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ABSTRACT

A Robust Queueing Network Analyzer Based on
Indices of Dispersion

Wei You

In post-industrial economies, modern service systems are dramatically changing the daily

lives of many people. Such systems are often complicated by uncertainty: service providers

usually cannot predict when a customer will arrive and how long the service will be. For-

tunately, useful guidance can often be provided by exploiting stochastic models such as

queueing networks. In iterating the design of service systems, decision makers usually favor

analytical analysis of the models over simulation methods, due to the prohibitive compu-

tation time required to obtain optimal solutions for service operation problems involving

multidimensional stochastic networks. However, queueing networks that can be solved an-

alytically require strong assumptions that are rarely satisfied, whereas realistic models that

exhibit complicated dependence structure are prohibitively hard to analyze exactly.

In this thesis, we continue the effort to develop useful analytical performance approx-

imations for the single-class open queueing network with Markovian routing, unlimited

waiting space and the first-come first-served service discipline. We focus on open queueing

networks where the external arrival processes are not Poisson and the service times are not

exponential.

We develop a new non-parametric robust queueing algorithm for the performance ap-

proximation in single-server queues. With robust optimization techniques, the underlying

stochastic processes are replaced by samples from suitably defined uncertainty sets and the

worst-case scenario is analyzed. We show that this worst-case characterization of the perfor-

mance measure is asymptotically exact for approximating the mean steady-state workload

in G/G/1 models in both the light-traffic and heavy-traffic limits, under mild regularity



conditions. In our non-parametric Robust Queueing formulation, we focus on the customer

flows, defined as the continuous-time processes counting customers in or out of the network,

or flowing from one queue to another. Each flow is partially characterized by a continuous

function that measures the change of stochastic variability over time. This function is called

the index of dispersion for counts. The Robust Queueing algorithm converts the index of

dispersion for counts into approximations of the performance measures. We show the ad-

vantage of using index of dispersion for counts in queueing approximation by a renewal

process characterization theorem and the ordering of the mean steady-state workload in

GI/M/1 models.

To develop generalized algorithm for open queueing networks, we first establish the

heavy-traffic limit theorem for the stationary departure flows from a GI/GI/1 model. We

show that the index of dispersion for counts function of the stationary departure flow can be

approximately characterized as the convex combination of the arrival index of dispersion for

counts and service index of dispersion for counts with a time-dependent weight function,

revealing the non-trivial impact of the traffic intensity on the departure processes. This

heavy-traffic limit theorem is further generalized into a joint heavy-traffic limit for the

stationary customer flows in generalized Jackson networks, where the external arrival are

characterized by independent renewal processes and the service times are independent and

identically distributed random variables, independent of the external arrival processes.

We show how these limiting theorems can be exploited to establish a set of linear equa-

tions, whose solution serves as approximations of the index of dispersion for counts of the

flows in an open queueing network. We prove that this set of equations is asymptotically

exact in approximating the index of dispersion for counts of the stationary flows. With the

index of dispersion for counts available, the network is decomposed into single-server queues

and the Robust Queueing algorithm can be applied to obtain performance approximation.

This algorithm is referred to as the Robust Queueing Network Analyzer.

We perform extensive simulation study to validate the effectiveness of our algorithm.

We show that our algorithm can be applied not only to models with non-exponential dis-

tirbutions but also to models with more complex arrival processes than renewal processes,



including those with Markovian arrival processes.
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Chapter 1

Introduction

This thesis contributes to analytical methods for designing and optimizing service systems.

Such systems appear in a broad and diverse range of settings, including customer contact

centers, hospitals, airlines, online marketplaces, ride-sharing platforms and cloud computing

networks. In post-industrial economies, modern service systems are dramatically changing

the daily lives of many people. Their rapid development leads to challenges in their design

and operation, especially because such systems are often complicated by uncertainty: service

providers usually cannot predict when a customer will arrive and how long the service will

be. Hence, decision makers seek operating policies that adapt to the randomness of the

customer flow and service requirements.

Fortunately, useful guidance can often be provided by exploiting mathematical models

using stochastic processes. Prominent among these are stochastic queueing network models,

because service is often provided in a sequence of steps. There is an extensive literature on

the applications of queueing network models to service systems. For example, see [117] for

a review of applications in computer networks, see [19; 64; 111] for examples in ride-sharing

economies and see [33; 150; 45; 94] for healthcare-related applications.

For illustration, Figure 1.1 shows a queueing network view of a clinic. Patients are

greeted at the reception desk and assigned to nurses for initial triage. Before the seeing

a doctor, patients may have to take multiple tests conducted at different labs. Figure 1.1

also shows feedback flows, because patients might need medical procedures both before and
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after seeing the doctor.

Reception

Nurse 1

Nurse 2

Lab 1

Lab 2

Lab 3

Doc 1

Doc 2

Figure 1.1: A clinic modeled as an open network of queues.

Service operation policies often rely on quantitative descriptions of the system perfor-

mance, which are usually referred to as performance measures. For example, the waiting

time characterizes the delay between joining the queue and entering service of a customer;

the queue length counts the number of customers waiting in line; and the workload (virtual

waiting time) measures the total amount of service requirements of the customers in the

system.

A standard way to analyze the performance of complex queueing models is to employ

computer simulation, see [123; 151] for examples. However, as noted in [54], a great dis-

advantage of simulation-based optimization methods is the often prohibitive computation

time required to obtain optimal solutions for service operation problems involving multi-

dimensional stochastic network, which is in large part due to the inherent combinatorial

explosion of the decision space. Analytical analysis of the models can thus be very help-

ful. However, queueing networks that can be solved analytically require strong assumptions

that are rarely satisfied, whereas realistic models are prohibitively hard to analyze exactly.

Hence, analytical performance approximation of queueing networks remains an important

tool, see Section 1.2 for a review.

In this thesis, we continue the effort to develop useful analytical performance approx-

imations for the single-class open queueing network with Markovian routing, unlimited

waiting space and the first-come first-served service discipline. We focus on open queueing

networks where the external arrival processes are not Poisson and the service times are not
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exponential. This thesis is based on [145; 144; 147; 146; 148].

1.1 Challenges in Analyzing the Open Queueing Networks

Exact analytical analysis of the open queueing networks is mostly limited to models with

strong assumptions. The basis for most analysis is the theory of Jackson networks initiated

by Jackson [85], which we discuss in Section 1.1.1. However, service systems are often

complicated by significant deviations from the tractable structure of a Jackson network,

usually resulted from complicated dependence in the network, as we discuss in Section

1.1.2.

1.1.1 Jackson Networks

A Jackson network arises when the external arrival processes are independent Poisson pro-

cesses, the service time are mutually independent exponential random variables, indepen-

dent of the external arrival processes. Customer routing in a Jackson network follows a

Markovian routing policy : upon service completion at station i, the customer is directed to

station j with probability pi,j , which is independent of the system state and the past.

This model is especially tractable. For a Jackson network with K stations, let Qi(t)

denote the queue length at queue i at time t. It is well known that Q ≡ {Qi : i = 1, 2, . . . ,K}

forms a Markov process, so that the conditional probability distribution of the state Q(t) at

a future time t, conditioning on the past values up to the current time s for s < t, depends

only on the current state Q(s). Consequently, a Jackson network is also called a Markov

open queueing network.

Jackson [85] showed that the steady-state vector for the number of customers at each

queue in a Jackson network has a product-form distribution with independent geometric

marginal distributions. Hence in steady-state the network can be viewed as if it is decom-

posed into mutually independent M/M/1 stations (in Kendall’s notation), even though the

queueing processes are not in fact independent.

This initial breakthrough was followed by vigorous research leading to an elaborate and

useful theory, as can be seen from [36; 89; 119]. Due to its closed-form and product-form
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solution, Jackson networks have been widely studied, e.g. in [115; 105; 13]. Jackson networks

have also been applied to many service systems. For ride-sharing economy, [19] studied the

optimal platform pricing, while [118] looked at the inventory rebalancing and vehicle routing

problems. [103; 129; 149; 22] analyzed resource allocation and quality-of-service in cloud

computing system. For healthcare related problems, [16] studies hospital stuffing strategy

to achieve optimal workflow efficiency under information security requirements; see also [67]

for an overview.

1.1.2 Generalized Jackson Networks

A generalized Jackson network relaxes Jackson network’s assumption on the distribution of

the interarrival times and service times. Such a network assumes that the external arrival

processes are independent renewal processes and the service times at each station are i.i.d.

with general distributions, independent of the external arrival processes. The service policy

is first-com first-served, while the routing policy is Markovian, as in Jackson networks. For

theoretical analysis in this thesis, we mostly restrict to the setting of a generalized Jackson

network.

Applications in communication, manufacturing and service systems are often compli-

cated by significant deviations from the tractable structure of a Jackson network, in which

cases generalized Jackson networks are more suitable.

In general, an external customer arrival process in a call center often is well modeled

by a Poisson process, because it is generated by many separate people making decisions

independently, at least approximately. But dependence in arrival processes may still be

induced by over-dispersion, e.g., see [93] and references there. In most manufacturing

systems, an external arrival process is often far less variable than a Poisson process by

design. Even if external arrival processes can be regarded as Poisson processes, service-time

distributions are often non-exponential, see [26; 56]. This is often resulted from complicated

processing operations, such as those involving batching.

Non-exponential interarrival-time or service-time distributions produce complicated de-

pendence structure in the departure processes, which will be inherited by the arrival pro-

cesses at the subsequent stations. Then these processes cannot be renewal processes be-



CHAPTER 1. INTRODUCTION 5

cause (i) a departure process from any GI/GI/1 queue is necessarily non-renewal if the

interarrival-time or service-time distribution is non-exponential and (ii) the superposi-

tion of independent renewal processes cannot be renewal unless all components are Pois-

son processes (in which case the superposition process is also Poisson); e.g., see [51; 52;

55].

Indeed, such dependence in departure processes is consistent with our heavy-traffic limit

theorem for the stationary departure process in generalized Jackson network, see Theorem

5.1. It shows that the dependence structure in departure process depends on the traffic

intensity and the interarrival-time and service-time distributions in a nontrivial manner.

Furthermore, dependence among different arrival and service processes are often ob-

served in manufacturing/communication systems. Upon service completion, jobs are di-

rected to subsequent stations. This corresponds to splitting the departure process, which

introduces dependence among the sub-flows after splitting. In hospital settings, patients

may revisit a doctor after completing several tests. In manufacturing lines, products may

need rework after quality-control testings. This is referred to as customer feedback, which

necessarily introduce dependence between the service and arrival processes.

1.1.3 General Open Queueing Networks

More general open queueing network models can be obtained from generalized Jackson net-

work by further relaxing the assumption that the external arrival processes are independent

renewal processes and the service times are i.i.d. In this general form, the external ar-

rival processes can be non-renewal processes, such as those characterized by Markov arrival

processes, where interarrival times may be dependent. Service times can also be dependent.

With the presence of these dependence structures, queue length process a general open

queueing network is rarely a Markov process. These networks are often referred to as non-

Markov open queueing networks. Such dependence have important performance implication,

as we demonstrate in Section 2.2.9.

In this thesis, we develop approximation algorithms that expose the performance im-

pact of dependence in non-Markov open queueing networks, using a novel non-parametric

modeling approach; see Section 2.2.5.
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1.2 Approximation Algorithms

In this section we briefly review approximation approaches for general open queueing net-

works.

1.2.1 Decomposition Approximations

Motivated by the product-form property of Markov OQNs, decomposition approximations

for non-Markov OQNs have been widely investigated. In this approach, the network is de-

composed into individual single-server queues, and the steady-state queue length processes

are assumed to be approximately independent. For example, in [96] and [134] each queue is

approximated by a GI/GI/1 model, where the arrival (service) process is approximated by

a renewal process partially characterized by the mean and squared coefficient of variation

(scv, variance divided by the square of the mean) of an interarrival (service) time.

While the decomposition approximations do often perform well, it was recognized that

dependence in the arrival processes of the internal flows can be a significant problem. The

approximation for superposition processes used in the QNA algorithm [134] attempts to

address the dependence. Nevertheless, significant problems remained, as was dramatically

illustrated by comparisons of QNA to model simulations in [124; 58; 125], as discussed in

[142].

To address the dependence in arrival processes, decomposition methods based on Markov

Arrival Process (MAP) have been developed. MAP was first suggested by Neuts [107].

Horváth et al. [81] approximates each station by a MAP/MAP/1 model. In Kim [91;

92], the queue is approximated by a MMPP(2)/GI/1 model, where the arrival process is

a Markov-modulated Poisson process with two states. MAP (and MMPP(2) as its special

case) need not be a renewal process, hence are capable of modeling the autocorrelation in

the arrival and service processes.

1.2.2 Heavy-Traffic Limit Approximations

The early decomposition approximation in [134] drew heavily on the central limit theorem

(CLT) and heavy-traffic (HT) limit theorems. Approximations for a single queue follow from
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[83; 84]. With these tools, approximations for general point processes and arrival processes

were developed in [133; 135]. Heavy-traffic approximation of queues with superposition

arrival processes in [138] helped capture the impact of dependence in such queues; see §4.3

of [134].

Another approach is to apply HT limit theorems for the entire network. Such HT limits

were established for feedforward OQN’s in Iglehart and Whitt [83; 84] and Harrison [70;

71], and then for general OQN’s by Reiman [113]. These works showed that the queue

length process converges to a multidimensional reflected Brownian motion (RBM) as every

service station approaches full saturation simultaneously. A more general case with both

strictly bottleneck and non-bottleneck queues and general initial conditions was studied in

[35].

Approximations for the pre-limit OQN’s were developed from these general heavy-traffic

results, depending on the relatively tractable limiting RBM processes. Notably, we have

the QNET algorithm in Harrison and Nguyen [73], where the steady-state mean queue

length is approximated by the mean of the steady-state distribution of the limiting multi-

dimensional RBM. Theoretical and numerical analysis of the stationary distribution of the

multi-dimensional RBM is studied in [74; 75; 46]. It is worth noting that the process-

level convergence of the queue length process to a RBM does not automatically imply the

convergence of the steady-state distribution. Hence, these algorithms rely on the exchange-

of-limit arguements to justify the steady-state approximation; see [66; 31; 27].

As a crucial step of the QNET algorithm, Dai and Harrison [46] proposed a numeri-

cal algorithm to calculate the steady-state density of a RBM, but it require considerable

computation time. The accuracy of that algorithm improves as the number of iteration n

grows, and the author’s there note that n = 5 generally gives satisfactory answers. For a

OQN with d stations, the computational complexity is O(d2n), see Section 6 of [46]. For

practical application in large-scale systems, hybrid methods that combines decomposition

approximation and heavy-traffic theory have been developed to reduce computation time.

In particular, we have the Individual Bottleneck Decomposition (IBD) algorithm in Reiman

[114] and the Sequential Bottleneck Decomposition (SBD) algorithm in Dai, Nguyen and

Reiman [44].
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1.2.3 Robust Queueing Approximations

Recently, a novel Robust Queueing (RQ) approach to analyze queueing performance in

single-server queues has been proposed by Bandi et al. [18]. The key idea of Robust

Queueing is to replace the underlying probability law by a suitable uncertainty set, and

analyze the worst case performance. The authors there relied on the discrete-time Lindley’s

recursion to characterize the customer waiting times as a supremum over partial sums of

the interarrival times and service times. Uncertainty sets for the sequence of partial sums

are proposed based on central limit theorem and two-moment partial traffic descriptions of

the arrival process and service process.

Although the general idea is simple, the challenge lies in identifying proper uncertainty

sets and making connection to the original queueing system. The RQ approach is fur-

ther studied in Section 2, where we develop a new non-parametric formulation of the RQ

algorithm.

1.2.4 Approximations Based on Non-Parametric Traffic Descriptions

As a trade-off for mathematical tractability, most approximation approaches rely on in-

complete traffic descriptions. For example, approximation approaches reviewed in Section

1.2.1-1.2.3 can be characterized as parametric approaches, where the general stochastic sys-

tem is mapped into one of a parametric family of more structured models. Such approaches

rely on a discrete set of parameters as traffic descriptions and a key step is to understand

how these parameters evolve in the network.

Another stream of research model the temporal dependence in the stochastic processes

by non-parametric traffic descriptions. In Jagerman et al. [86], the authors approximates

a general stationary arrival process by a Peakness Matched Renewal Stream (PMRS). The

key ingredient is the peakness function, which is determined by the arrival point process

and the first two moments of the service-time distribution. As discussed there, given the

same service-time distribution, this peakness function is equivalent to our index of dispersion

traffic description, defined in (1.1). However, they relied on a two-parameter approximation

for the peakness function of a stationary point process, where the parameters are estimated

by simulation.
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Similar non-parametric traffic descriptions has been studied in [99; 100; 86], but they

only focus on single-station single-server queues.

1.3 Main Contributions

Despite many efforts in developing more sophisticated network analyzer to address the per-

formance impact of dependence, early approximation approaches or Monte Carlo simulation

remain to be the most popular choices in applications. This is largely due to the ease of

implementation. For example, [9] identified the major bottleneck in a health center appoint-

ment clinic, where they applied the QNA algorithm to approximate the system performance.

[41] studied the effect of service interrupts and hospital resources pooling on patient flow

times, where parametric decomposition based on Kingman’s formula is applied. [87] also

applied decomposition method and two-moment approximations to analyze the impact of

parallelization of care on customer sojourn time. [6] integrated simulation and optimization

to find the optimal staffing allocation in an emergency department unit, where they con-

sidered a network of Mt/G/1 queues and the stochastic objective function is estimated by

simulation. [54] also studied the resource allocation problem in general stochastic networks

by simulation optimization.

This research is motivated by the practical need of high fidelity modeling tool for non-

Markov open queueing networks, which is easy to implement and mathematically and com-

putationally tractable. Towards this end, we contributes to the modeling and approximation

of service systems by developing (1) the theories and applications of non-parametric traffic

descriptions in open queueing networks; (2) an effective Robust Queueing Network Analyzer

algorithm for performance approximations in open queueing networks; and (3) extensive

simulation studies to demonstrate the performance of our approximation algorithm.

1.3.1 Non-Parametric Traffic Description for Queueing Networks

In this thesis, we follow a non-parametric approach to describe the arrival and service

processes, see Section 1.2.4 for a brief review of literature in this line of research.

Let A be a stationary counting process, e.g. the arrival counting process at a queue.
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We partially characterize A by its Index of Dispersion for Counts (IDC), a function of

non-negative real numbers IA : R+ → R+ defined as in §4.5 of [40],

IA(t) ≡ Var(A(t))

E[A(t)]
, t ≥ 0. (1.1)

As regularity conditions, we assume that E[A(t)] and Var(A(t)) are finite for all t ≥ 0. For

renewal processes, it suffices to assume that the inter-renewal time distribution have finite

second moment.

Being a function of time t, IDC captures the variability in a point process over arbi-

trary timescale. The reference case is a Poisson process, for which the IDC is a constant

function IA(t) ≡ 1. This is consistent with the well known “memoryless” property of the

Poisson process. The IDC is preferred for the same reason as that for the scv, because it

separates variability from the scale. In this sense, IDC can be viewed as a continuous-time

generalization of scv.

In compared with traditional parametric descriptions, the IDC encodes much more in-

formation of the underlying process. For examples, if A is a renewal process, then the

inter-renewal-time distribution can be fully recovered from IAe , where Ae is the equilibrium

renewal process associated with A; see Theorem 3.1.

Fendick and Whitt [60] showed basic connection between arrival IDC and the normalized

workload, see (2.29). However, that work did not yield systematic approximations.

In Section 2, we show how this non-parametric traffic description can be applied to

develop a new RQ formulation for the continuous-time workload process. This RQ algorithm

establish a bridge between the IDC traffic description and the performance measures in a

single-server queue. It serves as the building block of our network algorithm.

To the best of our knowledge, we are the first to study the non-parametric traffic de-

scriptions in a network setting.

1.3.2 Heavy-Traffic Limits for Stationary Network Flows

As reviewed in Section 1.2, the heavy-traffic literature has focused on the system state

processes such as queue length, busy time, waiting time, workload and the sojourn time

processes. Another approach is to focus on the customer flow, which is defined as the
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continuous-time process counting customers in or out of the network, or flowing from one

queue to another.

In working with customer flows, three network operations become essential. First, the

departure operation as customers flow through a service station and an arrival process

transforms into a departure process. Second, the splitting operation as a departure process

split into multiple sub-processes and feed into different subsequent queues. Third, the

superposition operation as departure flows from different queues combine together and feed

into a queue.

The customer flows are of considerable interest in general. For example, the stationary

departure process from a GI/GI/1 queue is remarkably complicated; e.g., it is only a

stationary renewal process in the special case of an M/M/1 model, when it is Poisson, by

Burke’s [32] theorem.

However, the literature on heavy-traffic limits for network flows are rather limited.

The heavy-traffic limit for departure process starting empty in the GI/GI/1 model and

more general multi-channel models is an old result, being contained in Theorem 2 of [84].

The superposition of many i.i.d. copies of general renewal processes can often be well

approximated by a Poisson process, as shown in [7], but the approximation quality depends

strongly on the traffic intensity. The superposition operation has also been studied in [8;

138; 124].

In this thesis, we derive new heavy-traffic limit for the stationary flows and their IDCs in

open queueing networks. In particular, we evidently derive the first heavy-traffic limits for

the stationary departure process and its variance function for any station in any generalized

Jackon network, except for the single-station M/M/1 queue. We exploit the GI/M/1 and

M/GI/1/ results here to directly establish heavy-traffic limits for the departure variance

functions in generalized Jackson networks, see Theorem 3.8 and Theorem 5.1. Our heavy-

traffic limits reveal the detailed interaction between different flows, granting us powerful

tools for queueing approximation.

In Section 5.1 - 5.3, we discuss how these heavy-traffic limits can be applied to develop

IDC equations that describes the effect of each network operation. Together with the

RQ algorithm, the IDC equations provide intuitive explanation of the performance impact
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of dependence. For example, we are able to answer questions such as: When is Poisson

approximation suitable for superposition arrival processes? If it fails, how do we correct for

the error?

1.3.3 The Robust Queueing Network Analyzer and Simulation Studies

We exploit the new non-parametric RQ method to propose a Robust Queueing Network

Analyzer for the approximation of performance measures in a single-class non-Markov open

queueing network.

The algorithm decomposes the network into individual G/G/1 models, where the arrival

process and service process at each queue is partially specified by its rate and IDC, defined

in (1.1). In Section 5.4, we discuss a set of linear equations (5.46), which we refer to as the

IDC equations, to describe the effect of each of the three basic network operations. The

IDCs of the total arrival flows at each queue is approximated by the solution to the to the

IDC equations. The RQ algorithm (2.35) is then applied to generate approximation of the

mean steady-state performance measures from the IDC of the total arrival process of each

G/GI/1 queue in the network.

Our algorithm have analytical formulations as in (2.35) and (5.48), which makes it

extremely easy to implement. The computational complexity is O(K) or O(K2) if we apply

the feedback elimination in Section 5.5, where K is the number of stations in the system.

In Section 6, we also conduct extensive simulation experiments to evaluate the effective-

ness of the new Robust Queueing Network Analyzer and compare it to previous algorithms

in [134; 73; 44; 81]. Our experiments indicate that our new algorithm performs as well or

better than previous algorithms.

1.4 Outline

The rest of this documents is organized as follows. In Chapter 2, we develop the continuous-

time Robust Queueing formulation for G/G/1 queues. We also show how that RQ algorithm

can be used to approximate the mean and quantile of the steady-state performance mea-

sures. As a first step in developing our Robust Queueing Network Analyzer, in Chapter 3 we
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establish heavy-traffic limits for the stationary departure flow from a GI/GI/1 queue and

develop our approxiamation algorithm in the setting of queues in series models. In Chapter

4, we generalize the heavy-traffic limit theorem in the previous chapter to cover all station-

ary flows in gneralized Jackson networks. In Chapter 5 we present the full Robust Queueing

Network Analyzer algorithm. We do this by developing a framework for approximating the

IDCs of the flows, where we develop IDC equations for three basic network operations: (i)

flow through a queue (departure), (ii) splitting and (iii) superposition. Finally, Chapter 6

collects extensive simulation studies to demonstrate the performance of our algorithm.
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Chapter 2

Robust Queueing for the G/G/1

Model

Robust optimization is proving to be a useful approach to complex optimization problems

involving significant uncertainty; e.g., see [17; 20] and references therein. In that context,

the primary goal is to create an efficient algorithm to produce useful practical solutions

that appropriately capture the essential features of the uncertainty. [18] have applied this

approach to create a Robust Queueing theory, which can be used to generate performance

predictions in complex queueing systems, including networks of queues as well as single

queues. Indeed, they construct a full robust queueing analyzer (RQNA) to develop relatively

simple performance descriptions like those in the QNA [134]. But their network algorithm

does not provide adequate characterization of the dependence arises in queueing networks.

For example, they developed a Robust Burke’s Theorem, which state that their uncertainty

set for the departure process is asymptotically the same as that for the arrival process, see

Theorem 4 and Section 4.3 there. However, in Theorem 5.1, we see that the dependence

structure in the departure process depends non-trivially on both the arrival process and the

service process at that station.

We make further progress in the Robust Queuing direction. Even though we only

focus on one queue in this chapter, we ultimately develop methods that apply to complex

networks of queues. Queues in the context of a network exhibit complex dependence, as
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discussed in Section 1.1.3. To serve as an important building block in that direction, we

introduce new RQ formulation for general G/G/1 model, where three types of dependence

are allowed: (1) dependence among interarrival time; (2) dependence among service times;

and (3) dependence between interarrival and service times.

The rest of this chapter is organized as follows. In Section 2.1, after reviewing RQ for the

steady-state waiting time in the single-server queue from Section 2 and Section 3.1 of [18],

we develop an alternative formulation whose solution coincides with the [95] bound and is

asymptotically correct in heavy-traffic. We postpone the discusstion of the non-parametric

RQ for waiting times to Section 2.4. In Section 2.2 we introduce new parametric and non-

parametric RQ formulations for the continuous-time workload process and characterize their

solutions. We also develop closed-form RQ solutions and show that the non-parametric

RQ is asymptotically correct in both heavy and light traffic. In Section 2.3 we discuss

algorithms to calculate or estimate the IDC functions. In Section 2.2.9 we present an

illustrative simulation study that demonstrates (i) the strong impact of dependence upon

performance and (ii) the value of the new RQ in capturing the impact of that dependence.

For systematic numerical analysis of the RQ performance, we refer the readers to Section

6.2. Finally, Section 2.5 collects supporting functional central limit theorems, while Section

2.6 collects the proofs.

2.1 Robust Queueing for the Steady-State Waiting Time

We start by reviewing the RQ developed in Section 2 and Section 3.1 of [18], which involves

separate uncertainty sets for the arrival times and service times. We then construct an

alternative formulation with a single uncertainty set and show, for the GI/GI/1 queue, that

a natural version of the RQ solution coincides with the [95] bound and so is asymptotically

correct in the heavy-traffic limit. We show that both formulations provide insight into the

relaxation time for the GI/GI/1 queue, i.e. the approximate time required to reach steady

state.

In formulating RQ, we use the representation of the waiting time (before receiving

service) in a general single-server queue with unlimited waiting space and the first-come
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first-served (FCFS) service discipline, without imposing any stochastic assumptions. The

waiting time of arrival n satisfies the Lindley recursion [101]

Wn = (Wn−1 + Vn−1 − Un−1)+

≡ max {Wn−1 + Vn−1 − Un−1, 0}, (2.1)

where Vn−1 is the service time of arrival n−1, Un−1 is the interarrival time between arrivals

n − 1 and n, and ≡ denotes equality by definition. If we initialize the system by having

an arrival 0 finding an empty system, then Wn can be represented as the maximum of a

sequence of partial sums, using the Loynes [102] reverse-time construction; i.e.,

Wn = max
0≤k≤n

{Sk}, n ≥ 1, (2.2)

using reverse-time indexing with S0 ≡ 0, Sk ≡ X1 + · · · + Xk and Xk ≡ Vn−k − Un−k,

1 ≤ k ≤ n. We note that [18] actually look at the system time, which is the sum of an

arrival’s waiting time and service time. These representations are essentially equivalent.

If we extend the reverse-time construction indefinitely into the past from a fixed present

state, then

Wn ↑W ≡ sup
k≥0
{Sk} with probability 1 as n→∞,

allowing for the possibility that W might be infinite. For the stable stationary G/G/1

stochastic model with E[Uk] <∞, E[Vk] <∞ and ρ ≡ E[Vk]/E[Uk] < 1, then

P (W <∞) = 1,

e.g., see [102] or Section 6.2 of [122].

2.1.1 Parametric RQ for Waiting Time in the GI/GI/1 Model

Bandi et al. [18] propose an RQ approximation for the steady-state waiting time W by

performing a deterministic optimization in (2.2) subject to deterministic constraints, where

we can ignore the time reversal. Treating the partial sums Sak of the interarrival times Uk

and the partial sums Ssk of the service times Vk separately leads to the two uncertainty sets

for W

Ua ≡ {U ∈ R∞ : Sak ≥ kma − ba
√
k, k ≥ 0} and

Us = {V ∈ R∞ : Ssk ≤ kms + bs
√
k, k ≥ 0}, (2.3)
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where U ≡ {Uk : k ≥ 1} and V ≡ {Vk : k ≥ 1} are arbitrary sequences of real numbers in

R∞, Sa0 = Ss0 = 0, Sak ≡ U1 + · · ·+Uk and Ssk ≡ V1 + · · ·+Vk, k ≥ 1, and ma, ms, ba and bs

are parameters to be specified. The constraints in (2.3) are one sided because that is what

is required to bound the waiting times above, as we can see from (2.1) and (2.2). Thus, the

RQ optimization can be expressed as

W ∗ ≡ sup
Ũ∈Ua

sup
Ṽ ∈Us

sup
k≥0
{Ssk − Sak}. (2.4)

where Sak (Ssk) is a function of U (V) specified above. Versions of this formulation in (2.4)

and others in this paper also apply to the transient waiting time Wn, but we will focus on

the steady-state waiting time.

Thinking of the general stationary G/G/1 stochastic model, where the distributions

of Uk and Vk are independent of k (but stochastic independence is not assumed), [18]

assume that 1/λ ≡ ma ≡ E[Uk] and 1/µ ≡ ms ≡ E[Vk] and assume that µ > λ, so

that the traffic intensity ρ ≡ λ/µ < 1. The square-root terms in the constraints in (2.3)

are motivated by the central limit theorem (CLT). Thinking of the GI/GI/1 model in

which the interarrival times Uk and service times Vk come from independent sequences of

independent and identically distributed (i.i.d.) random variables with finite variances σ2
a

and σ2
s , the CLT suggests that ba = βaσa and bs = βsσs for some positive constants βa

and βs, perhaps with β = βa = βs. With this choice, these new parameters measure the

number of standard deviations away from the mean in a Gaussian approximation. [18] also

provided an extension to cover the heavy-tailed case, where finite variances might not exist;

then
√
k in (2.3) is replaced by k1/α for 0 < α ≤ 2, as we would expect from SectionSection

4.5, 8.5 and 9.7 of [143], but we will not discuss that extension here.

From (2.1), it is evident that the waiting times depend on the service times and inter-

arrival times only through their difference Xn. Thus, instead of the two uncertainty sets in

(2.3), we propose the single uncertainty set

Uxp ≡ {X ∈ R∞ : Sxk ≤ −mk + bx
√
k, k ≥ 0}, (2.5)

where X ≡ {Xk : k ≥ 1} ∈ R∞, Sx0 ≡ 0 and Sxk ≡ X1 + · · · + Xk, k ≥ 1, m = ma −ms,

while bx is constant parameter to be specified. The subscript “p” in Uxp indicates that this



CHAPTER 2. ROBUST QUEUEING FOR THE G/G/1 MODEL 18

is a uncertainty set for a parametric RQ formulation, because we are using the parameters

(m, bx) to characterize the stochastic system. Combining (2.2) and (2.5), we obtain the

alternative RQ optimization

W ∗ ≡ sup
X∈Uxp

sup
k≥0
{Sxk}. (2.6)

where Sxk is the function of X specified above.

The RQ formulations in (2.4) and (2.6) are attractive because the optimization problems

have simple solutions in which all constraints are satisfied as equalities. That follows easily

from the fact that W is a nondecreasing (nonincreasing) function of Vk (of Uk) for all k.

The simple closed-form solution follows from the triangular structure of the equations; see

Section 3.1 of [18]. The following is a direct extension of Theorem 2 of [18] to include the

new RQ formulation in (2.6). The final statement involves an interchange of suprema, which

is justified by Lemma 2.1.

Theorem 2.1 (RQ solutions for the steady-state waiting time) The RQ optimiza-

tions (2.4) with ma > ms > 0 and (2.6) with m > 0 have the solution

W ∗ = sup
k≥0
{−mk + b

√
k}

≤ sup
x≥0
{−mx+ b

√
x} = −mx∗ + b

√
x∗ =

b2

4m
for x∗ =

b2

4m2
. (2.7)

For (2.4), b ≡ bs + ba; for (2.6), b ≡ bx. In (2.7), W ∗ is maximized at one of the integers

immediately above or below x∗.

We now establish implications for the GI/GI/1 and general stationary G/G/1 mod-

els. Since the CLT underlies the heavy-traffic limit theory as well as the RQ formulation,

it should not be surprising that we can make strong connections to heavy-traffic approxi-

mations. The new formulation in (2.6) is attractive because, with a natural choice of the

constant bx there, it matches the [95] bound for the mean steady-state wait E[W ] in the

GI/GI/1 stochastic model and so is asymptotically correct in heavy-traffic, whereas that

is not the case for (2.4) with a natural choice of b. To quantify the variability independent

of the scale, let c2
a ≡ Var(U1)/(E[U1])2 = ρ2µ2σ2

a and c2
s ≡ Var(V1)/(E[V1])2 = µ2σ2

s be the

squared coefficients of variation (scv’s).
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Corollary 2.1 (RQ yields the Kingman bound for GI/GI/1) In the setting of (2.6), if we

let bx ≡ β
√
V ar(X1) and β ≡

√
2, then bx =

√
2(c2

s + ρ−2c2
a)/µ

2 for the GI/GI/1 model

with traffic intensity ρ, so that

W ∗ ≡W ∗(ρ) =
V ar(X1)

2|E[X1]|
=
ρ(c2

s + ρ−2c2
a)

2µ(1− ρ)
, (2.8)

which is the upper bound for E[W ] in Theorem 2 of [95], so that µ(1−ρ)W ∗(ρ)→ (c2
a+c2

s)/2

for any µ > 0, as ρ ↑ 1, which supports the heavy-traffic approximation W ∗(ρ) ≈ ρ(c2
a +

c2
s)/2µ(1− ρ), just as for E[W ] in the stochastic model.

Remark 2.1 In the setting of (2.4) as in [18], if we let bs ≡ β
√
V ar(V1) and ba ≡

β
√
V ar(U1), then we obtain b = bs + ba = β(cs + ρ−1ca)/µ instead of b =

√
b2s + b2a =

β
√
c2
s + ρ−2c2

a/µ, as needed. The difference between the RQ solutions for (2.4) and (2.6)

can have serious implications for approximations; e.g., if c2
a = c2

s = x, then (c2
a+ c2

s)/2 = x,

while (ca + cs)
2/2 = 2x, a factor of 2 larger. Hence, if we apply (2.4) with ba = bs to

the simple M/M/1 queues, one is forced to have a 100% error in heavy traffic. These two

coincides only when at least one of ba and bs is 0, i.e., in D/GI/1 or GI/D/1 models, and

the percentage error is the largest when service times and arrival times have the same vari-

ability. Fortunately, robust optimization has flexibility that makes it possible to circumvent

the difficulties in the form of the optimization in (2.4). For example, [18] use statistical

regression in their Section 7 to refine their solution to (2.4). Of course, such refinements

complicate algorithms.

These RQ formulations provide insight into the rate of approach to steady state for the

GI/GI/1 model, as captured by the relaxation time; see Section III.7.3 of [38] and Section

XIII.2 of [12]. For RQ, steady state is achieved at a fixed time, whereas in the stochastic

model steady state is approached gradually, with the error |E[Wn]−E[W ]| typically being

of order O(n−3/2e−n/r) as n→∞, where r ≡ r(ρ) is called the relaxation time.

Corollary 2.2 (relaxation time for the GI/GI/1 queue) With both (2.4) and (2.6), the

place where the RQ supremum is attained is x∗(ρ) = O((1 − ρ)−2) as ρ ↑ 1, which is the

same order as the relaxation time in the GI/GI/1 model.
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2.1.2 Non-Parametric RQ for Waiting Time in the G/G/1 Model

The RQ problems in (2.4) and (2.6) can be considered instances of a parametric RQ, be-

cause they depend on the stochastic model only through a finite number of parameters, in

particular, (ma,ms, ba, bs) in (2.4) and (m, bx) in (2.6).

We can expose the impact of dependence among the interarrival times and service times

on the steady-state waiting time in the general stationary G/G/1 model as a function of the

traffic intensity ρ by introducing a new non-parametric RQ formulation. With the G/G/1

model, we assume stationarity, so that there is a well defined steady state, but we allow

dependence among the interarrival times and service times.

To treat the G/G/1 model, we replace the uncertainty set in (2.5) by

Uxf ≡ {X : Sxk ≤ E[Sxk ] + b′x

√
Var(Sxk ), k ≥ 0}, (2.9)

and similarly for the two constraints in (2.4). The name non-parametric RQ here may be

confusing, because the uncertainty set (2.9) depends on a sequence of parameters {Var (Sxk ) :

k ∈ N)}. Nevertheless, we use “non-parametric” here to keep the name consistent with the

one we use for our RQ formulation for the workload process, where the uncertainty set

indeed depends on a non-parametric continuous-time function, see (2.16).

For the GI/GI/1 model, the new uncertainty set (2.9) is essentially equivalent to the

previous one in (2.5), but they can be very different with dependence.

It is significant that there are CLT’s to motivate the form of the constraints in (2.9),

just as there are in the i.i.d. case underlying (2.5). These supporting CLT’s are reviewed in

Section 2.5. The CLT supports the spatial scaling by
√
V ar(Sk) instead of

√
k, as we show in

Section 2.5.3. Of course, the non-parametric RQ produces a more complicated optimization

problem, but it is potentially more useful, in part because it too can be analyzed.

For brevity, we discuss this non-parametric RQ for the waiting time in Section 2.4, see

(2.72) and (2.73). For the rest of this thesis, we focus on developing such a non-parametric

RQ formulation for the continuous-time workload. As discovered in [60], it is convenient to

focus on the steady-state workload when we want to expose the performance impact of the

dependence among interarrival times and service times.
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2.2 Robust Queueing for the Steady-State Workload

We now develop both a parametric and a non-parametric RQ formulations for the continuous-

time workload in the single-server queue, paralleling (2.9).

The workload at time t is the amount of unfinished work in the system at time t; it is

also called the virtual waiting time because it represents the waiting time a hypothetical

arrival would experience at time t. The workload is more general than the virtual waiting

time because it applies to any work-conserving service discipline. We consider the workload

primarily because it can serve as a convenient more tractable alternative to the waiting

time.

We start by developing a reverse-time representation of the workload process in Section

2.2.1, paralleling (2.2). Then we develop the RQ formulations and give their solutions, which

closely parallel Theorem 2.1. We then show that natural versions of the RQ formulations

for the workload are exact for the M/GI/1 model and are asymptotically correct in both

light traffic and heavy-traffic for the general stationary G/G/1 model.

2.2.1 The Workload Process and Its Reverse-Time Representation

As before, we start with a sequence {(Uk, Vk)} of interarrival times and service times. The

arrival counting process can be defined by

A(t) ≡ max {k ≥ 1 : U1 + · · ·+ Uk ≤ t} for t ≥ U1 (2.10)

and A(t) ≡ 0 for 0 ≤ t < U1, while the total input of work over [0, t] and the net-input

process are, respectively,

Y (t) ≡
A(t)∑
k=1

Vk and N(t) ≡ Y (t)− t, t ≥ 0. (2.11)

The workload at time t, starting empty at time 0, is the reflection map Ψ applied to N ,

i.e.,

Z(t) = Ψ(N)(t) ≡ N(t)− inf
0≤s≤t

{N(s)}, t ≥ 0. (2.12)

For illustration, Figure 2.1 shows an example of the net-input process N(t) and the as-

sociated lower regulator inf0≤s≤t{N(s)}. The workload process is exactly the difference

between the two curves.
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Figure 2.1: The net-input process.

As in Section 6.3 of [122], we again use a reverse-time construction to represent the

workload in a single-server queue as a supremum, so that the RQ optimization problem

becomes a maximization over constraints expressed in an uncertainty set, just as before,

but now it is a continuous optimization problem. Using the same notation, but with a new

meaning, let Z(t) be the workload at time 0 of a system that started empty at time −t.

Then Z(t) can be represented as

Z(t) ≡ sup
0≤s≤t

{N(s)}, t ≥ 0, (2.13)

where N is defined in terms of Y as before, but Y is interpreted as the total work in service

time to enter over the interval [−s, 0]. That is achieved by letting Vk be the kth service

time indexed going backwards from time 0 and A(s) counting the number of arrivals in the

interval [−s, 0]. Paralleling the waiting time in Section 2.1, Z(t) increases monotonically as

a function of t, there exist a Z (possinbly infinite) such that

Z = lim
t→∞

Z(t) (2.14)

For the stable stationary G/G/1 stochastic queue, Z corresponds to the steady-state work-

load and satisfies P (Z <∞) = 1; see Section 6.3 of [122].

2.2.2 Parametric and Non-Parametric RQ for the Workload

Just as in Section 2.1, to create appropriate RQ formulations for the steady-state workload,

it is helpful to have a reference stochastic model, which can be the stable stationary G/G/1
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model, where such a steady-state workload is well defined.

In continuous time, we need to work with continuous-time stationarity instead of discrete-

time stationarity; e.g., see [122]. Hence, we assume that {(A(t), Y (t)) : t ≥ 0} is a stationary

process with E[A(t)] = λt and E[Y (t)] = ρt for all t ≥ 0.

In the ordinary stochastic queueing model, N(t) in (2.13) is a stochastic process and

hence Z(t) is a random variable. However, in Robust Queueing practice, N(t) is viewed as

a deterministic instance drawn from a pre-determined uncertainty set U of input functions,

while the workload Z∗ for a Robust Queue is regarded as the worst case workload over the

uncertainty set, i.e.

Z∗ ≡ sup
Ñ∈U

sup
x≥0
{Ñ(x)}.

In our specific settings, we have the following uncertainty sets motivated from central limit

theorem (CLT)

Up ≡
{
Ñ : R+ → R : Ñ(s) ≤ E[N(s)] + bp

√
ρs/µ, s ≥ 0

}
, (2.15)

U ≡
{
Ñ : R+ → R : Ñ(s) ≤ E[N(s)] + b

√
Var(N(s)), s ≥ 0

}
, (2.16)

Up and U serve as the uncertainty sets for the parametric and non-parametric RQ, respec-

tively. Here we regard Ñ ≡ {Ñ(s) : 0 ≤ s ≤ t} as an arbitrary real-valued function on

R+ ≡ [0,∞), while we regard N ≡ {N(s) : s ≥ 0} as the underlying stochastic process,

and {Var(N(s)) : s ≥ 0} = {Var(Y (s)) : s ≥ 0} as its variance-time function, which can

either be calculated for a stochastic model or estimated from simulation or system data;

see Section 2.3. In (2.16), b and bp are parameters to be specified. Recall that, in working

with continuous-time stationarity, we assume that N(t) is the net input process associated

with the stationary processes in the stochastic queue, so

E[N(t)] = E[Y (t)− t] = ρt− t.

Paralleling Section 2.1, the uncertainty sets (2.15) and (2.16) are motivated by a CLT, but

here for Y (t) (and thus for N(t)), which we review in Section 2.5.3; in particular, see (2.88)

and (2.90).

Remark 2.2 (choosing the parameters bp and b) The parameters bp and b in (2.15) and

(2.16) add a degree of freedom in the algorithm. In Section 2.2.6, we exploit the choice
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of b to develop quantile approximations for the steady-state workload processes. For the

approximation of the mean, based on Corollary 2.3 below, we will let b =
√

2.

Paralleling Section 2.1, the associated RQ formulations are

Z∗p ≡ sup
Ñ∈Up

sup
s≥0

{
Ñ(s)

}
and Z∗ ≡ sup

Ñ∈U
sup
s≥0

{
Ñ(s)

}
, (2.17)

for Up and U defined in (2.15) and (2.16), respectively. The same reasoning as before yields

the following analog of Theorem 2.1. The proof can be found in Section 2.6.

Theorem 2.2 (RQ solutions for the workload) The solutions of the RQ optimization prob-

lems in (2.17) are

Z∗p = −(1− ρ)s∗ + bp
√
ρs∗/µ =

ρb2p
4µ(1− ρ)

for s∗ ≡ s∗(ρ) =
ρb2p

4µ(1− ρ)2
(2.18)

and

Z∗ = sup
s≥0

{
−(1− ρ)s+ b

√
Var(Y (s))

}
. (2.19)

We immediately obtain the following corollary, which states that the RQ formulation in

(2.17) yields the exact mean steady-state workload for the M/GI/1 model.

Corollary 2.3 (exact for M/GI/1) For the M/GI/1 model, the total input process {Y (t) :

t ≥ 0} in is a compound Poisson process with E[Y (t)] = ρt and V ar(Y (t)) = ρt(1 + c2
s)/µ,

so that Z∗ = Z∗p if b2p = b2(1 + c2
s). If, in addition, b ≡

√
2, then

Z∗ = Z∗p =
ρ(1 + c2

s)

2µ(1− ρ)
= E[Z], (2.20)

where E[Z] is the mean steady-state workload in the M/GI/1.

This corollary suggests a natural choice of bp and b in (2.15) and (2.16).

The Variance-Time Function for the Total Input Process. For further progress,

we focus on the variance-time function Var(Y (t)) in (2.19). As regularity conditions for

Y (t), we assume that VY (t) ≡ Var(Y (t)) is differentiable with derivative V̇Y (t) having finite

positive limits as t→∞ and t→ 0, i.e.,

V̇Y (t)→ σ2
Y as t→∞ and V̇Y (t)→ V̇Y (0) > 0 as t→ 0, (2.21)
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for an appropriate constant σ2
Y . These assumptions are known to be reasonable; see Section

4.5 of [40], [60] and Section 2.3.

A common case in models for applications is to have positive dependence in the input

process Y , which holds if

Cov(Y (t2)− Y (t1), Y (t4)− Y (t3)) ≥ 0 for all 0 ≤ t1 < t2 ≤ t3 < t4. (2.22)

Negative dependence holds if the inequality is reversed. These are strict if the inequality is

a strict inequality. From (17) and (18) of Section 4.5 in [40], which is restated in (48) and

(49) of [60], with positive (negative) dependence, under appropriate regularity conditions,

V̇Y (t) ≥ 0 and V̈Y (t) ≥ (≤)0.

