 - p_{j,i}), \text{ for } j \ge 1$$

► Superposition of independent streams:

$$I_{a,i}(t) = \sum_{i=0}^{k} \frac{\lambda_{j,i}}{\lambda_i} I_{a,j,i}(\lambda_{j,i}t).$$

- adds nonlinearity
- ► Departure IDC

$$I_{d,\rho}(t) = w^*((1-\rho)^2 t/c_x^2)I_a(t) + (1-w^*((1-\rho)^2 t/c_x^2))I_s(t).$$

The RQNA Algorithm

► Traffic-rate equations

$$\lambda_i = \lambda_{o,i} + \sum_{j=1}^n \lambda_{j,i} = \lambda_{o,i} + \sum_{j=1}^n \lambda_j p_{j,i},$$

► Total-arrival-IDC equations

$$I_{a,i}(t) = \frac{\lambda_{o,i}}{\lambda_i} I_{a,o,i}(\lambda_{o,i}t) + \sum_{i=1}^n \frac{\lambda_{j,i}}{\lambda_i} \left(p_{j,i} I_{d,j}(\lambda_{j,i}t) + (1 - p_{j,i}) \right)$$

The RQNA Algorithm

$$I_{a,i}(t) = \frac{\lambda_{o,i}}{\lambda_i} I_{a,o,i}(\lambda_{o,i}t) + \sum_{i=1}^{n} \frac{\lambda_{j,i}}{\lambda_i} \left(p_{j,i} I_{d,j}(\lambda_{j,i}t) + (1 - p_{j,i}) \right)$$

▶ Departure IDC, define $\rho_i = \lambda_i/\mu_i$ and $c_{x,i}^2 = c_{a,i}^2 + c_{s,i}^2$, then $I_{d,i}(t) = w^*((1-\rho_i)^2 t/c_{x,i}^2)I_{a,i}(t) + (1-w^*((1-\rho_i)^2 t/c_{x,i}^2))I_{s,i}(t)$,

Asymptotic-variability-parameter equations

$$c_{a,i}^2 = \frac{\lambda_{o,i}}{\lambda_i} c_{a,o,i}^2 + \sum_{j=1}^n \frac{\lambda_{j,i}}{\lambda_i} \left(p_{j,i} c_{a,j}^2 + (1 - p_{j,i}) \right)$$

- obtained by letting $t \to \infty$ in the total-arrival-IDC equations.
- coincides with (24) in Whitt (1983), where we take $w_j = 1$ and $v_{ij} = 1$ there.

Solving the Total-Arrival-IDC equations

- ▶ Both the traffic-rate equations and asymptotic-variability equations are linear equations.
- ► Total-arrival-IDC equations
 - nonlinear due to the superposition operator;
 - simpler case: feed-forward queueing network, can be solved explicitly by iteration;
 - general case: forms a contraction mapping, so unique solution can be found by fixed-point-iteration method.

Extension to GI/GI/1 model

Proof sketch. From the HT limit

$$D^*(t) = c_a B_a(t) + Q^*(0) - Q^*(t)$$

plus u.i. condition,

$$V_d^*(t) = \text{Var}(c_a B_a(t)) + \text{Var}(Q^*(0)) + \text{Var}(Q^*(t)) + \text{cov}(Q^*(0), Q^*(t)) + \text{cov}(c_a B_a(t), Q^*(t)),$$

- $Var(Q^*(t)) = Var(Q^*(0)) = c_x^4/4;$
- ▶ $cov(Q^*(0), Q^*(t)) = \frac{c_x^4}{4}c^*(t/c_x^2)$, where c^* is the correlation function discussed in Abate and Whitt (1987,1988).
 - w^* is closely related to c^*

$$w^*(t) = 1 - \frac{1 - c^*(t)}{2t}.$$

HT limit theorem for GI/GI/1 departure variance

Proof sketch contd. The remaining term

$$cov(c_aB_a(t), Q^*(t)).$$

is treated by scaling techniques. Recall that

$$Q^*(t) = \psi(Q^*(0) + c_a B_a - c_s B_s - e)$$

► Scale the original system so that we have a modified system with the same drift -1 but $\tilde{c}_{o}^{2} = 1$.

$$\begin{aligned} & \{Q^*(0), c_a B_a(t), c_s B_s(t), -t\} \\ & \stackrel{\text{d}}{=} c_a^2 \left\{ \frac{Q^*(0)}{c_a^2}, B_a(t/c_a^2), \frac{c_s}{c_a} B_s(t/c_a^2), -\frac{t}{c_a^2} \right\} \\ & \equiv c_a^2 \left\{ \frac{Q^*(0)}{c_a^2}, B_a(u), \frac{c_s}{c_a} B_s(u), -u \right\}, \end{aligned}$$

Apply results for special case M/GI/1 where $c_a^2 = 1$.

N. Whitt, W. You

Robust Queueing for a Series of Queue.

The Heavy-traffic Bottleneck Phenomenon

Table: The heavy-traffic bottleneck example

_					
			High variability	Low variability	
_	Queue 9	Simulation	29.1480 ± 0.0486	5.2683 ± 0.0025	
		QNA	8.9 (-69.47%)	8.0 (51.85%)	
		M/M/1	8.1 (-72.21%)	$8.1\ (53.75\%)$	
		Asymp. Method	36.5~(25.22%)	4.05 (-23.13%)	
		RQNA	26.88 (-7.79%)	5.44 (3.26%)	
		RQ	36.98 (26.86%)	4.9509 (-6.02%)	
_	Queue 8	Simulation	1.4403 ± 0.0005	0.7716 ± 0.0001	
		QNA	1.04 (-27.79%)	0.88~(14.05%)	
		M/M/1	0.9 (-37.51%)	0.9~(16.64%)	
		Asymp. Method	4.05 (181.19%)	0.45~(424.88%)	
		RQNA	0.9 (-37.51%)	0.895 (15.99%)	
, , , ,		RQ	1.267 (-12.03%)	0.853 (10.51%)	
W. Whitt, W. You Robust Quedeing for a Series of Quedes 35-/2					

