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Motivation

» The estimation of performance measures in a open network
of queues is important in many OR applications.

» Theoretical analysis are limited for queueing network with
general distributions.
» Direct simulation estimation may be computational
expensive,
> especially if doing many “what if” studies or when
performing an optimization over model parameters.
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Background

Traditionally, queueing systems are approximated by

» Parametric-decomposition methods using variability
parameters: e.g., QNA by Whitt (1983);

» Relfected Brownian motion approximations: e.g., QNET by
Dai and Harrison (1993);

More recently,
» Robust Queueing (RQ) by Bandi et al. (2015), analyzes

the mean steady-state waiting time in a queueing network.

» Whitt and You (2017): RQ formulation for the workload
(virtual waiting time) process in G/G/1 models.

» Based on the Index of Dispersion for Work (IDW), see
Fendick and Whitt (1989) for discussion of the IDW.

RN
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Robust Queueing for continuous-time workload

>
>
>

A,(t) = A(pt): arrival counting process, A(t) with rate 1;
{V;}: mean-1 service times;

Y,(t) = ‘,?i (f) Vi =Y (pt): total input of work;

X,(t) = Y,(t) — t: net-input process.

>

The steady-state workload at time t
Zp=Xp(t) - gg{Xp(S)}

45+ Net-input process X(t)
= == Lower regulator inf

X)) 000 N = = = = =

s<t
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Robust Queueing for continuous-time workload

Under RQ framework, instead of probabilistic distribution for
the net-input process, we work with the uncertainty set.

U, = {X'p Rt =R ' X,(s) < E[X,(s)] + by/Var(X,(s)),s € R"’}
= {Xp ‘Rt =R ‘ X,(5) < —(1 — p)s + by/psL,(ps),s € R+} ,
where
E[X,(5)] = —(1 - )5
Var(X(s)) = Var(X,(s) — ) = Var(¥p(s)) = Var(¥ (ps))
and I,,(t) is the index of dispersion for work (IDW), i.e.,

Var(Y (t)) ‘

I,(t) = .

3
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Robust Queueing for continuous-time workload

The RQ algorithm

Zy = s Z,00) FEREL T EREY

where the uncertainty set is defined as
U, = {X'p :RT =R ‘ X,(5) < —(1 — p)s +by/psL,(ps),s € R+} ,

Theorem (Whitt and You(2017))
The RQ solution is

z* = sup {~(1= p)s/p+ /251 ()} .

s=>0
Under regularity conditions, the RQ solution is asymptotically
exact for G/G/1 models under light-traffic and heavy-traffic
615 limits.
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A Series of Queues

R TITTI NG SNCTTY NG S T N

Regularity assumptions

» each queue is FCFS with a single server and unlimited
waiting space;
» stationary and ergodic external arrival process
» with finite rate and variance.

» service times have finite variance;

» traffic intensity at each queue is less than 1.

33
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A Series of Queues

Simplifying assumption
> service times at each queue are i.i.d., independent of the
external arrival process.
This implies that
Ly(t) = L(t) + 3,
where ¢2 is the service squared coefficient of variation (scv) and
I,(t) is the index of dispersion for counts (IDC) of the arrival

process
Var( (t))

1o (1) “EA®)]

RQ algorithm

Zj=-cup {~(=p)s/p+V25L,(5)}
6{5 =i1;13{— —p)s/p+ \/ZS(Ia(s)+c§)}
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A Series of Queues

g% — iglo) {_(1 —p)s/p+ V2s(1,(s) + cg)}

For a series of queues, the arrival process at each queue is
exactly the departure from the previous queue.

T O s} O GO

Hence, extending to a series of queues simplifies to analyzing
the IDC of the departure process of a single-server queue.

37
o
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Historical Remarks on Departure Processes

» In general, departure processes are complicated, even for
M/GI/1 or GI/M/1 special cases;

» Even more, the IDC we used is defined for stationary
version of the departure process, instead of the departure
from a system starting empty.

» It is important that we use stationary version of the IDC
(IDW), otherwise RQ does not yield the correct light-traffic
limit.

&
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Historical Remarks on Departure Processes

Exact characterizations
» Burke (1956): M/M/1 departure is Poisson;
» Takdcs (1962): the Laplace transform (LT) of the mean of
the departure process under Palm distribution;
» Daley (1976): the LT of the variance function of the

stationary departure from M/G/1 and GI/M/1 models;
» BMAP/MAP/1 departure is a MAP with infinite order, see
discussion in Green’s dissertation (1999) and Zhang (2005).