Remark 2.3 (example of negative dependence) Negative dependence in Y occurs if greater

input in one interval tends to imply less input in another interval. Such negative depen-

dence occurs when there is a specified number of arrivals in a long time interval, as in the

∆(i)/GI/1 model, where the arrival times (not interarrival times) are i.i.d. over an interval;

see [80]. This phenomenon can also occur in queues with arrivals by appointment, where

there are i.i.d. deviations about deterministic appointment times; e.g., see [94].

Theorem 2.3 (RQ exposing the impact of the dependence) Consider the non-parametric

RQ optimization for the steady-state workload in the general stationary G/G/1 queue with

ρ < 1 formulated in (2.17) and solved in (2.19). Assume that (5.8) holds for the variance-

time function VY (t).

(a) For each ρ, 0 < ρ < 1, there exists (possibly not unique) x∗ ≡ x∗(ρ), such that a

finite maximum is attained at x∗ for all t ≥ s∗. In addition, 0 < s∗ < ∞ and s∗ satisfies

the equation

(1− ρ) = ḣ(s) where h(s) ≡ b
√
VY (s). (2.23)

The time s∗ is unique if h(s) is strictly concave or strictly convex, i.e., if ḣ(s) is strictly

increasing or strictly decreasing.

(b) If there is positive (negative) dependence, as in (2.22) (with sign reversed), the vari-

ance function VY (s) is convex (concave), so that the function h(s) is concave. Moreover,

a strict inequality is inherited. Thus, there exists a unique solution to the RQ if there is
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strict positive dependence or strict negative dependence. Moreover, the optimal time s∗(ρ)

is strictly increasing in ρ, approaching ∞ as ρ ↑ 1.

2.2.3 The Indices of Dispersion for Counts and Work

The workload process is not only convenient because it leads to the continuous RQ op-

timization problem in (2.17) with solution in (2.19). It is also convenient to relate the

variances of the arrival counting process A(s) and the cumulative work input process Y (s)

to associated continuous-time indices of dispersion, studied in [60] and [59].

Consider a general single-server queue with a general arrival process A, i.e. A(t) counts

the total number of arrival before time t. The IDC defined in (1.1) is a continuous-time

function associated with A. Being the variance function scaled by the mean function, the

IDC exposes the variability over time, independent of the scale. For this reason, the IDC

can be viewed as a continuous-time generalization of the squared coefficient of variation of a

nonnegative random variable, i.e. the variance divided by the square of the mean. The IDC

captures how the covariance in a point process changes over time, which extends the natural

practice of including lag-k covariances in modeling the dependence in a point process.

The reference case is a Poisson arrival process, for which IA(t) = 1, t ≥ 0. However, for

general arrival processes, the IDC is more complicated. Even the IDC for a determinsitic D

arrival process is complicated, because the IDC is for the stationary version of the arrival

process, which lets the initial point be uniformly distributed over the constant interarrival

time.

Similar to the IDC, the Index of Dispersion for Work (IDW) describes the variability

associated with the cumulative input process Y in (2.11). The IDW is defined as in (1) of

[60] by

Iw(t) ≡ Var(Y (t))

E[V1]E[Y (t)]
, t ≥ 0. (2.24)

The IDW captures the variability of service requirement brought to the system as a function

of time t. By re-arranging terms, we have the following reperesentation of the variance

function VY (t) of the net-input process Y

VY (t) ≡ Var(Y (t)) = Iw(t)E[V1]E[Y (t)] = ρtIw(t)/µ, t ≥ 0. (2.25)
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We will see in Section 2.2.5 that it is convenient to express our non-parametric RQ (2.17)

in terms of the IDW.

Since we are interested in the steady-state performance of the OQN, we assume that the

processes A and Y have stationary increments. Given that arrival process and service times

have constant determined rates, the mean functions E[A(t)] and E[Y (t)] are linear in time.

Hence, much of the remaining behavior of the A and Y is determined by the variance-time

function or index of dispersion. We are interested in the variance-time function, because it

captures the dependence through the covariances; the processes (A, Y ) have independent

increments for the M/GI/1 model, but otherwise not.

To connect the IDC to the IDW, consider the special case where the service times Vi are

i.i.d, independent of the arrival process A. The conditional variance formula gives a useful

decomposition of the IDW

Iw(t) = Ia(t) + c2
s, t ≥ 0, (2.26)

where Ia ≡ IA denote the arrival IDC and c2
s = Var(Vi)/E[Vi]

2 is the scv of the service-time

distribution.

The IDC and IDW are particularly convenient because of a more elementary time scaling

convention.

Remark 2.4 (time scaling convention) Consider A(t) with rate-1 and Aλ(t) ≡ A(λt) with

rate-λ. Let IA(t) denote the IDC of A(t), then we have

IAλ(t) =
Var(A(λt))

E[A(λt)]
= IA(λt).

For the IDW Iw,λ(t) associated with Aλ(t) and {Vi, i ∈ N}, let Yλ(t) =
∑Aλ(t)

i=1 Vi = Y (λt),

then we have

Iw,λ(t) ≡ Var(Yλ(t))

E[V1]E[Yλ(t)]
=

Var(Y (λt))

E[V1]E[Y (λt)]
≡ Iw(λt).

Remark 2.5 An important case for A is the renewal process; to have stationary incre-

ments, we assume that it is the equilibrium renewal process, as in Section 3.5 of [116].

Then Var(A(t)) can be expressed in terms of the renewal function, which in turn can be

related to the interarrival-time distribution and its transform. The explicit formulas for
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renewal processes appear in (14), (16) and (18) in Section 4.5 of [39]. The required Nu-

merical transform inversion for the renewal function is discussed in Section 13 of [4]. The

hyperexponential (H2) and Erlang (E2) special cases are described in Section III.G of [60].

It is also possible to carry out similar analyses for much more complicated arrival pro-

cesses. [108] applies matrix-analytic methods to give explicit representations of the variance

Var(A(t)) for the versatile Markovian point process or Neuts process; see Section 5.4, espe-

cially Theorem 5.4.1. Explicit formulas for the Markov modulated Poisson process (MMPP)

are given on pp. 287-289.

All of these explicit formulas above have the asymptotic form

Var(A(t)) = σ2
At+ ζ +O(e−γt) as t→∞,

for σ2
A in (2.75). In terms of the IDC, let c2

A = σ2
A/λ, we have

IA(t) = c2
A + ζ/λt+O(e−γt/t) as t→∞.

2.2.4 The Indices of Dispersion and the Mean Steady-State Workload

The IDC and IDW are important because of their close connection to the mean steady-state

workload E[Z]. Recall that, the workload Z(t) converges to the steady-state workload Z

as t increases to infinity under regularity conditions, see (2.14). In [60] it was shown that

the IDW Iw is intimately related to a scaled mean workload c2
Z(ρ), defined by

c2
Z(ρ) ≡ E[Zρ]

E[Zρ;M/D/1]
, (2.27)

where E[Zρ;M/D/1] is the mean steady-state workload in a M/D/1 model given by

E[Zρ;M/D/1] =
E[V1]ρ

2(1− ρ)
=

ρ

2µ(1− ρ)
. (2.28)

As (2.28) suggests, the mean steady-state workload converges to 0 as ρ ↓ 0 and diverges to

infinity as ρ ↑ 1. The normalization in (2.27) exposes the impact of variability separately

from the traffic intensity. Under regularity conditions, the following finite positive limits

exist and are equal:

lim
t→∞
{Iw(t)} ≡ Iw(∞) = c2

Z(1) ≡ lim
ρ→1
{c2
Z(ρ)}, and

lim
t→0
{Iw(t)} ≡ Iw(0) = c2

Z(0) ≡ lim
ρ→0
{c2
Z(ρ)}; (2.29)
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see [60] and Section 2.5.5.

The reference case is the classical M/GI/1 queue, for which we have

c2
Z(ρ) = 1 + c2

s = Iw(t) for all 0 < ρ < 1, t ≥ 0. (2.30)

In great generality, we have

c2
Z(0) = 1 + c2

s = Iw(0) and c2
Z(1) = c2

A + c2
s = Iw(∞), (2.31)

where c2
A is the asymptotic variability parameter, i.e., the normalization constant in the

functional central limit theorem (FCLT) for the arrival process. For a renewal process, c2
A

coincides with the scv c2
a of an interarrival time.

The limits in (2.31) implies that, when c2
A is not nearly 1, c2

Z(ρ) varies significantly as

a function of ρ. Hence, the impact of the variability in the arrival process upon the queue

performance clearly depends on the traffic intensity. This important insight from [60] is the

starting point for our analysis. In well-behaved models, c2
Z(ρ) as a function of ρ and Iw(t)

as a function of t tend to change smoothly and monotonically between those extremes, but

OQN’s can produce more complex behavior when both the traffic intensities at the queues

and the levels of variability in the arrival and service processes at different queues vary. We

illustrate in Section 2.2.9.

The challenge is to relate c2
Z(ρ) to the IDW Iw(t) for 0 < ρ < 1 and t ≥ 0. As

observed by [60], a simple connection would be c2
Z(ρ) ≈ Iw(tρ) for some increasing function

tρ, reflecting that the impact of the dependence among the interarrival times and service

times has impact on the performance of a queue over some time interval [0, tρ], where tρ

should increase as ρ increases. The extreme cases are supported by (2.29), but we want

more information about the cases in between.

The following theorem reveals more connections between the IDC and the mean steady-

state workload.

Theorem 2.4 (Ordering of the mean steady-state workload in GI/M/1 models)

Consider two GI/M/1 queues with rate-1 arrival processes A1 and A2, respectively. Let the

service times be i.i.d. exponential random variables with mean 1/µ = ρ so that the traffic

intensity is ρ. Let Iai denote the IDC’s associated with the arrival process Ai, for i = 1, 2.
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Suppose we have

Ia1(t) ≥ Ia2(t), for t ≥ 0,

then we have

E[Z1,ρ] ≥ E[Z2,ρ], for ρ ∈ (0, 1), (2.32)

where E[Zi,ρ] is the mean steady-state workload in the i-th model, with traffic intensity ρ.

Proof. For GI/M/1 queue, the mean steady-state workload can be written as

E[Z] =
ρ

µ(1− σ)
,

where σ is the unique root in (0, 1) of the equation f̂(µ(1− σ)) = σ, where f̂ is the Laplace

transform of the interarrival-time distribution, see Section 3.1.

With a change of variable s = µ(1− σ), this is equivalent to finding the unique root in

(0, ρ−1) of

f̂(s) = 1− ρ/s.

Combining with (3.8), we can re-write the equation in terms of the Laplace transform of

the variance function V (t) = Var(A(t)) as

V̂ (s) =
2(1− ρ)

ρs3
− 1

s2
. (2.33)

Note that the right-hand side of (2.33) is positive on (0, 2(1− ρ)/ρ) and negative on (2(1−

ρ)/ρ,∞). Since the Laplace transform V̂ (s) is positive for all s, the root must fall in

(0, 2(1− ρ)/ρ), where the right-hand side of (2.33) is decreasing.

Now, fix a ρ and consider the variance function Vi(t) = Iai(t)t induced by the IDC

function Iai , we have

V̂1(s) ≡
∫ ∞

0
V1(t)e−stdt

≥
∫ ∞

0
V2(t)e−stdt ≡ V̂2(s).

This implies that we must have s∗1 ≤ s∗2, where s∗i is the root of (2.33) with V̂i. Otherwise,

assume that s∗1 > s∗2, we have

2(1− ρ)

ρ(s∗1)3
− 1

(s∗1)2
= V̂1(s∗1) ≥ V̂2(s∗1) > V̂2(s∗2) =

2(1− ρ)

ρ(s∗2)3
− 1

(s∗2)2
,



CHAPTER 2. ROBUST QUEUEING FOR THE G/G/1 MODEL 31

which contradicts the fact that right-hand side of (2.33) is decreasing on (0, 2(1 − ρ)/ρ).

Since E[Zi] = ρ/s∗i , we have E[Z1,ρ] ≥ E[Z2,ρ].

2.2.5 Robust Queueing with the IDW

To obtain more information, RQ can help. Using (2.25), we express the solution in (2.19)

as

Z∗ ≡ Z∗(b) = sup
s≥0

{
−(1− ρ)s+ b

√
Var (Y (s))

}
= sup

s≥0

{
−(1− ρ)s+ b

√
ρsIw(s)/µ

}
(2.34)

Our algorithm will exploit the one-dimensional optimization problem in (2.34), which is

easy to solve given the IDW Iw(x). In terms of the IDC, if we assume that the service times

are i.i.d. and independent of the arrival process A, then by (2.26), we have

Z∗ ≡ Z∗(b) = sup
s≥0

{
−(1− ρ)s+ b

√
ρs(Ia(s) + c2

s)/µ
}
, (2.35)

where Ia ≡ IA denote the IDC of the arrival process A. We will discuss methods of

estimating and calculating the IDC and the IDW in Section 2.3.

To further relate the RQ solution in (2.34) to the steady-state workload in the G/G/1

queue, we define an RQ analog of the normalized mean workload in (2.27), in particular,

c2
Z∗(ρ) ≡

2µ(1− ρ)Z∗ρ
ρ

. (2.36)

The RQ approach allows us to establish versions of the variability fixed-point equation

suggested in (9), (15) and (127) of [60].

Theorem 2.5 Any optimal solution of the RQ in (2.34) is attained at s∗, which satisfies

the equation

s∗ =
b2

2
· ρIw(s∗)

2µ(1− ρ)2

(
1 +

s∗İw(s∗)

Iw(s∗)

)2

. (2.37)

The associated RQ optimal workload in (2.34) can be expressed as

Z∗ =
b2

2
· ρIw(s∗)

2µ(1− ρ)

1−

(
s∗İw(s∗)

Iw(s∗)

)2
 , (2.38)
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which is a valid nonnegative solution provided that x∗İw(x∗) ≤ Iw(x∗). If b =
√

2, then the

associated scaled RQ workload satisfies

c2
Z∗(ρ) = Iw(s∗)

1−

(
s∗İw(s∗)

Iw(s∗)

)2
 . (2.39)

Proof. Note that ρsIw(s)/µ = V (s). Because we have assumed that VY (s) is differen-

tiable, so is Iw. We obtain (3.14) by differentiating with respect to s in (2.34) and setting

the derivative equal to 0. After substituting (3.14) into (2.34), algebra yields (2.38). The

limits in (5.8) imply that s∗İw(s∗)→ 0 and Iw(s∗)→ Iw(∞) as ρ→ 1.

Given that sİw(s)→ 0 as s→∞ and s∗ →∞ as ρ ↑ 1, if b =
√

2, then it is natural to

consider the heavy-traffic approximation

s∗ ≈ ρIw(s∗)

2µ(1− ρ)2
so that Z∗ ≈ ρIw(s∗)

2µ(1− ρ)
and c2

Z∗ = Iw(s∗). (2.40)

The first equation in (2.40) is a variability fixed-point equation of the form suggested in

(15) of [60]. Hence, our RQ formualtion in (2.17) can be viewed as a refined version of the

approach in [60].

2.2.6 The RQ(b) Algorithm for Quantile Approximation

In this section, we show how RQ solution Z∗(b) in (2.34) or (2.35) with parameter b can be

used to approximate the full distribution of the stochastic steady-state workload Z, which

we do via quantiles. Hence, we refer to it as the RQ(b) algorithm.

From the form of RQ(b), it is evident that as b increases, the approximation should apply

more to the tail of the distribution. We find that a useful connection can be made between

the parameter b and the quantiles of the distribution of the steady-state workload Z. For a

nonnegative random variable Z and 0 < p < 1, let the pth quantile of (the distribution of)

Z be

Z(p) ≡ inf {z ≥ 0 : P (Z ≤ z) = p} , 0 < p < 1, (2.41)

i.e., the inverse of the cumulative distribution function (cdf). We propose the approximation

Z(Π(b)) ≈ Z∗(b), (2.42)
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where Π : (−∞,∞) → (0, 1) is a one-to-one continuous function chosen to map the RQ

parameter b into the quantile level p of Z.

For GI/GI/1 model, the standard heavy-traffic approximation implies that the steady-

state workload Z should be approximately exponentially distributed; see Section 5.7 and

Section 9.3 in [143]. In particular, for mean-1 service and traffic intensity ρ,

P (Z > x) ≈ e−x/m, x ≥ 0, for m ≡ ρc2
x

2(1− ρ)
. (2.43)

Thus, for quantile p of Z, denoted by Z(p), we have P (Z ≤ W (p)) ≈ 1− e−Z(p)/m = p, so

that

Z(p) ≈ − ln (1− p)m (2.44)

for m in (2.43).

On the other hand, if we apply Theorem 2.2 to the M/GI/1 queue or the RBM approx-

imation, then we get

Z∗(b) =
b2m

2
. (2.45)

To match the actual mean in M/GI/1 for all ρ and to match the mean in heavy-traffic and

light-traffic limits, we should chose b2 =
√

2 as in Corollary 2.3, Theorem 2.5 and Theorem

2.6.

Further connection can be made by equating (2.44) and (2.45) to obtain an approxima-

tion for the desired function Π in (2.42), getting

p ≈ Π(b) ≡ 1− e−b2/2. (2.46)

By (2.44), for an exponential random variable, the mean coincides with the p = 1− e−1 ≈

0.632 quantile. By (2.46), this quantile corresponds to b =
√

2. Hence, the RQ(
√

2) is the

RQ algorithm for the mean steady-state workload.

2.2.7 Heavy-Traffic and Light-Traffic Limits

The following result shows the great advantage of doing RQ with (i) the continuous-time

workload and (ii) the non-parametric version of the RQ in (2.34). A proof is given in Section

2.6.
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Theorem 2.6 (heavy-traffic and light-traffic limits) Under the regularity conditions as-

sumed for the IDW Iw(t), if bf ≡
√

2, then the non-parametric RQ solution in (2.34)

is an asymptotically correct characterization of steady-state mean workload both in heavy

traffic (as ρ ↑ 1) and light traffic (as ρ ↓ 0). Specifically, we have the following supplement

to (2.29):

lim
ρ↑1

c2
Z∗(ρ) = Iw(∞) = lim

ρ↑1
c2
Z(ρ) and lim

ρ↓0
c2
Z∗(ρ) = Iw(0) = lim

ρ↓0
c2
Z(ρ). (2.47)

Remark 2.6 Theorem 2.6 greatly generalizes results in Theorem 2.3(b) with both light and

heavy traffic addressed in the general case beyond positive or negative correlations. We

also note that the parametric RQ solution can be made correct in heavy traffic or in light

traffic, as above, by choosing the parameter bp appropriately, but both cannot be achieved

simultaneously unless Iw(∞) = Iw(0).

2.2.8 Other Steady-State Performance Measures

We develop approximations for other steady-state performance measures by applying exact

relations for the G/GI/1 queue that follow from Little’s law L = λW and its generalization

H = λG; e.g., see [141] and Chapter X of [12] for the GI/GI/1 special case. Let W,Q and

X be the steady-state waiting time, queue length and the number in system (including the

one in service, if any). By Little’s law,

E[Q] = λE[W ] = ρE[W ] and

E[X] = E[Q] + ρ = ρ(E[W ] + 1). (2.48)

By Brumelle’s formula [30] or H = λG, (6.20) of [141],

E[Z] = ρE[W ] + ρ
E[V 2]

2µ
= ρE[W ] + ρ

(c2
s + 1)

2µ
, (2.49)

Hence, given an approximation Z∗ for E[Z], we can use the approximations

E[W ] ≈ max{0, Z∗/ρ− (c2
s + 1)/2µ} and

E[Q] ≈ λE[W ]. (2.50)
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Remark 2.7 (network performance measures) So far we only have discussed the perfor-

mance measures for a single station. The total network performance measures, on the other

hand, can also be derived. See Section 4.1 for the settings of the open queueing network

models. For example, the expected value of the total sojourn time T tot
i , i.e. the time needed

to flow through the queueing network for a customer that enters the system from station i,

is easily estimated from the obtained mean waiting time at each station. Assuming Markov

routing with routing matrix P , a standard argument from discrete time Markov chain the-

ory gives the mean total number of visits ξi,j to station j by a customer entering the system

at station i as

ξi,j =
(
(I − P )−1

)
i,j
,

where (I − P )−1 is the fundamental matrix of a absorbing Markov chain. Hence, the mean

steady-state total sojourn time E[T tot
i ] is approximated by

E[T tot
i ] ≈

K∑
j=1

ξi,j(E[Wj ] + 1/µj). (2.51)

In real world applications, customers often experiences non-Markovian routing, where routes

are customer-dependent. For ways to represent those scenarios and convert them (approx-

imately) to the current framework, see §2.3 and §6 of [134].

2.2.9 An Illustrative Simulation Example

In this section, we present an example that demonstrates (i) the strong impact of depen-

dence upon performance and (ii) the value of the new RQ in capturing the impact of that

dependence.

Consider an example of 5 single-server queues in series where the variability increases

and then decreases 5 times, with the traffic intensities at successive queues decreasing. That

makes the external arrival process and the earlier queues relevant only as the traffic intensity

increases. Specifically, the example can be donoted by

E10/H2/1→ ·/E10/1→ ·/H2/1→ ·/E10/1→ ·/M/1. (2.52)

In particular, the external arrival process is a rate-1 renewal process with E10 interarrival

times, thus c2
a = 0.1. The 1st queue has H2 service times with mean 0.99 and c2

s = 10 (and
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also balanced means, as before), thus the traffic intensity at this queue is 0.99. The 2nd queue

has E10 service time with mean and thus traffic intensity 0.98. The 3rd queue has H2 service

times with mean 0.70 and c2
s = 10. The 4th queue has E10 service times with mean and

thus traffic intensity 0.5. The last (5th) queue has an exponential service-time distribution.

with mean and traffic intensity ρ. We explore the impact of ρ on the performance of that

last queue.

This example is designed so that the total arrival process at queue 5 have a very compli-

cated dependence structure. Looking backwards starting from the 4th queue, i.e., the queue

just before the last queue, the Erlang service act to smooth the arrival process at the last

queue. Thus, for sufficiently low traffic intensities ρ at the last queue, the last queue should

behave essentially the same as a E10/M/1 queue, which has c2
a = 0.1, but as ρ increases, the

arrival process at the last queue should inherit the variability of the previous service times

and the external arrival process, and altering between H2/M/1 and E10/M/1 as the traffic

intensity at the last queue increases. This implies that the normalized workload c2
Z(ρ) in

(2.27) as a function of ρ should have four internal modes.
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Figure 2.2: Comparing the simulation estimation to the RQ approximation for the workload,

as a function of traffic intensity, at the fifth queue of a five-queues-in-series model. The

workload function have four internal modes.

This behavior is substantiated by Figure 2.2 (left), which compares simulation estimates
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of the normalized mean workload c2
Z(ρ) in (2.27) at the last queue with the RQ approx-

imation c2
Z∗(ρ) in (2.36). It shows that the the normalized workload at the last queue

fluctuates and each mode corresponds to a previous service process or the external arrival

process. Figure 2.2 (left) also shows that RQ successfully captures all modes and provides

a reasonably accurate approximation for all ρ. Note that a new scale in the horizontal x

axis is used in Figure 2.2 (left), namely − ln(1− ρ). Since 4 out of 6 modes lies in ρ > 0.8,

the new scale act to stretch out the crowded plot under heavy traffic.

To conclude on this series-queue example, we show the IDW for the last queue in Figure

2.2 (right). The x axis of the figure is in log scale for easier display. Clearly, the IDW has

the same qualitative property as the normalized workload as well as the RQ approximation,

as we expect from equation (2.40).

2.3 Estimating and Calculating the IDC

For the applications of the RQ algorithm, it is significant that the IDW Iw(t) and the IDC

IA(t) can readily be estimated from data from system measurements or simulation, and

calculated in a wide class of stochastic models. The time-dependent variance functions can

be estimated from the time-dependent first and second moment functions, as discussed in

Section III.B of [59]. Calculation depends on the specific model structure.

To start, we review the calculation of the indices of dispersion under several specific

model structures in Section 2.3.3. In Section 2.3.1, we discuss the calculation of the IDC for

the renewal process. In Section 2.3.4, we propose an algorithm to estimate the IDC from

data.

2.3.1 The IDC’s for Renewal Processes.

For renewal processes, the variance Var(A(t)) and thus the IDC IA(t) can either be calcu-

lated directly or can be characterized via their Laplace transforms and thus calculated by

inverting those transforms and approximated by performing asymptotic analysis. Because

we are interested in the steady-state behavior of the OQN, we are primarily interested in

the equilibrium renewal process, as in Section 3.5 of [116]. For a stationary point process,
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we have E[A(t)] = λt. Hence, we only focus on Var(A(t)) here.

In turns out that the variance of the equilibrium arrival renewal process V (t) ≡ Var(A(t))

can be expressed in terms of the renewal function m(t) ≡ E[A0(t)], where A0 is the corre-

sponding ordinary renewal process, i.e. with an arrival at time 0. For a function f , let f̂

denote the Laplace transform of f , defined by

f̂(s) ≡ L(f)(s) ≡
∫ ∞

0
e−stf(t)dt.

For the variance function V (t), we have

V̂ (s) =
λ

s2
+

2λ

s
m̂(s)− 2λ2

s3
=

λ

s2
+

2λ

s

ĝ(s)

s (1− ĝ(s))
− 2λ2

s3
, (2.53)

where g is the density function of the interarrival-time dsitribution. For detailed derivation,

see Section 3.1.

The variance function can then be obtained numerically, which is discussed in Section

13 of [4].

2.3.2 The IDC of the Markovian Arrival Process

Markovian arrival process (MAP) is an extremely versatile modeling tool for point processes.

The MAP is initially introduced by Neuts in [107] as a versatile Markovian process. It was

reformulated as the MAP in [104], which we follow as its definition. It contains a wide

range of point processes as special cases, including the Poisson process, the Erlang and

hyperexponential renewal processes, the Phase-type (PH) renewal process and the Markov

Modulated Poission process. Since the Phase-type distribution is dense in the field of all

positive-valued distributions, the MAP can be applied to approximate any renewal process.

But the MAP is also capable of modeling auto-correlation in point process, which do not

appear in renewal processes. We summarize useful formula in this section.

The MAP is among one of the few general models that can be treated analytically, see

for example [1; 97]. In this section, we review the exact formula for the IDC of the Makovian

Arrival Process and its special cases; see also Section 5.4 of [108], especially Theorem 5.4.1.

The MAP is defined in terms of a continuou-time Markov chain (CTMC) with infinitesi-

mal generator D = D0 +D1 ∈ Rn×n, where D1 = 0, 0 and 1 are the column vector of zeros
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and ones, all the off-diagonal elements of D0 and all the elements of D1 are nonnegative.

The transitions associated with D1 are called type 1 transitions. A MAP with parameters

(D0,D1), denoted by MAP(D0,D1), is a point process where an event occurs if and only

if a type 1 transition occurs in the CTMC.

Neuts [108] applies matrix-analytic methods to give explicit representations of the vari-

ance Var(N(t)) for the versatile Markovian point process or Neuts process; see Section 5.4,

especially Theorem 5.4.1. We summarize the results below. Let α be the steady-state

probability (row) vector of the CTMC generated by the rate matrix D, i.e. the solution to

αD = 0, α1 = 1. (2.54)

Starting with the distribution of initial state specified by α, the resulting MAP will be a

continuous-time stationary point process. We use N(t) to denote such a stationary MAP.

The mean function (for the stationary version) is

m(t) ≡ E[N(t)] = λt, λ = αD11. (2.55)

The variance function V (t) ≡ Var(N(t)) of the stationary MAP N(t) is

V (t) =
(
λ− 2λ2 + 2αD1d1

)
t− 2αD1(I − eDt)d2, (2.56)

where di ≡ (1α − D)−iD11, I is the identity matix of order n and eDt is the matrix

exponential. From (2.55) and (2.56), we obtain the IDC IN of N(t)

IN (t) = 1− 2λ+ 2αD1d1/λ− 2αD1(I − eDt)d2/λt, (2.57)

The limits of the IDC can then be easily derived. In particular, we have

Proposition 2.1 For MAP(D0,D1), we have

IN (0) = lim
t→0

IN (t) = 1, and (2.58)

IN (∞) = lim
t→∞

IN (t) = 1− 2λ+ 2αD1d1/λ. (2.59)

Proof. The second statement follows from the fact that all eigenvalues of D have non-

positive real parts, hence the matrix exponential eDt converges to 0 as t→∞.
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We remark that, for a non-renewal MAP, the limit IN (∞) is not necessarily equal to

the scv of the stationary inter-event time. For the interval-stationary version of the MAP,

consider the Markov chain embedded at the arrival epochs, whose transition probability

matrix P is given by

P =

∫ ∞
0

eD0tD1dt = −D−1
0 D1.

The stationary vector α0 of P is then obtained by solving α0P = α0 and α01 = 1. The

cumulative distribution function (cdf) of a stationary inter-event time is then given by

F (t) = 1−α0e
D0t1,

and its scv is given by
2α0(−D0)−21

(α0(−D0)−11)2 − 1,

which is in general different from (2.59).

However, the limiting variability parameter IN (∞) coincide with the variability coeffi-

cient in the Brownian functional central limit theorem of the MAP. Let N̂n(t) ≡ n−1/2[N(nt)−

λnt] be the diffusion-scaled process, where λ is the rate defined in (2.55). A proof can be

found in Section 2.6.

Theorem 2.7 (Functional central limit theorem) Consider MAP(D0,D1) with finite

state and initial distribution α in (2.54). Assume that the underlying Markov chain gener-

ated by D = D0 +D1 is irreducible, then we have

N̂ ⇒ cB ◦ λe,

where c =
√
IN (∞) defined in (2.59), B is a standard Brownian motion, λ is the rate

defined in (2.55) and e is the identity map.

We now summarize the exact formula for several useful special cases.

Example 2.1 (Erlang renewal process) The Erlang (Ek) random variable with shape

parameter k and rate parameter λ is defined as the sum of k i.i.d. exponential random

variables, each with rate λ, so that the mean is m = k/λ and the scv is c2 = 1/k. The
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Erlang renewal process can be specified as a MAP with

D0 =


−λ λ 0 · · · 0

0 −λ λ · · · 0
...

...
...

. . .
...

0 0 0 · · · −λ

 , D0 =


0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

λ 0 0 · · · 0


For the case of k = 2, 3 and 4, we have

IE2(t) =
1

2
+

1

4λt

(
1− e−2λt

)
,

IE3(t) =
1

3
+

4

9λt

(
1− e−3λt/2 cos

(√
3λt/2

))
,

IE4(t) =
1

4
+

1

8λt

(
1− e−2λt

)
+

1

2λt

(
1− e−λt cos(λt)

)
.

See also Section 4.3 and 4.5 of [39] and Section III.G of [60].

Example 2.2 (Hyperexponential renewal process) Consider the mixture of two in-

dependent exponential random variable, i.e. the hyperexponential (H2) random variable,

with probability density function defined as

f(t) = pµ1e
−µ1t + (1− p)µ2e

−µ2t, t ≥ 0.

By swapping µ1 with µ2 and p with 1−p, we may assume µ1 ≥ µ2 without loss of generality.

The distribution can also be specified by the the rate λ = µ1µ2
pµ2+(1−p)µ1 , the scv c2 and

the ratio between the mean of the component with the larger rate and the overall mean

r ≡ p/µ1/(p/µ1 + (1 − p)/µ2). Alternatively, the H2 renewal process can be specified by

the MAP with

D0 =

−µ1 0

0 −µ2

 , D0 =

pµ1 (1− p)µ1

pµ2 (1− p)µ2


The IDC of the equilibrium H2 renewal process is then

IH2(t) = c2 − 2β

γt

(
1− e−γt

)
, (2.60)

where γ = (1− p)µ1 + pµ2 and β = p(1− p)(µ1 − µ2)2/γ2, which is consistent with Section

III.G of [60].
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Example 2.3 (Markov modulated Poisson process) The Markov modulated Poisson

process (MMPP) is a special case of MAP with D1 being restricted to a diagonal matrix

with non-negative entries. D0 can be any matrix with nonnegative off-diagonal elements,

as long as (D0 +D1)1 = 0. The MMPP(2), i.e. the MMPP with 2 states, is defined by

D0 =

−r1 − λ1 r1

r2 −r2 − λ2

 , D1 =

λ1 0

0 λ2

 (2.61)

The rate of this MMPP(2) is λ = λ1r2+λ2r1
r1+r2

and the IDC is

IMMPP(2)(t) = 1 + 2α− 2α

γt

(
1− e−γt

)
, (2.62)

where γ = r1 + r2 and α = r1r2(λ1−λ2)2

γ2(r1λ2+r2λ1)
.

2.3.3 Calculation of the IDW and IDC in Some Queueing Networks

The G/GI/1 Model. If the service times are i.i.d. with a general distribution having

mean τ and scv c2
s and are independent of a general stationary arrival process, then as

indicated in (58) and (59) in Section III.E of [60],

Iw(t) = c2
s + IA(t), t ≥ 0, (2.63)

where c2
s is the scv of a service time and IA is the IDC of the general arrival process A.

The Multi-Class
∑

i(Gi/Gi)/1 Model. As indicated in (56) and (57) in Section III.E

of [60], if the input comes from independent sources, each with their own arrival process

and service times, then the overall IDC and IDW are revealing functions of the component

ones. Let λi be the arrival rate, τi the mean service time of class i, and ρi ≡ λiτi be the

traffic intensity for class i with λ ≡
∑

i λi, τ ≡
∑

i(λi/λ)τi = 1 so that ρ = λ. Then

IA(t) ≡ Var(A(t))

E[A(t)]
=

∑
i Var(Ai(t))

λt
=
∑
i

(
λi
λ

)
IAi(t) (2.64)

and

Iw(λt) ≡ Var(Y (t))

τE[Y (t)]
=

∑
i Var(Yi(t))

ρt
=
∑
i

(
ρiτi
ρτ

)
Iw,i(t) for all t ≥ 0. (2.65)

From (2.64) and (2.65), we see that IA and Iw are convex combinations of the component

IAi and Iw,i.
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The Multi-Class
∑

iGi/GI/1 Model. An important special case of the multi-class∑
i(Gi/Gi)/1 model arising in open queueing networks is the

∑
iGi/GI/1 model in which

there are multiple general arrival streams coming to a queue where all arrivals experience

common i.i.d. service times. We can combine (2.63) and (2.64) to get the expression for

the IDW

Iw(t) ≡ IA(t) + c2
s, t ≥ 0, (2.66)

where IA(t) is given by (2.64). Of course, if all the component arrival streams are Poisson

processes, then IA(t) = 1 for all t ≥ 0, but otherwise the IDC IA(t) can be quite complicated.

The Balanced
∑

iGi/GI/1 Model. We call the
∑

iGi/GI/1 model balanced, if the

arrival process is the superposition of n i.i.d. non-Poisson processes each with rate λ/n, so

that the overall arrival rate is λ, and asymptotic variability parameter c2
a. From the results

above, we obtain

IA,n(t) = IA(t/n) and Iw,n(t) = Iw,1(t/n), t ≥ 0, (2.67)

so that the superposition IDC and IDW differ from those of a single component process

only by the time scaling.

In particular, under regularity conditions, (i) the superposition arrival process is known

to be non-Poisson and non-renewal unless the component arrival streams are Poisson. (ii)

if we let n → ∞ but keep the total rate fixed, then the superposition process approaches

a Poisson process, but (iii) for any n, no matter how large, if we let t → ∞, then the

superposition process obeys the same CLT as a single component arrival process, and so

has asymptotic variability parameter c2
a. Thus, we have IA,n(0) = 1 and IA,n(∞) = c2

a for

any n ≥ 1.

We will show that RQ provides important insight when we conduct simulation experi-

ments for this model in Section 6.2.2.

2.3.4 Numerical Estimation of the IDC from Data.

Now we present an algorithm to numerically estimate the variance V (t) = Var(A(t)) from

a given realized sample path of the stationary point process A(t). The main idea is based

on Section 5.4 (iii) of [40].
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Our goal is to estimate V (t) for 0 < t < t0 using a realization of A(t) for 0 < t < T . The

simplest way is to apply crude Monte Carlo method to estimate V (t) for a fixed t and repeat

over a finite grid of t’s. This method divide the sample path of A(t) into non-overlapping

intervals of length t and count the number of arrivals in each interval. The variance is then

estimated by the sample variance of the counts. This method is simple to implement but

can be slow to converge.

To accelerate the crude Monte Carlo method, we apply three techniques: (i) we use

overlapping intervals instead of non-overlapping ones, which introduces bias but reduces

sample variance; (ii) we calculate V (t) only over a finite grid equally spaced in the logarithm

scale instead of the linear scale; and (iii) we re-use the tallied number of events for shorter

intervals to calculate the total number of events for longer interval, which avoids repetitive

counting. We discuss the three techniques in turn:

To use overlapping intervals, consider first k = T/t number of non-overlapping intervals,

each with length t. Now, we further divide each intervals of length t in to r intervals of the

same length τ = t/r. Hence we have rk number of non-overlapping intervals of length τ .

Let ni be the number of events fall in the i-th interval, consider

Ui ≡ A(Ii) ≡ A[iτ, (i+ r)τ) = ni + ni+1 + · · ·+ ni+r−1, i = 0, 1, . . . , rk − r + 1.

We estimate V (t) with the sample variance V̄l of {Ui}li=1, where l = rk − r + 1. This

estimator is in general biased but can achieve lower variance compared with the one obtained

with crude Monte Carlo method. In Theorem 2.8 we show that this estimator of V (t) is

asymptotically consistent under mild conditions that V (t) is differentiable with derivative

V̇ (t) having finite positive limits as t→∞.

For the third technique, we now present a algorithm to simultaneously estimate V (2iτ)

for some τ > 0 and i = 0, 1, . . . , l. Let {Ii} be the collection of non-overlapping intervals of

length τ that covers [0, T ]. Let ni = A(Ii) be the number of events on interval Ii. Then we

have the following table from [40].
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time horizon t

sample τ 2τ 22τ · · ·

1 n1 n1 + n2 n1 + n2 + n3 + n4 · · ·

2 n2 n2 + n3 n3 + n4 + n5 + n6 · · ·

3 n3 n3 + n4 n5 + n6 + n7 + n8 · · ·
...

...
...

...
...

We find the estimation of V (2iτ) by calculating the sample variance of the corresponding

column.

Now that we have a efficient algorithm to estimate V (2iτ) for fixed τ , we have obtained

the estimations of a grid equally spaced in logarithm scale. To obtain estimations for finer

grids we shift the crude grid by picking several τ ≤ τj ≤ 2τ equally spaced in log scale and,

for each j, simultaneously estimate V (2iτj) for all i.

Consistency of the estimator. We now show that the estimator of the variance function

V (t) is asymptotically consistent. Towards this end, we assume mild regularity conditions

that V (t) is differentiable with derivative V̇ (t) having finite positive limits as t→∞, i.e.,

V̇ (t)→ σ2 as t→∞,

for an appropriate constant σ2, as in (5.8). The proof is postponed to Section 2.6.

Theorem 2.8 (Consistency of the estimator) Let A be a time-stationary and ergodic

point process with variance function V (t) that is differentiable with derivative V̇ (t) having

finite positive limit as t→∞, i.e.,

V̇ (t)→ σ2 as t→∞.

Then we have

lim
l→∞

bias(V̄l) = 0

for l = rk− r+ 1, r = t/τ, k = T/t and V̄k is the sample variance of {Ui}ki=1. Furthermore,

lim
l→∞

V̄l = V (t), w.p.1.
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Remark 2.8 (Implication for the choice of simulation run length) The bias comes

from two kinds of cumulative correlation in N(t). The first part of the bias comes from the

correlation of overlapping intervals, which can be bounded by 4Ct/(k − 1). This suggest

that V̄ is a reasonable estimator only when k � t. The second part of the bias comes from

the correlation of the increments when N(t) is non-Poisson. This part of the bias can be

controlled by the convergence rate of V̇ (t). This suggests that, regardless of our choice of

t, V̄ is a reasonable estimator only when T is much larger than the relaxation time it takes

for V̇ (t) to converge.

For example, if we are interested in V (t) for t = 105 and we want a bias of less than

ε, then we must use T = tk ≥ 4Ct2/ε = O(t2/ε) in order to control the first part of the

bias. For the second part of the bias, in the queueing setting, the time it takes for V̇ (t) to

converge is roughly in the magnitude of O(1/(1 − ρ)2). Hence, we need a simulation time

of T = O(t/(1− ρ)2) to eliminate the bias.

2.4 More on Non-Parametric RQ for Waiting Times

We now discuss how Corollary 2.1 can be extended, with the aid of Section 2.5, to show that

both the new parametric RQ in (2.6) and the new non-parametric RQ with uncertainty set

in (2.9) are asymptotically correct in heavy traffic for the more general stationary G/G/1

model. For the general model, we regard {(Uk, Vk)} as a stationary sequence. For notation

simplicity, we assume E[Vk] = 1 and E[Uk] = ρ−1 > 1 for all k for the rest of this section.

Paralleling the parametric RQ optimization in (2.6), we have the non-parametric analog

W ∗f,ρ ≡ sup
X̃∈Uxf

sup
k≥0
{Sxk} . (2.68)

where Uxf is defined in (2.9). For the G/G/1 model stationary in discrete time, the reasoning

for Theorem 2.1 leads to the alternative representation as

W ∗f,ρ = sup
k≥0

{
−mk + bf,d

√
V ar(Sxk )

}
(2.69)

instead of (2.7), where m ≡ (1− ρ)/ρ as before.

We now recast the discrete-time RQ solution in (2.69) in terms of indices of dispersion
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for intervals (IDI). As in Chapter 4 of [40], the IDI’s are functions of k ∈ N, defined by

Iak ≡
kV ar(Sak)

(E[Sak ])2
, Isk ≡

kV ar(Ssk)

(E[Ssk])
2

and Ia,sk ≡
kCov(Sak , S

s
k)

E[Sak ]E[Ssk]
for k ∈ N. (2.70)

As the scaled versions of the discrete-time variance-time functions (sequences) Var(Sxk ),

Var(Sak) and Var(Ssk), the IDI’s measure the cumulative covariance in each partial sum.

With (2.70), √
V ar(Sxk ) = E[U1]

√
kIxk , k ≥ 1, and

σ2
X ≡ lim

k→∞

{
k−1V ar(Sxk )

}
= E[U1]2Ix∞ (2.71)

where

Ixk ≡ Iak + ρ2Isk − 2ρIa,sk for ρ ≡ E[V1]/E[U1] < 1. (2.72)

These three IDI’s Iak , Isk and Ia,sk were used to develop queueing approximations in [58].

As a consequence, (2.69) can be rewritten a

W ∗f,ρ = sup
k≥0

{
−(1− ρ)k/ρ+ bf,d

√
kIxk

}
. (2.73)

Similar to the continuous-time workload, we focus on the normalized mean waiting time

and RQ approximation defined by

c2
W (ρ) ≡ 2(1− ρ)

ρ
E[Wρ], and c2

W ∗(ρ) ≡ 2(1− ρ)

ρ
W ∗f,ρ. (2.74)

By essentially the same reasoning, we can show that both the parametric RQ and

the non-parametric RQ for the steady-state waiting time W are asymptotically exact in

heavy-traffic, with the same HT limit as for the continuous-time workload, if we choose the

constant bf,d in (2.73) appropriately. The light-traffic behavior is much more complicated

for the steady-state waiting time, as discussed in Section IV.A of [60] and Section 1 of [139].

That is a major reason for using the workload instead of the waiting time.

2.5 Supporting Functional Central Limit Theorems

In this section we establish establish (mostly review) the supporting Functional Central

Limit Theorems (FCLT’s) and the Central Limit Theorems (CLT’s) that follow from them.
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These are for the general stationary G/G/1 model, allowing stochastic dependence among

the interarrival times and service times. Section 2.5.1 starts with a basic FCLT for partial

sums of random variables from weakly dependent stationary sequences, as in Theorems

19.1-19.3 of [23] and Theorem 4.4.1 of [143].

To state the basic FCLT underlying the RQ approach to the waiting time and workload

processes, we consider a sequence of models indexed by n with stationary sequence of

interarrival times and service times. In Section 2.5.1 we establish the underlying FCLT for

the partial sums of the interarrival times and service times. Then in 2.5.2 we establish a

FCLT for other basic processes. In Section 2.5.3 we establish different ordinary CLT’s that

support the parametric RQ and non-parametric RQ. Finally, in Section 2.5.4 we establish

heavy-traffic FCLT’s for the waiting time and workload processes.

2.5.1 The Basic FCLT for the Partial Sums

Without loss of generality, we assume that the models are generated by a fixed sequence of

mean-1 random variables {(Uk, Vk)}, with the interarrival times in model n being Un,k ≡

ρ−1
n Uk. For each n, let the sequence of pairs of partial sums be {(San,k, Ssn,k : k ≥ 1}. Let

λn = ρn and µn = 1 denote the arrival rate and service rate in model n. Let bxc denote the

greatest integer less than or equal to the real number x. Let D2 be the two-fold product

space of the function space D and let⇒ denote convergence in distribution. For this initial

FCLT, we let ρn → ρ as n → ∞ for arbitrary ρ > 0. Let random elements in the function

apace D2 be defined by(
Ŝan(t), Ŝsn(t)

)
≡ n−1/2

([
San,bntc − ρ

−1
n nt

]
,
[
Ssn,bntc − nt

])
, t ≥ 0.

Theorem 2.9 (FCLT for partial sums of interarrival times and service times) Let {(Uk, Vk) :

k ≥ 1} be a weakly dependent stationary sequence with E[Uk] = E[Vk] = 1. Let Un,k =

ρ−1
n Uk and Vn,k = Vk, n ≥ 1, and assume that the variances and covariances satisfy

0 < ρ−2σ2
A ≡ lim

n→∞
{n−1V ar(San)} <∞,

0 < σ2
S ≡ lim

n→∞
{n−1V ar(Ssn)} <∞ and

−∞ < ρ−1σ2
A,S ≡ lim

n→∞
{n−1Cov(San, S

s
n)} <∞. (2.75)
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Then (under additional regularity conditions assumed, but not stated here)(
Ŝan, Ŝ

s
n

)
⇒
(
Ŝa, Ŝs

)
in D2 as n→∞, (2.76)

where
(
Ŝa, Ŝs

)
is distributed as zero-drift two-dimensional Brownian motion (BM) with

covariance matrix

Σ =

 ρ−2σ2
A ρ−1σ2

A,S

ρ−1σ2
A,S σ2

S

 .

Proof. The one-dimensional FCLT’s for weakly dependent stationary sequences in D can

be used to prove the two-dimensional version in Theorem 2.9. First, the limits for the

individual processes Ŝan and Ŝsn imply tightness of these processes in D, which in turn

implies joint tightness in D2. Second, the Cramer-Wold device in Theorem 4.3.3 of [143]

implies that limits for the finite-dimensional distributions for all linear combinations (which

should be implied by the unstated regularity condition) implies the joint limit for the finite-

dimensional distributions (fidi’s). Finally, tightness plus convergence of the fidi’s implies

the desired weak convergence by Corollary 11.6.2 of [143].

2.5.2 The FCLT for Other Basic Processes

As a consequence of Theorem 2.9, we also have an associated FCLT for scaled random

elements associated with Sxn,k ≡ Ssn,k − Saa,k, k ≥ 1, An(s) and Yn(s) ≡
∑An(s)

i=1 Vn,i =∑A(ρns)
i=1 Vi = Y (ρns), s ≥ 0, for A and Y in (2.10) and (2.11). Let the associated scaled

processes be defined by(
Ŝxn(t), Ân(t), Ŷn(t)

)
≡ n−1/2

([
Sxn,bntc − (1− ρ−1

n )nt
]
, [An(nt)− ρnnt] , [Yn(nt)− ρnnt]

)
,

(2.77)

for t ≥ 0. Let B(t) be standard (zero drift and unit variance) one-dimensional BM and let e

be the identity function in D, i.e., e(t) = t. Let
d
= mean equal in distribution, as processes

if used for stochastic processes.

Corollary 2.4 (joint FCLT for basic processes) Under the conditions of Theorem 2.9,(
Ŝan, Ŝ

s
n, Ŝ

x
n, Ân, Ŷn

)
⇒
(
Ŝa, Ŝs, Ŝx, Â, Ŷ

)
in D5 as n→∞, (2.78)
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where Ŝx = Ŝs − Ŝa
d
= σXB, with variance function

σ2
X ≡ σ2

X(ρ) = ρ−2σ2
A + σ2

S − 2ρ−1σ2
A,S , 0 < σ2

X <∞, (2.79)

for ρ−2σ2
A, σ2

S and ρ−1σ2
A,S in (2.75), while

Â = −ρŜa ◦ ρe d
= −ρσABa ◦ ρe

d
= ρ3/2σY Ba,

Ŷ = Ŝs ◦ ρe− ρŜa ◦ ρe d
= σY B ◦ ρe d

=
√
ρσY B, (2.80)

where

σ2
Y ≡ σ2

Y (ρ) = σ2
A + σ2

S − 2σ2
A,S , 0 < σ2

Y <∞, for all ρ. (2.81)

Hence, Ŷ
d
= Ŝx for ρ = 1, but not otherwise.

Proof. We apply the continuous mapping theorem (CMT) using several theorems from

[143]. The CMT itself is Theorem 3.4.4. We treat the process Sxn,k using addition. We

treat the counting processes An by apply the inverse map with centering to go from the

FCLT for San,k to the FCLT for the associated scaled counting processes, applying Theorem

7.3.2, which is a consequence of Corollary 13.8.1 to Theorem 13.8.2, which follows from

Theorem 13.7.1. Then the limit for Yn follows from Corollary 13.3.1. However, it is also

possible to give a more elementary direct argument. First, let Ān(t) ≡ n−1An(t), t ≥ 0, and

note that Ān ⇒ ρe as a consequence of the limit for An. The initial limits all hold jointly

by Theorems 11.4.4 and 11.4.5. Then observe that we can apply the continuous mapping

theorem with composition and addition to treat Yn, because we can write

Yn = Ssn ◦ Ān + An (2.82)

i.e.,

Yn(t) ≡ n−1/2

A(nt)∑
k=1

−ρnt

 , t ≥ 0, (2.83)

while

(Ssn ◦ Ān)(t) = n−1/2

A(nt)∑
k=1

−An(nt)

 , t ≥ 0, (2.84)

We then add to get (2.83), observing that two terms cancel.
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We now derive alternative expressions for the limit process Y. First, directly from (2.82)

we obtain

Y = Ss ◦ ρe + A = Ss ◦ ρe− ρSaρe d
= σY B ◦ ρe d

=
√
ρσY B. (2.85)

which justifies the expression for σ2
Y in (2.81).

Remark 2.9 (uniform integrability) Condition (2.75) implies that k−1V ar(Sxk ) → σ2
X as

k → ∞ for σ2
X in (2.79). In addition to the conclusions of Theorem 2.76 and Corollary

2.4, we assume that the appropriate uniform integrability holds, so that we also have the

continuous-time analog

s−1V ar(Y (s))→ σ2
Y as s→∞ (2.86)

for σ2
Y in (2.81).

2.5.3 Alternative Scaling in the CLT

Theorem 2.9 and Corollary 2.4 imply ordinary CLT’s for the processes Sxn and Yn(s) by

simply applying the applying the CMT with the projection map π : D → R with π(x) ≡

x(1).

Corollary 2.5 (associated CLT’s) Under the assumptions of Theorem 2.9, there are CLT’s

for the partial sums Sxn and the total input processes Yn, stating

(Sxn − nE[X1])/
√
nσ2

X ⇒ N(0, 1) as n→∞, (2.87)

and

(Yn − ρn)/
√
nσ2

Y ⇒ N(0, 1) as n→∞, (2.88)

where N(0, 1) is a standard (mean-0, variance-1) normal random variable, σ2
X is the asymp-

totic variance constant in (2.75) and (2.79), and σ2
Y is the asymptotic variance constant in

(5.8) and (2.81).

Clearly, Corollary 2.5 supports the parametric RQ formulations and indicates how to

choose the parameters bx and bp in order to produce versions that should be asymptotically

correct in heavy-traffic (see the next section). We now show that there are alternative
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versions of these CLT’s that support the non-parametric RQ formulations. First, instead

of (2.87), we can also write

[Sxn − E[Sxn]]/
√
V ar(Sxn)⇒ N(0, 1) as n→∞. (2.89)

Second, instead of (2.88), we can also write

[Y (t)− E[Y (t)]]/
√
V ar(Y (t))⇒ N(0, 1) as t→∞. (2.90)

The numerators in (2.87) and (2.89) are identical because E[Sxn] = nE[X1] and E[Y (t)] =

ρt. The full statements in (2.87) and (2.89) are asymptotically equivalent as n→∞ by the

CMT, because

Sxn − nE[X1]√
V ar(Sxn)

=
Sxn − nE[X1]
√
nσX

×
√
nσX√

V ar(Sxn)
⇒ N(0, 1)× 1 = N(0, 1).

The same is true for the CLT’s in (2.88) and (2.90).

2.5.4 The Heavy-Traffic FCLT

Theorem 2.9 and Corollary 2.4 also provide a basis for heavy-traffic (HT) FCLT’s for the

waiting-time and workload processes. To state the HT FCLT, we let ρn → 1 as n→∞ at

the usual rate; see (2.92) below. Let Ŵn and Ẑn be the random elements associated with

the waiting time and workload processes, defined by(
Ŵn(t), Ẑn(t)

)
=
(
n−1/2Wn,bntc, n

−1/2Zn(nt)
)
, t ≥ 0. (2.91)

Let ψ : D → D be the one-dimensional reflection map with impenetrable barrier at the

origin, assuming x(0) = 0, i.e., ψ(x)(t) ≡ x(t) − inf0≤s≤t x(s); see Section 13.5 of [143].

Here is the HT FCLT; it is is a variant of Theorem 2 of [84]; see Section 5.7 and 9.6 in

[143]. Given Corollary 2.4, it suffices to apply the Continuous Mapping Theorem (CMT)

with the reflection map ψ.

Theorem 2.10 (heavy-traffic FCLT) Consider the sequence of G/G/1 models specified

above. If, in addition to the conditions of Theorem 2.9,

n1/2(1− ρn)→ η, 0 < η <∞, (2.92)
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then (
Ŵn, Ẑn

)
⇒
(
ψ(Ŝx − ηe), ψ(Ŝx − ηe)

)
in D2 as n→∞, (2.93)

jointly with the limits in (2.78), where ψ is the reflection map and Ŝx − ηe d
= σY B− ηe is

BM with variance constant σ2
Y in (2.81) and drift −η < 0, so that ψ(Ŝx − ηe) is reflected

BM (RBM).

The HT approximation for the mean steady-state wait and workload stemming from

Theorem 2.10 is

E[W (ρ)] ≈ E[Zρ] ≈
√
nσ2

Y

2η
≈

σ2
Y

2(1− ρ)
(2.94)

for σ2
Y in (2.81), which is independent of ρ, using the mean of the exponential limiting

distribution of the RBM ψ(σxB− ηe)(t) as t→∞.

Remark 2.10 (the two forms of stationarity) As discussed in the beginning of Section

2.2.2, there are two forms of stationarity, one for discrete time and the other for continuous

time. When we focus on the waiting time, we use discrete-time stationarity; when we

focus on the workload, we use continuous-time stationarity. So far in this section, we have

built everything in the framework of discrete-time stationarity. However, in doing so, we

automatically can get FCLT’s in both settings. The theoretical basis is provided by [109].

Remark 2.11 (the limit-interchange problem) the standard HT limits for the processes do

not directly imply limits for the steady-state distributions. Strong results have been obtained

with i.i.d. assumptions, e.g., see [31], but the case with dependence is more difficult. Never-

theless, supporting results for the G/G/1 queue when dependence is allowed appear in [126;

127]. We assume that this interchange step is also justified.

Remark 2.12 (the asymptotic method) The RQ approach in Theorem 2.2 corresponds to

approximating the arrival and service processes in the G/G/1 queue by the asymptotic

method in [133], which develops approximations for the arrival and service processes us-

ing all the correlations. That is in contrast to the stationary-interval method discussed

just before Section 2.5, which uses none of the correlations. Our RQ approach develops an

intermediate methods in between those two extremes.
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2.5.5 The IDW and the Normalized Workload

We are motivated to develop the non-parametric RQ for the steady-state workload because

of the close connection between the IDW {Iw(t) : t ≥ 0} and the normalized mean workload

{c2
Z(ρ) : 0 ≤ ρ ≤ 1} established by [60]. The key asymptotic components are the heavy-

traffic (HT) and light-traffic (LT) limits stated here in (2.29). Now that we have just

developed the supporting HT FCLT, we review the theoretical support for (2.29).

First, the HT limit is supported by the FCLT for Ẑn in Theorem 2.10. We use the

continuous-time stationarity, justified by Remark 2.10. For the FCLT’s, we require weak

dependence, which is specified by relatively complex mixing conditions. Given the weak

dependence and the FCLT, we need extra regularity conditions to get to what is actually

stated in (2.29). First we need the limit-interchange property discussed in Remark 2.11

to get associated limits for the steady-state distributions. Second, we need appropriate

uniform integrability to get from convergence of random variables to convergence of their

moments; see Remark 2.9.

The LT limit is established in Section IV.A of [60]. An important observation made there

is that the LT limiting behavior is much more robust for the steady-state workload than for

the steady-state waiting time. In particular, the LT limit for the steady-state waiting time

depends more on the fine structure of the model. The LT limits provide theoretical insight

into why it is easier to describe the mean steady-state workload than the mean steady-state

waiting time, even though they agree in the HT limit.

2.6 Proofs

In this section we provide additional technical support for the main paper. First, a key step

in obtaining tractable solutions of the RQ optimizations is an interchange of suprema. The

following lemma shows that this interchange is justified in all cases.

Lemma 2.1 (interchange of suprema) The interchange of suprema below holds for any

real-valued function f(x, y)

M := sup
x∈A
y∈B

f(x, y) = sup
x∈A

sup
y∈B

f(x, y) = sup
y∈B

sup
x∈A

f(x, y),
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where the joint supremum M is allowed to be infinite.

Proof By symmetry, we need only prove that

sup
x∈A
y∈B

f(x, y) = sup
x∈A

sup
y∈B

f(x, y).

Suppose the joint supremum M is finite, then there exist a sequence (xn, yn) ∈ A×B such

that f(xn, yn) > M − 1/n, where M is the finite joint supremum. Then, we have

sup
x∈A

sup
y∈B

f(x, y) ≥ sup
y∈B

f(xn, y) ≥ f(xn, yn) ≥M − 1

n
, for all n > 0.

This implies that

sup
x∈A

sup
y∈B

f(x, y) ≥M = sup
x∈A
y∈B

f(x, y).

The other direction of inequality is trivial by noting that M ≥ f(x, y) and taking iterated

supremum on both sides.

For the case where the joint supremum M is infinite, then there exist a sequence

(xn, yn) ∈ A×B such that f(xn, yn) > n. Then

sup
x∈A

sup
y∈B

f(x, y) ≥ sup
y∈B

f(xn, y) ≥ f(xn, yn) ≥ n, for all n > 0.

Hence the iterated supremum is also infinite, which completes the proof.

Proof of Theorem 2.2. The solutions of the RQ optimizations in (2.17) are

Z∗p ≡ sup
Ñ∈Up

sup
s≥0

{
Ñ(t)

}
= sup

s≥0
sup
Ñ∈Up

{
Ñ(t)

}
= sup

s≥0

{
−(1− ρ)s+ bp

√
ρs/µ

}
= −(1− ρ)x∗ + bp

√
ρx∗/µ =

ρb2p
4µ(1− ρ)

for x∗ ≡ x∗(ρ) =
ρb2p

4µ(1− ρ)2
(2.95)

and

Z∗ ≡ sup
Ñ∈U

sup
s≥0

{
Ñ(t)

}
= sup

s≥0
sup
Ñ∈U

{
Ñ(t)

}
= sup

s≥0

{
−(1− ρ)s+ b

√
Var(Nρ(s))

}
= sup

s≥0

{
−(1− ρ)s+ b

√
Var(Yρ(s))

}
. (2.96)

where the interchange of suprema is justified by Lemma 2.1.
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Proof of Theorem 2.3. The inequalities can be satisfied as equalities just as before.

There are finite values s0 such that
√
VY (s) ≤

√
2σ2

Y s for all s ≥ s0 by virtue of the limit

in (5.8). (Also see (2.75) and (2.86).) That shows that the optimization can be regarded

as being over closed bounded intervals. The assumed differentiability of VY implies that

it is continuous, which implies that the supremeum is attained over the compact interval.

Because V̇Y (x)→ V̇Y (0) > 0, we see that there exists a small s′ such that

−(1− ρ)s+ b
√
VY (s) ≥ −(1− ρ)s+ b

√
sV̇Y (0)/2 > 0 for all s ≤ s′.

As a consequence, the maximum in (2.19) must be strictly positive and must be attained

at a strictly positive time.

The results for
√
VY (s) with positive dependence follow from convexity properties of

compositions. First, with positive dependence, −
√
VY (s) is a convex function of an increas-

ing convex function, and thus convex so that
√
VY (s) is concave. Second, with negative

dependence, we have VY ≥ 0, V̇Y (t) ≥ 0 and V̈Y (t) ≤ (≤)0. Thus, by direct differentiation

ḧ(s) =
b√
VY (s)

(
V̈Y (s)

2
− V̇Y (s)

4VY (s)

)
≤ 0,

with strictness implying a strict inequality.

We now prove Theorem 2.6, which follows from Theorem 2.11 and Theorem 2.12 here.

Theorem 2.11 (RQ in heavy traffic) Let b′z =
√

2 and assume that Iw(x) is non-negative,

continuous and that Iw(∞) ≡ limx→∞ Iw(x) exist, then we have the following heavy-traffic

limit for the normalized RQ optimal value

c2
Z∗(1) ≡ lim

ρ→1

2(1− ρ)

ρ
Z∗(ρ) = Iw(∞). (2.97)

To prove Theorem 2.11, we need two lemmas.

Lemma 2.2 (order-preservation of the RQ solution) Let f, g be two positive functions on

non-negative real numbers, satisfying f(x) ≥ g(x) for all x ≥ 0. Then we have

Z∗f ≥ Z∗g ,

where Z∗f is the solution to the RQ problem with f replacing Iw.



CHAPTER 2. ROBUST QUEUEING FOR THE G/G/1 MODEL 57

Proof Let x∗f denote the optimal solution to the RQ problem specified by f . Then

Z∗f = −1− ρ
ρ

x∗f + b
√
x∗ff(x∗f ) ≥ −1− ρ

ρ
x∗g + b

√
x∗gf(x∗g)

≥ −1− ρ
ρ

x∗g + b
√
x∗gg(x∗g) = Z∗g .

Lemma 2.3 (continuity property of the normalized RQ solution) Let c2
Z∗(ρ)(f) be the nor-

malized solution to (2.34) with Iw replaced by f . Then c2
Z∗(ρ) is a continuous function from

space (Cb(R+,R+), ‖ · ‖∞) to R+, with the former one being the space of all continuous and

bounded functions from R+ to R+ equipped with the supremum norm.

Proof Let f, g ∈ (Cb(R+,R+), ‖ · ‖∞), satisfying ‖f − g‖∞ ≤ ε. Then we have

f(x)− ε ≤ g(x) ≤ f(x) + ε, for all x ≥ 0.

Since f ∈ Cb(R+,R+), there exist M > 0 such that f(x) < M for all x ≥ 0. Then for all

x > Mρ, where Mρ ≡ (ρb′z/(1− ρ))2M, we have

−1− ρ
ρ

x+ b′z
√
xf(x) < −1− ρ

ρ
x+ b′z

√
xM < 0

Hence,

cZ∗(ρ)(g) ≤ cZ∗(ρ)(f + ε) =
2(1− ρ)

ρ
sup

0≤x≤M̃ρ

{
−1− ρ

ρ
x+ b′z

√
x(f(x) + ε)

}
≤ 2(1− ρ)

ρ
sup

0≤x≤M̃ρ

{
−1− ρ

ρ
x+ b′z

√
xf(x) + b′z

√
xε

}
≤ 2(1− ρ)

ρ
sup

0≤x≤M̃ρ

{
−1− ρ

ρ
x+ b′z

√
xf(x)

}
+ b′z

√
M̃ρε (2.98)

= cZ∗(ρ)(f) +
2(1− ρ)

ρ
b′z

√
M̃ρε

= cZ∗(ρ)(f) + 2(b′z)
2
√

(M + ε)ε, (2.99)

where M̃ρ ≡ (ρb′z/(1−ρ))2(M+ε) and the first inequality follows from Lemma 2.2. Similarly,

we can prove that

cZ∗(ρ)(g) ≥ cZ∗(ρ)(f − ε) ≥ cZ∗(ρ)(f)− 2(b′z)
2
√

(M + ε)ε. (2.100)

Combining (2.99) and (2.100), we have

|cZ∗(ρ)(g)− cZ∗(ρ)(f)| ≤ 2(b′z)
2
√

(M + ε)ε.

Hence the lemma holds.
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Proof of Theorem 2.7. The FCLT of the MAP here is a special case of Theorem 3.2 and

the following Remark 3.4 in [62]. We now verify the assumptions there, see (AS1)-(AS3)

there. The stationarity of the MAP (AS1) and the second moment assumption (AS3) are

directly assumed in our settings.

Now, we turn to the spectral gap assumption (AS2). Towards this end, the finite state

space assumed here significantly simplifies the proof. First, as discussed in Section 2.4 of

[62], for Markov jump processes, it suffices to consider the standard exponential ergodicity

|Pi,j(t)− αj | ≤ Ce−βt, for t ≥ 0, and any {i, j},

for some finite and positive constants C and β. It is well-known that the exponential

ergodicity is equivalent to that of any skeleton chain, i.e. the Markov chain obtained by

evaluating the Markov process at tn = nτ, n ∈ N for any τ , see for exmaple Theorem 1

in [130]. Note that the skeleton chain of a finite-state CTMC is always aperiodic. The

required exponential ergodicity then follows from the fact that an irreducible and aperiodic

discrete-time Markov Chain is always exponentially ergodic, see Theorem 4.9 of [98]. �

Proof of Theorem 2.11. Recall that Theorem 2.5 suggest that the optimal solution is

of order O(ρ2/(2(1− ρ)2)), we perform a change of variable t = 2(1− ρ)2x/ρ2 in (2.34) and

scale the space by a constant ρ/(2(1− ρ)). Hence, we have

c2
Z∗(ρ) = sup

0≤t≤∞

{
−t+ 2

√
tIw

(
ρ2

2(1− ρ)2
t

)}
. (2.101)

Since Iw(∞) ≡ limx→∞ Iw(x) exist, there exist a T sufficiently large such that |Iw(t)−

Iw(∞)| < ε for all t > T . Now, we define

Ĩw(t) =


Iw(t), t ≤ T,

linear, T − ε < t ≤ T,

Iw(∞), t > T.

By virtue of Lemma 2.3, we need only prove that cZ∗(1)(Ĩw) = Ĩw(∞) = Iw(∞).

Note that continuity and finite limit at x = ∞ implies that Ix(x) is bounded, say

Iw(x) < M − ε for all x ≥ 0. Hence we have

− t+ 2

√
tĨw

(
ρ2

2(1− ρ)2
t

)
≤ −t+ 2

√
tM. (2.102)
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We assume first that the limit Iw(∞) is strictly positive. The case where Iw(∞) = 0

can be deduced by considering a sequence of functions fn(x) such that fn(∞) > 0 and

|Iw − fn|∞ < 1/n, and applying Lemma 2.3.

Now, for the case where Iw(∞) > 0, we can choose ρ0 such that

Tρ ≡
2(1− ρ0)2

ρ2
0

T < min
{
Iw(∞), 2M − Iw(∞)− 2

√
M2 − Iw(∞)M

}
,

since the right-hand-side of the inequality wil be strictly positive. Then for all ρ > ρ0, we

have

sup
0≤t≤Tρ

{
−t+ 2

√
tĨw

(
ρ2

2(1− ρ)2
t

)}
≤ sup

0≤t≤Tρ

{
−t+ 2

√
tM
}

≤ Iw(∞).

But plugging Iw(∞) into the objective function, we have the objective value Iw(∞) by the

fact that ρ2

2(1−ρ)2
Iw(∞) > T and that Ĩw(t) is constant after t > T . This implies that

c2
Z∗(ρ)(Ĩw) = sup

Tρ≤t≤∞

{
−t+ 2

√
tĨw

(
ρ2

2(1− ρ)2
t

)}
= sup

Tρ≤t≤∞

{
−t+ 2

√
tIw(∞)

}
= Iw(∞), for all ρ > ρ0.

Hence, we’ve proved that cZ∗(1)(Ĩw) = Ĩw(∞) = Iw(∞).

Next, we state the corresponding result for RQ in light traffic.

Theorem 2.12 (RQ in light traffic) Let b′z =
√

2 and assume that Iw(x) is non-negative,

continuous and that Iw(0) ≡ limx→0 Iw(x) exist, then we have the following light-traffic limit

for the normalized RQ optimal value

c2
Z∗(0) ≡ lim

ρ→0

2(1− ρ)

ρ
Z∗(ρ) = Iw(0). (2.103)

Proof As in the proof for heavy-traffic limit, we perform the same time and space scaling

to get (2.101). For the same reason, we have (2.102), which implies that

−t+ 2

√
tĨw

(
ρ2

2(1− ρ)2
t

)
≤ −t+ 2

√
tM < 0, for all t > 4M.
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Hence, we need only consider the supremum in (2.101) over bounded interval [0, 4M ]. Note

also that, since Iw(0) ≡ limx→0 Iw(x) exist, for any ε > 0, there exist a δ > 0 such that

|Iw(t)− Iw(0)| < ε for all x ∈ [0, δ]. We now choose ρ0 such that 2ρ2
0M/(1− ρ0)2 < δ, and

take a modification

Ĩw(t) =


Iw(0), t < δ,

linear, δ ≤ t < δ + ε,

Iw(t), t ≥ δ + ε,

which satisfies |Iw − Ĩw|∞ < ε and

c2
Z∗(ρ)(Ĩw) = Iw(0), for all ρ < ρ0.

We then apply Lemma 2.3 to get the desired light-traffic limit.

Proof of Theorem 2.8. Let K = rk − r + 1 be the sample size, and assume that

V (t) = I(t)t < Ct for some constant C. Then

E
[
V̄
]

=
1

K − 1

K∑
i=1

E
[
U2
i

]
− 1

K(K − 1)
E

( K∑
i=1

Ui

)2


=
1

K − 1

 K∑
i=1

E
[
U2
i

]
− 1

K
E

 K∑
i=1

U2
i + 2

∑
i>j

UiUj


= E

[
U2

1

]
− E [U1]2 − 2

K(K − 1)

∑
i<j

cov(Ui, Uj)

= V (t)− 2

K(K − 1)

 ∑
j<i<j+r

cov(Ui, Uj) +
∑

i>j+r+1

cov(Ui, Uj)


= V (t)− 2

K(K − 1)

(
r−1∑
i=1

(K − i)cov(U1, Ui+1) +

K−1∑
i=r

(K − i)cov(U1, Ui+1)

)

≡ V (t)− (A+B)

The covariance terms can be expressed as

cov(U1, U1+i) =

 V (t− iτ) + V (t+ iτ)− V (t)− V (iτ), i = 1, 2, . . . , r − 1

V (t+ iτ)− 2V (iτ) + V (iτ − t), i = r, r + 1, . . . ,K − 1

(2.104)
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Using the bound on I(t), we have

A =
2

K(K − 1)

r−1∑
i=1

(K − i)cov(U1, Ui+1)

≤ 2

K

r−1∑
i=1

(V (t− iτ) + V (t+ iτ))

≤ 4Ct(r − 1)

K
≤ 4Ct

k − 1
,

and

B =
2

K(K − 1)

K−1∑
i=r

(K − i)cov(U1, Ui+1)

≤ 2

K

K−1∑
i=r

((V (t+ iτ)− V (iτ))− (V (iτ)− V (iτ − t)))

≤ 2t

K

K−1∑
i=r

(
V (t+ iτ)− V (iτ)

t
− V (iτ)− V (iτ − t)

t

)
→ 0, as k →∞,

where we used the regularity condition that V̇ (t) → σ2 as t → ∞, and the fact that the

average converges to 0 if the summands converge to 0.

Note that

V̄k ≡
1

k − 1

k∑
i=1

U2
i −

1

k(k − 1)

(
k∑
i=1

Ui

)2

By Continuous Mapping Theorem, we need only prove that both {Ui} and {U2
i } follows

Strong Law of Large Number (SLLN). This in turns is implied by the Strong Ergodic

Theorem for stationary and ergodic sequence. The stationarity of both sequences are implied

by the time-stationarity of the point process N(t). The ergodicity of both sequence follows

from the ergodicity of the underlying process N(t).



CHAPTER 3. ROBUST QUEUEING FOR QUEUES IN SERIES 62

Chapter 3

Robust Queueing for Queues In

Series

In this Chapter, we generalize the RQ algorithm for single-server queues in (2.35) to a

Robust Queueing Network Analyzer algorithm in the case of queues in series (tandem

queues).

Towards this end, it is essential that the IDC at any station in the series of queues

can be easily estimated or calculated. However, the departure process, which serves as the

arrival process of the subsequent queue, can exhibit complicate dependence structure. For

example, as discussed in [51; 55] and references there, the stationary departure process from

a GI/GI/1 queue is a renewal process (ordinary or stationary) if and only if the queue is

an M/M/1 queue, in which case it is a Poisson process. The major challenge is then to

develop an effective approximation for the IDC of departure flow at each station.

We contribute to the understanding of the departure process by establishing the first

heavy-traffic limit theorem for the stationary departure process from a GI/GI/1 queue.

This heavy-traffic limit theorem allow us to justify the following approximation for the

departure IDC Id(t) by the weighted average of the IDC’s of the arrival and service processes,

i.e.,

Id(t) ≈ wρ(t)Ia(t) + (1− wρ(t))Is(ρt), t ≥ 0, (3.1)

where Ia(t) and Is(t) are the IDCs associated with the equilibrium arrival and service
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renewal processes, wρ is a weight function, defined in (3.67), that depends on the interarrival-

time and service-time distribution only through their first two moments.

The rest of this section is organized as follows. In Section 3.1, we review preliminary

results for general stationary point processes, focusing especially on their variance functions.

In Section 3.2, we establish the heavy-traffic limits for the stationary departure process and

its variance function for a GI/GI/1 model. In Section 3.3, we develop approximation for

the stationary departure IDC, and develop the RQNA algorithm for the queues-in-series

models. Finally, we present postponed proofs in Section 3.4.

3.1 Review of Stationary Point Processes

In this section we review basic properties of stationary point processes; see [52] and [122]

for more background. In Section 3.1.1 we review renewal processes and their Laplace trans-

forms. In Section 3.1.3 we review the Palm-Khintchine equation and use it to express the

variance function of a stationary point process in terms of the mean function of the Palm

version.

3.1.1 Renewal Processes and the Laplace Transform

We start with a rate-λ renewal process N ≡ {N(t) : t ≥ 0}. Let F be the cumulative

distribution function (cdf) of the interval U between points (the interarrival time in a GI

arrival process), having mean E[U ] = λ−1 and finite second moment. As a regularity

condition for our queueing application, we also assume that F has a probability density

function (pdf) f , where F (t) =
∫ t

0 f(u) du, t ≥ 0. Throughout this paper, we assume

that the interarrival-time distribution of our renewal arrival processes has a pdf. That pdf

assumption ensures that the equilibrium renewal process arises as the time limit of the

ordinary renewal process; e.g., see Section 3.4 and Section 3.5 of [116].

The stationary or equilibrium renewal process differs from the ordinary renewal process

only by the distribution of the first interarrival times. Let Fe be the cdf of the equilibrium

distribution, which has pdf fe(t) = λ(1−F (t)). Let Ee[·] denote the expectation under the

stationary distribution (with first interval distributed according to Fe) and let E0[·] denote
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the expectation under the Palm distribution (with first interval distributed as F ).

Conditioning on the first arrival, distributed as F under the Palm distribution or as Fe

under stationary distribution, the renewal equations for the mean and second moment of

N(t), the number of points in an interval [0, t], are:

m(t) ≡ E0[N(t)] = F (t) +

∫ t

0
m(t− s)dF (s),

me(t) ≡ Ee[N(t)] = Fe(t) +

∫ t

0
m(t− s)dFe(s),

σ(t) ≡ E0[N2(t)] = F (t) + 2

∫ t

0
m(t− s)dF (s) +

∫ t

0
σ(t− s)dF (x),

σe(t) ≡ Ee[N2(t)] = Fe(t) + 2

∫ t

0
m(t− s)dFe(s) +

∫ t

0
σ(t− s)dFe(x).

Throughout the paper, we use the Laplace Transform (LT) instead of the Laplace-

Stieltjes Transform (LST). The LT of f(t) and the LST of F , denoted by L(f)(s) ≡ f̂(s),

are

f̂(s) ≡ L(f)(s) ≡
∫ ∞

0
e−stf(t)dt =

∫ ∞
0

e−stdF (t), (3.2)

so that f(t) = L−1(f̂)(t). Throughout the paper, we add a hat to either an LT or an item

that appears in LT. The LT of fe is then

f̂e(s) =
λ(1− f̂(s))

s
and F̂e(s) =

f̂e(s)

s
,

where λ−1 ≡
∫∞

0 tf(t) dt is the mean. Applying the LT to the renewal equations, we obtain

m̂(s) =
f̂(s)

s(1− f̂(s))
, (3.3)

m̂e(s) =
f̂e(s)

s(1− f̂(s))
=

λ

s2
, (3.4)

σ̂(s) =
f̂(s) + 2sm̂(s)f̂(s)

s(1− f̂(s))
=
f̂(s)(1 + f̂(s))

s(1− f̂(s))2
, (3.5)

σ̂e(s) =
λ

s2
+

2λ

s
m̂(s) =

λ(1 + f̂(s))

s2(1− f̂(s))
. (3.6)

From (3.4), we see that

Ee[N(t)] = λt, t ≥ 0, (3.7)

as must be true for any stationary point process.
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Let V (t) ≡ Vare(N(t)) be the variance process of N(t) under time-stationary distribu-

tion. (We omit the e superscript on V (t) because we will only discuss stationary variance

functions.) Combining (3.6) and (3.7), we have

V̂ (s) =
λ

s2
+

2λ

s
m̂(s)− 2λ2

s3
=

λ

s2
+

2λ

s

f̂(s)

s
(

1− f̂(s)
) − 2λ2

s3
. (3.8)

The variance function then can be obtained from the numerical inversion of the Laplace

transform, e.g., see Section 13 of [4] and [5]. Term by term inversion shows that we can

express V (t) in terms of the renewal function m(t)

V (t) = λ

∫ t

0
(1 + 2m(u)− 2λu)du. (3.9)

3.1.2 Revisiting the IDC

We revisit the IDC by presenting the following renewal process characterization theorem.

This theorem states that, for renewal process, the IDC fucntion encodes the full information

of the inter-renewal time distribution.

Theorem 3.1 (Renewal process characterization theorem) A renewal process with

an inter-renewal distribution having pdf f and cdf F having finite first two moments with

positive mean λ−1 is fully characterized by any one of the following:

1. the pdf f(t) of the time between renewals;

2. the cdf F (t) of the time between renewals;

3. the LT f̂(s);

4. the renewal function m(t);

5. the LT m̂(s);

6. the rate λ and the variance function of the equilibrium renewal process σe(t);

7. the rate λ and the LT σ̂e(s);

8. the rate λ and the IDC Ie(t) ≡ σe(t)/λt of the equilibrium renewal process.
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Proof The equivalence of the time functions and their transforms follows from the basic

theory of Laplace transforms. Hence, we obtain the equivalence by explicit expressions in

terms of the Laplace transforms, i.e.,

f̂(s) =
sm̂(s)

1 + sm̂(s)
and f̂(s) =

s2σ̂e(s)− λ
s2σ̂e(s) + λ

. (3.10)

Then, from the definition of the IDC, we obtain σe(t) = λ(t)Ie(t), t ≥ 0.

Corollary 3.1 (Full characterization of a GI/GI/1 queue) The GI/GI/1 queue with

interarrival-time cdf F and service-time cdf G having finite second moments is fully charac-

terized by the four-tuple (λ, Ia(t), τ, Is(t)), where τ is the mean service time and Ia(t) (Is(t))

is the IDC of the equilibrium renewal process associated with the interarrival (service) times.

3.1.3 The Palm-Khintchine Equation

In this section, we show that the Palm-Khintchine equation can be used to derive a gener-

alization of (3.9) for general stationary and ergodic point processes.

Consider a continuous-time stationary point process, i.e., having stationary increments.

The main idea is the Palm transformation relating continuous-time stationary processes

to the associated discrete-time stationary processes. An important manifestation of that

relation is the Palm-Khintchine equation; see Theorem 3.4.II. of [52]. It is important here

because it can be applied to generalize the variance formula discussed in Section 3.1.1; see

Section 2.4 of [49] and Section 3.4 of [52].

We focus on orderly stationary ergodic point processes with finite intensity. (Orderly

means that the points occur one at a time.) Let N(s, t] denote the number of events in

interval (s, t], and N(t) ≡ N(0, t].

Theorem 3.2 (Palm-Khintchine equation) For an orderly stationary point process of

finite intensity λ such that P e(N(−∞, 0] = N(0,∞) =∞) = 1, then

P e(N(t) ≤ k) = 1− λ
∫ t

0
qk(u)du

= λ

∫ ∞
t

qk(u)du, for k = 0, 1, 2, . . . , (3.11)



CHAPTER 3. ROBUST QUEUEING FOR QUEUES IN SERIES 67

where qk(t) is the probability of exactly k arrivals in (0, t] under the Palm distribution, i.e.,

qk(t) = lim
h↓0

P (N(t) = k|N(−h, 0] > 0). (3.12)

Under ergodicity, the Palm distribution is equivalent to the event stationary distribution, so

that qk(t) = P 0(N(t) = k).

We now apply Theorem 3.2 to generalize (3.9) and (3.8) to the case of orderly stationary

ergodic point process.

Corollary 3.2 (Variance of a stationary ergodic point process) For a general sta-

tionary ergodic point process with rate λ and finite second moment, the variance function

is

V (t) = λ

∫ t

0
(1 + 2m(u)− 2λu)du, t ≥ 0, (3.13)

where

m(t) ≡ E0[N(t)] =
∞∑
k=1

kqk(t), t ≥ 0, (3.14)

and its LT is

V̂ (s) =
λ

s2
+

2λ

s
m̂(s)− 2λ2

s3
, (3.15)

where m̂(s) is the LT of m(t).

Proof Let

pk(t) = P e(N(t) = k), for k = 0, 1, 2, . . . (3.16)

so that
∑k

i=1 pi(t) = P e(N(t) ≤ k). With Theorem 3.2, we can write

V (t) =

∞∑
k=1

k2pk(t)− λ2t2 =

∞∑
k=1

k2λ

∫ t

0
(qk−1(u)− qk(u))du− λ2t2

= λ

∫ t

0
(1 + 2m(u)− 2λu)du, (3.17)

where m(t) ≡ E0[N(t)] as in (3.14). Taking the Laplace Transform, we obtain

V̂ (s) =
λ

s2
+

2λ

s
m̂(s)− 2λ2

s3
.
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3.2 Heavy-Traffic Limit Theorem for GI/GI/1 Stationary De-

parture

The departure process is of considerable interest in general, because the stationary de-

parture process from a GI/GI/1 queue is remarkably complicated; e.g., it is only a sta-

tionary renewal process in the special case of an M/M/1 model, when it is Poisson, by

Burke’s [32] theorem, also see [110] and references therein. Indeed, explicit transform

expressions for the variance function of the stationary departure process are evidently

only available for the M/GI/1 and GI/M/1 models, due to Takacs [128] and Daley [50;

51]; see [21] and [82] for related results on GI/GI/1. In [79; 152], the departure process

from a BMAP/MAP/1 queue is shown to be a MAP of with an infinite number of states;

and truncation approximation has been proposed for practical use.

In Section 3.2.1 we use Laplace transforms (LT’s) of the stationary departure process

in the GI/M/1 queue derived by [50; 51] to derive the HT limit of its variance function. In

Section 3.2.2 we use the HT limit for the Palm version of the mean function derived by [128]

to derive the HT limit of the stationary variance function. In Section 3.2.3 we establish the

HT limit for the stationary departure process in the GI/GI/1 queue (Theorem 3.7) and its

variance function (Theorem 3.8).

3.2.1 The Departure Variance in the GI/M/1 Queue

We now start considering the queueing models. In particular, we focus on the GI/GI/1

queue, which has unlimited waiting space, the first-come first-served service discipline and

independent sequences of i.i.d. interarrival times and service times distributed as random

variables U and V , respectively, where U has a pdf f(t). Let λ ≡ 1/E[U ] be the arrival

rate; let f̂(s) ≡ E
[
e−sU

]
be the LT of the interarrival-time pdf f(t); let µ ≡ 1/E[V ] be the

service rate; and let ρ ≡ λ/µ be the traffic intensity, assuming that ρ < 1.

Daley [50; 51] derived the LST of the variance Vd(t) of the stationary departure process

in a GI/M/1 queue. The associated LT of Vd(t) is

V̂d(s) =
λ

s2
+

2λ

s3

(
µδ − λ+

µ2(1− δ)(1− ξ̂(s))(µδ(1− f̂(s))− sf̂(s))

(s+ µ(1− ξ̂(s)))(s− µ(1− δ))(1− f̂(s))

)
(3.18)
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where ξ̂(s) is the root with the smallest absolute value in z of the equation

z = f̂(s+ µ(1− z)) (3.19)

and δ = ξ̂(0) is the unique root in (0, 1) of the equation

δ = f̂(µ(1− δ)), (3.20)

which appears in the distribution of the stationary queue length in a GI/M/1 queue. Useful

properties of ξ̂(s) and δ = ξ̂(0) are contained in Lemma 3.2.

We now establish a HT limit for the departure variance function in the GI/M/1 model.

To do so, we consider a family of GI/M/1 models parameterized by ρ, where λ ≡ 1/E[U ]

and µ = µρ = 1/E[V ] ≡ λ(1 + (1 − ρ)γρ), where γρ are positive constants such that

limρ↑1 γρ = γ > 0. Note that if γρ = 1/ρ, then we come to the usual case of λ/µ = ρ. We

allow this general scaling so that we can gain insight into reflected Brownian motion (RBM)

with non-unit drift. Let the HT-scaled variance function be

V ?
d,ρ(t) ≡ (1− ρ)2Vd,ρ

(
(1− ρ)−2t

)
, t ≥ 0. (3.21)

Throughout this chapter, we use the star (?) superscript with ρ subscript to denote HT-

scaled items in the queueing model, as in (3.21), and the star superscript without the ρ

subscript to denote the associated HT limit.

As should be expected from established HT limits, e.g., as in Section 5.7 and Chapter

9 in [143], the HT limit of the variance function V ?
d,ρ(t) in (3.21) depends on properties of

the normal distribution and RBM. Let φ(x) be the pdf and Φ(x) the cdf of the standard

normal variable N(0, 1). Let Φc(x) ≡ 1− Φ(x) be the complementary cdf (ccdf). Let R(t)

be canonical RBM (having drift −1, diffusion coefficient 1) and let Re(t) be the stationary

version, which has the exponential marginal distribution for each t with mean 1/2. The

correlation function c?(t) of Re is defined as

c?(t) ≡ cov(Re(0), Re(t)) = 2(1− 2t− t2)Φc(
√
t) + 2

√
tφ(
√
t)(1 + t)

= 1−H?
2 (t) ≡ 1− E[R(t)2|R(0) = 0]

E[R(∞)2]

= 1− 2E[R(t)2|R(0) = 0], t ≥ 0, (3.22)
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where H?
2 (t) is the second-moment cdf of canonical RBM in [2], which has mean 1 and

variance 2.5; see Corollaries 1.1.1 and 1.3.4 of [2] and Corollary 1 of [3]. The correlation

function c?(t) has LT

ĉ?(s) ≡ 1

s
− 2

s2

(
1−
√

1 + 2s− 1

s

)
; (3.23)

see (1.10) of [2]. Equivalently, the Gaussian terms in (3.22) can be re-expressed as φ(
√
t) =

e−t/2/
√

2π and Φc(
√
t) =

(
1− erf(

√
t/2)

)
/2, where erf is the error function. This LT can

be explicitly inverted, yielding

c?(t) = −2
(
t2 + 2t− 1

)
Φc(
√
t) + 2φ(

√
t)
√
t (1 + t) . (3.24)

By Corollary 1.3.5 of [2], the correlation function has tail asymptotics according to

c?(t) = 1−H?
2 (t) ∼ 16√

2πt3
e−(t/2) as t→∞. (3.25)

From the correlation function, we define

w?(t) ≡ 1− 1− c?(t)
2t

, t ≥ 0. (3.26)

It then follows from the explicit expression of c?(t) that

w?(t) =
1

2t

((
t2 + 2t− 1

) (
1− 2Φc(

√
t)
)

+ 2φ(
√
t)
√
t (1 + t)− t2

)
. (3.27)

It can be easily varified that w?(t) is a increasing function satisfying 0 ≤ w?(t) ≤ 1. As

we shall see in Theorem 3.3, this w?(t) serves as the weight function that appears in the

limiting departure variance function.

We now present the main result for the departure variance in the GI/M/1 special case.

The idea of the proof is to exploit the explicit form of the LT V̂ ?
d,ρ(t) of the scaled stationary

departure variance and derive its HT limit. We then obtain the convergence of the HT-

scaled variance function V ?
d,ρ(t) by applying continuity theorem of the LT, see Theorem 2(a)

in Chapter XIII of [57]. The proof of the theorem can be found in Section 3.4.

Theorem 3.3 (HT limit for the GI/M/1 departure variance) Consider the GI/M/1

model with 1/E[U ] = λ and 1/E[V ] = µρ ≡ λ(1+(1−ρ)γρ), where γρ are positive constants

such that limρ↑1 γρ = γ > 0. Assume that E[U3] < ∞ so that a two-term Taylor series
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expansion of the LT f̂(s) about the origin is valid with asymptotically negligible remainder.

Then the HT-scaled variance function V ?
d,ρ(t) defined in (3.21) converges as ρ ↑ 1; i.e.,

V ?
d,ρ(t)→ V ?

d (t), as ρ ↑ 1 for all t ≥ 0, (3.28)

where V ?
d (t) is a continuous nonnegative real-valued function with LT

V̂ ?
d (s) =

λ

s2
+

2λ

s2

c2
a − 1

c2
a + 1

γ

ξ̂?(s)

=
λc2

a

s2
− λ(c2

a − 1)

s2

(
1− 2

c2
a + 1

γ

ξ̂?(s)

)
, (3.29)

with ξ̂?(s) being the unique root with non-negative real part of the quadratic equation(
c2
a + 1

2

)
ξ̂?(s)2 − γξ̂?(s)− s

λ
= 0. (3.30)

In addition,

V ?
d (t) = w?

(
λγ2t/c2

x

)
c2
aλt+

(
1− w?

(
λγ2t/c2

x

))
c2
sλt (3.31)

for w?(t) defined in (3.27), c2
x ≡ c2

a + c2
s, c

2
a ≡ Var(U)/E[U ]2 and c2

s = 1.

We shall want to relate our HT limit for the departure variance function to associated

HT limits for the variance functions of the arrival and service processes. For that step,

it is significant that the functional central limit theorem (FCLT) for any stationary point

process has the same form as the FCLT for the associated Palm process, as was shown by

[109]. Extra uniform integrability is required to get the associated limit for the variance

function. To be relatively self-contained, we will directly derive the desired result from the

transform of the equilibrium renewal process in (3.8).

For that purpose, let A(t) denote the arrival renewal process and let Va(t) ≡ Vare(A(t))

denote its variance process under the stationary distribution. Similarly, we define S(t) and

Vs(t) for the renewal process associated with the service-time distribution. The following

lemma states that the terms c2
aλt and c2

sλt in (3.31) can be interpreted as the limiting

variance function of the arrival and service renewal processes, respectively. This implies

that the limiting departure variance function V ?
d is a convex combination of the arrival and

service variance functions with a scaled version of the time-varying weight function w?(t).

This convex combination result is consistent with the more elementary approximation used
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in QNA; see [134; 136]; there the departure variability parameter is approximated by a

convex combination of the arrival and service variability parameters.

Lemma 3.1 (Limiting variance function of stationary renewal processes) Let N(t) be a

renewal process with rate λ and let c2
N be the scv of the inter-renewal-time distribution.

Consider the HT-scaled stationary variance function

V ?
N,ρ(t) ≡ Vare((1− ρ)N((1− ρ)−2t)),

then

V ?
N,ρ(t)→ V ?

N (t) ≡ λc2
N t, as ρ ↑ 1.

Proof Let f denote the inter-renewal distribution. Recall the expression for the LT of a

stationary renewal process in (3.8), we have

V̂ ?
N (s) = lim

ρ↑1
V̂ ?
N,ρ(s) ≡ lim

ρ↑1
L
(
(1− ρ)2VN,ρ

(
(1− ρ)−2t

))
= lim

ρ↑1
(1− ρ)4V̂N,ρ

(
(1− ρ)2t

)
= lim

ρ↑1

(
λ

s2
+

2λ

s2

f̂
(
(1− ρ)2t

)
1− f̂ ((1− ρ)2t)

− 2λ2

(1− ρ)2s3

)

=
λ

s2
+

2λ2

s2
lim
ρ↑1

1

(1− ρ)2s

 f̂ ((1− ρ)2t
)

λ1−f̂((1−ρ)2t)
(1−ρ)2s

− 1

 =
λc2

N

s2
.

The result follows from inverting the LT, i.e., V ?
s (t) = λc2

N t.