» MAP with infinite order is intractable in practice, one need
to resort to truncation.
Heavy-traffic limits
» Iglehart and Whitt (1970), HT limits for departure process
starting with empty system;
» Gamarnik and Zeevi (2006) and Budhiraja and Lee (2009),

HT limit for stationary queue length process.
B8
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Historical Remarks on Departure Processes

Approximations
» Whitt (1982, 1983, 1984): QNA and related papers:

» the asymptotic method: matching the long-run property
of a point process
L
» the stationary interval method: matching the stationary
interval distribution, but ignore dependence between
successive departures

ci = ci+2p%c = 2p(1 = p) E[W] = p?c; + (1 - p?)c]

37
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Departure IDC: A GI/GI/1 Example

10 ‘ ‘ ‘ ==
- = ‘Arival e
9 [==m==:Senvice / ]
Simulation: p = 0.5
85 Simulation: p = 0.7 b
Simulation:
7r Simulation: p = 0.98 7
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o
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Approximation for Departure IDC

» The numerical experiment suggests:
I, (t) = wp(t)Ia(t) + (1 — wy(t))Is(t).

» To justify, we develop a heavy-traffic limit theorem for the
weight function defined as

Lap(t) = Is(?)
Io(t) — Is(t)

» To this end, consider the HT-scaled weight function
wh(t) = w((1 = p)21).

» classical HT-scaling: scale time by (1 — p)~2, scale space by
1 — p, but space scaling canceled out.

wp(t)

8]
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Main Theorem for Stationary Departure Processes

Theorem (HT limit for the weight function)

For GI/GI/1 stationary departure process, under reqularity
conditions, we have

wp(t) = w*(t/c3),
where c2 = 2 + % and

w*(t) = % ((t2 +2t—1) (2@(\/5) - 1) FoVIS(VE 1+ t) — t2)

for standard Normal cdf ® and pdf ¢.
» w* is monotonically increasing and 0 < w* < 1;

> The limiting weight depend on interarrival and service
2 distribution only through their scv’s ¢2 and ¢2.

3>
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Approximation for Departure IDC

» Conjecture: the Theorem holds for a general class of
G/G/1 models, which is supported by extensive simulation
experiments.

The theorem supports the following approximation

wp(t) & w* (1 = p)*t/c3),

and

Lap(t) = wp(t) La(t) + (1 — wp(t))I5(t)
~w (1= p)*t/ ) a(t) + (1 — w (1~ p)*t/2))Is(2).

8]
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The GI/GI/1 Example Revisited

- = :Arival e
====:Service

Simulation: p = 0.5
81 |= = * Approximation: p = 0.5
Simulation: p = 0.7

7 |= = :Approximation:
Simulation: p

p=0.
5 |= = 'Approximation: p = 0.98
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RQ for a Series of Queues
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RQ for a Series of Queues

» I, (t): the IDC of the external arrival process to the first
queue.
» I, (t): the IDC of the service process at queue i.
» Fori=1,2,...,n:
> cuzz,i = I4,4(00) + I, (00);
> p =1/
> wi(t) = w (1 - pi)*t/c3 ;)
> Lot (t) = Lai(t) = wi () La,i(t) + (1 — wi(£)) s (t)
» Return {I,;:i=1,2,...,n}

For any Queue ¢, apply the RQ algorithm

Z* = ssgg {—(1 —p)s/p+/25(I1a:(s) + Cg)}

to produce approximation of the mean steady-state workload.

8]
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Numerical example: 4 Queues in Series

Mcsl—l H2,052—4 MCS3—]. MC34:1

2 B TO-T-0-TH0~T1O—

@ =025 ps = 0.7 ps = 0.95

Workload | RQ Approx. | Relative Error
Queue 1 | 1.09613 1.0583 -3.45%
Queue 2 | 17.6133 17.2884 -1.84%
Queue 3 | 2.89796 3.1702 9.39%
Queue 4 | 24.0131 23.5623 -1.18%
Total 45.6205 45.0792 -1.19%

A
Ye.
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Numerical example: 4 Queues in Series

Mcsl—l H2,052—4 Mcs3—1 Mcs4—1

2 500010

=025 ps = 0.95
By Brumelle’s formula, we have
V2 2
+1
B12] = pBW] + 92y = o] + o1,

Waiting Time | RQ Approx. | Relative Error
Queue 1 | 0.86584 0.8119 -6.23%
Queue 2 | 17.3204 16.9593 -2.08%
Queue 3 | 3.43984 3.8289 20.78%
Queue 4 | 24.3252 23.8524 -1.94%
Total 45.9513 45.4525 -1.09%
éﬁ
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Dependent Service Times

9 N(t) N(t)
- % (Var (E !ZV N(t)]) +E |Var (ZV N(t))])
i=1 =1

_ %;_z (iQVar (N(@) + E [%N (t)IfSV“)D
1

o
]' S
A pY; N@J>
(t)+ —E [N(t)z ()}
where — :
1= BVarSh _ 1y e

(ElSeD? K
is the index of dispersion for intervals (IDI) for the service
&5 sequence and Var(Sy) = Sk Vi
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Corollary (Asymptotic behavior of the departure variance)

—c2)2 8(c2 -c2)c 1 —*zzit PR
272 P Vames. | T

2
Vi) ~ 2ot

Compare to Hautphenne et al. (2013):

Va(t) = c2t + by + o(1), as t — oo.