To derive a pre-limit approximation, define the weight function

wρ(t) ≡
Vd,ρ(t)− Vs(ρt)
Va(t)− Vs(ρt)

, (3.32)

where Va(t) and Vs(t) are the variance functions associated with the equilibrium arrival

process with rate λ and service renewal process with rate µ. Note that we have an additional

scaling of ρ in Vs(ρt). By Remark 2.4, this is equivalent to consider a service renewal process

with rate ρµ = λ. Of course, this does not change the heavy-traffic limit. But we add this

extra scaling constant because it usually generate slightly more desirable approximation in

light traffic. Define the HT-scaled weight function

w?ρ(t) = wρ((1− ρ)−2t). (3.33)
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Combining Theorem 3.3 and Lemma 3.1, we obtain

Corollary 3.3 (Limiting weight function) Under the assumptions in Theorem 3.3, we

have

w?ρ(t)⇒ w?(λγ2t/c2
x)

for w? defined in (3.27).

This justifies the following approximation for the variance function of the stationary

departure process from a GI/M/1 queue:

Vd,ρ(t) = wρ(t)Va(t) + (1− wρ(t))Vs(t)

≈ w?((1− ρ)2λγ2t/c2
x)Va(t) + (1− w?((1− ρ)2λγ2t/c2

x))Vs(t). (3.34)

We conclude this section with the tail asymptotic behavior of the variance function. To

start, we re-write V ?
d in terms of c? and H?

2 ,

V ?
d (t) = c2

aλt+
(
1− w?

(
λγ2t/c2

x

))
(c2
s − c2

a)λt

= c2
aλt+

(c2
s − c2

a)c
2
x

2γ2
H?

2 (λγ2t/c2
x)

= c2
aλt+

(c2
s − c2

a)c
2
x

2γ2
− (c2

s − c2
a)c

2
x

2γ2
c?(λγ2t/c2

x), t ≥ 0. (3.35)

Combining (3.25) and (3.35), we obtain the asymptotic behavior of the departure variance

function.

Corollary 3.4 (Asymptotic behavior of the departure variance function) Under the

assumptions in Theorem 3.3,

V ?
d (t) = c2

aλt+
(c2
s − c2

a)c
2
x

2γ2
− (c2

s − c2
a)c

2
x

2γ2
c?(λγ2t/c2

x)

∼ c2
aλt+

(c2
s − c2

a)c
2
x

2γ2
− 8(c2

s − c2
a)c

5
x

γ5

1√
2πλ3t3

e
−λγ

2t

2c2x as t→∞, (3.36)

where c2
s = 1.

Example 3.1 To evaluate the approximation stemming from Theorem 3.3, consider the

departure process from a E2/M/1 model, where E2 refers to the Erlang random variable

with shape parameter 2, i.e. the sum of two i.i.d. exponential random variable. Figure
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3.1 (left) reports V ?
d (t) − λc2

at for four sets of parameters such that the limiting constant

(c2
s−c2

a)c
2
x/2γ

2 = (1−c4
a)/2γ

2 in Corollary 3.4 will be 1.5, 0.375,−1.5 and −1.5, respectively.

Figure 3.1 (right) confirms Theorem 3.3 by comparing simulation estimates of the HT-scaled

and centered departure variance function V ?
d,ρ(t)− λc2

at for ρ = 0.8 and 0.9 from simulation

with the theoretical limit V ?
d (t) − λc2

at for the E2/M/1 model with λ = 2, γ = 0.5 and

c2
a = 0.5, showing that the theoretical limit in (3.29) serves as a good approximation of the

HT-scaled variance function.
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Figure 3.1: Approximation of the departure IDC in the E2/M/1 model.

3.2.2 The Departure Variance in the M/GI/1 Queue

We now prove that the HT limit for the stationary departure variance in (3.31) also holds

true for the M/GI/1 model. Of course, here we restrict our attention to c2
a = 1 instead

of c2
s = 1 before. Theorem 3.8 will show that the same formula is valid for GI/GI/1 with

general c2
a and c2

s.

Recall from (3.15) that the Laplace Transform of the variance function of a general

stationary and ergordic point process is

V̂ (s) =
λ

s2
+

2λ

s
m̂(s)− 2λ2

s3
.

In the case of the M/GI/1 model, [128] (on p. 78) derived an expression for m̂d(s).
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Theorem 3.4 (Laplace transform of the Palm mean function) The mean process of

the Palm version (assuming a departure epoch at time 0) of the departure process from a

M/GI/1 queue have the following Laplace transform

m̂d(s) ≡
∫ ∞

0
e−stmd(t)dt =

ĝ(s)

s(1− ĝ(s))

(
1− sΠ(ν̂(s))

s+ λ(1− ν̂(s))

)
, (3.37)

where ĝ(s) = E
[
e−sV

]
is the Laplace Transform of the service time pdf g(t), ν̂(s) is the root

with the smallest absolute value in z of the equation

z = ĝ(s+ λ(1− z)) (3.38)

and

Π(z) ≡ E
[
zQ
]

=
(1− λ/µ)(1− z)ĝ(λ(1− z))

ĝ(λ(1− z))− z
(3.39)

is the probability generating function of the distribution of the stationary queue length Q.

Note from (3.3) that the first part in (3.37), i.e.

ĝ(s)

s(1− ĝ(s))
,

is exactly the Laplace Transform of the mean process of the service renewal process.

Now, we state the HT limit in terms of the HT-scaled variance function defined in (3.21)

for the M/GI/1 special case. The result parallels that for the GI/M/1 case. The proof can

be found in Section 3.4.

Theorem 3.5 (HT limit for the M/GI/1 departure variance) Consider an M/GI/1

model with 1/E[V ] = µ and 1/E[U ] = λρ ≡ µ(1−(1−ρ)γρ), where γρ are positive constants

such that limρ↑1 γρ = γ > 0. Assume that E[V 3] < ∞ so that a two-term Taylor series

expansion of the LT ĝ(s) about the origin is valid with asymptotically negligible remainder.

Then the HT-scaled variance function V ?
d,ρ(t) defined in (3.21) converges as ρ ↑ 1, i.e.,

V ?
d,ρ(t)→ V ?

d (t) as ρ ↑ 1 for all t ≥ 0, (3.40)

where the limit V ?
d (t) is a continuous nonnegative function with LT

V̂ ?
d (s) =

µc2
s

s2
+
γµ2(1− c2

s)

s3
ν̂?(s), (3.41)
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with ν̂?(s) being the unique root with positive real part of the equation

1 + c2
s

2
(ν̂?(s))2 + γν̂?(s)− s

µ
= 0. (3.42)

In addition,

V ?
d (t) ≡ w?(µγ2t/c2

x)c2
aµt+

(
1− w?(µγ2t/c2

x)
)
c2
sµt, (3.43)

where w?(t) in (3.27), c2
x ≡ c2

a + c2
s, c

2
a = 1 and c2

s ≡ Var(V )/E[V ]2.

With the same technique as in Corollary 3.4, one can prove the following corollary, which

yields exactly the same asymptotic behavior.

Corollary 3.5 (Asymptotic behavior of the departure variance curve) Under the

assumptions in Theorem 3.5, we have the limit in (3.36), except now c2
a = 1 and c2

s is

general.

Proposition 6 of [78] developed a two-term asymptotic expansion for the variance function

Vd,ρ(t) ≡ Var(Dρ(t)) as t→∞ for for the M/GI/1 queue and fixed ρ < 1. We discuss the

connections between our result and this earlier result in Remark 3.3.

3.2.3 Heavy-Traffic Limit for the Stationary Departure Process

In this section, we establish an HT limit for the stationary departure process and its variance

function in a GI/GI/1 queue. To do so, we apply the recent HT results for the stationary

queue length (number in system) in [66] and [31] together with the HT limits for the general

single-server queue in Section 9.3 of [143] and the general reflection mapping with non-zero

initial conditions in Section 13.5 of [143]. As in [143], a major component of the proof is

the continuous mapping theorem.

The corresponding limit starting out empty is contained in Theorem 2 of [84]. There

has since been a substantial literature on that case; see [68; 88; 143]. As can be seen from

Section 9.3 and Section 13.5 of [143], for the queue length, the key map is the reflection

map Ψ applied to a potential net-input function x,

Ψ(x)(t) ≡ x(t)− ζ(x)(t), t ≥ 0, (3.44)

where

ζ(x) ≡ inf {x(s) : 0 ≤ s ≤ t} ∧ 0, t ≥ 0 (3.45)
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with a ∧ b ≡ min {a, b}, so that ζ(x) ≤ 0 and Ψ(x)(t) ≥ x(t) for all t ≥ 0. The key point is

that we now allow x(0) 6= 0.

3.2.3.1 A General Heavy-Traffic Limit for the G/G/1 Model

For the generalG/G/1 single-server queue with unlimited waiting space and service provided

in the order of arrival, we consider a family of processes indexed by the traffic intensity ρ,

where ρ ↑ 1. Let Qρ(t) be the number of customers in the system at time t; let Aρ(t) count

the number of arrivals in the interval [0, t], which we assume to have rate λ; let Sρ(t) be a

corresponding counting process for the successive service times, applied after time 0, to be

applied to the initial Qρ(0) customers and to all new arrivals; let Bρ(t) be the cumulative

time that the server is busy in the interval [0, t]. Then the queue-length process can be

expressed as

Qρ(t) ≡ Qρ(0) +Aρ(t)− Sρ(Bρ(t)), t ≥ 0, (3.46)

where the three components are typically dependent. (For simplicity, we assume that

Aρ(0) = Sρ(0) = Bρ(0) = 0 w.p.1.)

We have in mind that the system is starting in steady-state. Thus the triple

(Qρ(0), Aρ(·), Sρ(·))

is in general quite complicated for each ρ. Even in the relatively tractable GI/GI/1 cases,

which we shall primarily treat, the residual interarrival time and service time at time 0 will

be complicated, depending on ρ and Qρ(0). We will need to make assumptions ensuring

that these are uniformly asymptotically negligible in the HT limit.

By flow conservation, the departure (counting) process can be represented as

Dρ(t) ≡ Aρ(t)−Qρ(t) +Qρ(0), t ≥ 0. (3.47)

Directly, or by combining (3.46) and (3.47),

Dρ(t) ≡ Sρ(Bρ(t)), t ≥ 0. (3.48)

Let

Xρ(t) ≡ Qρ(0) +Aρ(t)− Sρ(t), t ≥ 0, (3.49)
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be a net-input process, acting as if the server is busy all the time, and thus allowing Xρ(t)

to assume negative values. The cumulative busy time Bρ(t) is then relate to Xρ(t) by

Bρ(t) = t+ ζ(Xρ)(t), t ≥ 0. (3.50)

As a consequence of the assumptions above, Xρ(0) = Qρ(0). Roughly,

Qρ(t) ≈ Ψ(Xρ)(t), t ≥ 0, (3.51)

for Ψ in (3.44), but the exact relation breaks down because the service process shuts down

when the system becomes idle, so that a new service time does not start until after the next

arrival. While (3.51) does not hold exactly for each ρ, it holds in the HT limit, as shown

in Theorem 9.3.4 of [143]. It would hold exactly if we used the modified system in which

we let the continuous-time service process run continuously, so that equation (3.51) holds

as an equality, as done by [24] and then again in Section 2 of [83]. Because the modified

system has been shown to be asymptotically equivalent to the original system for these HT

limits in [24] and [83], that is an alternative approach.

We now introduce HT-scaled versions of these processes, for that purpose, let

X?
ρ(t) ≡ (1− ρ)Xρ((1− ρ)−2t),

Q?ρ(t) ≡ (1− ρ)Qρ((1− ρ)−2t),

A?ρ(t) ≡ (1− ρ)[Aρ((1− ρ)−2t)− (1− ρ)−2λt],

S?ρ(t) ≡ (1− ρ)[Sρ((1− ρ)−2t)− (1− ρ)−2λt/ρ],

B?
ρ(t) ≡ (1− ρ)[Bρ((1− ρ)−2t)− (1− ρ)−2t],

D?
ρ(t) ≡ (1− ρ)[Dρ((1− ρ)−2t)− (1− ρ)−2λt]. (3.52)

Let D be the function space of all right-continuous real-valued functions on [0,∞)

with left limits, with the usual J1 topology, which reduces to uniform convergence over

all bounded intervals for continuous limit functions. Let Dk be the k-fold product space,

using the product topology on all product spaces. Let⇒ denote convergence in distribution.

Let e be the identity function in D, i.e., e(t) ≡ t, t ≥ 0.

Theorem 3.6 If

(Q?ρ(0), A?ρ, S
?
ρ)⇒ (Q?(0), A?, S?) in R×D2 as ρ ↑ 1, (3.53)
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where A? and S? have continuous sample paths with A?(0) = S?(0) = 0 w.p.1., then

(A?ρ, S
?
ρ , B

?
ρ , X

?
ρ , Q

?
ρ, D

?
ρ)⇒ (A?, S?, B?, X?, Q?, D?), (3.54)

where the convergence is in D6 as ρ ↑ 1 and

X? ≡ Q?(0) +A? − S? − λe,

B? ≡ ζ(X?) < 0,

Q? ≡ Ψ(X?) = X? − ζ(X?) and

D? ≡ Q?(0) +A? −Q?

= Q?(0) +A? −Ψ(X?) = S? + λe+ ζ(X?) (3.55)

for Ψ and ζ in (3.44) and (3.45).

Proof First, note that

X?
ρ(t) = Q?ρ(0) +A?ρ(t)− S?ρ(t)− λt/ρ, t ≥ 0, (3.56)

because A?ρ and S?ρ have different translation terms in (3.52), ensuring that the potential

rate out is λ/ρ, which exceeds the rate in of λ, consistent with a stable model for each ρ,

0 < ρ < 1. Hence, under the assumption, X?
ρ ⇒ X? = Q?(0) + A? − S? − λe in D. The

limit B?
ρ ⇒ B? = ζ(X?) is obtained by exploiting the relationship in (3.50). The limits for

Q?ρ and D?
ρ then follow from the continuous mapping theorem after carefully accounting for

the busy and idle time of the server; see the proof of Theorem 9.3.4 and preceding material

in [143].

3.2.3.2 A Heavy-Traffic Limit for the Stationary Departure Process

Theorem 3.6 is not easy to apply to establish HT limits for stationary processes because

condition (3.53) is not easy to check and the limit in (3.54) and (3.55) is not easy to evaluate.

In order to establish a tractable HT limit for the stationary departure process, we apply

the recent HT limits for the stationary queue length in [66] and [31]. Their HT limits are

for generalized open Jackson networks of queues, which for the single queue we consider

reduce to the GI/GI/1 model. Following [31], we assume that the interarrival times and
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service times come from independent sequences of i.i.d. random variables with uniformly

bounded third moments (2 + ε would do).

Theorem 3.7 For the GI/GI/1 model indexed by ρ, assume that (i) the interarrival-time

cdf has a pdf as in Section 3.1.1 and (ii) the interarrival times and service times have means

λ and λ/ρ, scv’s c2
a and c2

s, without both being 0, and uniformly bounded third moments.

Then:

(a) For each ρ, 0 < ρ < 1, the process Q?ρ can be regarded as a stationary process, while

the process D?
ρ can be regarded as a stationary point process (with stationary increments).

(b) Condition (3.53) in Theorem 3.6 holds with

A? ≡ caBa ◦ λe and S? ≡ csBs ◦ λe, (3.57)

where Ba and Bs are independent standard (mean 0, variance 1) Brownian motions (BM’s)

that are independent of Q?(0), which is distributed as Re(0) with Re being a stationary RBM

with drift −λ and variance λc2
x ≡ λc2

a + λc2
s, and so an exponential marginal distribution,

i.e.,

P (Q?(0) > x) = e−2x/c2x , x ≥ 0. (3.58)

(c) The limits in Theorem 3.6 hold, where

X? ≡ Q?(0) + caBa ◦ λe− csBs ◦ λe− λe (3.59)

with Q?(0), Ba and Bs being mutually independent.

(d) We have

D? = caBa ◦ λe+Q?(0)−Q?

= caBa ◦ λe+Q?(0)−Ψ(X?) (3.60)

for Ψ in (3.44), or

D? ≡ S? + λe+ ζ(X?) (3.61)

for ζ in (3.45).
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Proof First, recall that the HT limit as ρ→ 1 starting empty is the RBM which converges

as t → ∞ to the exponential distribution in (3.58). We will be applying [66] and [31] to

show that the two iterated limits involving ρ→ 1 and t→∞ are equal. Toward that end,

we observe that, by Section X.3-X.4 of [12], the queue-length process has a proper steady-

state distribution for each ρ. As on p. 63 of [66], we add the residual interarrival times

and service times to the state description for Qρ(t) to make it a Markov process that has

a unique steady-state distribution for each ρ. These residual interarrival and service times

are asymptotically negligible in the HT limit. The associated departure process Dρ(t) then

necessarily is a stationary point process for each ρ. We then can apply Theorem 8 of [66]

to have a limit for the scaled stationary distributions, so that condition (3.53) holds with

(3.57). Since strong moment-generating-function-condition is imposed in (1) and (2) on p.

62 of [66], we apply the extension in Theorems 3.1 and 3.2 of [31] to cover our moment

condition. Hence, we can apply Theorem 3.6 with these special initial distributions to get

the associated process limits in the space D.

We now establish an HT limit for the variance of the stationary departure process. The

form of that limit is already given in Theorem 3.3. The proof can be found in Section 3.4.

Theorem 3.8 (Heavy-traffic limit for the GI/GI/1 departure variance function)

Under the conditions of Theorem 3.7 plus the usual uniform integrability conditions, for

which it suffices for the interarrival times and service times to have uniformly bounded

fourth moments,

V ?
d,ρ(t) ≡ Var(D?

ρ(t)) = E[D?
ρ(t)

2]

→ E[D?(t)2] = Var(D?(t)) ≡ V ?
d (t) as ρ ↑ 1, (3.62)

where

V ?
d (t) = w?(λt/c2

x)c2
aλt+ (1− w?(λt/c2

x))c2
sλt (3.63)

with c2
x = c2

a+ c2
s, c

?(t) is the correlation function in (3.22) and w?(t) is the weight function

in (3.27); i.e., V ?
d (t) is given in (3.31) with γ = 1, but allowing general c2

s. Moreover, we
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have the covariance formulas

Cov(caBa(λt), Q
?(t)) =

(
1− w?(λt/c2

x)
)
c2
aλt,

Cov(csBs(λt), Q
?(t)) = −

(
1− w?(λt/c2

x)
)
c2
sλt. (3.64)

As a by-product, the covariance formulas in (3.64) can be generalized to describe the

covariance of between a stationary RBM and a BM, where the underlying BMs are corre-

lated.

Corollary 3.6 Suppose B = (B1, B2) is a 2-d Brownian motion with zero drift and co-

variance matrix Σ =

 σ2
1 σ1,2

σ2,1 σ2
2

. Let Q = Ψ(B1 + Q?(0) − λe) be the stationary RBM

associated with the drifted BM B1 − λe and Q?(0) has the stationary distribution of Q?,

which is independent of B1. Then

cov(B2, Q) =
(
1− w?(λ2t/σ2

1)
)
σ1,2t =

σ1,2σ
2
1

2λ2

(
1− c?(λ2t/σ2

1)
)
.

Remark 3.1 (The quasireversible case) The limit process

(A?, S?, X?, Q?, D?),

where

(A?, S?, X?) = (caBa ◦ λe, csBs ◦ λe,Q?(0) + caBa ◦ λe− csBs ◦ λe− λe),

as in Theorem 3.7, can be called the Brownian queue; see [72; 76; 77; 110]. The Brownian

queue is known to be quasireversible if and only if c2
a = c2

s. In that case, the stationary

departure process is a BM and the departures in the past are independent of the steady-

state content. Consistent with that theory, V ?
d (t) = c2

aλt, t ≥ 0 in (5.9) if and only if c2
a = c2

s.

Remark 3.2 We considered only the case where µρ = λ/ρ in this section. Now, we list the

results for a slightly more general case as in Section 3.2.1, where we have µρ = λ(1+(1−ρ)γρ)

and limρ↑1 γρ = γ. One can easily check that Theorem 3.6 holds with

X? = Q?(0) +A? − S? − λγe;
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Theorem 3.7 holds with

P (Q?(0) > x) = e−2γx/c2x and X? = Q?(0) + caBa ◦ λe− csBs ◦ λe− λγe;

and Theorem 3.8 holds with

V ?
d (t) = w?(λγ2t/c2

x)c2
aλt+ (1− w?(λγ2t/c2

x))c2
sλt,

Cov(caBa(λt), Q
?(t)) =

(
1− w?(λγ2t/c2

x)
)
c2
aλt and

Cov(csBs(λt), Q
?(t)) = −

(
1− w?(λγ2t/c2

x)
)
c2
sλt.

We conclude this section with the tail asymptotics of the departure variance function.

Just as in Corollaries 3.4 and 3.5, we have

Corollary 3.7 (Tail Asymptotic of the departure variance function) Under the as-

sumptions in Theorem 3.8 and Remark 3.2,

V ?
d (t) ∼ c2

aλt+
(c2
s − c2

a)c
2
x

2γ2
− 8(c2

s − c2
a)c

5
x

γ5

1√
2πλ3t3

e
−λγ

2t

2c2x as t→∞. (3.65)

Remark 3.3 Hautphenne et al.[78] developed explicit expressions for the y-intercept b̄θ of

the linear asymptote for the variance of the stationary departure from M/GI/1

V (t) = v̄t+ b̄θ + o(1) as t→∞;

see Proposition 6 there. Their result (i) holds for M/GI/1 case; (ii) depends on the third

moment of the service distribution; (iii) holds for general traffic intensity. Even though

there is no direct heavy-traffic scaling in their result, the scaling parameter emerges in their

expression, see the definition of b̄θ there. In specific, the scaling constant ρ/(1−ρ)2 coincides

(up to a multiple of ρ) with the one we use in (5.8).

On the other hand, our result here (i) coincides with their y-intercept (after scaling) in

the HT limit in the M/GI/1 case, i.e., let ρ = 1, γ = 1 and ca = 1; (ii) holds for general

GI/GI/1 cases but only under HT limit; (iii) has explicit characterization of the remainder

term, again only under HT limit.
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3.2.4 Extensions

The approximation for the departure IDC Id(t) in (3.1) and (3.67) should be good for much

more general models than GI/GI/1, with the independence conditions relaxed and more

than 1 server.

In Section 4.4, we establish the same limit for the departure process at the bottleneck

queue (the queue with the highest traffic intensity level in the network) in a generalized

Jackson networks with a single bottleneck.

We also conjecture that the HT limit of the variance function in Theorem 3.8 extends

to a larger class of models as well. Indeed, we conjecture that the limits established for

GI/GI/1 extend in that way. First, Theorem 3.6 extends quite directly by exploiting [83;

84]. For the extension of Theorem 3.7, there is a large class of models for which the HT-

scaled arrival and service processes have the limits

A? ≡ caBa and S? ≡ csBs, (3.66)

where Ba and Bs are independent standard (mean 0, variance 1) Brownian motions (BM’s)

that are independent of the initial queue length. What is needed is the extension of [66] and

[31] to more general models. We conjecture that can be done for GI/GI/s and other models

with regenerative structure in the arrival and service processes. For GI/GI/s the queue-

length process again becomes a Markov process if we append the s elapsed service times as

well as the elapsed interarrival time, but it remains to do the hard technical analysis leading

to an appropriate Lyapunov function. It is also of interest to establish related results for

departure processes in models with non-renewal arrival processes, as in [61] and references

therein.

The relevant approximation for the stationary departure process from a many-server

GI/GI/s queue evidently is quite different, being more like the service process than the

arrival process. We conjecture that the relevant many-server heavy-traffic limit for the

stationary departure process is a Gaussian process with the covariance function of the

stationary renewal processes associated with the service times, as in the CLT for renewal

processes in Theorems 7.2.1 and 7.2.4 of [143]. Partial support comes from [10], Appendix

F of [11] and [65].
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3.3 Robust Queueing Network Analyzer for Queues In Series

We conclude this chapter by explaining the important role that Theorem 3.8 plays in our

Robust Queueing Network Analyzer (RQNA) based on the index of dispersion for counts.

For queues in series models, the only relevant network operations is the departure operation,

which will be the main focus of this section.

3.3.1 Approximation of the Departure IDC

We now propose an approximation for the IDC of the departure process and apply it to the

queues-in-series models.

The main challenge in developing a full RQNA-IDC involving a decomposition approx-

imation is calculating or approximating the required IDC for the arrival process at each

queue. Inspired by (5.9), we propose to approximate the IDC of a departure process from

a G/GI/1 queue by the weighted average of the IDC’s of the arrival and service processes

in (3.1). We thus require (λ, ρ, Ia, Is) as model data, where Ia is the arrival IDC and Is is

the service IDC, as defined in 1.1.

We now show how Theorem 3.8 suggests a weight function defined by

wρ(t) ≡ w?((1− ρ)2λt/(ρ2c2
x)), (3.67)

where c2
x ≡ c2

a + c2
s and w? is given in (3.27). The c2

a and c2
s here are the asymptotic

variablity parameters, i.e., the normalization constants in the FCLT for the arrival and

service processes.

Let Id,ρ denote the departure IDC and define the weight function

wρ(t) ≡
Id,ρ(t)− Is(ρt)
Ia(t)− Is(ρt)

=
Vd,ρ(t)− Vs(ρt)
Va(t)− Vs(ρt)

, (3.68)

where Va(t) and Vs(t) are the variance functions associated with the equilibrium arrival

process with rate λ and service renewal process with rate µ. Note that this is exactly the

same weight function we defined in (3.32), thus we have the same HT-scaled weight function

w?ρ as in (3.33). Again, note that we have an additional scaling of ρ in Vs(ρt) to obtain

slightly more desirable approximation in light traffic. We then apply Theorem 3.8 to obtain

a generalization of Corollary 3.3.
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Corollary 3.8 (Limiting weight function) Under the assumptions in Theorem 3.8, we

have

w?ρ(t)⇒ w?(λt/c2
x)

for w? defined in (3.27).

For the pre-limit approximation, we re-arrange terms in (3.68) and obtain

wρ(t) ≈ w?((1− ρ)2λt/c2
x). (3.69)

One remaining issue is that the approximation (3.69) does not automatically yield a correct

light traffic limit, in which case we must have Id,0(t) = Ia(t) since the service time is

negligible. As a remedy, we propose to add a constant ρ−2 correction in the weight function,

so that we have (3.67) as the final weight function. This specific choice of correction term

is motivated from Remark 3.2, where we replace γ by γρ in the pre-limit weight function

and recall that the usual case of µρ = λ/ρ corresponds to γρ = 1/ρ.

Remark 3.4 (Parallel to QNA) The convex combination in the approximation (3.1) is

reminiscent of the convex combination for variability parameters in (38) of [134], i.e.,

cd,i ≈ (1− ρ2
i )c

2
a,i + ρ2

i c
2
s,i, (3.70)

which correspondes to a stationary-interval approximation, as discussed in [133; 134; 135].

Similar behavior can be seen in approximation (3.1). In particular, the canonical weight

function w∗ in (3.27) is a monotonically increasing function with w∗(0) = 0 and w∗(∞) = 1.

By the definition of wρ(t) in (3.67), we see that for each t, the approximation places less

weight on Ia,i(t) and more weight on Is,i(t) as ρi increases. This makes sense intuitively,

because the queue should be busy most of the time as ρi increases toward 1. Thus departure

times tend to be minor variations of service times. In contrast, if ρi is very small, then the

queue acts only as a minor perturbation of the arrival process.

However, (3.67) reveal a more subtle interaction between ρi and the variability of the

departure process over different time scales.

We now demonstrate the effectiveness of our approximation with two simulation ex-

amples for GI/GI/1 queues, where neither the interarrival time nor service time has an
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Figure 3.2: Approximations of the departure IDC’s in two GI/GI/1 models.

exponential distribution. Let H2(c2) be the H2 (hyperexponential) distribution with scv

c2 and balanced means, as in (3.7) on p. 137 of [133]. Consider the H2(4)/E2/1 model

with λ = 2, Figure 3.2 (top) reports the simulated departure IDCs for three different traffic

intensities ρ = 0.95, 0.8, 0.5, as well as the approximation (3.1) with (3.67). The simulation

estimation of the departure IDC is obtained from a single run of length 109 time units, with

the first 106 time units are discarded in order for the system to approach steady-state. The

reference IDCs Ia and Is is calculated by numerically inverting the LT in (3.8). Figure 3.2

(bottom) is the corresponding plot for the E2/H2(4)/1 model with λ = 2.

3.3.2 The RQNA algorithm for Queues in Series

We conclude this section by briefly describe the RQNA algorithm for queues in series models,

where the service times are assumed to be i.i.d. random variables, independent of the
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external arrival process. To obtain the performance approximation at each queue, we start

with the first queue, at which the external arrival process arrives. This first queue is simply

regarded as a G/GI/1 queue as in Section 2.2.5, so we require the arrival IDC as model

input. The external arrival process need not be renewal, as long as the IDC can be obtained

from one of the approaches discussed in Section 2.3. With the external arrival IDC and the

service scv, we simply apply the RQ alogorithm in (2.35) to obtain the approximation of

the steady-state mean workload. For other steady-state performance measures, see Section

2.2.8. Now, we proceed to the second queue. Note that the arrival process at the second

queue is exactly the departure process from the first queue, whose IDC is approximated by

(3.1) and (3.67). In revoking (3.1), we require the service IDC, which is again obtained as

in Section 2.3. The next step is simply apply the RQ algorithm as for the first queue. The

same procedure can be carried out in the same way for any more subsequent queues. We

remark that the departure process from the first queue is not a renewal process unless the

external arrival process is Poisson and the service times at queue 1 is exponential. Hence, the

second queue (and any subsequent queues) can only be regarded as a G/GI/1 station, where

the arrival process is a general point process. In this setting, the approximation cannot be

justified by Theorem 3.8. However, we will show in Section 5.1 that the same approximation

is supported by a similar HT limit theorem in generalized Jackson network, see Theorem

5.1. In fact, we conjecture that the same approximation holds for a wide range of G/G/1

models, for example the MMPP/MMPP/1 model with Markov modulated Poisson arrival

and service processes, see Section 6.3.1 for an illustration.

For simulation studies of the performance of this RQNA algorithm, see Section 6.3.

3.4 Proofs

We now review a useful lemma on the properties of ξ̂(s) and δ, defined in (3.19) and (3.20);

see p. 113 of [128] or Appendix 6 of [38]. (The notation here is slightly different.)

Lemma 3.2 (Takacs’ root lemma) If Re(s) ≥ 0, then the root ξ̂(s) of the equation

z = f̂(s+ µ(1− z))
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that has the smallest absolute value is

ξ̂(s) =
∞∑
j=1

(−µ)j−1

j!

dj−1

dsj−1

(
f̂(µ+ s)

)j
. (3.71)

This root ξ̂(s) is a continuous function of s for Re(s) ≥ 0. Furthermore, z = ξ̂(s) is the

only root in the unit circle |z| ≤ 1 if at least one of two conditions is satisfied (i) Re(s) > 0,

or (ii) Re(s) ≥ 0 and λ/µ < 1. Specifically, δ = ξ̂(0) is the smallest positive real root of the

equation

δ = f̂(µ(1− δ)).

If λ/µ < 1, then δ < 1 and if λ/µ ≥ 1 then δ = 1.

Proof of Theorem 3.3. We let ρ ↑ 1 by decreasing the service rate, so that 1/E[U ] = λ is

fixed. To allow general drift in the Brownian HT limit, we let 1/E[V ] = µρ ≡ λ+(1−ρ)λγρ in

system ρ, for positive constants γρ → γ. Under this setting, we have (λ−µρ)/(1−ρ)→ −λγ

as ρ ↑ 1. By (3.18) and (3.21), we have

V̂ ?
d,ρ(s) = L

(
(1− ρ)2Vd,ρ

(
(1− ρ)−2t

))
= (1− ρ)4V̂d,ρ

(
(1− ρ)2s

)
=

λ

s2
+
λ

s2
Ŵ (s)

where

Ŵ (s) ≡ 2

(1− ρ)2s

µρ(δ − λ

µρ
) +

µρδ
1−f̂((1−ρ)2s)

(1−ρ)2s
− f̂

(
(1− ρ)2s

)
(1−ρ)2s+µρ(1−ξ̂((1−ρ)2s))

µρ(1−ξ((1−ρ)2s))
· (1−ρ)2s−µρ(1−δ)

µρ(1−δ) · 1−f̂((1−ρ)2s)
(1−ρ)2s

 .
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Then, we write

Ŵ (s) =
2µρ

(1− ρ)2s

(
δ − λ

µρ

)
Ĥρ(s)

1−f̂((1−ρ)2s)
(1−ρ)2s

+ δ
1−f̂((1−ρ)2s)

(1−ρ)2s
− 1

µρ
f̂
(
(1− ρ)2s

)
Ĥρ(s)

1−f̂((1−ρ)2s)
(1−ρ)2s

=
2µρ

(1− ρ)2s

δ
(
Ĥρ(s) + 1

)
1−f̂((1−ρ)2s)

(1−ρ)2s
− λ

µρ
Ĥρ(s)

1−f̂((1−ρ)2s)
(1−ρ)2s

− 1
µρ
f̂
(
(1− ρ)2s

)
Ĥρ(s)

1−f̂((1−ρ)2s)
(1−ρ)2s

=
1

Ĥρ(s)
1−f̂((1−ρ)2s)

(1−ρ)2s

2µρ
(1− ρ)2s

(
(δ − λ

µρ
)
(
Ĥρ(s) + 1

) 1− f̂
(
(1− ρ)2s

)
(1− ρ)2s

+
λ

µρ

(
1− f̂

(
(1− ρ)2s

)
(1− ρ)2s

− 1

λ

)
+

1

µρ

(
1− f̂

(
(1− ρ)2s

)))

=
2µρ

Ĥρ(s)
1−f̂((1−ρ)2s)

(1−ρ)2s

(
δ − λ

µρ

1− ρ
Ĥρ(s) + 1

(1− ρ)s

1− f̂
(
(1− ρ)2s

)
(1− ρ)2s

+
λ

1−f̂((1−ρ)2s)
(1−ρ)2s

− 1

µρ(1− ρ)2s
+

1− f̂
(
(1− ρ)2s

)
µρ(1− ρ)2s


where

Ĥρ(s) ≡

(
1

µρ

(1− ρ)2s

1− ξ̂ ((1− ρ)2s))
+ 1

)(
1

µρ

(1− ρ)2s

1− δ
− 1

)
.

By Lemma 3.2, we know that δ is positive and real, and δ < 1 if ρ < 1 while δ = 1 if ρ = 1.

Hence, we may restrict the function f̂ to the real axis. Then, expanding f̂ in a Taylor series

about 0, yields

δ = f̂(µρ(1− δ))⇒ δ = f̂(0) + f̂ ′(0)µρ(1− δ) +

(
1

2
f̂ ′′(0)µ2

ρ + o(1)

)
(1− δ)2

⇒ 0 = 1− δ − µρ
λ

(1− δ) +

(
1

2
f̂ ′′(0)µ2

ρ + o(1)

)
(1− δ)2

⇒ 0 =
1− µρ

λ

1− ρ
+

(
c2
a + 1

2

µ2
ρ

λ2
+ o(1)

)
1− δ
1− ρ

⇒ 1− δ
1− ρ

= γρ

(
c2
a + 1

2ρ
+ o(1)

)−1

(3.72)

This implies that the following limit exist

δ? ≡ lim
ρ↑1

1− δ
1− ρ

=
2γ

c2
a + 1

. (3.73)



CHAPTER 3. ROBUST QUEUEING FOR QUEUES IN SERIES 91

Now, let ξ̂ρ,s ≡ ξ̂
(
(1− ρ)2s

)
= f̂

(
(1− ρ)2s+ µρ(1− ξ̂ρ,s)

)
, then similarly we have

0 = γρ
1− ξ̂ρ,s
1− ρ

+
s

λ
−
(
c2
a + 1

2λ2
+ o(1)

)(
(1− ρ)s+ µρ

1− ξ̂ρ,s
1− ρ

)2

. (3.74)

Then (3.74) implies that the following limit exists

ξ̂?(s) ≡ lim
ρ↑1

1− ξ̂ρ,s
1− ρ

, (3.75)

and
c2
a + 1

2

(
ξ̂?(s)

)2
− γξ̂?(s)− s

λ
= 0. (3.76)

Recall that ξ̂ρ,s is defined to be the root of z = f̂((1−ρ)2s+µρ(1−z)) with smallest absolute

value. By Lemma 3.2, this root is unique and lies in the unit circle unless s = 0 and ρ = 1,

in which case ξ̂(0) = 1. Furthermore, it can be proved by Weierstrass Preparation Theorem

(see Theorem 6.2 of [37]) that ξ̂ρ,s is continuous in (ρ, s). Hence, we have

Re

(
1− ξ̂ρ,s
1− ρ

)
> 0, for all ρ < 1 and s > 0.

By taking limit ρ ↑ 1, we have Re(ξ̂?(s)) ≥ 0 for all s > 0.

As a consequence, we pick the root of (3.76) with non-negative real part. In particular,

for real s, we have

ξ̂?(s) =
γ +

√
γ2 + 2(c2

a + 1)s/λ

c2
a + 1

. (3.77)

For complex s, the square root in (3.77) corresponds to two complex roots, which are also

the roots of
(
γ −

√
γ2 + 2(c2

a + 1)s/λ
)
/(c2

a + 1), since the polynomial in (3.76) is of order

2. Hence, we may use the same expression (3.77) as in the real case, as long as we pick the

one with non-negative real part.

Combining (3.73) and (3.75), we obtain

lim
ρ↑1

Ĥρ(s) = −1,

and

Ĥ?(s) ≡ lim
ρ↑1

Ĥρ(s) + 1

(1− ρ)s
= lim

ρ↑1

(
1

µρ

1− ρ
1− δ

− 1

µρ

1− ρ
1− ξ̂ ((1− ρ)2s))

+O(1− ρ)

)

=
1

λ

(
c2
a + 1

2γ
− 1

ξ̂?(s)

)
<∞, (3.78)
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where ξ̂? is defined in (3.75). Moreover, we have

lim
ρ↑1

1− f̂
(
(1− ρ)2s

)
(1− ρ)2s

= −f̂ ′(0) = E[U ] = 1/λ.

and

lim
ρ↑1

1−f̂((1−ρ)2s)
(1−ρ)2s

− 1
λ

(1− ρ)2s
= − f̂

′′(0)

2
= −E[U2]

2
= −c

2
a + 1

2λ2
.

Combining everything into the Laplace Transform of (1− ρ)2Vd,ρ
(
(1− ρ)−2t

)
, we have

V̂ ?
d (s) ≡ lim

ρ↑1
V̂ ?
d,ρ(s) =

λ

s2
− λ(c2

a − 1)

s2

(
2γλ

c2
a + 1

Ĥ?(s)− 1

)
(3.79)

=
λ

s2
+

2λ

s2

c2
a − 1

c2
a + 1

γ

ξ̂?(s)
. (3.80)

Plugging in (3.77), we obtain

V̂ ?
d (s) =

λ

s2
+

2λ

s2

c2
a − 1

c2
a + 1

γ

ξ̂?(s)

=
λ

s2
+
λ

s2

c2
a − 1

c2
a + 1

√
1 + 2(c2

a + 1)s/(λγ2)− 1

s/(λγ2)
,

where we pick the root such that
(√

1 + 2(c2
a + 1)s/(λγ2)− 1

)
/(s/(λγ2)) has non-negative

real part. We used the fact that Re(z) ≥ 0 if and only if Re(1/z) ≥ 0 for z 6= 0.

For the explicit inversion, one can exploit the LT of the correclation function in (3.23)

and note that

L(f(at))(s) =
1

a
f̂(s/a)

for any constant a 6= 0 and any function f with LT f̂ . For our case here, we use a =

λγ2/(c2
a + 1).

Proof of Theorem 3.5. To simplify the proof, we consider the HT-scaled difference

between departure variance function and service variance function. Let 1/E[V ] = µ and

1/E[U ] = λρ ≡ µ(1−(1−ρ)γρ), where γρ are positive constants such that limρ↑1 γρ = γ > 0.

Under this setting, we have (λρ − µ)/(1 − ρ) → −µγ as ρ ↑ 1. Let V̂ ?
d,ρ(s) and V̂ ?

s,ρ(s) be

the LT of V ?
d,ρ(s) and V ?

s,ρ(s), respectively. Recall that Π was defined in Theorem 3.4. By
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(3.37), we have

V̂ ?
d (s)− V̂ ?

s (s) = lim
ρ↑1

(
V̂ ?
d,ρ(s)− V̂ ?

s,ρ(s)
)

= lim
ρ↑1

(1− ρ)4
(
V̂d,ρ

(
(1− ρ)2s

)
− V̂s,ρ

(
(1− ρ)2s

))
= lim

ρ↑1

(
λρ − µ
s2

+
2(λρ − µ)

s2

ĝ
(
(1− ρ)2s

)
1− ĝ ((1− ρ)2s)

−
2(λ2

ρ − µ2)

(1− ρ)2s3

)

− lim
ρ↑1

(
2λρ
s2

ĝ
(
(1− ρ)2s

)
1− ĝ ((1− ρ)2s)

(1− ρ)2sΠ
(
ν̂
(
(1− ρ)2s

))
(1− ρ)2s+ λρ (1− ν̂ ((1− ρ)2s))

)

= lim
ρ↑1

λρ − µ
s2

1− 2(λρ + µ)
1

(1− ρ)2s

1−
ĝ
(
(1− ρ)2s

)
µ1−ĝ((1−ρ)2s)

(1−ρ)2s


+ lim

ρ↑1

2λρ
s2

ĝ
(
(1− ρ)2s

)
1−ĝ((1−ρ)2s)

(1−ρ)2s

· 1

1− ρ

γρ
s
−

Π
(
ν̂
(
(1− ρ)2s

))
(1− ρ)s+ λρ

1−ν̂((1−ρ)2s)
1−ρ


= lim

ρ↑1
F̂ (1)
ρ (s) + lim

ρ↑1

2λρµ

s2

ĝ
(
(1− ρ)2s

)
µ1−ĝ((1−ρ)2s)

(1−ρ)2s

1

(1− ρ)s+ λρ
1−ν̂((1−ρ)2s)

1−ρ

· F̂ (2)
ρ (s)

where

F̂ (1)
ρ (s) ≡ λρ − µ

s2

1− 2(λρ + µ)
1

(1− ρ)2s

1−
ĝ
(
(1− ρ)2s

)
µ1−ĝ((1−ρ)2s)

(1−ρ)2s


and

F̂ (2)
ρ (s) ≡ γρ

1− ρ

(
1− ρ+

λρ
s

1− ν̂
(
(1− ρ)2s

)
1− ρ

− 1

γρ
Π
(
ν̂
(
(1− ρ)2s

)))
.

One can easily show that F̂
(1)
ρ (s) converges to 0 as ρ ↑ 1. Note also that ĝ(0) = 1 and

ĝ′(0) = −E[V ] = −1/µ, then

lim
ρ↑1

ĝ
(
(1− ρ)2s

)
µ1−ĝ((1−ρ)2s)

(1−ρ)2s

= 1.

Furthermore, a Taylor series expansion around s = 0 yields

ν̂
(
(1− ρ)2s

)
− 1

1− ρ
=
ĝ
(
(1− ρ)2s+ λρ

(
1− ν̂

(
(1− ρ)2s

)))
− 1

1− ρ

= −1− ρ
µ

s+
λρ
µ

ν̂
(
(1− ρ)2s

)
− 1

1− ρ

+
ĝ′′(0) + o(1)

2(1− ρ)

(
(1− ρ)2s+ λρ

(
1− ν̂

(
(1− ρ)2s

)))2
,

which implies that

lim
ρ↑1

ν̂
(
(1− ρ)2s

)
= 1 (3.81)
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and

0 = − s
µ

+
1− λρ

µ

1− ρ
1− ν̂

(
(1− ρ)2s

)
1− ρ

+
ĝ′′(0) + o(1)

2(1− ρ)2

(
(1− ρ)2s+ λρ

(
1− ν̂((1− ρ)2s)

))2
= − s

µ
+ γρ

1− ν̂
(
(1− ρ)2s

)
1− ρ

+
ĝ′′(0) + o(1)

2

(
(1− ρ)s+ λρ

1− ν̂((1− ρ)2s)

1− ρ

)2

= − s
µ

+ γρ
1− ν̂

(
(1− ρ)2s

)
1− ρ

+
λ2
ρ

µ2

c2
s + 1

2

(
1− ν̂((1− ρ)2s)

1− ρ

)2

+ o(1),

where we used the fact that ĝ′′(0) = E[V 2] = (c2
s + 1)/µ2. Hence,

lim
ρ↑1

1− ν̂((1− ρ)2s)

1− ρ
= ν? (s) ,

where
1 + c2

s

2
(ν̂?(s))2 + γν̂?(s)− s

µ
= 0. (3.82)

With essentially the same argument as in the proof of Theorem 3.3, one can also show that

ν?(s) is the only root of (3.82) with positive real part, furthermore

ν?(s) =
−γ +

√
γ2 + 2(1 + c2

s)s/µ

1 + c2
s

. (3.83)

It remains to show that F̂
(2)
ρ (s) converges (pointwise) to a proper limit. To this end, we

write

F̂ (2)
ρ (s)

=
γρ

1− ρ

(
1− ρ+

λρ
s

1− ν̂
(
(1− ρ)2s

)
1− ρ

− 1

γρ
Π
(
ν̂
(
(1− ρ)2s

)))

= γρ + γρ
1− ν̂

(
(1− ρ)2s

)
1− ρ

1

1− ρ

(
λρ
s
− 1

γρ

(1− λρ/µ)(1− ρ)ĝ
(
λρ
(
1− ν̂

(
(1− ρ)2s

)))
ĝ(λρ(1− ν̂ ((1− ρ)2s))− ν̂ ((1− ρ)2s)

)

= γρ + γρ
1− ν̂

(
(1− ρ)2s

)
1− ρ

1

1− ρ

(
λρ
s
−

(1− ρ)2ĝ
(
λρ
(
1− ν̂

(
(1− ρ)2s

)))
ĝ(λρ(1− ν̂ ((1− ρ)2s))− ν̂ ((1− ρ)2s)

)

Note that

ĝ
(
λρ(1− ν̂

(
(1− ρ)2s

))
− ν̂

(
(1− ρ)2s

)
= ĝ

(
λρ(1− ν̂

(
(1− ρ)2s

))
− ĝ

(
(1− ρ)2s+ λρ(1− ν̂

(
(1− ρ)2s

))
= (1− ρ)2 s

µ
− ĝ′′(0)(1− ρ)2sλρ

(
1− ν̂

(
(1− ρ)2s

))
+O((1− ρ)4),
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one can easily show that

lim
ρ↑1

F̂ (2)
ρ (s) = γ − γν̂?(s)µ

s

(
1 + c2

s ν̂
?(s)

)
. (3.84)

Plugging everything into the Laplace Transform of the heavy-traffic scaled difference of

the variance functions, we have

V̂ ?
d (s) = V̂ ?

s (s) +
2µ2

s2

1

µν̂?(s)

(
γ − γν̂?(s)µ

s

(
1 + c2

s ν̂
?(s)

))
=
µc2

s

s2
+
γµ2(1− c2

s)

s3
ν̂?(s) (3.85)

where we apply (3.82) to obtain the simplified expression in (3.85).

To obtain the explicit inversion, we write

V̂ ?
d (s) =

µc2
s

s2
+
γµ2(1− c2

s)

s3

−γ +
√
γ2 + 2(1 + c2

s)s/µ

1 + c2
s

.

Then, one exploit the LT of the correclation function in (3.23) and note that L(f(at))(s) =

f̂(t/a)/a, for any constant a 6= 0 and any function f with LT f̂ . For our case here, we use

a = µγ2/(1 + c2
s).

Proof of Theorem 3.8. By combining Theorems 2.1 and 4.2 in Chapter X of [12],

we deduce that the kth moment of the steady-state queue length is finite if the (k + 1)st

moments of the interarrival time and service time are finite. We add the extra uniformly

bounded fourth moment to provide the uniform integrability needed to get convergence of

the moments in the HT limit. We use (3.47) to obtain the corresponding result for the

departure process.

To get (5.9), combine (5.8) and (3.60). Note that

Var(Q?(t)) = Var(Q?(0)) = c4
x/4,

so that

Var(D?(t)) = c2
at+

c4
x

2
− 2Cov(Q?(0), Q?(t))− 2Cov(caBa(t), Q

?(t)), (3.86)

where

Cov(Q?(0), Q?(t)) =
c4
x

4
c?(λt/c2

x), t ≥ 0; (3.87)
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see Section 2 of [3] or Theorem 5.7.11 of [143]. Inserting (3.87) into (3.86) yields the first

line in (5.9) above. To establish the second limit, we do a space-time transformation of the

limit, so that the limit is the same as one of the models analyzed directly.

Let us re-scale space and time so that the general result is in terms on Ba instead of

caBa (assuming that ca > 0), so that we can apply the established result for the M/GI/1

model. (Essentially the same argument works for GI/M/1.) The first step is to observe

that the HT limit for the departure process {D?(t) : t ≥ 0} can be written as a function

Ψ : R×D3 → D of the vector process {(Q?(0), caBa ◦ λe, csBs ◦ λe,−λe)}; i.e., by (3.60)

D? = Ψ((Q?(0), caBa ◦ λe, csBs ◦ λe,−λe))

= Q?(0) + caBa ◦ λe−Ψ(Q?(0) + caBa ◦ λe− csBs ◦ λe− λe)(t).

If we replace the basic vector process (Q?(0), caBa ◦λe, csBs ◦λe,−λe) by another that has

the same distribution as a process, then the distribution of D? will be unchanged.

By the basic time and space scaling of BM, for ca > 0, the stochastic processes have

equivalent distributions as follows

{Q?(0), caBa(λt), csBs(λt),−λt}
d
= c2

a

{
Q?(0)

c2
a

, Ba(λt/c
2
a),

cs
ca
Bs(λt/c

2
a),−

λt

c2
a

}
≡ c2

a

{
Q?(0)

c2
a

, Ba(u),
cs
ca
Bs(u),−u

}
, (3.88)

where u = λt/c2
a. After this transformation, to describe the system at time u, the associated

RBM has drift −1 and variance coefficient 1 + (c2
s/c

2
a) = c2

x/c
2
a. Note that the mean of the

steady-state distribution associated with the new RBM is the diffusion coefficient divided

by twice the absolute value of the drift, which is c2
x/(2c

2
a). As a result, Q?(0)/c2

a is exactly

the steady-state distribution needed for the new RBM. From above, we see that

D?(t)
d
= Ψ

(
c2
a

{
Q?(0)/c2

a, Ba(u), (cs/ca)Bs(u),−u
})
, for u = λt/c2

a

= c2
aΨ
({
Q?(0)/c2

a, Ba(u), (cs/ca)Bs(u),−u
})

≡ c2
aD̃

?(u) = c2
aD̃

?(λt/c2
a),

where D̃?(u) ≡ Ψ
({
Q?(0)/c2

a, Ba(u), (cs/ca)Bs(u),−u
})

, corresponding to the M/GI/1

model with service scv c2
s/c

2
a. Now, let w̃?(t) denote the associated weight function in



CHAPTER 3. ROBUST QUEUEING FOR QUEUES IN SERIES 97

(3.43) with (µ, γ, c̃2
x) = (λ, 1, c2

x/c
2
a), so that

w̃?(t) = w?(c2
aλt/c

2
x).

We now turn to the variance. By applying (3.43), we obtain

V ?
d (t) = c4

aṼ
?
d (u) = c4

aṼ
?
d (λt/c2

a)

= c4
a

(
w̃?(λt/c2

a)
λt

c2
a

+ (1− w̃?(λt/c2
a))

c2
s

c2
a

λt

c2
a

)
= w?(λt/c2

x)c2
aλt+ (1− w?(λt/c2

a))c
2
sλt,

which agrees with the GI/GI/1 formula in (5.9). Thus, we have proved the variance formula

for GI/GI/1.

Finally, it remains to establish the covariance formulas. First, by comparing the two

lines in (5.9) and recall (3.26), we must have

Cov(caBa(λt), Q
?(t)) =

(
1− w?(λt/c2

x)
)
c2
aλt.

Let B̃s(t) = −Bs(t), then we have

(Q?(0), caBa ◦ λe, csBs ◦ λe)
d
= (Q?(0), caBa ◦ λe, csB̃s ◦ λe),

so

Cov(caBa(t), Q
?(t)) = Cov(caBa(t),Ψ(Q?(0) + caBa + csB̃s − e)(t))

= Cov(caBa(t),Ψ(Q?(0) + caBa + csBs − e)(t)),

and

Cov(csBs(λt), Q
?(t)) = Cov(−csB̃s(λt),Ψ(Q?(0) + caBa ◦ λe+ csB̃s ◦ λe− e)(t))

= −Cov(csBs(λt),Ψ(Q?(0) + caBa ◦ λe+ csBs ◦ λe− e)(t)).

By symmetry, we thus have

Cov(csBs(λt), Q
?(t)) = −

(
1− w?(λt/c2

x)
)
c2
sλt.
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Chapter 4

Heavy-Traffic Limits for Stationary

Flows

In this chapter, we further study the IDC formulation of the RQ algorithm by establishing

the heavy-traffic limit theorems for the stationary flows and their IDC’s. A customer flow

is defined as a continuous-time process, counting the number of customer in or out of the

network, or flowing from one queue to another. A typical example is the total arrival flow

at a queue, which is the superposition of the external arrival flow and internal arrival flows,

with the later ones being (part of) the departure flows from other queues that are directed

to the current queue. The IDC of the total arrival flow, together with the its rate and the

service rate at the same station, serves as the input for the IDC formulation of the RQ

algorithm, see (2.35).

Flows are special stochastic point processes, for which there is a well-developed general

theory, as in [47; 48]. There also is a substantial literature on the general structure of

stationary point processes in queueing systems, as in Chapter 1 of [15] and [122], but

concrete results, such as explicit formulas describing the stochastic variability of the flows

over time, are extremely rare. The familiar exception is the Markov OQN, for which there

is a substantial theory, as in Chapter 4 of [132], but even in Markov networks, the flows can

be quite complicated. First, by reversibility, for Jackson networks, the departure processes

out of the network from the queues are independent Poisson processes, but the internal
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flows need not be Poisson, even though the product-form property holds. In particular, the

flows are Poisson if and only if they are not part of a loop; see [106; 131]. For non-Markov

open networks, the flows are even more complicated.

This chapter contributes to the approximation of OQN’s using the IDC’s by establishing

heavy-traffic limits for all the stationary flows in a OQN, allowing any subset of the sta-

tions to be bottleneck stations (critically loaded in the limit). The heavy-traffic limits are

especially tractable in the case of a single bottleneck station, because they can be expressed

in terms of one-dimensional reflected Brownian motion (RBM), so that the heavy-traffic

approximation of the IDC can be calculated in closed-form just as in (3.1).

Our HT limit for the stationary flows rely heavily on the justification for interchanging

the limits t→∞ and ρ ↑ 1 in a OQN provided by Gamarnik and Zeevi [66] and Budharija

and Lee [31]. By allowing an arbitrary subset of the queues to be bottleneck queues (have

nondegenerate limits), while the rest have null limits, we follow Chen and Mandelbaum [34;

35]. Our main contributions here are the heavy-traffic limits for the stationary flows.

As a preliminary step for our heavy-traffic limit, we establish conditions for the existence

of stationary flows in a GJN and for convergence to those stationary flows as time evolves.

For that we rely heavily on the Harris recurrence that was used to establish the stability of a

GJN under appropriate regularity, drawing on Sigman [120; 121] and Dai [42]; see Chapter

VII of Asmussen [12].

This chapter is organized as follows. In Section 4.1, we formally introduce the open

queueing network model and the continuous-time stochastic processes (flows) associated

with it. This model goes beyond the assumptions that we make to establish Harris re-

currence. Our RQNA algorithm and approximations of the IDC’s are intended to work

with this general model even without theoretical justification developed in this chapter. In

Section 4.2, we establish the existence and convergence of the stationary flows. In Section

4.3, we show a general version of the heavy-traffic limit theorem for the stationary flows,

allowing an arbitrary set of bottleneck queues that approaches heavy traffic simultaneously.

Our joint HT functional central limit reveals the key connections among different flows. In

Section 4.4, we focus on a special case, where we only have one bottleneck queue. This

serves as a basis for our heavy-traffic approximation of the IDC’s of the stationary flows.
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4.1 The OQN Model

We start by formulating a general OQN model that goes beyond the assumptions we make

to establish Harris recurrence. Let there be K single-server stations with unlimited waiting

space and the first-come first-served (FCFS) discipline. We assume that the system starts

empty at time 0, but that could be relaxed. We associate with each station i an external

arrival point process A0,i, which satisfies A0,i(t) < ∞ with probability 1 for any t. Let

A0 ≡ (A0,1, . . . , A0,K) denote the vector of all external arrival processes.

Let {V l
i : l ≥ 1} denote the sequence of service times at station i and define the

(uninterrupted) service point (counting) process as

Si(t) = max

{
n ≥ 0 :

n∑
l=1

V l
i ≤ t

}
, t ≥ 0. (4.1)

which we also assume to have finite sample path with probability 1.

In addition to external arrivals, departures from each station may be routed to other

queues or out of the network. To specify the general routing (or splitting) process, let

θli ∈ {0, 1}K indicate the routing vector of the l-th departure from queue i. Following

standard conventions, at most one component of θli is 1, and θli = ej indicates that the l-th

departure from the i-th queue is routed to station j for 1 ≤ j ≤ K, where ej is the j-th

standard basis of the Euclidean space RK . The case θli = 0 indicates that the l-th departure

from the i-th queue exits the system. Finally, we define the routing decisions up to the n-th

decision at station i by

Θi(n) ≡ (Θi,1(n), . . . ,Θi,K(n)) ≡
n∑
l=1

θli,

and let Θi,0(n) denote the number of customers that exit the system from station i in the

first n departures.

For the internal arrival flows, let Ai,j be the customer stream from i to j. Each internal

arrival stream Ai,j splits from the departure process Di according to the splitting decision

process Θi,j , so that

Ai,j(t) = Θi,j(Di(t)), t ≥ 0, 1 ≤ i ≤ K, 0 ≤ j ≤ K. (4.2)

Let Aint(t) ≡ (Ai,j(t) : 1 ≤ i, j ≤ K) denote the matrix of all internal arrival flows.
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For total arrival process at station i, let

Ai(t) = A0,i(t) +
K∑
j=1

Aj,i(t)

and let A(t) ≡ (A1(t), . . . , AK(t)) be the vector of total arrival processes.

As observed in (7.1) and (7.2) in §7.2 of [34], the queue-length and departure processes

at each queue are jointly uniquely characterized by the flow balance equations

Qi(t) = Qi(0) +Ai(t)−Di(t)) and Di(t) = Si(Bi(t)), t ≥ 0, 1 ≤ i ≤ K, (4.3)

where Bi(t) is the cumulative busy time of server i up to time t, which by work conservation

satisfies

Bi(t) =

∫ t

0
1Qi(u)>0du, t ≥ 0, (4.4)

where 1A is the indicator function with 1A = 1 on the set A and 0 elsewhere.

For the flow exiting the queueing system, let Dext,i denote the flow that exits the system

from station i. Hence

Dext,i(t) =

Di(t)∑
l=1

θli,0 = Θi,0(Di(t)), t ≥ 0.

Finally, let Dext(t) ≡ (Dext,1(t), . . . , Dext,K(t)) be the vector of external departure processes.

4.2 Existence, Uniqueness and Convergence Via Harris Re-

currence

In this section we establish the existence of unique stationary flows and convergence to them

as time increases for any initial state. Toward that end, we make three assumptions, the

first one being

Assumption 4.1 We assume that the OQN is a GJN, in particular:

1. The K external arrival processes are mutually independent (possibly null) renewal

processes with finite rates λi, where the interarrival times have finite squared coefficient

of variation (scv, variance divided by the square of the mean) c2
a0,i for 1 ≤ i ≤ K.
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2. The service times come from K mutually independent sequences of i.i.d. random

variables with means 1/µi, 0 < µi <∞, and finite scv c2
si for 1 ≤ i ≤ K.

3. The routing is Markovian with a substochastic K×K routing matrix P = (pi,j)1≤i,j≤K

such that pi,j ≥ 0, pi,0 ≡ 1−
∑K

j=1 pi,j ≥ 0 and I−P ′ is invertible; For each 1 ≤ i ≤ K,

the sequence {Θi(1),Θi(2), . . . } is i.i.d. with P (Θi(n) = ej) = pi,j and P (Θi(n) =

0) = pi,0 ≡ 1−
∑K

j=1 pi,j.

4. The arrival, service and routing processes are mutually independent.

For completeness, we also assume that the network starts empty at time 0, so that no

customer is in service or waiting, but this can be relaxed. The condition of finite scv’s is

used in the convergence of the distribution and in the next section; for relaxed assumptions,

see the discussions below Theorem 4.1 and Theorem 4.2. Note that I − P ′ is invertible if

we assume that all customers eventually leave the system; see [36] or Theorem 3.2.1 of [90].

Let U(t) denote the vector of residual external arrival times at time t; let V (t) be the

vector of residual service times at time t, set to 0 when the server is idle; and let the system

state process be

S(t) ≡ (Q(t), U(t), V (t)), t ≥ 0. (4.5)

Under our assumption, the initial condition is specified by S(0) = (0, 0, 0). The system

state process S in (4.5) is an element of the function space D([0,∞),R3K) of real-valued

functions on the half-line [0,∞) taking values in the Euclidean space R3K that are right-

continuous with left limits. As stated in §2.2 of [42], which draws on [53], Assumption 4.1

implies some basic regularity conditions.

Theorem 4.1 (strong Markov process) Under Asusmption 4.1, the system state pro-

cess S is a strong Markov process.

We remark that Assumption 4.1 is stronger than needed to ensure the strong Markov

property. Since S is a piecewise-deterministic Markov process (defined in §3 of [53]), §4 of

[53] showed that if the expected number of jumps on any interval [0, t] is finite, then the

process possesses the strong Markov property.
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We now state the stability assumption in the sense of the traffic intensities. Let λ0 =

(λ0,1, . . . , λ0,K) be the external arrival rate vector and let λ = (λ1, . . . , λK) denote the vector

of total arrival rate. We obtain λ by solving the traffic-rate equations

λi = λ0,i +
K∑
j=1

λj,i = λ0,i +
K∑
i=1

λjpj,i, (4.6)

or, in matrix form,

(I − P ′)λ = λ0,

where I denotes the K ×K identity matrix and P ′ is the transpose of P . Let λi,j ≡ λipi,j

be the rate of the internal arrival flow from i to j. Finally, let ρi ≡ λi/µi be the traffic

intensity at station i.

Assumption 4.2 The traffic intensities satisfy maxi ρi < 1.

Following convention, we say that the OQN is stable if the system state process in

(4.5) is stable, i.e., if there exists a distribution π on R3K for S(0) such that S(t) has that

same distribution π for all t ≥ 0. We now state the additional assumption to ensure the

uniqueness of the stationary distribution π and the convergence of the distribution of S(t)

to π.

Assumption 4.3 Each non-null external arrival process has an interarrival-time distribu-

tion with a density that is positive for almost all t.

Our assumption here implies the key assumption (A3) in both [42] and [43] that the dis-

tribution is unbounded and spread out, see also [42] and Chapter VII of [12]. This clearly

avoids periodic behavior associated with the lattice case, but otherwise it is not restrictive

for practical modeling.

The following theorem follows from Theorem 2 of [66] or Theorem 5.1 of [42] or Theorem

6.2 of [43], which extend earlier work on stability for OQNs in [25], [121] and [63].

Theorem 4.2 (existence, uniqueness and convergence) Under Assumptions 4.1-4.3,

the system state stochastic process S in (4.5) is a positive Harris recurrent Markov process.

There exists a unique stationary distribution π and for every initial condition and the dis-

tribution of S(t) converges to π as t→∞.
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For a strong Markov process with right-continuous and left limit sample paths, the existence

of a stationary distribution is shown in the early [14], which in turn draws on [69]. The

uniqueness is shown in [42], which assumes that the interarrival times are unbounded,

spreadout and have finite mean, and the service times have finite mean; see (1.2)-(1.5)

there. The convergence follows from [43] under the additional assumption of finite second

moment.

We now state the strong implications of Theorem 4.2. For that, we consider the system

that starts at time s. For the system state processes, let Qs(t) = Q(s+ t), Us(t) = U(s+ t)

and Vs(t) = V (s + t), so that Ss ≡ (Qs, Us, Vs) is the system state process with initial

condition S(s). Let ⇒ denote weak convergence. Theorem 4.2 implies that

Corollary 4.1 Under Assumptions 4.1-4.3, Qs(t) has unit (±1) jumps and

Ss ⇒ Se ≡ (Qe, Ue, Ve), as s→∞, (4.7)

where Se is the system state process with initial condition Se(0) distributed as the stationary

distribution π and ⇒ denote weak convergence in each coordinate.

Proof. Assumption 4.3 implies that with probability 1, there is at most 1 (internal or

external) arrival at any station and that the arrival times do not coincide with departure

times at any station. Hence, Qs only has unit-jumps.

From Theorem 4.2, we have the convergence of one-dimensional distribution

Ss(t1)⇒ Se(t1), for all t1 ≥ 0.

To extend the convergence to any finite-dimensional distribution, we utilize the Markov

property of S(t) in Theorem 4.1. For any t2 = t1 + δ1 > t1, the conditional probability

distribution of the state S(t1), conditioning on the past values up to the time t1, depends

only on the current state Ss(t1). Apply Theorem 4.2 again with initial state Ss(t1), we have

(Ss(t1),Ss(t2))⇒ (Se(t1),Se(t2)), for all 0 ≤ t1 < t2.

By induction, the convergence can be extended to any finite-dimensional distribution. The

weak convergence of the process Ss then follows from Theorem 12.6 in [23].
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Now, we turn to the existence of stationary flows. Define the auxiliary cumulative

process C, as in §VI.3 of [12], by

C(t) ≡ (B(t), Y (t)), (4.8)

where Bi(t) is the cumulative busy times for server i over interval [0, t] and

Yi(t) ≡ µi(t−Bi(t)) (4.9)

is the cumulative idle time of station i, scaled by the service rate µi.

To focus on the flows, we describe the GJN by the aggregate process

M(t) ≡ (S(t), C(t),F(t)), (4.10)

where

F(t) ≡ (A0(t), Aint(t), A(t), S(t), D(t), Dext(t)) (4.11)

is a vector of cumulative point processes, with the processes defined in §4.1. We refer to F

in (4.11) as the flows. We say that a flow is stationary if it has stationary increments. We

refer to [122] and Chapter 6 of [28] for background on stationary stochastic processes and

ergodicity.

For the flows, let A0,s(t) = A0(t + s) − A0(s) be the external arrival counting process

that starts at time s. Similarly, let Aint,s(t) = Aint(t + s) − Aint(s), As(t) = A(t + s) −

A(s), Ds(t) = D(t+s)−D(s), Dext,s(t) = Dext(t+s)−Dext(s), Bs(t) = B(t+s)−B(s) and

Ys(t) = Y (t + s) − Y (s) be the corresponding processes that starts at time s. The service

processes Ss(t) are more subtly defined by

Si,s(t) ≡ Si(Bi(s) + t)− Si(Bi(s)), for i = 1, 2, . . . ,K, (4.12)

which is a vector of delayed renewal processes with first intervals distributed as V (s), the

vector residual service time and at system time s (its i-th component is also the residual

service time of the process Si at time Bi(s)). This definition of the service process allow us

to write the departure process as a composition of the two processes Ss and Bs via

Ds(t) ≡ D(s+ t)−D(s) = (S �B)(s+ t)− (S �B)(s)

= (Ss �Bs)(t), t ≥ 0., (4.13)
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where � is understood as component-wise composition, i.e. Di,s = Si,s ◦ Bi,s for all i.

Finally, let Cs ≡ (Bs, Ys) and Fs ≡ (A0,s, Aint,s, As, Ss, Ds, Dext,s).

Theorem 4.3 (Existence and convergence of the stationary flows) Under Assump-

tions 4.1-4.3, there exists unique stationary and ergodic cumulative processes (with station-

ary increments satisfying the LLN)

Ce ≡ (Be, Ye), Fe ≡ (A0,e, Aint,e, Ae, Se, De, Dext,e)

and a unique stationary process

Se ≡ (Qe, Ue, Ve),

such that, as s→∞,

Ms ≡ (Ss, Cs,Fs)⇒ (Se, Ce,Fe) ≡Me, (4.14)

where ⇒ denote weak convergence in each coordinate. Furthermore, A0,e is the vector of

equilibrium external arrival renewal processes, Se is a vector of delayed renewal process with

first interval distributed as Ve(0).

4.3 Heavy-Traffic Limit Theorems for the Stationary Pro-

cesses

To set the stage for our heavy-traffic limits, in Section 4.3.1 we present a centered repre-

sentation of the flows. This representation parallels those used in [113; 34; 35; 42], but here

we focus on the flows. Then in Section 4.3.2 we establish our main heavy-traffic limit.

4.3.1 Representation of the Centered Stationary Flows

Recall that the external arrival rate vector is λ0, so the total arrival rates are given by

λ = (I − P ′)−1λ0 as in (4.6). For service, we start with rate-1 base service process S0
i for

station i and scale it by µi so that the service process at station i is denoted by Si ≡ S0
i ◦µie

with e(t) = t being the identity function. Let the center processes be defined by

Ã0,i = A0,i − λ0,ie, Ãi = Ai − λie, D̃i = Di − λie,

Θ̃j,i = Θj,i ◦ (Sj ◦Bj)− pj,iSj ◦Bj , and S̃i = Si ◦Bi − µiBi. (4.15)
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Furthermore, let X(t) be the net-input process, allowing the service to run continuously,

defined as

X ≡ Q(t)− (I − P ′)Y, (4.16)

where Y is defined in (4.9).

The next theorem expresses the queue length processes, the centered total arrival and

the centered departure flows in terms of the centered external arrival, service and routing

processes. Let ΨP be the K-dimensional reflection map with reflection matrix P ; e.g., see

Chapter 14 of [143]. A proof can be found in Section 4.6.

Theorem 4.4 (Centered representation) The net-input process can be written as

X = Q(0) + Ã0 + Θ̃′1− (I − P ′)S̃ + (λ0 − (I − P ′)µ)e, (4.17)

while the queue length process can be written as

Q = X + (I − P ′)Y = ΨI−P ′(X), (4.18)

where ΨI−P ′ is the K-dimensional reflection mapping with reflection matrix I − P ′. In

addition, the centered total arrival and departure processes can be written as

Ã = P ′(I − P ′)−1 (Q(0)−Q) + (I − P ′)−1
(
Ã0 + Θ̃′1

)
, (4.19)

D̃ = (I − P ′)−1
(
Q(0)−Q+ Ã0 + Θ̃′1

)
, (4.20)

where the centered processes are defined in (4.15).

Remark 4.1 (Stationary flows) Note that the representation in Theorem 4.4 does not

impose any assumption on the initial condition of the open queueing network. As ensured

by Theorem 4.3, there exists a stationary distribution π such that the flows are stationary if

S(0) ∼ π. With this specific initial condition, Theorem 4.4 applies to the stationary flows.

4.3.2 Heavy-Traffic Limit with Any Subset of Bottlenecks

In this section, we establish the convergence of the stationary flows under HT limit. Through-

out this section, we assume that the system is stationary in the sense of Theorem 4.3 and we

suppress the subscript e to simplify the notation. We let an arbitrary pre-selected subset
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H of the K stations be pushed into the HT limit while other stations stay unsaturated.

Two important special cases are: (i) |H| = K so that all stations approaches HT at the

same time, which corresponds to the original case in [113]; and (ii) |H| = 1 so that only one

station is in HT. This second case is appealing for applications because the RBM is only

one-dimensional. We focus on it in detail later.

To start, consider a family of systems indexed by ρ. Let the ρ-dependent service rates

be

µi,ρ ≡ λi/(κiρ), 1 ≤ i ≤ K, (4.21)

and set κi = 1 for all i ∈ H and κi < 1 for all i /∈ H. Equivalently, we have ρi = κiρ. For

the pre-limit systems we have the same representation of the flows as described in Theorem

4.4, with the only exception that µi in (4.17) is now replaced by the ρ-dependent version in

(4.21).

We now define the HT-scaled processes. As in the usual HT scaling, we scale time by

(1− ρ)−2 and scale space by (1− ρ). Thus we make the definitions

A?0,i,ρ(t) ≡ (1− ρ)[A0,i((1− ρ)−2t)− (1− ρ)−2λ0,it],

A?i,ρ(t) ≡ (1− ρ)[Ai,ρ((1− ρ)−2t)− (1− ρ)−2λit],

S?i,ρ(t) ≡ (1− ρ)[Si,ρ((1− ρ)−2t)− (1− ρ)−2µi,ρt],

D?
i,ρ(t) ≡ (1− ρ)[Di,ρ((1− ρ)−2t)− (1− ρ)−2λit],

D?
ext,i,ρ(t) ≡ (1− ρ)[Dext,i,ρ((1− ρ)−2t)− (1− ρ)−2λipi,0t],

A?i,j,ρ(t) ≡ (1− ρ)[Ai,j,ρ((1− ρ)−2t)− (1− ρ)−2λipi,jt],

Θ?
i,j,ρ(t) ≡ (1− ρ)

b(1−ρ)−2tc∑
l=1

θli,j − pi,j(1− ρ)−2t

 ,
Q?i,ρ(t) ≡ (1− ρ)Qi,ρ((1− ρ)−2t), for 1 ≤ i, j ≤ K. (4.22)

Furthermore, let Θ?
i,ρ ≡ (Θ?

i,j,ρ : 1 ≤ j ≤ K); let Θ?
ext,ρ ≡ (Θ?

i,0,ρ : 1 ≤ i ≤ K); and let F?ρ
collects all the flows, defined as

F?ρ (t) ≡ (A?0,ρ(t), A
?
int,ρ(t), A

?
ρ(t), S

?
ρ(t), D?

ρ(t), D
?
ext,ρ(t)). (4.23)

Finally, let W ?
i,ρ(t) ≡ (1 − ρ)Wi,ρ,b(1−ρ)2tc denote the HT scaled waiting time process,

where Wi,ρ,n denotes the waiting time of the n-th customer at station i in the ρ-th system;
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and let Z?i,ρ(t) ≡ (1− ρ)Zi,ρ((1− ρ)2t) denote the HT scaled workload process at station i

in the ρ-th system.

Before presenting the HT limit of the systems, we introduce useful notation by dis-

cussing a modified and yet asymptotically equivalent system, where all service times at the

nonbottleneck queues are set to zero.

Remark 4.2 (A reduced H-station network) Consider a H-station network, where all

non-bottleneck queues have zero service times, so that they can be viewed as instantaneous

switches. To obtain the rates and routing matrix in the equivalent network, we let IA denote

the |A| × |A| identity matrix for any index set A; let PH be the |H| × |H| submatrix of the

original routing matrix P corresponding to the rows and columns in H; similarly, let PHc

be the |Hc| × |Hc| submatrix of P corresponding to Hc; and let PHc,H collect the routing

probablities from stations in Hc to the ones in H, similarly, define PH,Hc . Now the new

|H| × |H| routing matrix, denoted by P̂H, is

P̂H = PH +

∞∑
l=0

PH,Hc (PHc)
l PHc,H

= PH + PH,Hc
∞∑
l=0

(PHc)
l PHc,H

= PH + PH,Hc (IHc − PHc)−1 PHc,H. (4.24)

Note that the inverse (IHc − PHc)−1 appearing in (4.24) is the fundamental matrix

associated with the transient finite Markov chain with transition matrix PHc . If we let

P̂Hc,H denote the matrix of the probabilities that the first visit to a bottleneck queue of an

external arrival at a non-bottleneck queue i ∈ Hc is at j ∈ H, then we have

P̂Hc,H =

∞∑
l=0

(PHc)
lPHc,H = (IHc − PHc)−1 PHc,H. (4.25)

Similarly, for the new external arrival rate λ̂0,H, we write

λ̂0,H = λ0,H + P̂ ′Hc,Hλ0,Hc = λ0,H + P ′Hc,H
(
IHc − P ′Hc

)−1
λ0,Hc , (4.26)

where λ0,A denotes the column vector of the entries in λ0 that corresponds to the index

set A. Since the total arrival rate in the modified system remains the same as the original
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system, we have

λ̂H = (I − P̂ ′H)−1λ̂0,H = λH. (4.27)

To simplify notation, we suppress the subscript used in the identity matrix I in the rest of

the paper whenever there is no confusion on its dimension.

The following theorem states the joint heavy-traffic limit of the queue length process,

the workload processes, the waiting time processes, the splitting-decision process and all the

flows. As in [34; 35], we allow an arbitrary subset of nodes to be bottleneck queues (critically

loaded) while the rest are sub-critically loaded. To treat the stationary processes, we apply

[66] and [31], extended to include non-bottleneck queues. Because our basic model data

involves only single arrival and service processes, with only the parameters being scaled, we

do not need Assumption (A4) in [31]. The proof can be found in Section 4.6.

Theorem 4.5 (Heavy-traffic FCLT) Under Assumption 4.1-4.2, consider a family of

open queueing networks in stationarity, indexed by ρ. Let H ⊂ {1, 2, . . . ,K} denote the

index of the bottleneck stations: Assume that µi,ρ = λi/(κiρ) for 1 ≤ i ≤ K and set κi = 1

for all i ∈ H and κi < 1 for all i /∈ H. Then, as ρ ↑ 1,

(Q?ρ,W
?
ρ , Z

?
ρ ,Θ

?
ρ,Θ

?
ext,ρ,F?ρ )

⇒ (Q?,W ?, Z?,Θ?,Θ?
ext,F?) in D9K+2K2

, (4.28)

where:

1. For 0 ≤ i ≤ K, A?0,i = ca0,iBa0,i ◦ λ0,ie and S?i = csiBsi ◦ λie, where Ba0,i and

Bsi are standard Brownian motions. (Θ?
i,j : 0 ≤ j ≤ K) is a zero-drift (K + 1)-

dimensional Brownian motion with covariance matrix Σi = (σ2
jk : 0 ≤ j, k ≤ K),

where σ2
j,j = pi,j(1 − pi,j)λi and σ2

j,k = −pi,jpi,kλi for 0 ≤ i 6= j ≤ K. Furthermore,

Ba0,i, Bsi and (Θ?
i,j : 0 ≤ j ≤ K) are mutually independent, 1 ≤ i ≤ K.

2. The queue length process Q? consists of two parts. Q?Hc ≡ 0 and Q?H is a stationary

|H|-dimensional RBM

Q?H ≡ ΨH

(
X̂?
H

)
,
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where ΨH is the |H|-dimensional refelction map with reflection matrix RH ≡ IH− P̂H

and X̂?
H is the net-input process associated with the bottleneck queues, defined below.

Furthermore, Q?H(0) has unique stationary distribution of the stationary RBM. X̂?
H is

a |H|-dimensional Brownian motion

X̂?
H = Q?H(0) +

(
e′H + P̂ ′Hc,He

′
Hc
) (
A?0 + (Θ?)′ 1

)
− (IH − P̂H)S?H − λ̂0,He, (4.29)

where eA collects columns in the K-dimensional identity matrix I that corresponds to

index set A; P̂H, P̂Hc,H and λ̂0,H are defined in (4.24), (4.25) and (4.26), respectively.

3. The total arrival process A? can be regarded as a stationary process, having stationary

increments, specified by

A? = (I − P ′)−1
(
A?0 + (Θ?)′ 1

)
+ P ′(I − P ′)−1 (Q?(0)−Q?)

= (I − P ′)−1
(
A?0 + (Θ?)′ 1

)
+ P ′(I − P ′)−1eH (Q?H(0)−Q?H) .

4. The stationary departure process D? is specified as

D? = Q?(0) +A? −Q? = (I − P ′)−1
(
Q?(0)−Q? +A?0 + (Θ?)′ 1

)
(4.30)

In particular,

D?
Hc = Q?Hc +A?Hc −Q?Hc(0) = A?Hc .

5. The internal arrival flow A?i,j can be expressed as

A?i,j = pi,jD
?
i + Θ?

i,j ◦ λie, for 1 ≤ i, j ≤ K

and the external departure flow can be expressed as

D?
ext,i = pi,0D

?
i + Θ?

i,0 ◦ λie, for 1 ≤ i ≤ K.

6. Z?i = λ−1
i Q?i and W ?

i = Z?i ◦ λie.

4.4 Heavy-Traffic Limits with One Bottleneck Queue

In this section we consider the special case in which there is only one bottleneck queue, which

is useful for the IDC approximation and the RQNA applications because it is especially

tractable, involving one-dimensional RBM instead of multi-dimensional RBM.
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We start with the easiest special case: when |H| = K = 1, which corresponds to the

GI/GI/1 queue with i.i.d. customer feedback. But then we observe that the case of a single-

bottleneck is asymptotically equivalent to that except that the arrival process is generalized

to include the immediate feedback associated with flows to all the other non-bottleneck

queues.

As a consequence, we show that it is asymptotically correct in HT for a GJN with a

single bottleneck queue to eliminate all feedback prior to analysis. Moreover, we show how

to quantify feedback elmination.

4.4.1 A Single-Server Queue with Customer Feedback

Consider a single-server queue with customer feedback as depicted in Figure 4.1. Let A0

denote the renewal external arrival process with rate λ0 and scv c2
a0 . Let the feedback

probability be p, so that the effective arrival rate is λ = λ0/(1 − p). Let service times be

i.i.d. with rate µρ = λ/ρ and scv c2
s, hence a traffic intensity of ρ. Let A denote the total

arrival process; let Aint be the feedback flow; let S denote the service process; let D be the

total departure process; and let Dext denote the flow that exits the system.

Aext(t)
Queue 1

D(t)

Feedback prob. p

Figure 4.1: A single-server queue with customer feedback.

Corollary 4.2 (One GI/GI/1 queue with feedback) Under Assumptions in Theorem

4.5, consider a family of single-server queues in stationarity, indexed by ρ. Assume that

µρ = λ/ρ. Then, as ρ ↑ 1,

(Q?ρ,W
?
ρ , Z

?
ρ ,Θ

?
ρ,Θ

?
ext,ρ,F?ρ )⇒ (Q?,W ?, Z?,Θ?,Θ?

ext,F?) in D11,

where F?ρ = (A?0,ρ, A
?
ρ, A

?
int,ρ, S

?
ρ , D

?
ρ, D

?
ext,ρ), F? = (A?0, A

?, A?int, S
?, D?, D?

ext) and:

1. A?0 = ca0Ba0 ◦ λ0e and S? = csBs ◦ λe, where Ba0 and Bs are standard Brownian

motions. (Θ?,Θ?
ext) is a zero-drift two-dimensional Brownian motion with covariance
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matrix Σ = (σ2
i,j : 1 ≤ i, j ≤ 2), where σ2

1,1 = σ2
2,2 = p(1 − p)λ and σ2

1,2 = σ2
2,1 =

−p(1− p)λ, so that

Θ? + Θ?
ext = 0.

Furthermore, Ba0, Bs and (Θ?,Θ?
ext) are mutually independent.

2. The queue length process Q? is a stationary one-dimensional RBM

Q? ≡ Ψ (X?) ,

where Ψ is the one-dimensional reflection map and X? is a one-dimensional Brownian

motion

X? = Q?(0) +A?0 + (Θ? − (1− p)S?)− λ0e,

where λ0 = (1 − p)λ. Furthermore, Q?(0) has unique stationary distribution of the

stationary one-dimensional RBM with drift −λ0 and variance

λ0c
2
x ≡ λ0

(
c2
a + p+ (1− p)c2

s

)
,

so an exponential distribution with mean c2
x/2.

3. The total arrival process A? can be regarded as a stationary process, having stationary

increments, specified by

A? =
1

1− p
(A?0 + Θ?) +

p

1− p
(Q?(0)−Q?) .

4. The stationary total departure process D? is specified as

D? = Q?(0) +A? −Q?

=
1

1− p
(
Q?(0)−Q? +A?0 + (Θ?)′ 1

)
(4.31)

5. The internal arrival flow A?int can be expressed as

A?int = pD? + Θ?

and the external departure flow can be expressed as

D?
ext = (1− p)D? + Θ?

ext = A?0 +Q?(0)−Q?.
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6. Z? = λ−1Q? and W ? = Z? ◦ λe.

As observed in Section III of [134], to develop effective parametric-decomposition ap-

proximations for OQNs it is often helpful to preprocess the model data by eliminating

immediate feedback for queues with feedback. The immediate feedback returns the cus-

tomer to the end of the line. The approximation step is to put the customer instead back at

the head of the line, so as to receive all its (geometrically random number of) service times

at once. Clearly this does not alter the queue length process and the workload process.

The modified system does not have a feedback flow and the new service time will be

the geometric random sum of the i.i.d. copies of the original service times, let S̃ denote the

new service counting process.

This modification results in a change in the service rate and service scv. The new service

rate is (1 − p)µ = (1 − p)λ/ρ = λ0/ρ and, by conditional variance formula, the new scv is

c̃2
s = p+(1−p)c2

s. Hence, the heavy-traffic limit of the new service process is S̃? ≡ c̃2
sB̃s◦λ0e.

We now claim that S̃?
dist.
= Θ? − (1− p)S?. To this end, note that Θ? =

√
p(1− p)BΘ ◦ λe

and S? = csBs ◦ λe, where BΘ, Bs are independent standard Brownian motions (zero drift

and unit variance) and λ0 = (1− p)λ. Hence, from part (ii) of Corollary 4.2, we have

X? dist.= Q?(0) +A?0 + S̃? − λ0e. (4.32)

Let Q̃?, Z̃?, W̃ ? denote the HT limit of the queue length process, the workload process

and the waiting time process in the modified single-server queue without feedback, having

arrival process A0 and service process S̃. Standard heavy-traffic theory implies that (4.32)

is exactly the HT limit of the net-input process of a single-server queue so that Q̃?
dist.
= Q?.

Hence, we have

Z̃? ≡ λ−1
0 Q̃?

dist.
= (1− p)−1λ−1Q? ≡ (1− p)−1Z?, and

W̃ ? ≡ Z̃? ◦ λ0e
dist.
= (1− p)−1Z? ◦ λ0e ≡ (1− p)−1W ? ◦ (1− p)e.

Note that the expected number of visit for the same customer is (1 − p)−1. This implies

that for approximating the waiting time and workload in the original system, we need to

adjust for per-visit version by multiplying the values in the modified system by (1− p).



CHAPTER 4. HEAVY-TRAFFIC LIMITS FOR STATIONARY FLOWS 115

Theorem 4.6 (Eliminating immediate feedback) For the single-server queue with feed-

back model in Corollary 4.2, consider the modified single-server queue, where immediate

feedback are eliminated by placing the feedback customers at the head of the line. The joint

heavy-traffic limit for the queue length process, the waiting time process, the workload pro-

cess and the external departure process in the original model can be expressed in terms of

those in the modified system as

(Q?, Z?,W ?, D?
ext)

dist.
= (Q̃?, (1− p)Z̃?, (1− p)W̃ ? ◦ (1− p)−1e, D̃?

ext).

4.4.2 Networks with One Bottleneck Queue

We now consider the more general special case in which K ≥ 1 but |H| = 1. Without loss

of generality, let H = {h}, so that station h is the only bottleneck station. Then Theorem

4.5 can be restated as

Corollary 4.3 (Network with one bottleneck queue) Under Assumption 4.1-4.2, con-

sider a series of GJNs in stationarity, indexed by ρ. Assume that µi,ρ = λi/(κiρ) for

1 ≤ i ≤ K and set ch = 1 and κi < 1 for all i 6= h. Then, we have

(Q?ρ,W
?
ρ , Z

?
ρ ,Θ

?
ρ,Θ

?
ext,ρ,F?ρ )⇒ (Q?,W ?, Z?,Θ?,Θ?

ext,F?)

as ρ ↑ 1 in D9K+2K2
, where:

1. For 0 ≤ i ≤ K, A?0,i = ca0,iBa0,i ◦ λ0,ie and S?i = csiBsi ◦ λie, where Ba0,i and

Bsi are standard Brownian motions. (Θ?
i,j : 0 ≤ j ≤ K) is a zero-drift (K + 1)-

dimensional Brownian motion with covariance matrix Σi = (σ2
j,k : 0 ≤ j, k ≤ K),

where σ2
j,j = pi,j(1 − pi,j)λi and σ2

j,k = −pi,jpi,kλi for 0 ≤ i 6= j ≤ K. Furthermore,

Ba0,i, Bsi and (Θ?
i,j : 0 ≤ j ≤ K) are mutually independent, 1 ≤ i ≤ K.

2. The queue length process Q? consists of two parts. Q?i ≡ 0 for i 6= h and Q?h is a

stationary one-dimensional RBM

Q?h ≡ Ψ
(
X̂?
h

)
,

where Ψ is the one-dimensional refelction map and X̂?
h is the net-input process defined

as

X̂?
h = Q?h(0) +

(
e′h + P̂ ′Hc,he

′
Hc
) (
A?0 + (Θ?)′ 1

)
− (1− P̂h)S?h − λ̂0,he, (4.33)
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where eA collects columns in the K-dimensional identity matrix I that corresponds to

index set A; P̂h, P̂Hc,h and λ̂0,h are defined in (4.24), (4.25) and (4.26) with H = {h},

respectively. Furthermore, Q?h(0) has unique stationary distribution of the stationary

RBM.

3. The total arrival process A? can be regarded as a stationary process, having stationary

increments, specified by

A? = (I − P ′)−1
(
A?0 + (Θ?)′ 1

)
+ P ′(I − P ′)−1eh (Q?h(0)−Q?h) .

4. The stationary departure process D? is specified as

D? = Q?(0) +A? −Q? = (I − P ′)−1
(
Q?(0)−Q? +A?0 + (Θ?)′ 1

)
.

In particular,

D?
Hc = Q?Hc +A?Hc −Q?Hc(0) = A?Hc .

5. The internal arrival flow A?i,j can be expressed as

A?i,j = pi,jD
?
i + Θ?

i,j ◦ λie, for 1 ≤ i, j ≤ K

and the external departure flow can be expressed as

D?
ext,i = pi,0D

?
i + Θ?

i,0 ◦ λie, for 1 ≤ i ≤ K.

6. Z?i = λ−1
i Q?i and W ?

i = Z?i ◦ λie.

We conclude this section by observing that in a GJN with one bottleneck queue that

the bottleneck queue is asymptotically equivalent to a G/GI/1 single-server queue with

feedback in the HT limit, where the arrival process is a complex superposition of renewal

arrival processes. We derive the explicit expression for the external arrival process and

feedback probability in the equivalent network. We also show that feedback elimination is

asymptotically correct for networks with one bottleneck.

We start with a convenient representation of the HT limit of the bottleneck queue. Let

p̂i,h be the (i, h)-th component of P̂Hc,H in (4.25) and recall that p̂ ≡ P̂h is the feedback

probability defined in Remark 4.2.
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Theorem 4.7 The HT limit X̂?
h in (4.33) can be expressed as the following one-dimensional

Brownian motion

X̂?
h = Q?h(0) + Â? +

(
Θ̂?
S − (1− p̂)S?h

)
+ λ̂0,he, (4.34)

where

Â? = A?0,h +
∑
i∈Hc

(
p̂i,hA

?
0,i + Θ̂?

i,h

)
, (4.35)

and

Θ̂?
i,h =

√
p̂i,h(1− p̂i,h)BΘ̂i,h

◦ λ0,ie,

Θ̂?
S =

√
p̂(1− p̂)BΘ̂S

◦ λie, (4.36)

while BΘ̂i,h
and BΘ̂S

are independent standard Brownian motions.

Proof Since the drift term, the terms associated with A?0 and S?h remain unchanged, it

suffices to show that the terms related with the splitting decision processes share the same

variance. In fact, by algebraic manipulation, one can check that

Var

(∑
i∈Hc

Θ̂?
i,h + Θ̂?

S

)
=
∑
i∈Hc

p̂i,h(1− p̂i,h)λ0,ie+ p̂(1− p̂)λie

=

K∑
i=1

(
e′h + P̂ ′Hc,he

′
Hc
)

Σi

(
eh + eHcP̂Hc,h

)
e

= Var
(
e′h (Θ?)′ 1 + P̂ ′Hc,he

′
Hc (Θ?)′ 1

)
where Σi are the variance matrix defined in Theorem 4.5.

Now, consider a reduced one-station network consist of the only bottleneck queue, while

all non-bottleneck queues have service times set to 0 so that they serve as instantaneous

switches. In the reduced network, we define an external arrival Â0 to the bottleneck queue

to be any external arrival that arrive at the bottleneck queue for the first time. Hence,

an external arrival may have visited one or multiple non-bottleneck queues before its first

visit to the bottleneck queue. In particular, the external arrival process can be expressed

as the superposition of (i) the original external arrival process A0,h at station h; and (ii)

the Markov splitting of the external arrival process A0,i at station i with probability p̂i,h,

for i ∈ Hc.
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Theorem 4.7 implies that the reduced network is asymptotically equivalent to the orig-

inal bottleneck queue in the sense of the stationary queue length process in the HT limit.

Furthermore, comparing Theorem 4.7 with Corollary 4.2, we conclude that both the reduced

network and the original bottleneck queue is asymptotically equivalent to a single-server

queue with feedback, where the external arrival process is Â, the service times remain

unchanged and the feedback probability is p̂.