» they have explicit expression for by under all p in M/G/1;
» our have more detailed remainder for GI/GI/1 as p T 1;
» the two coincide as p 71 in M/G/1.

Of course, our limit holds for all ¢, not just asymptotically.

N
‘e
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An Artificial Example

Sup of 10 LNg

= 0 25
p1 = 0.95, 03’1 =8 p2 = 0.9,03,2 =0.25 p3 =0.8, 0573 =38

Last queue of 3 queues in series, p =0.8

I B

| |===="Arrival IDC ’ |
7 Departure IDC 4
= *Service IDC 4
61 Approximation II 1
5r 1 1

IDCs
IN

.~

S
0 . . .
1072 10° 102 10% 108
Time
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A Path to RQNA

The total arrival process at any queue:

» superposition of external arrival and splittings of
departure processes.

P21

P1o
Dol -2

Superposition
\ Departure
72 p27
2 Queue 2 I O - ‘o
e Splitting

37
o
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Three Network Operators

In summary,

> Splitting under Markovian routing;:

laoji(t) = pjila; () + (1 —pji), for j=>1
> Superposition of independent streams:

k
A
) =50 ),
i
=0

» adds nonlinearity
» Departure 1IDC

Lip(t) = w (1= p)*t/c)La(t) + (1 = w*((1 = p)*t/c3)) Is ().
65
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The RQNA Algorithm

» Traffic-rate equations

» Total-arrival-IDC equations

)\o i
Ll,i(t) . )\_an,o,i(Ao,it) +

J

& Ao
22 (pjila;(Njat) + (1 — pji))

1)‘1'

8]
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The RQNA Algorithm

A],Z
Ai

(pjila;(Njat) + (1 — pja))

>\o 3 -
Ia,i(t) = TIa,o,i(Ao,it) + Z
i =

» Departure IDC, define p; = \;/p; and Cfc,i = c?w- + cii, then
Li(t) = w*((L = pi)*t/ 5 ) ai(8) + (L= w*((1 = pi)*t/c3 1)) s(2),

» Asymptotic-variability-parameter equations

Cc21 O'Z goz—i—z JZ pJan] (1_pj7i))

» obtained by letting ¢t — oo in the total-arrival-IDC
equations.

» coincides with (24) in Whitt (1983), where we take w; = 1
and v;; = 1 there.

33
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Solving the Total-Arrival-IDC equations

» Both the traffic-rate equations and asymptotic-variability
equations are linear equations.
» Total-arrival-IDC equations
» nonlinear due to the superposition operator;
» simpler case: feed-forward queueing network, can be
solved explicitly by iteration;
» general case: forms a contraction mapping, so unique
solution can be found by fixed-point-iteration method.

37
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Extension to GI/GI/1 model

Proof sketch. From the HT limit
D*(t) = caBa(t) + Q(0) — Q*(¢)

plus u.i. condition,

Vi (t) = Var(caBa(t)) + Var(Q"(0)) + Var(Q"(?))
+cov(Q7(0), Q7 (#)) + cov(caBa(t), Q7(1),

» Var(c,B,(t)) = c2t;

> Var(Q*(t)) = Var(Q*(0)) = cz/4;

> cov(Q*(0),Q*(t)) = %c* (t/c%), where c* is the correlation
function discussed in Abate and Whitt (1987,1988).

» w* is closely related to c*

sy g L=< (@)
w(t)=1- T

8]
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HT limit theorem for GI/GI/1 departure variance

Proof sketch contd. The remaining term

cov(caBa(t), Q" (£))-
is treated by scaling techniques. Recall that
Q*(t) =v(Q*(0) + ¢y B, — csBs — €)

» Scale the original system so that we have a modified
system with the same drift —1 but & = 1.

{Q7(0), caBa(t), csBs(t), _t}
d 2{Q*(0)

2 { L Bt/ ), 281/~ |
=2 { L 5 >,j—ZBs(u),—u},

i where u = t/c2.
% - :
» Apply results for special case M/GI/1 where ¢; = 1.
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The Heavy-traffic Bottleneck Phenomenon

Table: The heavy-traffic bottleneck example

High variability

Low variability

Queue 9 | Simulation 29.1480 4+ 0.0486  5.2683 £ 0.0025
QNA 8.9 (-60.47%) 8.0 (51.85%)
M/M/1 1 (-72.21%) 1 (53.75%)
Asymp. Method | 36.5 (25.22%) 4.05 (-23.13%)
RQNA 26.88 (-7.79%) 5.4 (3.26%)
RQ 36.98 (26.86%)  4.9509 (-6.02%)
Queue 8 | Simulation 1.4403 £ 0.0005  0.7716 £ 0.0001
QNA 1.04 (-27.79%)  0.88 (14.05%)
M/M/1 0.9 (-37.51%) 0.9 (16.64%)
Asymp. Method | 4.05 (181.19%)  0.45 (424.88%)
s RQNA 0.9 (-37.51%)  0.895 (15.99%)
& RQ 1.267 (-12.03%)  0.853 (10.51%)
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