We then eliminate immediate feedback customers just as in Theorem 4.6, but with the

extended interpretation of immediate feedback. Recalling that the non-bottleneck queues

act as instantaneous switches, we recognize all customers that feed back to the bottleneck

queue as immediate feedback, even after visiting non-bottleneck queues. The probability

of feedback is then exactly p̂ ≡ P̂h as in Remark 4.2. After feedback elimination, the

new service process Ŝ is the renewal process associated with the new service times, i.e., a

geometric sum of the original service times at the bottleneck queue. Note that the modified

service process after feedback elimination have a HT limit Ŝ? ≡ Θ̂?
S−(1− p̂)S?h, where Θ?

S is

defined in (4.36), just as discussed in Section 4.4. This matches exactly with the “service”

part in (4.34) of Theorem 4.7. Hence, we have the following theorem, extending Theorem

4.6.

Theorem 4.8 (Feedback elimination with one bottleneck queue) For the bottleneck

queue in the generalized Jackson network, consider the modified single-server queue with

arrival process Â and service process Ŝ. The joint heavy-traffic limit for the queue length

process, the waiting time process, the workload process and the external departure process

in the original model can be expressed in terms of those in the modified system as

(Q?, Z?,W ?, D?
ext)

dist.
= (Q̂?, (1− p)Ẑ?, (1− p)Ŵ ? ◦ (1− p)−1e, D̂?

ext).

4.5 Functional Central Limit Theorem for the Stationary

Flows

In this section, we focus on yet another important specail case of Theorem 4.5 where we

set |H| = 0. In this special case, all stations are strictly non-bottleneck, i.e., µi,ρ = λ/(κiρ)

where κi < 1 for all i. As ρ ↑ 1, the family of systems converges to a limiting system where
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the traffic intensity at station i is ρi = κi. Hence, the scaling used in (4.22) corresponds

to the diffusion scaling used in the usual FCLT. The following corollary describes the joint

FCLT of the stationary flows.

Corollary 4.4 (FCLT for the stationary flows) Under Assumption 4.1-4.2, consider

a family of open queueing networks in stationarity, indexed by ρ. Assume that µi,ρ =

λi/(κiρ) with κi < 1 for 1 ≤ i ≤ K. Then, as ρ ↑ 1,

(Q?ρ,W
?
ρ , Z

?
ρ ,Θ

?
ρ,Θ

?
ext,ρ,F?ρ )

⇒ (Q?,W ?, Z?,Θ?,Θ?
ext,F?) in D9K+2K2

, (4.37)

where:

1. For 0 ≤ i ≤ K, A?0,i = ca0,iBa0,i ◦ λ0,ie and S?i = csiBsi ◦ λie, where Ba0,i and

Bsi are standard Brownian motions. (Θ?
i,j : 0 ≤ j ≤ K) is a zero-drift (K + 1)-

dimensional Brownian motion with covariance matrix Σi = (σ2
jk : 0 ≤ j, k ≤ K),

where σ2
j,j = pi,j(1 − pi,j)λi and σ2

j,k = −pi,jpi,kλi for 0 ≤ i 6= j ≤ K. Furthermore,

Ba0,i, Bsi and (Θ?
i,j : 0 ≤ j ≤ K) are mutually independent, 1 ≤ i ≤ K.

2. The queue length process Q? ≡ 0.

3. The total arrival process A? can be regarded as a stationary process, having stationary

increments, specified by

A? = (I − P ′)−1
(
A?0 + (Θ?)′ 1

)
.

4. The stationary departure process is the same as the stationary total arrival process,

so that D? = A?.

5. The internal arrival flow A?i,j can be expressed as

A?i,j = pi,jD
?
i + Θ?

i,j ◦ λie, for 1 ≤ i, j ≤ K

and the external departure flow can be expressed as

D?
ext,i = pi,0D

?
i + Θ?

i,0 ◦ λie, for 1 ≤ i ≤ K.

6. Finally, Z?i = W ?
i = 0.
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4.6 Proofs

Proof of Theorem 4.3

Proof By Corollary 4.1 and the definition of Ss in (4.12), the convergence of Vs(0) = V (s)

implies the convergence of Ss to Se, with the later one being a delayed renewal process with

first interval distributed as Ve(0) and other intervals distributed as a generic service time.

Similarly, the components of A0,s are delayed renewal process with the first interval dis-

tributed as the components of Us(0), which is converging to the vector A0,e of the equilibrium

external arrival processes. By the convergence of Ss, we have as s→∞

(Qs, Us, Vs, A0,s, Ss)⇒ (Qe, Ue, Ve, A0,e, Se) . (4.38)

We now turn our focus to the cumulative busy time process defined in (4.4). Let

h : R+ → R be a continuous function defined by h(t) = t ∧ 1 ≡ min{t, 1}, t ≥ 0. Then the

busy period process can be written as

Bi,s(t) =

∫ s+t

s
1Qi(u)>0du =

∫ t

0
1Qi,s(u)>0du =

∫ t

0
h(Qi,s(u))du, for 1 ≤ i ≤ K. (4.39)

The busy-period process thus has stationary increments because it is a measurable integrable

function of Qi,e, which is itself stationary. (Recall that general measurable functions of

stationary process are stationary; see Proposition 6.6 of [28].) Let C(R+,R) denote the

space of bounded continuous functions from R+ to R, equipped with uniform norm. The

mapping defined in (4.39) is a continuous mapping from D to C(R+,R); see Theorem 11.5.1

in [143]. The continuous mapping theorem then asserts that Bs ⇒ Be, where Bi,e(t) ≡∫ t
0 h(Qi,e(u))du for t ≥ 0 and all i. For the cumulative idle-time process Yi,s(t) ≡ Yi(t+s)−

Yi(s) = µi(t−Bi,s(t)), we note that t and Bi,s(t) have continuous sample path, so that the

linear function in (4.9) is continuous. Hence, we can extend the convergence as s → ∞ in

(4.38) to

(Qs, Us, Vs, A0,s, Ss, Bs, Ys)⇒ (Qe, Ue, Ve, A0,e, Se, Be, Ye) . (4.40)

The convergence established so far now implies associated convergence for the flows

because the flow process Fs is determined by the state process Ss. To make the connection,

we introduce random vectors (Ts, Js), where Ts is the time of the first jump in Qs and Js
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is the type of jump (external arrival to queue i, flow from queue i to queue j, or external

departure from queue i), defined by

Ts ≡ min {T as , T ds }, where

T as ≡ min {Us,i(0) : 1 ≤ i ≤ K} and

T ds ≡ min {Vs,i(0) : Qi(0) > 0, 1 ≤ i ≤ K}. (4.41)

while Js = (0, i), (i, j) or (i, 0) if the minimum in the definition of Ts is attained, respectively,

by T as with index i, T ds with index i and the routing is to j, T ds with index i and the routing

is to outside the network.

We observe that the we can regard (T, J) : (s,Ss) → R × N , where N is a finite set,

as a continuous map, so that (Ts, Js) ⇒ (Te, Je) as s → ∞. We also observe that Ts is a

stopping time with respect to the strong Markov process {Ss(t) : t ≥ 0}, so that we can

repeat the construction for all successive jumps after time Ts.

In this way, we get convergence of the process of successive jump times and jump types

(indexed by k)

{(Ts,k, Js,k) : k ≥ 1} ⇒ {(Te,k, Je,k) : k ≥ 1} in (R×N )∞ as s→∞. (4.42)

That in turn implies convergence for the associated flow counting processes by applying the

inverse map in §13.6 of [143] as stated. For example, we can write

Ns(t) ≡ min {k ≥ 0 : Ts,1 + · · ·+ Ts,k ≤ t} and

As,i,j(t) =

Ns(t)∑
k=1

1Js,k=(i,j).
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Proof of Theorem 4.4. With the standard flow conservation law, we can write the queue

length process in terms of the centered processes

Qi = Qi(0) +Ai − Si ◦Bi

= Qi(0) +A0i +
K∑
j=1

Θji(Sj ◦Bj)− Si ◦Bi

= Qi(0) + (A0i − λ0ie) +
K∑
j=1

(Θji(Sj ◦Bj)− pjiSj ◦Bj)

−
K∑
j=1

(δji − pji) (Sj ◦Bj − µjBj) +

K∑
j=1

(δji − pji)µj (e−Bj)

+ λ0ie−
K∑
j=1

(δji − pji)µje.

Because Yi ≡ µi (t−Bi) is the cumulative idle time, we can express Q in matrix form as

Q = Q(0) +A0 + Θ̃′1− (I − P ′)S̃ + (I − P ′)Y + (λ0 − (I − P ′)µ)e.

Furthermore, we have Q = X + (I − P ′)Y. Because Y is non-decreasing, Y (0) = 0 and Yi

increases only when Qi = 0, (4.18) follows from the usual reflection argument.

Similarly, we can re-write the overall arrival process in terms of the centered processes

Ai = A0i +

K∑
j=1

Θji(Sj ◦Bj)

= (A0i − λ0ie) +
K∑
j=1

(Θji(Sj ◦Bj)− pjiSj ◦Bj) +
K∑
j=1

pji (Sj ◦Bj − µjBj)

−
K∑
j=1

pjiµj (e−Bj) + λ0ie+
K∑
j=1

pjiµje

or, in matrix notation, by

A = Ã0 + Θ̃′1 + P ′S̃ − P ′Y + (λ0 + P ′µ)e.

By (4.18), we have

−P ′Y = P ′(I − P ′)−1(X −Q)

= P ′(I − P ′)−1
(
Q(0)−Q+ Ã0 + Θ̃′1 + λ0e

)
− P ′S̃ − P ′µe.
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Substituting into the matrix form of the arrival process, we have

A = Ã0 + Θ̃′1 + P ′S̃ − P ′Y + (λ0 + P ′µ)e

= Ã0 + Θ̃′1 + P ′S̃ + (λ0 + P ′µ)e

+P ′(I − P ′)−1
(
Q(0)−Q+ Ã0 + Θ̃′1 + λ0e

)
− P ′S̃ − P ′µe

= P ′(I − P ′)−1 (Q(0)−Q) + (I − P ′)−1
(
Ã0 + Θ̃′1

)
+ λe. (4.43)

Finally, note that D = Q(0) +A−Q.

Proof of Theorem 4.5 Much of the statement follows from [34; 35] and [31]. First, the

HT limit for the state process with an arbitrary subset H of critically loaded stations follows

from [34; 35]. Second, the HT limit for the steady-state queue length follows from [31]. The

papers [66] and [31] do not consider non-bottleneck stations, but their arguments extend to

that more general setting. (See Remark 4.3 below for discussion.) We subsequently establish

the heavy-traffic limits for the flows. We do so by exploiting the continuous mapping

theorem with the direct representations of the stationary flows that we have established.

To carry out our proof, we work with the centered representation in Theorem 4.4, using

the HT-scaling in (4.22). Thus, the HT-scaled net-input process is

X∗ρ = Q∗ρ(0) +A∗0,ρ +
(

Θ̃∗ρ

)′
1− (I − P ′)S̃∗ρ + (λ0 − (I − P ′)µρ)(1− ρ)−1e, (4.44)

where S̃∗i,ρ ≡ S∗i,ρ◦ ¯̄Bi,ρ,
¯̄Bi,ρ = (1−ρ)2Bi,ρ◦(1−ρ)−2e, Θ̃∗ρ is a matrix with its ij-th entry being

Θ∗ij,ρ◦S ◦Bi,ρ and S ◦Bρ is a vector of length K with S ◦Bi,ρ ≡ (1−ρ)2Si,ρ◦Bi,ρ◦(1−ρ)−2e.

The HT-scaled queue length can be written as

Q∗ρ = X∗ρ + (I − P ′)Y ∗ρ .

We now re-write Q∗H,ρ and Q∗Hc,ρ in block-wise matrix representation as follows

Q∗H,ρ = X∗H,ρ + (I − P ′H,H)Y ∗H,ρ − P ′Hc,HY ∗Hc,ρ (4.45)

Q∗Hc,ρ = X∗Hc,ρ + (I − P ′Hc,Hc)Y ∗Hc,ρ − P ′H,HcY ∗H,ρ (4.46)

Solving for Y ∗Hc,ρ in (4.46) and substituting into (4.45), we have

Q∗H,ρ = X̂∗H,ρ + (I − P̂ ′H)Y ∗H,ρ, (4.47)
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where

X̂∗H,ρ = X∗H,ρ − P ′Hc,H(I − P ′Hc,Hc)−1(Q∗Hc,ρ −X∗Hc,ρ).

Now, we substitute into X̂∗H,ρ the expression forX∗ρ from (4.44), in block matrix notation,

leaving a constant η̂ρ in the final deterministic drift term initially unspecified, to obtain

X̂∗H,ρ = Q∗H,ρ(0) +A∗0,H,ρ + e′H(Θ̃∗ρ)
′1− (I − P ′H,H)S̃∗H,ρ + P ′Hc,HS̃

∗
Hc,ρ

− P ′Hc,H(I − P ′Hc,Hc)−1Q∗Hc,ρ

+ P ′Hc,H(I − P ′Hc,Hc)−1
(
Q∗Hc,ρ(0) +A∗0,Hc,ρ

+e′Hc(Θ̃
∗
ρ)
′1− (I − P ′Hc,Hc)S̃∗Hc,ρ + P ′H,HcS̃

∗
H,ρ

)
+ η̂ρ(1− ρ)−1e

= Q∗H,ρ(0) +A∗0,H,ρ + P ′Hc,H(I − P ′Hc,Hc)−1A∗0,Hc,ρ + (I − P̂ ′H)S̃∗H,ρ

+ e′H(Θ̃∗ρ)
′1 + P ′Hc,H(I − P ′Hc,Hc)−1e′Hc(Θ̃

∗
ρ)
′1

+ P ′Hc,H(I − P ′Hc,Hc)−1(Q∗Hc,ρ(0)−Q∗Hc,ρ) + η̂ρ(1− ρ)−1e.

Now we derive the drift term η̂ρ. To start, let

ηρ = λ0 − (I − P ′)µρ.

Just like how we treat the HT-scaled queue length process, we can re-write ηρ into blocks

ηH,ρ = λ0,H − (I − P ′H,H)µH,ρ + P ′Hc,HµHc,ρ, (4.48)

ηHc,ρ = λ0,Hc − (I − P ′Hc,Hc)µHc,ρ + P ′H,HcµH,ρ. (4.49)

Hence

η̂ρ ≡ ηH,ρ + P ′Hc,H(I − P ′Hc,Hc)−1ηHc,ρ

= λ0,H + P ′Hc,H(I − P ′Hc,Hc)−1λ0,Hc − (I − P̂ ′H)µH,ρ. (4.50)

Note that the traffic-rate equation can be written as

λ0,H = (I − P ′H,H)λH − P ′Hc,HλHc ,

λ0,Hc = (I − P ′Hc,Hc)λHc − P ′H,HcλH.

Substitute both λ0,H and λ0,Hc into (4.50), we have

η̂ρ = (I − P̂ ′H)(λH − µH,ρ). (4.51)
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To summarize, the HT-scaled net-input process associated with the bottleneck queues

can be expressed as

X̂∗H,ρ = Q∗H,ρ(0) +A∗0,H,ρ + P ′Hc,H(I − P ′Hc,Hc)−1A∗0,Hc,ρ − (I − P̂ ′H)S̃∗H,ρ

+e′H(Θ̃∗ρ)
′1 + P ′Hc,H(I − P ′Hc,Hc)−1e′Hc(Θ̃

∗
ρ)
′1

+(I − P̂H)(λH − µH,ρ)(1− ρ)−1e

+P ′Hc,H(I − P ′Hc,Hc)−1(Q∗Hc,ρ(0)−Q∗Hc,ρ). (4.52)

Now we are ready to deduce the claimed conclusions. First for conclusion (i), most

follows directly from Donsker’s theorem, Theorem 4.3.2 of [143], and the GJN assumptions.

The exception is the limit

(S̃∗ρ , Θ̃
∗
ρ)⇒ (S∗,Θ∗)

which follows from the continuous mapping theorem by a random-time-change argument,

as shown in [35].

For conclusion (ii), we apply [31] to get

(Q∗H,ρ(0), Q∗Hc,ρ(0))⇒ (Q∗H(0), Q∗Hc(0)) as ρ ↑ 1.

Then the conclusion (ii) follows from Theorem 6.1 of [35]. In particular, there we see that

Q∗Hc is null, so that we can treat the two components of (Q∗H,ρ, Q
∗
Hc,ρ) separately. First, to

treat Q∗H,ρ, we apply the continuous mapping theorem with the reflection map using the

representation above. To do so, we observe that, as ρ ↑ 1,

(I − P̂H)(λH − µH,ρ)(1− ρ)−1e→ −(I − P̂H)λHe

and

Q∗H,ρ = X̂∗H,ρ + (I − P̂ ′H)Y ∗H,ρ = ψI−P̂ ′H
(X̂∗H,ρ). (4.53)

Conclusions (iii) and (iv) follows from the representations derived in Theorem 4.4, the

continuous mapping theorem and the established convergence of the queue length process,

the external arrival processes and the splitting-decision processes. To this end, we only need

to apply diffusion scaling (accelerate time by (1 − ρ)−2 and scale space by (1 − ρ)) to the
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representations in Theorem 4.4 so that

A∗ρ = P ′(I − P ′)−1
(
Q∗ρ(0)−Q∗ρ

)
+ (I − P ′)−1

(
A∗0,ρ + (Θ̃∗ρ)

′1
)
,

D∗ρ = (I − P ′)−1
(
Q∗ρ(0)−Q∗ρ +A∗0,ρ + (Θ̃∗ρ)

′1
)
. (4.54)

The second expression follows from the fact that Q∗Hc = 0.

Next, conclusions (v) follows from the limit of the departure process and the FCLT of

the splitting operation in §9.5 of [143]. Finally, the associated limits for the workload can

be related to the limit for the queue length as indicated in [35].

Remark 4.3 (Elaboration on the application of [31]) We apply [31], but it must be

extended to the model with non-bottleneck queues. We do not go through all details because

we regard that step as minor, but we now briefly explain.

First, the main stability condition (A6) there holds in our setting here. Notice that

our scaling convention here relies on the traffic intensity parameter ρ instead of the scaling

parameter n used in [31]. Comparing (4.22) here with (A5) there, For the bottleneck queues,

the two scaling conventions are connected by setting n = (1−ρ)−2, ṽni = 0 and β̃ni = −λi/ρ.

The stability condition here is then connected to that in [31] by setting θ0 = −1 in (13)

there.

For the moment estimation in their Theorem 3.3, we treat QH and Q∗Hc separately. For

QH, our representation (4.47) and (4.52) can be mapped to the representations (16) on

p.51 of [31], but with slightly more complicated constant terms associated with the matrix

multiplication we have in (4.52). Noting the expression of the drift term we have in (4.51),

the rest of the proof is essentially the same. For Q∗Hc , by [34; 35], it is negligible in the

sense of Theorem 3.3 of [31]. Theorem 3.4 of [31] relies only on the moment estimation as

in their Theorem 3.3 and the strong Markov property of S(t) (which they denoted as X(t)).

Finally, Theorem 3.5 and Theorem 3.2 of [31] remain unchanged.
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Chapter 5

Robust Queueing Network

Analyzer

In this chapter, we develop the Robust Queueing Network Analyzer (RQNA) algorithm

in the network setting introduced in Section 4.1, which generalizes the RQ algorithm for

single-server queues in Chapter 2 and for queues in series models in Chapter 3.3. In revoking

the RQ algorithm in (2.35), our primary focus is to analyze and approximate the IDC’s of

the customer flows in a OQN. To start, we divided the flows into two groups, the external

flows and the internal flows, and introduce the notations for the IDC’s.

The external flows are the flows associated with the model primitives in Section 4.1,

i.e., the external arrival flows and the flows associated with the (non-interrrupted) service

process. For the external arrival process A0,i, we let Ia,0,i ≡ {Ia,0,i(t) : 0 ≤ t ≤ ∞} denote

the its IDC. For the service flows, let Is,i ≡ {Is,i(t); 0 ≤ t ≤ ∞} be the IDC of the stationary

renewal process associated with (4.1). For the case of renewal process, we necessarily have

Is,i(∞) = c2
s,i, as in Lemma 3.1. As regularity assumption, we assume that the IDC’s Ia,0,i

and Is,i is continuous with finite limits at t = 0 and +∞. The IDC’s of the external flows

are regarded as important input parameters of our RQNA algorithm, which is in stark

contrast to the QNA algorithm in [134], where only to the means and scv’s are required. In

particular, we assume that we are given (λ0,i, Ia,0,i, µi, Is,i) for each queue i and the routing

matrix P . Practical methods to obtain the IDC’s of the external flows are discussed in
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Section 2.3.4.

The internal flows are all other customer flows in the network. In particular, we have the

total arrival flows at each station, which is of particular interest for our RQNA algorithm.

Let Ai denote the total arrival process at queue i and let Ia,i be the associated IDC. Let Di

denote the departure process at queue i and let Id,i be the associated IDC. Finally, let Ai,j

denote the departing customer flow from queue i that are routed to queue j and let Ia,i,j

be the associated IDC.

The IDC’s of the internal flows are regarded as unknown parameters to be approximated

from the external IDC’s. In Section 5.1 - 5.2, we demonstrate how the HT limits in Chapter

4 can be applied to develop IDC approximations for the three network operations: the

departure operation, the superposition operation and the splitting operation, respectively.

For each operation, our approximation is written as a linear equation, which we refer to

as the IDC equations, see (5.1), (5.10) and (5.28). In Section 5.4, the IDC equations are

combined into a general framework for approximating the IDC’s of the flows.

One of the key assumptions in our IDC formulation of the RQ algorithm (2.35) is that

the service times are i.i.d., independent of the arrival process at the same station. This

assumption allow us to decompose the IDW as in (2.26) and work with the relatively simple

arrival IDC. However, in the presence of customer feedback (so that a customer may re-visit

a station), the service times is necessarily correlated with the arrival process at the feedback

queue. As a mitigation, we propose a feedback elimination procedure in Section, which is

supported by the heavy-traffic limit theorem in Theorem 4.6 and Theorem 4.8.

The full RQNA algorithm is presented in Section 5.6. We also present a more elementary

version for tree-structured OQN’s in Section 5.6.1.

5.1 The Departure Operation

In Section 3.3, we investigated the the departure IDC in the case of GI/GI/1 queue and

proposed to approximate the departure IDC by (3.1) and (3.67). We now provide full

support for this approximation in generalized Jackson network. In terms of the IDC’s in
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the network, we have

Id,i(t) ≈ wi(t)Ia,i(t) + (1− wi(t))Is,i(ρit), t ≥ 0 (5.1)

with

wi(t) ≡ w∗
(
(1− ρi)2λit/ρ

2
i c

2
x,i

)
, t ≥ 0, (5.2)

where c2
x,i = c2

a,i + c2
s,i, c

2
a,i is the limiting variability parameter of Ai, defined in (5.4), c2

s,i

is the service scv at station i and w?(t) is the weight function in (3.27).

We start with a characterization of the limiting variability parameter of the total arrival

process. Recall that Θ?
i = (Θ?

i,j : 0 ≤ j ≤ K) is the the collection of the Brownian limits of

the decision processes at station i, see Theorem 4.5 for example. We have

cov(Θ?
i,j ,Θ

?
i,k) =

 pi,j(1− pi,j)λit, j = k,

−pi,jpi,kλit, j 6= k.

Define

Σi ≡
(
cov(Θ?

i,j ,Θ
?
i,k)/t

)K
j,k=1

∈ RK×K

so that Σi is a constant matrix independent of t.

Lemma 5.1 (Limiting variability parameter) Under the assumptions in Theorem 4.5

plus the usual uniform integrability conditions, for which it suffices for the interarrival times

and service times to have uniformly bounded fourth moments,

lim
t→∞
ρ↑1

Ia,ρ,i(t) = lim
t→∞

lim
ρ↑1

Ia,ρ,i(t) = lim
ρ↑1

lim
t→∞

Ia,ρ,i(t) = c2
a,i (5.3)

where

c2
a,i = Var

(
e′i(I − P ′)−1

(
A?0 + (Θ?)′ 1

))
= e′i(I − P ′)−1

(
diag(c2

a0,iλi) +

K∑
l=1

Σl

)
(I − P )−1ei. (5.4)

The following theorem generalizes Theorem 3.8.

Theorem 5.1 (Heavy-traffic limit for the departure variance function in GJN)

Under the assumptions in Corollary 4.3 plus the usual uniform integrability conditions, for
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which it suffices for the interarrival times and service times to have uniformly bounded

fourth moments, the HT limit of the departure process of the bottleneck station h can be

written as

D?
h = Q̃?h(0) + Ã?h − Q̃?h, (5.5)

where

Ã?h = e′h(I − P ′)−1
(
A?0 + (Θ?)′1

)
(5.6)

and

Q̃?h =
1

1− P̂h
Q?h = ψ

(
Q̃?h(0) + Ã?h − S?h − λhe

)
. (5.7)

As a result, the limiting variance function of the departure process is

V ?
d,h,ρ(t) ≡ Var(D?

h,ρ(t)) = E[D?
h,ρ(t)

2]

→ E[D?
h(t)2] = Var(D?

h(t)) ≡ V ?
d,h(t) as ρ ↑ 1, (5.8)

where

V ?
d,h(t) = w?(λht/c

2
x,h)c2

A,hλht+ (1− w?(λht/c2
x,h))c2

s,hλht (5.9)

with c2
x,h = c2

A,h + c2
s,h, c2

A,h is the limiting variability parameter of Ah, defined in (5.4), c2
s,h

is the service scv at station h and w?(t) is the weight function in (3.27).

The approximation (5.1) is then justified by the exact same procedure as described in

Section 3.3.1.

In Section 6.3.1, we provide numerical support for the following conjecture.

Conjecture 5.1 Theorem 5.1 holds for general G/G/1 queue, where the arrival and service

processes are stationary and ergodic point processes with finite IDC’s and the service process

is independent of the arrival process.

5.2 The Splitting Operation

In this section, we derive our IDC equation for the splitting operation. In particular, we

propose the following approximation

Ia,i,j(t) = pi,jId,i(t) + (1− pi,j) + αi,j(t). (5.10)
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where αi is defined in (5.16).

We start with a simple example in Section 5.2.1 as an illustration and then address the

general case in Section 5.2.2.

5.2.1 Dependent Splitting: One Queue with Immediate Feedback

Consider the single-server queue with immediate customer feedback as in Section 4.4.1.

This introduces dependence between the splitting decision process and the arrival process.

For the splitting operation, suppose that the splitting decision is independent of the

departure process, then by the conditional variance formula, we have

Var(Aint(t)) = p2Var(D(t)) + p(1− p)λt,

or equivalently, since E[D(t)] = λt and E[Aint(t)] = pλt = pE[D(t)],

Ia,int(t) = pId(t) + (1− p).

To address the impact of dependence on the IDC after the splitting operation, we propose

to consider the correction term α(t) defined as

α(t) ≡ Ia,int(t)− pId(t)− (1− p),

so that

Ia,int(t) = pId(t) + (1− p) + α(t). (5.11)

We propose to approximate the correction term α(t) by

α(t) ≈ α?((1− ρ)2t) (5.12)

with

α?(t) ≡ 2cov(pD?(t),Θ?(λt))/pλt = 2pw?(t/c2
x),

where c2
x = 1

1−pc
2
a0 + p

1−p + c2
s and the explicit expression is derived using Corollary 3.6.

We demonstrate the performance of the approximation (5.12) in Example 5.1 and post-

pone theoretical support to Corollary 5.1.
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Figure 5.1: Approximations of the IDC’s in a single-server queue with feedback model.

Example 5.1 (immediate feedback) Figure 5.1 compares the performance of the IDC

approximation to simulations for the E2/H2(4)/1 single-server queue with feedback model,

having feedback probability p = 0.5 and service scv c2
s = 4. Model parameters are described

in the title. The simulation estimation of the IDC of the feedback flow is contrasted to the

IDC approximation (5.11) with correction term (5.12) in dotted-and-dashed lines. The

approximation matches simulation remarkably well.

5.2.2 The General Case

To treat splitting, we write the split process Ai,j as a random sum. Recall from (4.2) that

Ai,j(t) =

Di(t)∑
l=1

θli,j , t ≥ 0.

We apply the conditional-variance formula to write the variance Va,i,j(t) ≡ Var(Ai,j(t)) as

Va,i,j(t) = E[Var(Ai,j(t)|Di(t))] + V ar(E[Ai,j(t)|Di(t)]). (5.13)

With the Markovian routing we have assumed, the routing decisions at each queue at

each time are i.i.d. and independent of the history of the network. As a consequence, for

feed-forward queueing networks, we can deduce that the collection of all routing decisions

made at queue i up to time t is independent of Di(t). For the case in which independence

holds, we can apply (5.13) to express Va,i,j(t) in terms of the variance of the departure
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process, Vd,i(t) ≡ Var(Di(t)); in particular,

Va,i,j(t) = p2
i,jVd,i(t) + pi,j(1− pi,j)λit, (5.14)

or, equivalently, since E[Di(t)] = λit and E[Ai,j(t)] = pi,jλit = pi,jE[Di(t)],

Ia,i,j(t) = pi,jId,i(t) + (1− pi,j). (5.15)

The formula (5.15) is an initial approximation, which parallels the approximation used for

splitting in (40) of [134], i.e., c2
a,i,j = pi,jc

2
d,i + (1− pi,j).

However, the independence assumption will not hold in the existence of customer feed-

back, in which case there is a complicated dependence. we develop a more general formula

to improve the approximation in general OQN’s.

For that purpose, we apply the FCLT for split processes in Section 9.5 of [143] and the

heavy-traffic limit theorems in Section 4.4. Based on the heavy-traffic analysis, we propose

the splitting IDC equation in (5.10). To account for the dependence, we include a correction

term αi,j , defined as

αi,j,ρi(t) ≡ Ia,i,j(t)− pi,jId,i(t)− (1− pi,j), (5.16)

which is leads to (5.10). We propose to approximate αi,j,ρi by

αi,j,ρi(t) ≈ 2ξi,jpi,j(1− pi,j)wi(t), t ≥ 0, (5.17)

where wi(t) is the weight function in (5.2) and ξi,j is the (i, j)th entry of the matrix (I−P ′)−1.

We now provide theoretical support for the splitting approximation (5.17). Consider

the diffusion-scaled processes indexed by ρ

D?
i,ρ(t) = (1− ρ)

[
Di((1− ρ)−2t)− λi(1− ρ)−2t

]
,

Θ?
i,ρ(t) = (1− ρ)

b(1−ρ)−2tc∑
l=1

θl − pi(1− ρ)−2t

 ∈ DK , (5.18)

A?
i,ρ(t) = (1− ρ)

[
Ai((1− ρ)−2t)− λipi(1− ρ)−2t

]
∈ DK ,

for t ≥ 0, where pi ≡ E[θli] is the i-th row of the routing matrix and Ai,ρ = (Ai,j,ρ : j =

1, 2, . . . ,K) is the vector consists of all the streams after splitting. The following result

rephrases Theorem 9.5.1 in Whitt (2002).
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Theorem 5.2 (Theorem 9.5.1 of [143]) Suppose that

(D?
i,ρ,Θ

?
i,ρ)⇒ (D?

i ,Θ
?
i ) as ρ ↑ 1 in DK+1 (5.19)

and that almost surely D? and Θ? ◦ λe have no common discontinuities of opposite sign.

Then

A?
i,ρ ⇒ A?

i in DK ,

with

A?i,j ≡ pi,jD? + Θ?
i,j ◦ λie, for 1 ≤ j ≤ K, (5.20)

where e(t) = t is the identity mapping.

Example 5.2 (Splitting the departures from a G/GI/1 queue) If we split the depar-

ture process from the GI/GI/1 model with Markovian routing, then D? is independent

of Θ? and Θ? is a zero-drift K-dimensional Brownian motion with covariance matrix

Σ = (σi,j) ∈ RK×K , where σ2
i,i = pi(1 − pi) and σ2

i,j = −pipj for i 6= j. Hence, from

(5.20) we obtain

A? = pD? + Θ? ◦ λe, (5.21)

which is consistent with (5.14) and thus (5.15).

Theorem 5.2 assumes only a joint FCLT for the flow to split and the splitting decision

process, so dependence is allowed. Thus it provides support for the general splitting equation

in (5.10) for the case where Di,j and Θi,j are correlated. Define the HT-scaled correction

term as

α?i,j,ρ(t) ≡ αi,j((1− ρ)−2t) (5.22)

and define the limiting correction term as

α?i,j(t) ≡ 2cov(pi,jD
?
i (t),Θ

?
i,j(λit))/pi,jλit. (5.23)

The following corollary follows from Theorem 5.2.

Corollary 5.1 Under the assumptions in Theorem 5.2 plus the uniform integrability con-

ditions, we have α?i,j,ρ(t)→ α?i,j(t) as ρ ↑ 1.
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Proof. By the definitions of the correction term in (5.16) and HT-scaled processes, we

write

α?i,j,ρ(t) = αi,j((1− ρ)−2t)

= Ia,i,j((1− ρ)−2t)− pi,jId,i((1− ρ)−2t)− (1− pi,j)

=
Var((1− ρ)Ai,j((1− ρ)−2t))

pi,jλit
− pi,j

Var((1− ρ)Di((1− ρ)−2t))

λit
− (1− pi,j)

=
Var(A?i,j,ρ(t))

pi,jλit
− pi,j

Var(D?
i,ρ(t))

λit
− (1− pi,j)

→
Var(A?i,j(t))

pi,jλit
− pi,j

Var(D?
i (t))

λit
− (1− pi,j) = α?i,j(t).

This corollary supports the following approximation for the correction term αi,j in

αi,j(t) ≈ α?i,j((1− ρ)2t) (5.24)

with α?i,j defined in (5.23).

It then remains to derive a explicit formula for α?i,j . For any αi,j , the relevant routing

flow is Ai,j while the relevant departure flow is Di. Naturally, we choose station i to be the

HT station. So we let ρi = ρ ↑ 1 and keep ρj < 1 for j 6= i. Define the HT scaled processes

as in (4.22) and apply Theorem 5.1 to obtain

D?
i,ρ ⇒ D?

i = Ã?i + Q̃?i (0)− Q̃?i . (5.25)

For the routing flow Ai,j , we apply Theorem 5.2 so that

A?i,j,ρ ⇒ A?i,j = pi,jD
?
i + Θi,j ◦ λie as ρ ↑ 1. (5.26)

Define the correction term α?i,j as in (5.24), then Corollary 3.6 implies the following corollary,

which leads to the correction term in (5.16).

Theorem 5.3 Under the assumptions in Corollary 4.3 and Theorem 5.2 plus the uniform

integrability conditions, we have

α?i,j,ρ(t)→ 2cov(pi,jD
?
i (t),Θ

?
i,j(λit))/(pi,jλit)

= 2ξi,jpi,j(1− pi,j)w?(λit/c2
x,i), as ρ ↑ 1, (5.27)

where ξi,j is the (i, j)th entry of the matrix (I−P ′)−1, c2
x,i = c2

a,i+c
2
s,i and c2

a,i is the limiting

variability parameter as solved from (5.46) and c2
s,i is the scv of the service distribution at

station i.
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Proof. Apply Corollary 4.3 to obtain expression for D?
i (t), then apply Corollary 3.6 for

the explicit covariance in (5.27).

As a direct result of Theorem 5.3 and Corollary 5.1, we propose to approximate the

correction term as in (5.17), which is asymptotically exact as ρ ↑ 1.

5.3 The Superposition Operation

In this section, we derive our IDC equation for the superposition operation. In particular,

we propose the following approximation

Ia,i(t) =
K∑
j=0

(λj,i/λi)Ia,j,i(t) + βi(t), (5.28)

where βi is defined in (5.36).

We start with a simple example in Section 5.3.1 as an illustration and then address the

general case in Section 5.3.2.

5.3.1 Dependent Superposition: A Splitting and Recombining Example

We consider a simple feed-forward network depicted in Figure 5.2, where an arrival process

is first split into two streams according to Markovian routing, then sent to separate queues,

and finally re-combine and enter a third queue. We aim to approximate the IDC of the

superposition of the two stationary departure processes A3(t) ≡ D1(t) + D2(t). To do so,

we establish the HT limit for the superposition arrival process at the third queue.

A(t) p1
Queue 1

D1(t)

Queue 3

Queue 2

p2 D2(t)

Figure 5.2: A simple splitting and recombining example.

Without loss of generality, assume that the traffic intensity ρ1 at the first queue is larger

than ρ2 at the second queue. We then consider a family of systems indexed by ρ, where

the traffic intensity at queue 1 is ρ1 = ρ, which we will bring to heavy traffic, and the
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traffic intensity at queue 2 is fixed at ρ2 ∈ [0, 1). Let Ai,ρ, Si,ρ, Di,ρ and Qi,ρ denote the

arrival process, the (uninterrupted) service renewal processes, the departure process and

the queue length process at Queue i in the ρ-th system, respectively. Let the processes with

superscript ? be the heavy-traffic scaled processes as in (4.22). Theorem 4.5 implies the

following

Corollary 5.2 (Heavy-traffic limit for splitting and recombining model) Consider

the system depicted in Figure 5.2. Assume that the external arrival process is renewal with

rate λ and scv c2
a, the service times at queue 1 are i.i.d. with rate p1λ/ρ and scv c2

s1; the

service times at queue 2 are i.i.d. with rate p2λ/ρ2 for 0 ≤ ρ2 < 1 and scv c2
s2. Then

(A?ρ, A
?
1,ρ, A

?
2,ρ, S

?
1,ρ, S

?
2,ρ, Q

?
1,ρ, Q

?
2,ρ, D

?
1,ρ, D

?
2,ρ,Θ

?
1,ρ,Θ

?
2,ρ)

⇒ (A?, A?1, A
?
2, S

?
1 , S

?
2 , Q

?
1, Q

?
2, D

?
1, D

?
2,Θ

?
1,Θ

?
2) in D11 as ρ→ 1,

where

A? ≡ caBa ◦ λe,

A?i ≡ picaBa ◦ λe+ Θ?
i , for i = 1, 2,

S?1 ≡ cs1Bs1 ◦ p1λe, S?2 ≡ cs2Bs2 ◦ p2λe/ρ2,

Q?1 ≡ ψ(Q?1(0) + p1caBa ◦ λe+ Θ?
1 − cs1Bs1 ◦ p1λe− p1λe), Q?2 ≡ 0,

D?
1 ≡ p1caBa ◦ λe+ Θ?

1 +Q?1(0)−Q?1, D?
2 ≡ p2caBa ◦ λe+ Θ?

2, (5.29)

with ψ being the one-dimensional reflection mapping and (Θ?
1,Θ

?
2) being a zero-drift two-

dimensional Brownian motion with covariance matrix Σ = (σij) ∈ R2×2, where σ2
ii =

pi(1− pi)λ and σ2
ij = −pipjλ for i 6= j.

To approximate the IDC of the total arrival process at queue 3, we write

Ia,3,ρ(t) ≡
Var(A3,ρ(t))

E[A3,ρ(t)]
=

Var (D1,ρ(t) +D2,ρ(t))

E[A3,ρ(t)]

=
Var (D1,ρ(t))

E[A3,ρ(t)]
+

Var (D2,ρ(t))

E[A3,ρ(t)]
+ 2cov (D1,ρ(t), D2,ρ(t)) /E[A3,ρ(t)]

= p1Id,1,ρ(t) + p2Id,2,ρ(t) + βρ(t),
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where

βρ(t) ≡ 2cov (D1,ρ(t), D2,ρ(t)) /E[A3,ρ(t)]. (5.30)

In general, exact characterization of βρ is not readily available. We propose the following

approximation

βρ(t) ≈ 2cov
(
D?

1((1− ρ)2t), D?
2((1− ρ)2t)

)
/(λ(1− ρ)2t)

= 2p1(1− p1)(c2
a0 − 1)w?((1− ρ)2p1λt/c

2
x1)) (5.31)

with D?
1 and D?

2 being the diffusion limit in (5.29).

To justify the approximation (5.31), let β?ρ(t) = βρ
(
(1− ρ)−2t

)
be the HT-scaled cor-

rection term. Corollary 5.2 implies the following limit.

Corollary 5.3 Under the assumption in Theorem 5.2 and the uniform integrability condi-

tions, we have

β?ρ → 2p1(1− p1)(c2
a0 − 1)w?

(
p1λt/c

2
x1

)
. (5.32)

Proof Note that Corollary 5.2 implies that

cov(D1,ρ(t), D1,ρ(t)) = cov
(
(1− ρ1)−1D?

1,ρ((1− ρ1)2t), (1− ρ1)−1D?
2,ρ((1− ρ1)2t)

)
→ (1− ρ1)−2cov(D?

1((1− ρ1)2t), D?
2((1− ρ1)2t)),

as ρ ↑ 1.

On the other hand, by applying Corollary 3.6, we have

cov (D?
1(t), D?

2(t)) = cov(A?1(t), A?2(t))− cov(Q?1(t), A?2(t))

= p1(1− p1)(c2
a0 − 1)λt− cov(Q?1(t)), A?2(t))

= p1(1− p1)(c2
a0 − 1)λtw?

(
p1λt/c

2
x1

)
,

where c2
x1 = c2

a1 + c2
s, c

2
a1 = p1c

2
a + (1− p1). The limit then follows.

We demonstrate the performance of the approximation by making simulation compar-

isons in Example 5.3.

Example 5.3 Consider the queueing system in Figure 5.2 with rate-1 hyperexponential

(H2(4)) external arrival process and c2
a = 4, p1 = 0.25, p2 = 0.75 and i.i.d. Erlang (E2)
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service times with c2
si = 0.5. Figure 5.3 shows the results for two cases involving different

traffic intensities: (i) ρ1 = ρ2 = 0.7 (left); and (ii) ρ1 = 0.8 and ρ2 = 0.9 (right). In

each plot, we display, in solid lines, the IDC Ia,3 of the total arrival process at queue 3, the

modified IDC’s piId,i of the departure processes from queue i, the simulated correction term

βρ defined in (5.30). For approximations, we display, in broken lines, the approximated

correction terms as in (5.31) and the approximated IDC using (5.31). Figure 5.3 shows

remarkable agreement of the approximation and the simulation estimate.
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Figure 5.3: Approximation of the arrival IDC at queue 3 for the splitting and recombining

model in Figure 5.2.

5.3.2 The General Case

We now investigate the impact of the superposition operation on the IDC’s for general

network. To start, consider the case where the individual streams are mutually independent,

and hence we have

Va,i(t) ≡ Var(Ai(t)) = Var

 K∑
j=0

Aj,i(t)

 =

K∑
j=0

Var(Aj,i(t)),

so that

Ia,i(t) =

K∑
j=0

(λj,i/λi)Ia,j,i(t), (5.33)

where Ia,j,i(t) ≡ Var(Aj,i(t))/E[Aj,i(t)].
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While (5.33) is exact when the streams are independent, it does not hold in general cases.

Even for feed-forward networks, we may have a stream that splits and then recombines later,

which introduces dependence.

For dependent streams, the variance of the superposition total arrival process at queue

i can be written as

Va,i(t) ≡ Var

 K∑
j=0

Aj,i(t)

 =

K∑
j=0

Var (Aj,i(t)) + βi(t)E[Ai(t)] (5.34)

where A0,i denotes the external arrival process at station i,

βi(t) ≡
∑
j 6=k

βj,i;k,i(t), and βj,i;k,i(t) ≡
cov (Aj,i(t), Ak,i(t))

E[Ai(t)]
. (5.35)

Divide both sides of (5.34) by E[Ai(t)] = λit, we arrive at our IDC equation in (5.28).

In general, exact characterization of the correction term βi(t) in (5.35) is not available.

We now show that heavy-traffic limit theorem suggests the following approximation (assume

without loss of generality that ρj ≥ ρi)

βj,i;k,i(t) = βk,i;j,i(t) ≈ (ζj,i;k,i/λi)w
?((1− ρj)2pj,iλjt/ρjc

2
x,j,i), (5.36)

where w? is the weight function in (3.27), c2
x,j,i = pj,ic

2
a,j + (1 − pj,i) + pj,ic

2
s,j and c2

a,j is

solved from the variability equations for the asymptotic variability parameters in (5.49).

The constant ζj,i;k,i is given by

ζj,i;k,i = ν ′j

(
diag(c2

a,0,iλi) +
K∑
l=1

Σl

)
νk + ν ′kΣjei + ν ′jΣkei, (5.37)

where νl ≡ pl,ie
′
l(I − P ′)−1 for l = j, k, ei is the i-th unit vector, diag(c2

a,0,iλi) is the

diagonal matrix with c2
a,0,iλi as the i-th diagonal entry, Σl is the covaraince matrix of the

splitting decision process at station l defined as Σl ≡ (σli,j) with σli,i = pl,i(1 − pl,i)λl and

σli,j = −pl,ipl,jλl for i 6= j.

Next, we provide theoretical support the correction term βi associated with dependent

superposition. From (5.35), it suffices to specify βk,i;j,i for any station i and any pair of

sub-flows (Aj,i, Ak,i) at that station. We assume without loss of generality that (i) ρj ≥ ρk,

or (ii) ρj = ρk and λj,i ≥ λk,i. In the case (ii), we break the tie by picking the index that



CHAPTER 5. ROBUST QUEUEING NETWORK ANALYZER 141

gives the larger rate λj,i. In both cases, we consider station j to be the HT station while

keep all other stations unsaturated.

By Theorem 5.1, we have

A?ρ ⇒ A? = Ã? + γj

(
Q̃?j (0)− Q̃?j

)
D?
j,ρ ⇒ D?

j = Ã?j + Q̃?j (0)− Q̃?j ,

D?
l,ρ ⇒ D?

l = A?l , for l 6= j,

where Ã? = (I − P ′)−1 (A?0 + (Θ?)′1) , Q̃?j is defined as in (5.7) with h = j and γj ∈ RK is

defined as

γj = P ′(I − P ′)−1e′j(1− P̂j)

with P̂j defined as in (4.24) with H = {j}. Furthermore, Theorem 5.2 gives

A?j,i = pj,iD
?
j + Θ?

j,i ◦ λje

= pj,iÃ
?
j + Θ?

j,i ◦ λje+ pj,i(Q̃
?
j (0)− Q̃?j ) (5.38)

A?k,i = pk,iD
?
k + Θ?

k,i ◦ λke

= pk,iÃ
?
k + Θ?

k,i ◦ λke+ pk,iγj,k(Q̃
?
j (0)− Q̃?j ). (5.39)

We utilize the following approximations

A?k,i ≈ pk,iÃ?k + Θ?
k,i ◦ λke ≡ Ã?k,i (5.40)

and

pj,iQ̃
?
j ≈ ψ

(
pj,iQ̃j(0) + pj,iA

?
j + Θ?

j,i ◦ λje− pj,iS?j − pj,iλje
)
≡ Q̃?j,i. (5.41)

By Corollary 3.6

2cov
(
Ã?k,i(t), Ã

?
j,i(t)− Q̃?j,i(t)

)
/(λit) = 2

ζj,i;k,i
λi

w?(t/c2
x,j), (5.42)

where Ã?j,i ≡ pj,iÃ?j + Θ?
j,i ◦ λje and ζj,i;k,i is the constant defined as

ζj,i;k,i =
1

t
cov

(
Ã?k,i(t), Ã

?
j,i(t)

)
. (5.43)

Note that ζj,i;k,i is a constant independent of t since Ã?k,i(t) and Ã?j,i(t) are Brownian motions.
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Finally, we define

βj,i;k,i(t) = βk,i;j,i(t) = 2
ζj,i;k,i
λi

w?((1− ρj)2pj,iλjt/(ρc
2
x,j,i)), (5.44)

where c2
x,j,i = pj,ic

2
a,j + (1− pj,i) + pj,ic

2
s,j and c2

a,j is solved from (5.49).

The following lemma gives explicit formula for ζj,i;k,i. Let νl ≡ pl,ie
′
l(I − P ′)−1 for

l = j, k, where ei is the i-th unit vector.

Lemma 5.2

ζj,i;k,i = ν ′j

(
diag(c2

a,0,iλi) +

K∑
l=1

Σl

)
νk + ν ′kΣjei + ν ′jΣkei, (5.45)

where diag(c2
a,0,iλi) is the diagonal matrix with c2

a0,iλi as the i-th diagonal entry, Σl is the

covaraince matrix of Brownian limit of the splitting decision process (Θ?
l,i)

K
i=1 at station l

defined as Σl ≡ (σli,j) with σli,i = pl,i(1− pl,i)λl and σli,j = −pl,ipl,jλl for i 6= j.

Proof. By the definition of Ã? and Ã?j,i, we have

Ã?j,i ≡ pj,iÃ?j + Θ?
j,i = pj,ie

′
j(I − P ′)−1(A?0 + (Θ?)′1) + Θ?

j,i

= νj

(
A?0 +

K∑
l=1

Θ?
l

)
+ e′iΘ

?
j ,

Ã?k,i ≡ pk,iÃ?k + Θ?
k,i = pk,ie

′
k(I − P ′)−1(A?0 + (Θ?)′1) + Θ?

k,i,

= νk

(
A?0 +

K∑
l=1

Θ?
l

)
+ e′iΘ

?
k,

where A?0 is the Brownian limit of the external arrival processes, i.e., A?0,i
d
= ca0,iBa0,i ◦ λie

and Θ? ≡ (Θ?
1, . . . ,Θ

?
K)′ ∈ RK×K with Θ?

i = (Θ?
i,1, . . . ,Θ

?
i,K). Recall that Θ?

i is the the

collection of the Brownian limits of the decision processes at station i, so that

cov(Θ?
i,j ,Θ

?
i,k) =

 pi,j(1− pi,j)λit, j = k,

−pi,jpi,kλit, j 6= k.

Define

Σi ≡
(
cov(Θ?

i,j ,Θ
?
i,k)/t

)K
j,k=1

∈ RK×K

so that Σi is a constant matrix independent of t.
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Notice that A?0,i, Θ?
j for 1 ≤ i, j ≤ K are mutually independent, we have

ζj,i;k,i ≡
1

t
cov

(
Ã?k,i(t), Ã

?
j,i(t)

)
=

1

t
cov

(
νjA

?
0 +

K∑
l=1

(
νj + δl,je

′
i

)
Θ?
l , νkA

?
0 +

K∑
l=1

(
νk + δl,ke

′
i

)
Θ?
l

)

=
1

t
cov (νjA

?
0, νkA

?
0) +

1

t

K∑
l=1

cov
((
νj + δl,je

′
i

)
Θ?
l ,
(
νk + δl,ke

′
i

)
Θ?
l

)
= ν ′j

(
diag(c2

a0,iλi) +
K∑
l=1

Σl

)
νk + ν ′kΣjei + ν ′jΣkei.

5.4 The IDC Equation System

We are now ready to assemble the building blocks into a system of linear equations (for

each t) that describes the IDC’s in the OQN. Combining (5.1), (5.10) and (5.28), we obtain

the IDC equations. These are equations that should be satisfied by the unknown IDCs. For

1 ≤ i, j ≤ K, the equations are

Ia,i(t) =

K∑
j=1

(λj,i/λi)Ia,j,i(t) + (λ0,i/λi)Ia,0,i(t) + βi(t),

Ia,i,j(t) = pi,jId,i(t) + (1− pi,j) + αi,j(t),

Id,i(t) = wi(t)Ia,i(t) + (1− wi(t))Is,i(ρit). (5.46)

The parameters pi,j , λi,j and λi are determined by the model primitives and the traffic rate

equations in Section 4.1. The IDC’s of the external flows Ia0,i(t) and Isi(t) are assumed

to be calculated via exact or numerical inversion of Laplace Transforms, or estimated from

data, as in Section 2.3.4. The weight functions wi(t) is defined in (5.2), which involves a

limiting variability parameter c2
a,i as discussed in Lemma 5.1.

To solve for the limiting variability parameters c2
a,i, we let t→∞ in (5.46) and denote

c2
a,i ≡ Ia,i(∞), c2

a,i,j ≡ Ia,i,j(∞) and c2
d,i ≡ Id,i(∞). Furthermore, we define

c2
αi,j ≡ αi,j(∞) = 2ξi,jpi,j(1− pi,j),

c2
βi
≡ βi(∞) =

2

λi

∑
j<k

ζj,i;k,i,
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where we used w?(∞) = 1 in (5.16) and (5.36). Hence, we have the limiting variability

equations:

c2
a,i =

K∑
j=1

(λj,i/λi)c
2
a,j,i + (λ0,i/λi)c

2
a,0,i + c2

βi
,

c2
a,i,j = pi,jc

2
d,i + (1− pi,j) + c2

αi,j ,

c2
d,i = c2

a,i, 1 ≤ i ≤ K. (5.47)

where we used the fact that wi(t)→ 1 as t→∞.

For a concise matrix notation, let

I(t) ≡ (Ia,1(t), . . . , Ia,K(t), Ia,1,1(t), . . . , Ia,K,K(t), Id,1(t), . . . , Id,K(t)),

b(t) ≡ (ba,1(t), . . . , ba,K(t), ba,1,1(t), . . . , ba,K,K(t), bd,1(t), . . . , bd,K(t)),

M(t) ≡ (Mm,n(t)) ∈ R(2K+K2)2 , m, n ∈ {a1, . . . , aK , a1,1, . . . , aK,K , d1, . . . , dK},

c2 ≡ (c2
a,1, . . . , c

2
a,K , c

2
a,1,1, . . . , c

2
a,K,K , c

2
d,i, . . . , c

2
d,K),

where

ba,i(t) ≡
λ0,i

λi
Ia,0,i(t) + βi(t), ba,i,j ≡ (1− pi,j) + αi,j(t),

bd,i(t) ≡ (1− wi(t))Is,i(t); Mai,aj,i(t) =
λj,i
λi
,

Mai,j ,di(t) = pi,j ,Mdi,ai(t) = wi(t), and Mm,n(t) = 0 otherwise.

Then the IDC equations can be expressed concisely as

(E−M(t))I(t) = b(t), (5.48)

while the limiting variability equations can be expressed as

(E−M(∞))c2 = b(∞), (5.49)

where E ∈ R(2K+K2)2 is the identity matrix.

The following theorem states that these equations have unique solutions.

Theorem 5.4 Assume that I −P ′ is invertible. Then E−M(t) is invertible for each fixed

t ∈ R+ ∪ {∞}. Hence, for any given t and b, the IDC equations in (5.48) have the unique

solution

I(t) = (E−M(t))−1b(t)
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and the limiting variability equations in (5.49) have the unique solution

c = (E−M(∞))−1b(∞).

Proof. Let δi,j be the Kronecker delta function. Then substituting the equations for

Ia,j,i(t) and Id,i(t) into the equation for Ia,i(t), we obtain an equation set for Ia,i(t) with

coefficient matrix (δi,j − (λj,i/λi)pj,iwj(t)) ∈ RK2
. Note that (λj,i/λi)wj(t) ≤ 1 for t ∈

R+ ∪ {∞}, the invertibility of I − P ′ implies that the equations for Ia,i(t) have an unique

solution. Substituting in the solution for Ia,i(t), we obtain solutions for Ia,i,j(t) and Id,i(t).

5.5 Feedback Elimination

In this section, we discuss the case in which customers can return (feedback) to a queue

after receiving service there. Customer feedback introduces dependence between the ar-

rival process and the service times, even when the service times themselves are mutually

independent. As a result, the decomposition Iw(t) = Ia(t) + c2
s in (2.26) is no longer valid.

Indeed, assuming that it is, as we do so far, can introduce serious errors, as we show in

our simulation examples. We address this problem by introducing a feedback elimination

procedure. We start with the so-called immediate feedback in Section 5.5.1 and generalize

it into near-immediate feedback in Section 5.5.2.

5.5.1 Immediate Feedback Elimination

In Section III of [134] it is observed that it is often helpful to pre-process the model data

by eliminating immediate feedback for queues with feedback. We now show how that can

be done for the RQNA algorithm.

We consider a single queue with i.i.d. feedback. In this case, all feedback is immediate

feedback, meaning that the customer feeds back to the same queue immediately after com-

pleting service, without first going through another service station. For a GI/GI/1 model

allowing feedback, all feedback is necessarily immediate because there is only one queue.

Normally, the immediate feedback returns the customer back to the end of the queue.
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However, in the immediate feedback elimination procedure, the approximation step is to

put the customer back at the head of the line so that the customer receives a geometrically

random number of service times all at once. Clearly this does not alter the queue length

process or the workload process, because the approximation step is work-conserving.

The modified system is a single-server queue with a new service-time distribution and

without feedback. Let Np denote a geometric random variable with success probability 1−p

and support N+, the positive natural numbers, then the new service time can be expressed

as

Sp =

Np∑
i=1

Si, (5.50)

where Si’s are i.i.d. copies of the original service times. This modification in service times

results in a change in the service scv. By the conditional variance formula, the scv of the

total service time is c̃2
s = p+ (1− p)c2

s. The new service IDC in the modified system is the

IDC of the stationary renewal process associated with the new service times. To obtain the

new service IDC, we need only find the Laplace Transform of the new service distribution,

then apply the algorithm in Section 2.3.1.

Let gp denote the density function of the new service time, we have

ĝp(s) ≡ E

exp

−s Np∑
i=1

Si

 = E

E
exp

−s Np∑
i=1

Si

∣∣∣∣∣∣Np


= E

Np∏
i=1

E [exp (−sSi)]

 = E
[
ĝNp(s)

]
= Mp(ĝ(s)),

where ĝ(s) is the Laplace transform of the original service distribution and Mp is the prob-

ability generating function of the geometric random variable described above.

For the mean waiting time, we need to adjust for per-visit waiting time by multiplying

the waiting time in the modified system by (1−p). Note that (1−p)−1 is the mean number

of visits by a customer in the original system.

In Theorem 4.8, it is shown that the modified system after the immediate feedback

elimination procedure shares the same HT limits of the queue length process, the external

departure process, the (per-visit) workload process and the (per-visit) waiting time process.

Hence, the immediate feedback elimination procedure as an approximation is asymptotically
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exact in the heavy-traffic limit.

5.5.2 Near-Immediate Feedback

Now, we consider general OQN’s, where the feedback does not necessarily happen immedi-

ately, meaning that a departing customer may visit other queues before coming back to the

feedback queue. To treat general OQN’s, we extend the immediate feedback concept to the

near-immediate feedback, which depends on the traffic intensities of the queues on the path

the customer took before the feedback happens. The near-immediate feedback is defined as

any feedback that does not go through any queue with higher traffic intensity.

By default, the RQNA algorithm eliminates all near-immediate feedback. To help un-

derstand near-immediate feedback, consider a modified OQN with one bottleneck queue,

denoted by h. A bottleneck queue is a queue with the highest traffic intensity in the net-

work. While all non-bottleneck queues have service times set to 0 so that they serve as

instantaneous switches. In the reduced network, we define an external arrival Â0 to the

bottleneck queue to be any external arrival that arrive at the bottleneck queue for the first

time. Hence, an external arrival may have visited one or multiple non-bottleneck queues

before its first visit to the bottleneck queue. In particular, the external arrival process can

be expressed as the superposition of (i) the original external arrival process A0,h at station

h; and (ii) the Markov splitting of the external arrival process A0,i at station i with proba-

bility p̂i,h, for i 6= h, where p̂i,h denote the probability of a customer that enters the original

system at station i ends up visiting the bottleneck station h, see (4.25).

In Theorem 4.8, we showed that this reduced network is asymptotically equivalent in the

HT limit to the single-server queue with i.i.d. feedback that we considered in Section 5.5.1.

In particular, the arrival process of the equivalent single-station system is Â0 as described

above, the service times remain unchanged and the feedback probability is p̂, which is

exactly the probability of a near-immediate feedback in the original system, see (4.24).

Hence we showed that eliminating all feedback at the bottleneck queue as described above

prior to analysis is asymptotically correct in HT for OQN’s with a single bottleneck queue in

terms of the queue length process, the external departure process, the (per-visit) workload

process and the (per-visit) waiting time process. Moreover, the different variants of the



CHAPTER 5. ROBUST QUEUEING NETWORK ANALYZER 148

algorithm - eliminating all near immediate feedback or only the near-immediate feedback

at the bottleneck queues - are asymptotically exact in the HT limit for an OQN with a

single-bottleneck queue, because only the bottleneck queues have nondegenerate HT limit.

In contrast, if there are multiple bottleneck queues, the HT limit requires multidimensional

RBM, which is not yet incorporated in our RQNA algorithm.

5.6 The RQNA Algorithm

As input parameters, the RQNA algorithm requires the following model primitives

1. The network topology specified by the routing matrix P ;

2. External arrival processes specified by (i) the interarrival-time distribution, if renewal;

or (ii) rate λ and IDC; or (iii) a realized sample path of the stationary external arrival

process;

3. Service renewal process specified by (i) the service-time distribution; or (ii) the rate

and IDC; or (iii) a realized sample path of the service renewal process.

Combining the traffic-rate equation, the limiting variability equation, the IDC equation

and the feedback elimination procedure, we have obtained a general framework for the

RQNA algorithm, which we summarize in Algorithm 1.

The general framework here allows different choices of (1) the correction terms αi,j in

Section 5.2; (2) the correction term βi in Section 5.3; and (3) the feedback elimination

procedure in Section 5.5.

The default settings are discussed in each of these sections. In particular, we use the

correction terms in (5.16) and (5.36). For the feedback elimination procedure, we apply

near-immediate feedback elimination to all stations.

5.6.1 RQNA for Tree-Structured Queueing Networks

A tree-structured queueing network is an OQN whose topology forms a directed tree. Recall

that a directed tree is a connected directed graph whose underlying undirected graph is a

tree. The queueing network in this setting contains either re-combining after splitting nor
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Algorithm 1: A general framework of the RQNA algorithm for the approximation

of the system performance measures.

Require: Specification of the correction terms αi,j(t) in Section 5.2 and the

correction term βi in Section 5.3, a set of stations to perform feedback

elimination.

Output : Approximation of the system performance measures.

1 Solve the traffic rate equations by λ = (I − P ′)−1λ0 and let ρi = λi/µi;

2 Solve the limiting variability equations by c = (E−M(∞))−1b(∞) specified in

Section 5.4;

3 Solve the IDC equations by I(t) = (E−M(t))−1b(t) for the total arrival IDCs,

where we use c from Step 2 in the weight function wi;

4 Select a set of stations to perform feedback elimination, as in Section 5.5. For each

selected station, identify the flows to eliminate, then identify the corresponding

feedback probability, the modified service IDC as in Section 5.5.1 as well as the

reduced network. Repeat Step 1 to Step 3 on the reduced network to obtain the

modified IDW (as the sum of the modified total arrival IDC and the modified

service scv) at the selected station.

5 Apply the RQ algorithm in (2.35) to obtain the approximations for the mean

steady-state workload at each station.

6 Apply the formulas in Section 2.2.8 to obtain approximations for the expected

values of the steady-state queue length and waiting time at each queue and the

total sojourn time for the system.
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customer feedback. The tree-structured network is a special case of feed-forward network

in which the superposed flows ate each node have no common origin.

This special structure greatly simplifies the IDC-based RQNA algorithm. First, feedback

elimination is unnecessary because there is no customer feedback. Second, for any internal

flow Ai,j that is non-zero, we must have αi,j = 0 for the correction term in (5.16), because

the tree structure implies that the two processes D?
i and Θ?

i,j are mutually independent. In

particular, by definition,

α?i,j(t) ≡ 2cov(pi,jD
?
i (t),Θ

?
i,j(λit))/E[A?i,j(t)] = 0.

Finally, the tree structure implies that βi = 0 for the correction term for superposition

because all superposed processes are independent.

With these simplifications of the correction terms, the equations in (5.46), yield, for

1 ≤ i, j ≤ K,

Iai(t) =

K∑
j=1

λj,i
λi
Iaj,i(t) + (λ0,i/λi)Ia0,i(t),

Iai,j (t) = pi,jIdi(t) + (1− pi,j),

Idi(t) = wi(t)Iai(t) + (1− wi(t))Isi(t).

The IDC equations in this setting inherit a special structure that allows a recursive

algorithm. Note that the stations in the tree-structured network can be partitioned into

disjoint layers {L1, . . . ,Ll} such that for station i ∈ Lk, it takes only the input flows from

j ∈
⋃k−1
j=1 Lj for 1 ≤ k ≤ l. To simplify the notation, we sort the node in the order of

their layers and assign arbitrary order to nodes within the same layer. If i ∈ Lk, then⋃k−1
j=1 Lj ⊂ {1, 2, . . . , i − 1}, so that λj,i = 0 for all j ≥ i. Hence, by substituting in the

equations for Idi and Iai,j into that of Iai , we have

Iai(t) =
K∑
j=1

λj,i
λi

(
pj,i
(
wj(t)Iaj (t) + (1− wj(t))Isj (t)

)
+ (1− pj,i)

)
+
λ0,i

λi
Ia0,i(t),

=
∑
j<i

λj,i
λi

(
pj,i
(
wj(t)Iaj (t) + (1− wj(t))Isj (t)

)
+ (1− pj,i)

)
+
λ0,i

λi
Ia0,i(t). (5.51)

Note that (5.51) exhibits a lower-triangular shape so that we can explicitly write down

the solution in the order of the stations. We summarize the procedure in Algorithm 2.
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With the total arrival IDCs, we simply continue to Step 5 and 6 in Algorithm 1 to obtain

approximations to the system performance measures.

Algorithm 2: The RQNA algorithm for approximating the IDC’s in a tree-

structured queueing networks.

Require: The queueing network has tree structure.

Output : Solution to the IDC equations (5.48).

1 for i = 1 to n do

2 λi ← λ0,i +
∑

j<i λjpj,i;

3 ρi ← λi/µi;

4 c2
a,i ←

∑
j<i

λj,i
λi
c2
a,j,i +

λ0,i
λi
c2
a,0,i;

5 c2
x,i ← c2

a,i + c2
s,i;

6 wi(t)← w∗((1− ρi)2λit/(ρic
2
x,i));

7 Iai(t)←∑
j<i

λj,i
λi

(pj,i (wj(t)Ia,j(t) + (1− wj(t))Is,j(t)) + (1− pj,i)) +
λ0,i
λi
Ia,0,i(t);

8 Idi(t)← wi(t)Ia,i(t) + (1− wi(t))Is,i(t);

9 for j < i do

10 Ia,i,j(t)← pi,jId,i(t) + (1− pi,j);

11 end

12 end

13 return I(t).

5.7 Proofs

Proof of Theorem 5.1. We show that the same proof as for Theorem 3.8 can be carried

out. To this end, first note that for P̂H defined in (4.24), one may verify that

e′H(I − P ′)−1P ′eH + IH = (I − P̂ ′H)−1.

In particular, with H = {h}, we have

e′h(I − P ′)−1P ′eh + 1 = (I − P̂ ′h)−1,
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where P̂ ′h is interpreted as the feedback probability at station h and (I−P̂ ′h)−1 is interpreted

as the expected number of visit to station h.

Then we have

D?
h = Q?h(0) +A?h −Q?h = Q?h(0) + e′hA

? −Q?h

= e′h(I − P ′)−1
(
A?0 + (Θ?)′ 1

)
+
(
e′hP

′(I − P ′)−1eh + 1
)

(Q?h(0)−Q?h)

= e′h(I − P ′)−1
(
A?0 + (Θ?)′ 1

)
+

1

1− P̂ ′h
(Q?h(0)−Q?h). (5.52)

Now, let Q̃? ≡ Q?h/(1− P̂ ′h), then

Q̃?h =
1

1− P̂ ′h
Q?h

=
1

1− P̂ ′h
Ψ
(
Q?h(0) +

(
e′h + P̂ ′Hc,he

′
Hc
) (
A?0 + (Θ?)′ 1

)
− (1− P̂h)S?h − λ̂0,he

)
= Ψ

(
Q̃?h(0) +

1

1− P̂ ′h

(
e′h + P̂ ′Hc,he

′
Hc
) (
A?0 + (Θ?)′ 1

)
− S?h − λhe

)
,

where λ̂0,h/(1− P̂ ′h) = λh, as in (4.27). Next, one may verify by block-wise inversion that

1

1− P̂ ′h

(
e′h + P̂ ′Hc,he

′
Hc
)
≡ e′h(I − P ′)−1.

Then we have

D?
h = Q̃?h(0) + Ã?h − Q̃?h

with

Q̃?h = Ψ
(
Q̃?h(0) + Ã? − S?h − λhe

)
.

The limiting variance function is derived in the exact same way as in Theorem 3.8 by

noting that Ã?h and S?h are two independent Brownian motions.
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Chapter 6

Simulation Experiments

In this chapter, we present simulation experiments to showcase the performance of our RQ

algorithm in 2.35 and (2.34) in Section 2.2 and the RQNA algorithms in Section 5.6 under

various settings. We introduce the notation of the distributions and stochastic processes

and our simulation methodology in Section 6.1. We study the RQ performance in the single-

server G/GI/1 models and MAP/MAP/1 models in Section 6.2, the tandem queues models

in Section 6.3 and the generalized Jackson networks in Section 6.4.

6.1 Notation and Simulation Methodology

Let us first introduce the notation for some common renewal and non-renewal processes

used in this chapter. For renewal processes, we consider the following inter-renewal-time

distributions

1. Exponential (M) distribution with mean 1/λ and scv c2 = 1;

2. Erlang (Ek) distribution with mean 1/λ and scv c2 = 1/k, i.e. the summation of k

i.i.d. exponential random variables, each with mean 1/(λk);

3. Hyperexponential (H2(c2, r)) distribution, i.e., a mixture of two exponential distribu-

tions with pdf

f(t) ≡ pλ1e
−λ1t + (1− p)λ2e

−λ2t, t ≥ 0,
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which can be parameterized by its first three moments or the mean 1/λ, scv c2 and

the ratio between the two components of the mean r ≡ p1/λ1/(p1/λ1 + p2/λ2), where

λ1 > λ2. If not specified explicitly, we consider the case r = 0.5 and reduce the

notation to H2(c2). This correspondes to stipulating balanced means as in (37) on p.

137 on [133]. The behavior as a function of the third parameter has been studied in

[137].

4. Log-normal (LN(c2)) distribution with mean 1 and scv c2; and

5. Gamma (G(4)) distribution with mean 1 and scv c2 = 4.

For non-renewal processes, we consider the Markovian Arrival Process (MAP). The

MAP is defined in terms of a continuou-time Markov chain with infinitesimal generator

D = D0 + D1, where all the off-diagonal elements of D0 and all the elements of D1 are

nonnegative. The transitions associated with D1 are called type 1 transitions. A MAP

with parameters (D0,D1), MAP(D0,D1), is a point process where an event occurs when

a type 1 transition occurs in the Markov chain. For more properties of the MAP and the

calculation of its IDC, see Section 2.3.2.

Simulation estimation of the mean steady-state workload. We estimate the steady-

state mean workload by the time-average of the workload process obtained from a single

simulation run.

The simulation time required to achieve the same relative width of confidence interval

(the width divided by the estimated mean) in the estimation of the steady-state mean

workload is roughly O((1− ρ)−2), see [140] for more details. Hence it is significantly harder

to obtain accurate simulation estimation for systems in heavy-traffic. In particular, the

simulation run length we choose is 6.25× 106/(1− ρ)2 time units. This roughly amounts to

the same number of arrivals if the arrival process has rate 1. For the system to approach

steady-state, the first 1.25× 106/(1− ρ)2 time units were discarded.

Table 6.1 shows the statistical precision of our simulation estimation in three GI/GI/1

models and one MAP/MAP/1 model. The arrival MAP process is defined by generating
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matrices specified below

D0 =

−13.875 1.875

0.125 −0.3916

 , D1 =

12 0

0 0.2666

 . (6.1)

So that the arrival rate, scv and the lag-1 correlation coefficient (the correlation between

two consecutive interarrival times) are λ = 1, c2 = 4.1 and ρ = 0.23. The scv here

is defined as the scv of the interarrival time distribution in steady-state, i.e., when the

underlying continuous-time Markov chain starts with its stationary distribution. It should

be noted that in the presence of positive correlation among the interarrival times, the

limiting variability parameter, defined by

c2
A ≡ IA(∞) = lim

t→∞
Var(A(t))/λt, (6.2)

is substantially larger than the scv of the interarrival time c2
a = 4.1, which is c2

A = 9.07.

For the service process, we use the same MAP, but we assume that it is independent of the

arrival MAP.

For each model and each ρ in Table 6.1, we perform 100 i.i.d. simulation run and

collect the estimation of the mean (i.e., the time average of the workload process). We

show the sample mean, the sample standard deviation (SD) and the sample coefficient of

variation (CV, sample standard deviation divided by sample mean) of the 100 i.i.d. samples.

The reason that we choose to report these instead of the confidence interval is that the

distribution of the steady-state workload is not available, even in approximation. For We

remark that the sample coefficient of variation is a biased estimation of the population

coefficient of variation, see [29]. But we have carefully checked that the bias for the sample

size of 100 is negligible in our cases here.

Table 6.1 implies that our choice of simulation run length grant us satisfactory statistical

precision for demonstration purposes. Our result here is consistent with Table 1 and (10)

in [140].

Simulation estimation of the IDC. For the numerical estimation of the arrival IDC

from data, we use a single simulation run of 1.1 × 109 time units and discard the first 108

time units for the arrival process to approach stationarity. We then apply the algorithm in

Section 2.3.4.
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MAP/MAP/1 H2(4)/H2(4)/1 M/M/1 E4/E4/1

ρ mean SD CV mean SD CV mean SD CV mean SD CV

0.01 0.000 0.0000 2.6E-3 0.000 0.0000 3.2E-3 0.000 0.0000 1.1E-3 0.000 0.0000 0.5E-3

0.06 0.020 0.0001 3.2E-3 0.009 0.0000 2.9E-3 0.003 0.0000 1.2E-3 0.002 0.0000 0.5E-3

0.11 0.087 0.0003 3.6E-3 0.036 0.0001 2.9E-3 0.013 0.0000 1.0E-3 0.007 0.0000 0.5E-3

0.16 0.212 0.0008 3.8E-3 0.083 0.0002 2.9E-3 0.030 0.0000 1.0E-3 0.016 0.0000 0.5E-3

0.21 0.409 0.0014 3.4E-3 0.157 0.0004 2.8E-3 0.055 0.0001 1.0E-3 0.028 0.0000 0.4E-3

0.26 0.692 0.0023 3.3E-3 0.264 0.0008 3.0E-3 0.091 0.0001 1.0E-3 0.043 0.0000 0.4E-3

0.31 1.084 0.0038 3.5E-3 0.413 0.0012 2.8E-3 0.139 0.0001 1.0E-3 0.063 0.0000 0.4E-3

0.36 1.608 0.0054 3.3E-3 0.617 0.0018 2.9E-3 0.202 0.0002 1.1E-3 0.087 0.0000 0.4E-3

0.41 2.302 0.0081 3.5E-3 0.891 0.0022 2.5E-3 0.284 0.0003 1.1E-3 0.116 0.0000 0.4E-3

0.46 3.217 0.0124 3.8E-3 1.257 0.0029 2.3E-3 0.391 0.0004 1.0E-3 0.153 0.0001 0.4E-3

0.51 4.418 0.0130 2.9E-3 1.745 0.0042 2.4E-3 0.530 0.0005 1.0E-3 0.198 0.0001 0.4E-3

0.56 6.000 0.0171 2.8E-3 2.399 0.0053 2.2E-3 0.712 0.0007 1.0E-3 0.254 0.0001 0.4E-3

0.61 8.125 0.0240 3.0E-3 3.286 0.0070 2.1E-3 0.954 0.0010 1.0E-3 0.326 0.0001 0.4E-3

0.66 11.028 0.0359 3.3E-3 4.511 0.0090 2.0E-3 1.281 0.0015 1.2E-3 0.420 0.0002 0.4E-3

0.71 15.101 0.0419 2.8E-3 6.255 0.0111 1.8E-3 1.738 0.0019 1.1E-3 0.546 0.0002 0.4E-3

0.76 21.090 0.0627 3.0E-3 8.838 0.0183 2.1E-3 2.406 0.0024 1.0E-3 0.726 0.0003 0.4E-3

0.81 30.472 0.0916 3.0E-3 12.931 0.0290 2.2E-3 3.452 0.0032 0.9E-3 1.001 0.0005 0.5E-3

0.86 46.981 0.1233 2.6E-3 20.150 0.0386 1.9E-3 5.283 0.0046 0.9E-3 1.472 0.0006 0.4E-3

0.91 82.425 0.2338 2.8E-3 35.722 0.0617 1.7E-3 9.201 0.0085 0.9E-3 2.465 0.0010 0.4E-3

0.96 207.886 0.5351 2.6E-3 91.012 0.1699 1.9E-3 23.039 0.0207 0.9E-3 5.939 0.0027 0.5E-3

Table 6.1: The sample mean, sample standard deviation (SD) and sample coefficient of

variation (CV) of the mean estimator for the workload in various single-server queues.

Note that the same arrival IDC is used for all service-time distributions and all choices

of ρ as long as the arrival process remains the same, we can effectively maintain a list

estimated/calculated renewal IDC for the RQ algorithm and assumes that the IDC is readily

available. For processes with non-unit rates, the IDC’s can be obtained as in Remark 2.4.

Simulation complexity. For the estimation of both the mean steady-state workload and

the IDC, the simulation is implemented in C++ on a PC with a 4.8GHz Intel CPU.

For mean steady-state workload, it takes on average 30 minutes to obtain simulation

estimations for 20 instances of ρ ∈ {0.01, 0.06, . . . , 0.91, 0.96} for a single-station queue.

About 70% of the simulation time is devoted to the case ρ = 0.96. The computation time

scales roughly linearly with respect to the number of stations in the network.

For the simulation estimation of the IDC, the time required for each case is on average 8
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minutes. Each case requires 8GB of RAM memory since we trade space for time by storing

the entire sample path to speed up the estimation, see Section 2.3.4.

RQ and RQNA algorithms are implemented in MATLAB R2018b, both on the same

PC with a 4.8GHz CPU. Assuming that the IDC of the external flows (see Chapter 5 for

definitions) are available, both algorithms takes less than 1 second to obtain approxima-

tions for each network considered in this chapter, which is negligible in compare with the

CPU time required for simulation estimations. As discussed above, we can maintain a list

estimated/calculated renewal IDC for the RQ algorithm.

6.2 Robust Queueing for Single-Server Queues

In this section, we apply the RQ algorithm in (2.35) to single-server queues. The station

under consideration may be any station within a larger queueing network. Towards this

end, we assume that the arrival IDC Ia(t) ≡ IA(t) is obtained from simulation or numerical

calculations as discussed in Section 2.3.

6.2.1 The GI/GI/1 Models

To start, we consider the GI/GI/1 models, where we have one single-server station with

renewal arrival process and i.i.d. service times that are independent of the arrival process.

For the interarrival-time distribution, we consider the following cases: E4, LN(0.25),

H2(4), LN(4) and G(4) (see Section 6.1 for the definition of the distirbutions). For service-

time distribution, we also consider exponential (M) distirbution. We fix the arrival rate

λ = 1. We do not include the Poisson arrival case here, because exact formula is available

for performance measures in M/GI/1 queue, and in this case RQ produce exact values, see

Corollary 2.3.

For each combination of the 5 interarrival-time distributions and 6 service-time distri-

butions, we consider 20 traffic intensity levels ρ ∈ {0.01, 0.06, 0.11, . . . , 0.96}. Since we have

fixed a rate-1 external arrival process, the service rate µ = 1/ρ. For each traffic intensity, we

compare the simulation estimation of the mean steady-state workload and the RQ approx-

imation from (2.35). Note that the arrival processes are renewal, we calculate the arrival
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IDC by the numerical inversion method for G(4), by estimation from data for LN(0.25)

and LN(4) and by exact formula for E4, H2(4) and M , as discussed in Section 2.3.1.

We now compare the simulated mean steady-state workload and the RQ approximation

(2.35). Let Z(ρ) denote the steady-state workload and let Z∗(ρ) denote the RQ solution

from (2.17), for system at traffic intensity ρ. Let c2
Z∗(ρ) be the normalized RQ workload in

(2.36) and let c2
Z(ρ) denote the normalized steady-state mean workload in (2.27), again for

system at traffic intensity ρ. We define the relative error RE(ρ) by

RE(ρ) ≡
c2
Z∗(ρ)− c2

Z(ρ)

c2
Z(ρ)

. (6.3)

In Table 6.2 - 6.6, the top halves show the simulation estimation of Z(ρ), the RQ solution

Z∗(ρ) and the relative error RE(ρ) under various settings, whereas the bottom halves show

the normalized version c2
Z(ρ) and c2

Z∗(ρ). For each table, we fix the service-time distribution

and consider all 5 arrival processes and all traffic intensity levels.

Table 6.7 and Table 6.8 present the maximum (absolute) relative error and absolute

error, defined as

max
k
|RE(ρk)| and max

k
|c2
Z∗(ρk)− c2

Z(ρk)|, for ρk = −0.04 + 0.05k. (6.4)

Figure 6.1 display two of the worst case arrival process in terms of the performance of

the RQ approximation, i.e. the LN(4) and G(4) arrival process. Figure 6.2 displays the RQ

approximation in the overall worst case service-time distribution, i.e. the E4 service times.

We make the following observations.

1. For a fixed arrival process, the performance of RQ is not very sensitive to the service-

time distribution beyond its scv. For example, compare Table 6.2 with Table 6.3 for

service scv c2
s = 0.25, or compare Table 6.5 with Table 6.6 for service scv c2

s = 4. Recall

that for GI/GI/1 model, the RQ solution depends on the service-time distribution

only through its scv. This is demonstrate by Figure 6.1, where we plot the normalized

mean workload c2
Z(ρ) and the corresponding RQ approximations c2

Z∗(ρ) as functions of

ρ, for LN(4)/GI/1 and G(4)/GI/1 models with various service-time distributions. On

the other hand, Figure 6.2 show that the arrival process have much more interesting

impact on the system performance measure.
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2. The RQ performance improves as the service scv increases. In general, the lower the

scv of a service-time distribution, the smaller the normalized steady-state workload.

But from Table 6.8, the absolute error remain similar for different service distribution,

hence the relative error in cases with E4 and LN(0.25) service distributions tend to

be larger, which can be as large as 30% (in the case of E4/E4/1 at ρ = 0.41). As an

illustration, in Figure 6.1 we compare the simulated values and the RQ approximation

in the LN(4)/GI/1 and G(4)/GI/1 model with various service-time distributions. We

see that the absolute error remain the similar for different service-time distributions,

but the relative error is higher for cases with lower service scv.

3. In Table 6.2 - 6.6, we see that the large relative errors are often accompanied by

very small absolute error. In Table 6.7, we illustrate this observation by showing two

cases: the full range of ρ ∈ (0, 1) and the restricted range of ρ > 0.5. This comparison

eliminates the unusually large relative error caused by the small denominator when ρ

is small. In the reference case of M/M/1 the mean steady-state workload and waiting

time at ρ = 0.5 is exactly the same as the mean service time. We see that when

considering only the moderate to high traffic intensity levels, RQ produces a much

better approximation. See Figure 6.1(top) for the cases that benefit the most.

6.2.2 A Queue with a Superposition Arrival Process

We now illustrate the performance of our RQ approach for a common but challenging

network structure in Figure 6.3. This specific example is chosen to capture a known source

of difficulty: the complex dependence in the arrival process to the queue, so that the relevant

variability parameter of the arrival process at the queue can depend strongly on the traffic

intensity of that queue, as discussed in [142].

Consider a balanced
∑

iGi/GI/1 model from Section 2.3.3, where (2.67) can be applied.

Let the rate-1 arrival process A be the superposition of n = 10 i.i.d. renewal processes,

each with rate 1/n, where the times between renewals have a lognormal distribution with

mean n and scv c2
a = 10. Let the service-times distribution be hyperexponential (H2), a

mixture of two exponential distributions) with mean 1, c2
s = 2 and balanced means as on
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E4 arrival LN(0.25) arrival H2(4) arrival LN(4) arrival G4 arrival

ρ Sim RQ Sim RQ Sim RQ Sim RQ Sim RQ
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,
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e

0.01 0.00 0.00(1%) 0.00 0.00(1%) 0.00 0.00(-1%) 0.00 0.00(1%) 0.00 0.00(-24%)

0.06 0.00 0.00(6%) 0.00 0.00(6%) 0.00 0.00(-4%) 0.00 0.00(0%) 0.00 0.00(-30%)

0.11 0.01 0.01(11%) 0.01 0.01(11%) 0.01 0.01(-7%) 0.01 0.01(-3%) 0.02 0.01(-29%)

0.16 0.02 0.02(16%) 0.02 0.02(17%) 0.02 0.02(-10%) 0.02 0.02(-8%) 0.04 0.03(-28%)

0.21 0.03 0.03(21%) 0.03 0.03(22%) 0.04 0.04(-13%) 0.04 0.03(-13%) 0.08 0.06(-25%)

0.26 0.04 0.05(24%) 0.04 0.05(26%) 0.07 0.06(-16%) 0.07 0.06(-17%) 0.14 0.11(-22%)

0.31 0.06 0.08(27%) 0.06 0.08(29%) 0.11 0.09(-19%) 0.11 0.09(-19%) 0.22 0.18(-18%)

0.36 0.09 0.11(28%) 0.09 0.11(30%) 0.18 0.14(-20%) 0.17 0.13(-20%) 0.33 0.28(-15%)

0.41 0.12 0.15(27%) 0.11 0.15(30%) 0.27 0.21(-21%) 0.25 0.21(-18%) 0.48 0.43(-10%)

0.46 0.15 0.19(25%) 0.15 0.19(28%) 0.40 0.33(-18%) 0.37 0.31(-14%) 0.68 0.63(-7%)

0.51 0.20 0.24(22%) 0.19 0.24(24%) 0.59 0.53(-10%) 0.53 0.48(-8%) 0.95 0.91(-3%)

0.56 0.25 0.30(17%) 0.25 0.29(19%) 0.86 0.87(1%) 0.75 0.74(-2%) 1.30 1.30(-0%)

0.61 0.33 0.36(10%) 0.32 0.35(11%) 1.25 1.39(11%) 1.07 1.13(6%) 1.78 1.82(2%)

0.66 0.42 0.43(3%) 0.41 0.42(3%) 1.82 2.14(17%) 1.54 1.72(12%) 2.44 2.53(4%)

0.71 0.55 0.53(-4%) 0.53 0.51(-4%) 2.67 3.18(19%) 2.23 2.63(18%) 3.37 3.52(5%)

0.76 0.73 0.68(-7%) 0.71 0.66(-6%) 3.98 4.69(18%) 3.31 4.04(22%) 4.76 4.97(4%)

0.81 1.00 0.92(-8%) 0.98 0.91(-7%) 6.07 7.00(15%) 5.10 6.32(24%) 6.92 7.23(4%)

0.86 1.47 1.36(-7%) 1.44 1.36(-6%) 9.85 10.98(11%) 8.44 10.37(23%) 10.79 11.14(3%)

0.91 2.46 2.33(-6%) 2.43 2.32(-4%) 18.10 19.39(7%) 15.99 18.94(18%) 19.07 19.50(2%)

0.96 5.94 5.77(-3%) 5.90 5.77(-2%) 47.32 48.89(3%) 44.27 48.54(10%) 48.47 48.94(1%)
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0.01 1.24 1.25(1%) 1.24 1.25(1%) 1.26 1.25(-1%) 1.24 1.25(1%) 1.80 1.37(-24%)

0.06 1.18 1.25(6%) 1.18 1.25(6%) 1.30 1.25(-4%) 1.24 1.24(0%) 2.27 1.60(-30%)

0.11 1.11 1.24(11%) 1.11 1.24(11%) 1.35 1.26(-7%) 1.28 1.24(-3%) 2.53 1.79(-29%)

0.16 1.06 1.23(16%) 1.05 1.23(17%) 1.40 1.26(-10%) 1.34 1.23(-8%) 2.72 1.97(-28%)

0.21 1.00 1.21(21%) 0.99 1.21(22%) 1.47 1.28(-13%) 1.41 1.23(-13%) 2.89 2.16(-25%)

0.26 0.95 1.18(24%) 0.94 1.18(26%) 1.55 1.30(-16%) 1.48 1.24(-17%) 3.03 2.36(-22%)

0.31 0.90 1.14(27%) 0.89 1.14(29%) 1.64 1.33(-19%) 1.57 1.27(-19%) 3.15 2.57(-18%)

0.36 0.86 1.10(28%) 0.84 1.10(30%) 1.75 1.39(-20%) 1.67 1.33(-20%) 3.27 2.79(-15%)

0.41 0.82 1.04(27%) 0.80 1.04(30%) 1.88 1.49(-21%) 1.76 1.44(-18%) 3.36 3.01(-10%)

0.46 0.78 0.98(25%) 0.76 0.97(28%) 2.04 1.67(-18%) 1.87 1.60(-14%) 3.47 3.23(-7%)

0.51 0.75 0.91(22%) 0.72 0.90(24%) 2.21 1.99(-10%) 1.98 1.82(-8%) 3.57 3.44(-3%)

0.56 0.72 0.83(17%) 0.69 0.82(19%) 2.40 2.44(1%) 2.11 2.08(-2%) 3.65 3.64(-0%)

0.61 0.69 0.75(10%) 0.66 0.74(11%) 2.63 2.91(11%) 2.25 2.37(6%) 3.73 3.81(2%)

0.66 0.66 0.67(3%) 0.64 0.65(3%) 2.85 3.33(17%) 2.40 2.69(12%) 3.81 3.95(4%)

0.71 0.63 0.60(-4%) 0.61 0.59(-4%) 3.07 3.66(19%) 2.57 3.03(18%) 3.88 4.05(5%)

0.76 0.60 0.56(-7%) 0.59 0.55(-6%) 3.31 3.90(18%) 2.75 3.35(22%) 3.96 4.13(4%)

0.81 0.58 0.53(-8%) 0.57 0.53(-7%) 3.51 4.06(15%) 2.96 3.66(24%) 4.01 4.19(4%)

0.86 0.56 0.52(-7%) 0.55 0.51(-6%) 3.73 4.16(11%) 3.19 3.92(23%) 4.08 4.22(3%)

0.91 0.54 0.51(-6%) 0.53 0.51(-4%) 3.94 4.22(7%) 3.48 4.12(18%) 4.15 4.24(2%)

0.96 0.52 0.50(-3%) 0.51 0.50(-2%) 4.11 4.24(3%) 3.84 4.21(10%) 4.21 4.25(1%)

Table 6.2: The RQ approximation in various GI/E4/1 models.
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E4 arrival LN(0.25) arrival H2(4) arrival LN(4) arrival G4 arrival
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0.01 0.00 0.00(1%) 0.00 0.00(1%) 0.00 0.00(-1%) 0.00 0.00(1%) 0.00 0.00(-24%)

0.06 0.00 0.00(6%) 0.00 0.00(6%) 0.00 0.00(-4%) 0.00 0.00(0%) 0.00 0.00(-30%)

0.11 0.01 0.01(11%) 0.01 0.01(11%) 0.01 0.01(-7%) 0.01 0.01(-3%) 0.02 0.01(-29%)

0.16 0.02 0.02(16%) 0.02 0.02(17%) 0.02 0.02(-10%) 0.02 0.02(-8%) 0.04 0.03(-28%)

0.21 0.03 0.03(20%) 0.03 0.03(21%) 0.04 0.04(-13%) 0.04 0.03(-13%) 0.08 0.06(-25%)

0.26 0.04 0.05(24%) 0.04 0.05(25%) 0.07 0.06(-16%) 0.07 0.06(-17%) 0.14 0.11(-22%)

0.31 0.06 0.08(26%) 0.06 0.08(28%) 0.11 0.09(-19%) 0.11 0.09(-19%) 0.22 0.18(-18%)

0.36 0.09 0.11(27%) 0.09 0.11(30%) 0.18 0.14(-21%) 0.17 0.13(-20%) 0.33 0.28(-14%)

0.41 0.12 0.15(26%) 0.11 0.15(29%) 0.27 0.21(-21%) 0.25 0.21(-18%) 0.48 0.43(-11%)

0.46 0.15 0.19(24%) 0.15 0.19(27%) 0.40 0.33(-18%) 0.37 0.31(-14%) 0.68 0.63(-7%)

0.51 0.20 0.24(21%) 0.19 0.24(23%) 0.59 0.53(-10%) 0.53 0.48(-9%) 0.94 0.91(-3%)

0.56 0.26 0.30(16%) 0.25 0.29(18%) 0.86 0.87(1%) 0.75 0.74(-2%) 1.30 1.30(-0%)

0.61 0.33 0.36(10%) 0.32 0.35(11%) 1.25 1.39(11%) 1.07 1.13(5%) 1.78 1.82(2%)

0.66 0.42 0.43(2%) 0.41 0.42(2%) 1.82 2.14(17%) 1.54 1.72(12%) 2.43 2.53(4%)

0.71 0.55 0.53(-4%) 0.53 0.51(-4%) 2.67 3.18(19%) 2.23 2.63(18%) 3.38 3.52(4%)

0.76 0.73 0.68(-7%) 0.71 0.66(-6%) 3.97 4.69(18%) 3.30 4.04(22%) 4.75 4.97(5%)

0.81 1.01 0.92(-8%) 0.98 0.91(-7%) 6.06 7.00(16%) 5.10 6.32(24%) 6.95 7.23(4%)

0.86 1.48 1.36(-8%) 1.45 1.36(-6%) 9.82 10.98(12%) 8.44 10.37(23%) 10.75 11.14(4%)

0.91 2.47 2.33(-6%) 2.44 2.32(-5%) 18.03 19.39(8%) 16.01 18.94(18%) 19.06 19.50(2%)

0.96 5.95 5.77(-3%) 5.90 5.77(-2%) 47.28 48.89(3%) 44.20 48.54(10%) 48.49 48.94(1%)
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0.01 1.24 1.25(1%) 1.24 1.25(1%) 1.26 1.25(-1%) 1.24 1.25(1%) 1.80 1.37(-24%)

0.06 1.18 1.25(6%) 1.18 1.25(6%) 1.30 1.25(-4%) 1.24 1.24(0%) 2.27 1.60(-30%)

0.11 1.12 1.24(11%) 1.11 1.24(11%) 1.35 1.26(-7%) 1.28 1.24(-3%) 2.53 1.79(-29%)

0.16 1.06 1.23(16%) 1.05 1.23(17%) 1.40 1.26(-10%) 1.34 1.23(-8%) 2.73 1.97(-28%)

0.21 1.00 1.21(20%) 0.99 1.21(21%) 1.47 1.28(-13%) 1.41 1.23(-13%) 2.89 2.16(-25%)

0.26 0.95 1.18(24%) 0.94 1.18(25%) 1.55 1.30(-16%) 1.49 1.24(-17%) 3.03 2.36(-22%)

0.31 0.91 1.14(26%) 0.89 1.14(28%) 1.64 1.33(-19%) 1.57 1.27(-19%) 3.15 2.57(-18%)

0.36 0.86 1.10(27%) 0.85 1.10(30%) 1.75 1.39(-21%) 1.66 1.33(-20%) 3.26 2.79(-14%)

0.41 0.82 1.04(26%) 0.80 1.04(29%) 1.88 1.49(-21%) 1.76 1.44(-18%) 3.38 3.01(-11%)

0.46 0.79 0.98(24%) 0.77 0.97(27%) 2.03 1.67(-18%) 1.87 1.60(-14%) 3.48 3.23(-7%)

0.51 0.75 0.91(21%) 0.73 0.90(23%) 2.21 1.99(-10%) 1.99 1.82(-9%) 3.56 3.44(-3%)

0.56 0.72 0.83(16%) 0.70 0.82(18%) 2.41 2.44(1%) 2.11 2.08(-2%) 3.65 3.64(-0%)

0.61 0.69 0.75(10%) 0.67 0.74(11%) 2.62 2.91(11%) 2.25 2.37(5%) 3.72 3.81(2%)

0.66 0.66 0.67(2%) 0.64 0.65(2%) 2.85 3.33(17%) 2.40 2.69(12%) 3.80 3.95(4%)

0.71 0.63 0.60(-4%) 0.61 0.59(-4%) 3.08 3.66(19%) 2.56 3.03(18%) 3.89 4.05(4%)

0.76 0.61 0.56(-7%) 0.59 0.55(-6%) 3.30 3.90(18%) 2.74 3.35(22%) 3.95 4.13(5%)

0.81 0.58 0.53(-8%) 0.57 0.53(-7%) 3.51 4.06(16%) 2.95 3.66(24%) 4.03 4.19(4%)

0.86 0.56 0.52(-8%) 0.55 0.51(-6%) 3.72 4.16(12%) 3.20 3.92(23%) 4.07 4.22(4%)

0.91 0.54 0.51(-6%) 0.53 0.51(-5%) 3.92 4.22(8%) 3.48 4.12(18%) 4.14 4.24(2%)

0.96 0.52 0.50(-3%) 0.51 0.50(-2%) 4.10 4.24(3%) 3.84 4.21(10%) 4.21 4.25(1%)

Table 6.3: The RQ approximation in various GI/LN(0.25)/1 models.
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E4 arrival LN(0.25) arrival H2(4) arrival LN(4) arrival G4 arrival

ρ Sim RQ Sim RQ Sim RQ Sim RQ Sim RQ
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0.01 0.00 0.00(1%) 0.00 0.00(1%) 0.00 0.00(-1%) 0.00 0.00(1%) 0.00 0.00(-18%)

0.06 0.00 0.00(6%) 0.00 0.00(6%) 0.00 0.00(-4%) 0.00 0.00(-1%) 0.01 0.00(-23%)

0.11 0.01 0.01(11%) 0.01 0.01(11%) 0.01 0.01(-6%) 0.01 0.01(-5%) 0.02 0.02(-23%)

0.16 0.03 0.03(14%) 0.03 0.03(15%) 0.03 0.03(-10%) 0.03 0.03(-9%) 0.05 0.04(-22%)

0.21 0.05 0.05(16%) 0.05 0.05(17%) 0.07 0.06(-12%) 0.06 0.06(-13%) 0.10 0.08(-20%)

0.26 0.07 0.09(18%) 0.07 0.09(19%) 0.11 0.09(-15%) 0.11 0.09(-15%) 0.18 0.15(-17%)

0.31 0.11 0.13(17%) 0.11 0.13(19%) 0.18 0.15(-17%) 0.17 0.14(-16%) 0.28 0.24(-14%)

0.36 0.15 0.18(16%) 0.15 0.18(17%) 0.27 0.22(-18%) 0.26 0.22(-15%) 0.42 0.37(-11%)

0.41 0.21 0.24(13%) 0.21 0.24(14%) 0.41 0.34(-17%) 0.38 0.33(-13%) 0.60 0.55(-8%)

0.46 0.28 0.31(9%) 0.28 0.31(9%) 0.59 0.51(-14%) 0.55 0.49(-10%) 0.84 0.80(-5%)

0.51 0.38 0.40(4%) 0.37 0.39(4%) 0.85 0.79(-7%) 0.77 0.72(-6%) 1.16 1.14(-3%)

0.56 0.50 0.50(0%) 0.49 0.49(-0%) 1.21 1.21(0%) 1.08 1.06(-1%) 1.59 1.59(-0%)

0.61 0.66 0.64(-2%) 0.65 0.64(-2%) 1.71 1.83(7%) 1.51 1.56(3%) 2.16 2.20(2%)

0.66 0.87 0.84(-3%) 0.86 0.84(-3%) 2.43 2.70(11%) 2.12 2.30(8%) 2.96 3.04(3%)

0.71 1.16 1.12(-3%) 1.15 1.12(-3%) 3.46 3.91(13%) 3.01 3.39(13%) 4.06 4.20(4%)

0.76 1.59 1.53(-3%) 1.58 1.53(-3%) 5.02 5.66(13%) 4.37 5.06(16%) 5.68 5.90(4%)

0.81 2.25 2.18(-3%) 2.24 2.18(-3%) 7.54 8.35(11%) 6.63 7.74(17%) 8.29 8.54(3%)

0.86 3.40 3.32(-2%) 3.39 3.32(-2%) 12.00 13.00(8%) 10.70 12.46(16%) 12.82 13.14(2%)

0.91 5.86 5.76(-2%) 5.84 5.76(-1%) 21.67 22.87(6%) 19.85 22.48(13%) 22.57 22.96(2%)

0.96 14.54 14.40(-1%) 14.51 14.40(-1%) 56.25 57.54(2%) 53.45 57.21(7%) 57.16 57.58(1%)
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0.01 1.98 2.00(1%) 1.98 2.00(1%) 2.01 2.00(-1%) 1.99 2.00(1%) 2.61 2.14(-18%)

0.06 1.88 2.00(6%) 1.88 2.00(6%) 2.08 2.00(-4%) 2.02 1.99(-1%) 3.10 2.39(-23%)

0.11 1.79 1.98(11%) 1.79 1.98(11%) 2.15 2.01(-6%) 2.09 1.99(-5%) 3.37 2.60(-23%)

0.16 1.72 1.96(14%) 1.71 1.96(15%) 2.24 2.02(-10%) 2.18 1.98(-9%) 3.57 2.79(-22%)

0.21 1.66 1.93(16%) 1.65 1.93(17%) 2.33 2.04(-12%) 2.27 1.98(-13%) 3.74 3.00(-20%)

0.26 1.61 1.89(18%) 1.59 1.89(19%) 2.44 2.08(-15%) 2.36 2.01(-15%) 3.88 3.21(-17%)

0.31 1.56 1.83(17%) 1.54 1.83(19%) 2.56 2.13(-17%) 2.46 2.07(-16%) 3.99 3.42(-14%)

0.36 1.52 1.76(16%) 1.50 1.76(17%) 2.70 2.22(-18%) 2.56 2.17(-15%) 4.10 3.64(-11%)

0.41 1.49 1.68(13%) 1.47 1.67(14%) 2.85 2.36(-17%) 2.67 2.31(-13%) 4.20 3.86(-8%)

0.46 1.45 1.59(9%) 1.43 1.57(9%) 3.02 2.60(-14%) 2.78 2.50(-10%) 4.30 4.08(-5%)

0.51 1.43 1.49(4%) 1.41 1.46(4%) 3.20 2.96(-7%) 2.90 2.72(-6%) 4.39 4.28(-3%)

0.56 1.40 1.41(0%) 1.38 1.38(-0%) 3.39 3.40(0%) 3.03 2.99(-1%) 4.47 4.46(-0%)

0.61 1.38 1.35(-2%) 1.36 1.34(-2%) 3.59 3.84(7%) 3.17 3.28(3%) 4.53 4.61(2%)

0.66 1.36 1.32(-3%) 1.34 1.31(-3%) 3.79 4.21(11%) 3.31 3.58(8%) 4.62 4.74(3%)

0.71 1.34 1.29(-3%) 1.33 1.28(-3%) 3.98 4.50(13%) 3.46 3.90(13%) 4.67 4.83(4%)

0.76 1.32 1.27(-3%) 1.31 1.27(-3%) 4.17 4.70(13%) 3.63 4.20(16%) 4.72 4.90(4%)

0.81 1.30 1.26(-3%) 1.30 1.26(-3%) 4.37 4.83(11%) 3.84 4.48(17%) 4.80 4.94(3%)

0.86 1.29 1.26(-2%) 1.28 1.26(-2%) 4.54 4.92(8%) 4.05 4.72(16%) 4.85 4.97(2%)

0.91 1.27 1.25(-2%) 1.27 1.25(-1%) 4.71 4.97(6%) 4.31 4.89(13%) 4.91 4.99(2%)

0.96 1.26 1.25(-1%) 1.26 1.25(-1%) 4.88 4.99(2%) 4.64 4.97(7%) 4.96 5.00(1%)

Table 6.4: The RQ approximation in various GI/M/1 models.
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E4 arrival LN(0.25) arrival H2(4) arrival LN(4) arrival G4 arrival

ρ Sim RQ Sim RQ Sim RQ Sim RQ Sim RQ
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0.01 0.00 0.00(1%) 0.00 0.00(1%) 0.00 0.00(-1%) 0.00 0.00(-0%) 0.00 0.00(-10%)

0.06 0.01 0.01(5%) 0.01 0.01(5%) 0.01 0.01(-3%) 0.01 0.01(-3%) 0.01 0.01(-12%)

0.11 0.03 0.03(6%) 0.03 0.03(6%) 0.04 0.03(-6%) 0.04 0.03(-5%) 0.04 0.04(-12%)

0.16 0.07 0.07(7%) 0.07 0.07(7%) 0.08 0.08(-8%) 0.08 0.08(-7%) 0.10 0.09(-11%)

0.21 0.13 0.13(6%) 0.13 0.13(6%) 0.16 0.14(-10%) 0.15 0.14(-8%) 0.19 0.17(-10%)

0.26 0.21 0.22(4%) 0.21 0.22(4%) 0.27 0.24(-11%) 0.26 0.23(-9%) 0.32 0.30(-8%)

0.31 0.31 0.32(3%) 0.31 0.32(2%) 0.41 0.37(-11%) 0.40 0.37(-8%) 0.50 0.47(-6%)

0.36 0.45 0.46(1%) 0.45 0.45(0%) 0.62 0.56(-10%) 0.59 0.55(-7%) 0.73 0.70(-4%)

0.41 0.64 0.63(-1%) 0.63 0.62(-2%) 0.89 0.82(-8%) 0.85 0.80(-6%) 1.05 1.02(-3%)

0.46 0.86 0.85(-1%) 0.86 0.85(-1%) 1.25 1.20(-4%) 1.19 1.15(-3%) 1.44 1.43(-1%)

0.51 1.17 1.15(-2%) 1.16 1.14(-2%) 1.75 1.73(-1%) 1.65 1.62(-1%) 1.98 1.99(0%)

0.56 1.55 1.53(-2%) 1.55 1.53(-1%) 2.40 2.46(3%) 2.25 2.27(1%) 2.68 2.72(1%)

0.61 2.07 2.04(-2%) 2.07 2.04(-1%) 3.28 3.46(5%) 3.07 3.17(3%) 3.62 3.70(2%)

0.66 2.79 2.73(-2%) 2.78 2.73(-2%) 4.52 4.81(6%) 4.23 4.44(5%) 4.91 5.02(2%)

0.71 3.76 3.70(-2%) 3.75 3.70(-1%) 6.25 6.68(7%) 5.85 6.25(7%) 6.71 6.86(2%)

0.76 5.17 5.12(-1%) 5.16 5.12(-1%) 8.81 9.40(7%) 8.29 8.95(8%) 9.35 9.55(2%)

0.81 7.41 7.34(-1%) 7.40 7.34(-1%) 12.95 13.63(5%) 12.19 13.20(8%) 13.54 13.75(2%)

0.86 11.33 11.23(-1%) 11.33 11.23(-1%) 20.18 21.00(4%) 19.19 20.64(8%) 20.83 21.09(1%)

0.91 19.65 19.56(-0%) 19.64 19.55(-0%) 35.69 36.72(3%) 34.33 36.47(6%) 36.58 36.78(1%)

0.96 49.16 48.96(-0%) 49.12 48.96(-0%) 90.77 92.12(1%) 89.03 91.83(3%) 92.14 92.15(0%)
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0.01 4.97 5.00(1%) 4.97 5.00(1%) 5.05 5.00(-1%) 5.01 5.00(-0%) 5.72 5.17(-10%)

0.06 4.77 4.99(5%) 4.77 4.99(5%) 5.18 5.01(-3%) 5.13 4.99(-3%) 6.26 5.50(-12%)

0.11 4.69 4.96(6%) 4.68 4.96(6%) 5.34 5.02(-6%) 5.27 4.98(-5%) 6.55 5.75(-12%)

0.16 4.61 4.91(7%) 4.60 4.91(7%) 5.48 5.05(-8%) 5.37 4.99(-7%) 6.73 5.99(-11%)

0.21 4.57 4.84(6%) 4.56 4.83(6%) 5.65 5.11(-10%) 5.51 5.05(-8%) 6.90 6.23(-10%)

0.26 4.54 4.73(4%) 4.53 4.73(4%) 5.81 5.19(-11%) 5.62 5.14(-9%) 7.06 6.46(-8%)

0.31 4.50 4.61(3%) 4.48 4.59(2%) 5.95 5.32(-11%) 5.73 5.27(-8%) 7.14 6.69(-6%)

0.36 4.47 4.49(1%) 4.46 4.46(0%) 6.11 5.50(-10%) 5.86 5.44(-7%) 7.23 6.91(-4%)

0.41 4.46 4.40(-1%) 4.45 4.38(-2%) 6.27 5.77(-8%) 5.97 5.64(-6%) 7.34 7.13(-3%)

0.46 4.40 4.35(-1%) 4.39 4.33(-1%) 6.39 6.11(-4%) 6.07 5.86(-3%) 7.37 7.32(-1%)

0.51 4.40 4.32(-2%) 4.39 4.31(-2%) 6.60 6.51(-1%) 6.20 6.11(-1%) 7.46 7.49(0%)

0.56 4.36 4.30(-2%) 4.35 4.29(-1%) 6.73 6.91(3%) 6.31 6.38(1%) 7.53 7.63(1%)

0.61 4.35 4.28(-2%) 4.34 4.27(-1%) 6.87 7.24(5%) 6.45 6.65(3%) 7.58 7.75(2%)

0.66 4.35 4.27(-2%) 4.34 4.27(-2%) 7.06 7.50(6%) 6.60 6.92(5%) 7.67 7.83(2%)

0.71 4.33 4.26(-2%) 4.32 4.26(-1%) 7.19 7.69(7%) 6.73 7.19(7%) 7.71 7.90(2%)

0.76 4.30 4.26(-1%) 4.29 4.26(-1%) 7.32 7.81(7%) 6.89 7.44(8%) 7.77 7.94(2%)

0.81 4.29 4.25(-1%) 4.29 4.25(-1%) 7.50 7.90(5%) 7.06 7.65(8%) 7.84 7.97(2%)

0.86 4.29 4.25(-1%) 4.29 4.25(-1%) 7.64 7.95(4%) 7.27 7.81(8%) 7.89 7.98(1%)

0.91 4.27 4.25(-0%) 4.27 4.25(-0%) 7.76 7.98(3%) 7.46 7.93(6%) 7.95 7.99(1%)

0.96 4.27 4.25(-0%) 4.26 4.25(-0%) 7.88 8.00(1%) 7.73 7.97(3%) 8.00 8.00(0%)

Table 6.5: The RQ approximation in various GI/H2(4)/1 models.
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E4 arrival LN(0.25) arrival H2(4) arrival LN(4) arrival G4 arrival

ρ Sim RQ Sim RQ Sim RQ Sim RQ Sim RQ
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0.01 0.00 0.00(1%) 0.00 0.00(1%) 0.00 0.00(-1%) 0.00 0.00(0%) 0.00 0.00(-10%)

0.06 0.01 0.01(5%) 0.01 0.01(5%) 0.01 0.01(-3%) 0.01 0.01(-3%) 0.01 0.01(-13%)

0.11 0.03 0.03(7%) 0.03 0.03(7%) 0.04 0.03(-6%) 0.04 0.03(-6%) 0.04 0.04(-13%)

0.16 0.07 0.07(8%) 0.07 0.07(8%) 0.08 0.08(-8%) 0.08 0.08(-8%) 0.10 0.09(-12%)

0.21 0.13 0.13(8%) 0.12 0.13(8%) 0.16 0.14(-10%) 0.16 0.14(-9%) 0.19 0.17(-11%)

0.26 0.20 0.22(6%) 0.20 0.22(7%) 0.27 0.24(-11%) 0.26 0.23(-10%) 0.32 0.30(-9%)

0.31 0.31 0.32(4%) 0.31 0.32(4%) 0.42 0.37(-12%) 0.40 0.37(-8%) 0.50 0.47(-7%)

0.36 0.45 0.46(2%) 0.44 0.45(1%) 0.63 0.56(-11%) 0.60 0.55(-8%) 0.74 0.70(-5%)

0.41 0.62 0.63(1%) 0.62 0.62(0%) 0.90 0.82(-9%) 0.86 0.80(-7%) 1.05 1.02(-3%)

0.46 0.85 0.85(-0%) 0.85 0.85(-0%) 1.28 1.20(-6%) 1.20 1.15(-5%) 1.46 1.43(-2%)

0.51 1.15 1.15(-1%) 1.15 1.14(-1%) 1.78 1.73(-3%) 1.67 1.62(-3%) 2.00 1.99(-0%)

0.56 1.54 1.53(-1%) 1.54 1.53(-1%) 2.44 2.46(1%) 2.28 2.27(-0%) 2.71 2.72(0%)

0.61 2.06 2.04(-1%) 2.05 2.04(-1%) 3.34 3.46(4%) 3.12 3.17(2%) 3.65 3.70(1%)

0.66 2.75 2.73(-1%) 2.75 2.73(-1%) 4.57 4.81(5%) 4.27 4.44(4%) 4.95 5.02(1%)

0.71 3.73 3.70(-1%) 3.72 3.70(-1%) 6.34 6.68(5%) 5.91 6.25(6%) 6.77 6.86(1%)

0.76 5.15 5.12(-1%) 5.15 5.12(-0%) 8.95 9.40(5%) 8.39 8.95(7%) 9.39 9.55(2%)

0.81 7.39 7.34(-1%) 7.39 7.34(-1%) 13.08 13.63(4%) 12.31 13.20(7%) 13.56 13.75(1%)

0.86 11.28 11.23(-0%) 11.29 11.23(-1%) 20.27 21.00(4%) 19.28 20.64(7%) 20.82 21.09(1%)

0.91 19.62 19.56(-0%) 19.61 19.55(-0%) 35.93 36.72(2%) 34.55 36.47(6%) 36.52 36.78(1%)

0.96 49.02 48.96(-0%) 48.86 48.96(0%) 91.14 92.12(1%) 89.06 91.83(3%) 91.89 92.15(0%)
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0.01 4.96 5.00(1%) 4.96 5.00(1%) 5.03 5.00(-1%) 4.98 5.00(0%) 5.76 5.17(-10%)

0.06 4.75 4.99(5%) 4.75 4.99(5%) 5.16 5.01(-3%) 5.15 4.99(-3%) 6.34 5.50(-13%)

0.11 4.63 4.96(7%) 4.63 4.96(7%) 5.34 5.02(-6%) 5.30 4.98(-6%) 6.61 5.75(-13%)

0.16 4.55 4.91(8%) 4.53 4.91(8%) 5.52 5.05(-8%) 5.40 4.99(-8%) 6.81 5.99(-12%)

0.21 4.50 4.84(8%) 4.47 4.83(8%) 5.67 5.11(-10%) 5.56 5.05(-9%) 6.97 6.23(-11%)

0.26 4.47 4.73(6%) 4.44 4.73(7%) 5.84 5.19(-11%) 5.70 5.14(-10%) 7.09 6.46(-9%)

0.31 4.43 4.61(4%) 4.40 4.59(4%) 6.05 5.32(-12%) 5.75 5.27(-8%) 7.20 6.69(-7%)

0.36 4.40 4.49(2%) 4.39 4.46(1%) 6.21 5.50(-11%) 5.89 5.44(-8%) 7.30 6.91(-5%)

0.41 4.38 4.40(1%) 4.37 4.38(0%) 6.35 5.77(-9%) 6.04 5.64(-7%) 7.38 7.13(-3%)

0.46 4.35 4.35(-0%) 4.35 4.33(-0%) 6.53 6.11(-6%) 6.14 5.86(-5%) 7.47 7.32(-2%)

0.51 4.34 4.32(-1%) 4.34 4.31(-1%) 6.69 6.51(-3%) 6.28 6.11(-3%) 7.52 7.49(-0%)

0.56 4.33 4.30(-1%) 4.31 4.29(-1%) 6.85 6.91(1%) 6.40 6.38(-0%) 7.61 7.63(0%)

0.61 4.32 4.28(-1%) 4.30 4.27(-1%) 6.99 7.24(4%) 6.55 6.65(2%) 7.66 7.75(1%)

0.66 4.30 4.27(-1%) 4.29 4.27(-1%) 7.14 7.50(5%) 6.67 6.92(4%) 7.73 7.83(1%)

0.71 4.29 4.26(-1%) 4.28 4.26(-1%) 7.30 7.69(5%) 6.80 7.19(6%) 7.79 7.90(1%)

0.76 4.28 4.26(-1%) 4.28 4.26(-0%) 7.44 7.81(5%) 6.97 7.44(7%) 7.81 7.94(2%)

0.81 4.28 4.25(-1%) 4.28 4.25(-1%) 7.58 7.90(4%) 7.13 7.65(7%) 7.86 7.97(1%)

0.86 4.27 4.25(-0%) 4.27 4.25(-1%) 7.68 7.95(4%) 7.30 7.81(7%) 7.88 7.98(1%)

0.91 4.26 4.25(-0%) 4.26 4.25(-0%) 7.81 7.98(2%) 7.51 7.93(6%) 7.94 7.99(1%)

0.96 4.26 4.25(-0%) 4.24 4.25(0%) 7.91 8.00(1%) 7.73 7.97(3%) 7.98 8.00(0%)

Table 6.6: The RQ approximation in various GI/G(4)/1 models.



CHAPTER 6. SIMULATION EXPERIMENTS 165

Service

E4 LN(0.25) M H2(4) LN(4) G(4)

M
a
x

R
E

A
rr

iv
a
l

E4 27.56% 27.02% 17.55% 6.53% 6.26% 7.86%

LN(0.25) 30.45% 29.70% 18.94% 6.84% 6.50% 8.43%

H2(4) 20.82% 20.79% 17.68% 10.71% 10.16% 12.05%

LN(4) 23.91% 24.09% 16.76% 8.57% 9.24% 9.81%

G(4) 29.51% 29.55% 22.89% 12.25% 13.40% 13.25%

M
ax

R
E

,
ρ
>

0
.5

A
rr

iv
al

E4 21.54% 20.78% 4.42% 1.86% 2.41% 1.00%

LN(0.25) 24.33% 23.35% 3.68% 1.82% 2.25% 0.75%

H2(4) 19.20% 19.03% 13.17% 6.97% 7.87% 5.33%

LN(4) 23.91% 24.09% 16.76% 8.29% 9.24% 7.27%

G(4) 4.52% 4.56% 3.67% 2.31% 2.34% 1.64%

Table 6.7: The performance of the RQ approximation in various GI/GI/1 models for

ρ > 0.5.

Service

E4 LN(0.25) M H2(4) LN(4) G(4)

M
ax

ab
so

lu
te

er
ro

r

A
rr

iv
al

E4 0.2404 0.2375 0.2823 0.3012 0.2896 0.3582

LN(0.25) 0.2565 0.2526 0.3009 0.3145 0.2999 0.3821

H2(4) 0.5909 0.6014 0.5260 0.6379 0.5874 0.7290

LN(4) 0.7315 0.7293 0.6658 0.5856 0.6474 0.5591

G(4) 0.7537 0.7557 0.7732 0.8033 0.8512 0.8642

Table 6.8: The maximum absolute error of the RQ approximation in various GI/GI/1

models.
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Figure 6.1: The normalized mean workload and the RQ approximation for LN(4)/GI/1

and G(4)/GI/1 models.
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Figure 6.2: The normalized mean workload and the RQ approximation for GI/E4/1 models.

Queue

Server

Figure 6.3: A queue with superposition arrival process.

p. 137 of [133]. Then (2.67) and (2.29) imply that the IDW has limits Iw(0) = 1 + c2
s = 3

and Iw(∞) = c2
a + c2

s = 12, so that the IDW is not nearly constant.

Figure 6.4 (left) shows a comparison between the simulation estimate of the normalized

workload c2
Z(ρ) in (2.27) and the approximation c2

Z∗(ρ) in (2.36) for this example. Two im-

portant observations are: (i) the normalized mean workload c2
Z(ρ) in (2.27) as a function of

ρ is not nearly constant, and (ii) there is a close agreement between the RQ approximation

c2
Z∗(ρ) in (2.36) and the direct simulation estimate; the close agreement for all traffic inten-

sities is striking. It is important to note that the parametric RQ approximations produce

constant approximations, and so cannot be simultaneously good for all traffic intensities.

For this example, we see that c2
Z(ρ) ≈ 3 for ρ ≤ 0.5, which is consistent with the Poisson

approximation for the arrival process and the associated M/G/1 queue, where c2
Z(ρ) = 3

for all ρ, but the normalized workload increases steadily to 12 after ρ = 0.5, as explained

in Section 9.8 of [143].

The estimates for Figure 6.4 were obtained for ρ over a grid of 99 values, evenly spaced

between 0.01 and 0.99. Similarly, the RQ optimization was performed using (2.34) with a
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Figure 6.4: The RQ solution and approximation for the workload in the
∑n

i LNi/H2/1

model.

discrete-time estimate of the IDW. By doing multiple independent runs, we ensured that

the statistical variation was not an issue. For the main simulation of the arrival process we

used 5× 106 time units, discarding a large initial portion of the workload process to ensure

that the system is approximately in steady state. (The component renewal arrival processes

thus can be regarded as equilibrium renewal processes, as in Section 3.5 of Section [116].)

For the simulation of the mean workload, we let the run length and amount discarded be

proportional to (1− ρ)−2, as dictated by [140] and observed in Corollary 2.2.

6.2.3 A Ten-Queues-in-Series Example

Queue 1 Queue 2 Queue n

Figure 6.5: A ten-queues-in-series model.

This example is a variant of examples in [125], exposing the complex impact of variability

on performance in a series of queues if the external arrival process and service times at a

previous queue have very different levels of variability. This example has 10 single-server

queues in series. The external arrival process is a rate-1 renewal process with H2 interarrival

times having c2
a = 5. The first 9 queues all have Erlang service times with c2

a = 0.5 denoted
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by E2, i.e., the sum of 2 i.i.d. exponential random variables. The first 8 queues have mean

service time and thus traffic intensity 0.6, while the 9th queue has mean service time and

thus traffic intensity 0.95. The last (10th) queue has an exponential service-time distribution

with mean and traffic intensity ρ; we explore the impact of ρ on the performance of that

last queue.

The Erlang services act to smooth the arrival process at the last queue. Thus, for

sufficiently low traffic intensities ρ at the last queue, the last queue should behave essentially

the same as a E2/M/1 queue, which has c2
a = 0.5, but as ρ increases, the arrival process at

the last queue should inherit the variability of the external arrival process, and behave like

an H2/M/1 queue with scv c2
a = 5.
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Figure 6.6: Comparing the RQ approximation, the E2/M/1 approximation and the simu-

lation estimation of the workload in the ten-queues-in-series model.

This behavior is substantiated by Figure 6.6, which compares simulation estimates of

the normalized mean workload c2
Z(ρ) in (2.27) at the last queue of ten queues in series as a

function of the mean service time and traffic intensity ρ there with the corresponding values

in the E2/M/1 queue (left) and with the RQ approximation c2
Z∗(ρ) in (2.36) (right).

Figure 6.6 (left) shows that the last queue behaves like a E2/M/1 queue for all traffic

intensities≤ 0.8, but then starts behaving more like anH2/M/1 queue as the traffic intensity

approaches the value 0.95 at the 9th queue. Figure 6.6 (right) shows that RQ successfully

captures this phenomenon and provides an accurate approximation for all ρ.

To elaborate on this series-queue example, we show the IDW for the last queue in
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Figure 6.7: The IDW at the last queue of the ten-queues-in-series model: the continuous-

time stationary version and the discrete-time Palm version.

Figure 6.7. The plot shows the IDW assuming continuous-time stationarity (which we use)

together with the plot using the discrete-time Palm stationarity (see [122]) over the long

interval [10−2, 105] in log scale. The good performance in Figure 6.6 for small values of ρ

depends on using the proper (continuous-time) version.

We conclude this example by illustrating the discrete-time approach for approximating

the expected steady-state waiting time E[W ] using the RQ optimization in (2.6) with un-

certainty set in (2.9). Figure 6.8 is the discrete analog of Figure 6.6. Figure 6.8 compares

simulation estimates of the normalized mean waiting time c2
W (ρ), defined just as in (2.27),

at the last queue of ten queues in series as a function of the mean service time and traffic

intensity ρ there with the corresponding values in the E2/M/1 queue (left) and with the

RQ approximation c2
W ∗(ρ), defined just as in (2.36). Figure 6.8 and 6.6 look similar, except

that there is a significant difference for small velues of ρ. In general, we do not expect

RQ to be effective for extremely low ρ, because (i) the CLT is not appropriate for only a

few summands and (ii) the mean waiting time is known to depend on other factors when

ρ is small. The mean waiting time and mean workload actually are quite different in light

traffic; see Section IV.A of [60]. As explained there, the mean workload tends to be more

robust to model detail.
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Figure 6.8: Contrasting the discrete-time and continuous-time views: the analog of Figure

6.6 for the waiting time.

6.2.4 A MAP/MAP/1 Example

We now include the dependence among service times by considering a MAP/MAP/1 model.

With the dependence in service times, we can no longer enjoy the convenient decomposition

in (2.26). Hence, we apply the RQ-IDW formulation in (2.34). For simplicity, we use

simulation estimation here to obtain the IDW function.

We specify the generating matrix of the arrival MAP in (6.1). To consider the full range

of ρ ∈ (0, 1), we define the service MAP in the ρ-th model by the following matrices

Ds,ρ
0 = D0/ρ, Ds,ρ

1 = D1/ρ (6.5)

for (D0,D1) defined in (6.1), where the division is entry-wise.

Figure 6.9(top) show the simulation estimation of the IDW for this model, whereas the

bottom plot show the simulation estimation and RQ approximation of the mean steady-

state workload as functions of the traffic intensity ρ. Note that the light traffic limit is

c∗Z(0) = 1 + c2
a = 5.1 and the heavy-traffic limit is c∗Z(0) = c2

A + c2
S = 18.14, where c2

a = 4.1

is the scv of the interarrival time, c2
A = c2

S = 9.07 are the limiting variability parameters for

the arrival and service MAP, see (6.2).

The somewhat poor performance in the range ρ ∈ (0, 0.3) is expected. Note that, for

small ρ, the optimal solution of (2.17) is obtained at small s∗, as shown in Theorem 2.2.

However, CLT does not provide a good approximation for small s in uncertainty set (2.16).
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Figure 6.9: The IDW and RQ approximation for a MAP/MAP/1 model.
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ρ 0.01 0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41

Abs. err. 0.0001 0.0102 0.0472 0.0990 0.1365 0.1498 0.1457 0.1306 0.1068

Table 6.9: Absolute error of the RQ-IDW approximation in the MAP/MAP/1 model.

Nevertheless, the absolute error before normalization in this case will be small as shown in

Table 6.9. For example, if the mean interarrival time is 1 minute, then for ρ = 0.26 the

absolute error will be 0.1498 minutes ≈ 9 seconds.

6.2.5 The Queues in Series Models

We now present a comprehensive simulation study of the performance of our RQ approxi-

mation in the two queues in series model. We denote such a system by GI/GI/1→ ·/GI/1.

As in Section 6.2.1, we consider the same 5 cases for the renewal external arrival pro-

cesses, i.e. E4, LN(0.25), H2(4), LN(4), G(4); and the same 6 cases for the service time

distributions at both stations, i.e. E4, LN(0.25),M,H2(4), LN(4), G(4). The external ar-

rival processes have rate-1. For the service rate at station 1, we consider two cases µ1 = 1/ρ1,

where the traffic intensity ρ1 = 0.7 or 0.9. So we have a total of 5×6×6×2 = 360 cases. To

show the performance impact of dependence under the full range of traffic intensity levels,

we assume the service-rate at station 2 to be µ2 = 1/ρ2 with ρ2 ∈ {0.01, 0.06, 0.11, . . . , 0.96}.

We assess the performance of RQ based on the ability to predict the mean workload at the

second station, for different traffic intensities.

Details of the simulation are discussed in Section 6.1. Since the simulation time scales

roughly linearly in system size, for two queues in series, it takes on average 60 minutes to

obtain simulation estimations of all 20 ρ’s for each case. Again, about 70% of the simulation

time is devoted to the case ρ = 0.96. On the other hand, the RQ algorithm now requires

the IDC of the total input process, which is not readily available. In this section, we resort

to simulation estimation of the IDC’s, as discussed in Section 2.3.4. In Section 6.3, we will

look at the RQNA alternative, where we rely on our RQNA algorithm instead of simulation

estimation. For the simulation methodology for the estimation of the IDC is described in

Section 6.1. Again, we use a single simulation run of 1.1 · 109 time units and discard the

first 108 time units for the arrival process to approach stationarity. The simulation time
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required for each case is on average 8 minutes on a 4.8GHz CPU (implemented in C++),

each case uses 8GB of RAM memory since we need to store the entire sample path in order

to speed up the estimation, see Section 2.3.4.

Table 6.10 contains some of the hardest cases among the 360 models, the GI/E4/1 →

·/E4/1 models with ρ1 = 0.9 and GI = H2(4), LN(4) or G(4). We discuss it in the following

observations.

Table 6.11-6.16 summarizes the absolute relative error of the RQ approximation with

simulated IDC at station 2, in the case of ρ1 = 0.9. For each table, we fix the service-

time distribution at station 2 (specified in the upper left entry), and display 30 cases,

corresponding the combination of 5 types of external arrival processes (row), and 6 choices

of service-time distributions at station 1 (column). In the top half of each table, we show

the average relative error, defined as

1

20

20∑
k=1

|RE(ρk)|, for ρk = −0.04 + 0.05k;

in the bottom half of each table, we show the maximum relative error, defined in (6.4). We

make the following observations.

1. The RQ performance increases as the service scv at station 2 increases. In Table 6.11,

we see that in the case of E4 service distribution at station 2, the absolute relative

error can be as large as 86%, whereas the absolute relative error stays below 13% in

Table 6.16. This happens for the same reason as Observation 2 in Section 6.2.1.

2. The hardest cases for RQ appear to be the ones with high variability external arrival

process (LN(4) and H4), and low variability service-time distributions (E4, LN(0.25)

and M) at both stations, e.g. in the right three columns of Table 6.10 and in the

lower left corner of Table 6.11-6.13. In intuitively, these are the hardest cases for

queueing approximations, because the highly variable arrival processes are smoothed

out by the low-variable service times at station 1. As a result, when the traffic

intensity at station 2 is low to moderate, the queue sees a arrival process (the departure

from station 1) with low variability; whereas for higher traffic intensity, the arrival

process sees the highly variable external arrival prcess. This resonates with the heavy-

traffic bottleneck phenomenon studied in [125]. The sharp transition between the
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aforementioned two cases is the major cause of the unsatisfactory performance of RQ.

This effect becomes more pronounced ρ1 increases, e.g. compare Table 6.11 and Table

6.17, where the later one is an analog of the former one with ρ1 = 0.7 instead of 0.9.

Figure 6.10 displays some of the worst cases in terms of RQ approximations, i.e. the

LN(4)/E4/1→ ·/GI/1 models with GI = E4,M and H2(4).

3. In Table 6.18 (top), we show the maximum absolute relative error (6.4) in the case of

ρ1 = 0.9, M service at station 2 and across the full range of ρ2 ∈ (0, 1); where as in

Table 6.18 (bottom), we restrict to ρ2 ∈ (0.5, 1). As in Observation 3 in Section 6.2.1,

we observe significant improvement of the RQ performance in most cases, except for

the ones with high variability external arrival process and low variability service-time

distributions, which are demonstrated in Figure 6.10.

4. The RQ performance under ρ1 = 0.7 is roughly the same as that of ρ1 = 0.9. In Table

6.19, we show the comparison under LN(4) service at station 2. We omit most of the

ρ = 0.7 cases.

6.2.6 The Limitation of IDC

Recall from (1.1) that the IDC is a continuous-time function defined only through the

mean and variance functions. We have shown above that the IDC-based RQ algorithm can

capture the essential impact of dependence on queueing performance in models with non-

renewal input flows. We have also shown in Theorem 3.1 that the IDC can recover the full

distirbution of a renewal process; however, such statement does not extend to non-renewal

processes. In this section, we demonstrate that there can still be serious limitation in the

approximation of non-renewal processes using the IDC.

Consider a hyperexponential renewal process with rate-1, whose IDC IH2 of this process

can be found in Example 2.2. Now, we show that there are infinitely many MMPP(2) that

have rate-1 and the same IDC’s as IH2 . Towards this end, we equate (2.62) to (2.60) and
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ρ1 = 0.9 E4 arrival LN(0.25) arrival H2(4) arrival LN(4) arrival G4 arrival

ρ2 Sim RQ Sim RQ Sim RQ Sim RQ Sim RQ

M
ea

n
st

ea
d

y
-s

ta
te

w
o
rk
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a
d

0.01 0.00 0.00(1%) 0.00 0.00(1%) 0.00 0.00(1%) 0.00 0.00(1%) 0.00 0.00(1%)

0.06 0.00 0.00(6%) 0.00 0.00(6%) 0.00 0.00(6%) 0.00 0.00(6%) 0.00 0.00(6%)

0.11 0.01 0.01(11%) 0.01 0.01(11%) 0.01 0.01(10%) 0.01 0.01(10%) 0.01 0.01(10%)

0.16 0.02 0.02(16%) 0.02 0.02(16%) 0.02 0.02(13%) 0.02 0.02(13%) 0.02 0.02(13%)

0.21 0.03 0.03(19%) 0.03 0.03(19%) 0.03 0.03(13%) 0.03 0.03(13%) 0.03 0.03(12%)

0.26 0.04 0.05(22%) 0.04 0.05(22%) 0.05 0.05(11%) 0.05 0.05(12%) 0.05 0.05(9%)

0.31 0.06 0.08(26%) 0.06 0.08(26%) 0.06 0.08(25%) 0.06 0.08(25%) 0.06 0.08(25%)

0.36 0.09 0.11(27%) 0.09 0.11(27%) 0.09 0.11(25%) 0.09 0.11(25%) 0.09 0.11(25%)

0.41 0.12 0.15(26%) 0.12 0.15(26%) 0.12 0.15(23%) 0.12 0.15(23%) 0.12 0.15(23%)

0.46 0.15 0.19(24%) 0.16 0.19(24%) 0.16 0.19(20%) 0.16 0.19(20%) 0.16 0.19(20%)

0.51 0.20 0.24(20%) 0.20 0.24(20%) 0.21 0.24(15%) 0.21 0.24(15%) 0.21 0.24(15%)

0.56 0.26 0.30(15%) 0.26 0.30(15%) 0.28 0.30(9%) 0.28 0.30(9%) 0.28 0.30(9%)

0.61 0.33 0.36(9%) 0.33 0.36(9%) 0.36 0.37(1%) 0.36 0.37(1%) 0.36 0.37(1%)

0.66 0.43 0.44(3%) 0.43 0.44(3%) 0.48 0.47(-4%) 0.48 0.46(-4%) 0.48 0.46(-4%)

0.71 0.56 0.54(-3%) 0.56 0.54(-2%) 0.66 0.68(2%) 0.66 0.67(1%) 0.66 0.65(-0%)

0.76 0.74 0.70(-5%) 0.74 0.70(-5%) 0.94 1.13(20%) 0.93 1.12(20%) 0.93 1.05(12%)

0.81 1.02 0.95(-7%) 1.02 0.95(-6%) 1.46 2.09(44%) 1.44 2.21(53%) 1.44 1.91(33%)

0.86 1.49 1.39(-7%) 1.49 1.40(-6%) 2.65 4.43(67%) 2.61 4.88(87%) 2.62 4.11(57%)

0.91 2.49 2.35(-5%) 2.49 2.37(-5%) 7.21 11.49(59%) 6.96 12.44(79%) 7.15 11.03(54%)

0.96 5.97 5.79(-3%) 5.97 5.80(-3%) 33.74 43.19(28%) 32.66 44.03(35%) 33.70 42.58(26%)
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lo
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d

0.01 1.24 1.25(1%) 1.24 1.25(1%) 1.24 1.25(1%) 1.24 1.25(1%) 1.24 1.25(1%)

0.06 1.18 1.25(6%) 1.18 1.25(6%) 1.18 1.25(6%) 1.18 1.25(6%) 1.18 1.25(6%)

0.11 1.12 1.24(11%) 1.12 1.24(11%) 1.13 1.24(10%) 1.13 1.24(10%) 1.13 1.24(10%)

0.16 1.06 1.23(16%) 1.06 1.23(16%) 1.09 1.23(13%) 1.09 1.23(13%) 1.09 1.23(13%)

0.21 1.01 1.21(19%) 1.01 1.21(19%) 1.07 1.21(13%) 1.06 1.21(13%) 1.08 1.21(12%)

0.26 0.97 1.18(22%) 0.96 1.18(22%) 1.06 1.18(11%) 1.06 1.18(12%) 1.08 1.18(9%)

0.31 0.91 1.14(26%) 0.91 1.14(26%) 0.92 1.14(25%) 0.92 1.14(25%) 0.92 1.14(25%)

0.36 0.87 1.10(27%) 0.87 1.10(27%) 0.88 1.10(25%) 0.88 1.10(25%) 0.88 1.10(25%)

0.41 0.83 1.04(26%) 0.83 1.04(26%) 0.85 1.04(23%) 0.85 1.04(23%) 0.85 1.04(23%)

0.46 0.79 0.98(24%) 0.79 0.98(24%) 0.82 0.98(20%) 0.82 0.98(20%) 0.82 0.98(20%)

0.51 0.76 0.91(20%) 0.76 0.91(20%) 0.79 0.91(15%) 0.79 0.91(15%) 0.79 0.91(15%)

0.56 0.72 0.84(15%) 0.73 0.84(15%) 0.77 0.84(9%) 0.77 0.84(9%) 0.77 0.84(9%)

0.61 0.70 0.76(9%) 0.70 0.76(9%) 0.76 0.77(1%) 0.76 0.77(1%) 0.76 0.77(1%)

0.66 0.67 0.68(3%) 0.67 0.68(3%) 0.75 0.73(-4%) 0.75 0.72(-4%) 0.75 0.72(-4%)

0.71 0.64 0.62(-3%) 0.64 0.62(-2%) 0.76 0.78(2%) 0.76 0.77(1%) 0.75 0.75(-0%)

0.76 0.61 0.58(-5%) 0.61 0.58(-5%) 0.78 0.94(20%) 0.78 0.93(20%) 0.78 0.87(12%)

0.81 0.59 0.55(-7%) 0.59 0.55(-6%) 0.84 1.21(44%) 0.84 1.28(53%) 0.84 1.11(33%)

0.86 0.56 0.53(-7%) 0.56 0.53(-6%) 1.01 1.68(67%) 0.99 1.85(87%) 0.99 1.56(57%)

0.91 0.54 0.51(-5%) 0.54 0.52(-5%) 1.57 2.50(59%) 1.51 2.70(79%) 1.55 2.40(54%)

0.96 0.52 0.50(-3%) 0.52 0.50(-3%) 2.93 3.75(28%) 2.83 3.82(35%) 2.93 3.70(26%)

Table 6.10: The RQ approximation in various GI/E4/1→ ·/E4/1 models.



CHAPTER 6. SIMULATION EXPERIMENTS 177

0 0.2 0.4 0.6 0.8 1

Traffic intenstiy 
2

0

2

4

6

8

N
o
rm

a
liz

e
d
 m

e
a
n
 w

o
rk

lo
a
d

Station 2 in the LN(4)/E
4
/1  /GI/1 model with 

1
 = 0.9

Simu: GI = E
4

RQ: GI = E
4

Simu: GI = M

RQ: GI = M

Simu: GI = H
4

RQ: GI = H
4

0 0.2 0.4 0.6 0.8 1

Traffic intenstiy 
2

0

2

4

6

8

N
o
rm

a
liz

e
d
 m

e
a
n
 w

o
rk

lo
a
d

Station 2 in the LN(4)/E
4
/1  /GI/1 model with 

1
 = 0.7

Simu: GI = E
4

RQ: GI = E
4

Simu: GI = M

RQ: GI = M

Simu: GI = H
2
(4)

RQ: GI = H
2
(4)

Figure 6.10: The performance of RQ at station 2 of the LN(4)/E4/1→ ·/GI/1 models.

Service 2 Service 1, ρ1 = 0.9

E4 E4 LN(0.25) M H2(4) LN(4) G(4)

A
ve

ra
ge

R
E

A
rr

iv
al

E4 13.95% 14.67% 2.26% 11.44% 10.31% 9.84%

LN(0.25) 13.78% 14.47% 2.22% 11.43% 10.32% 9.82%

H2(4) 22.84% 24.32% 7.11% 12.84% 13.45% 10.66%

LN(4) 25.83% 27.27% 8.76% 13.59% 14.38% 11.30%

G(4) 20.79% 22.15% 5.79% 12.27% 12.81% 10.09%

M
ax

im
u

m
R

E

A
rr

iv
al

E4 26.81% 29.26% 10.78% 21.33% 18.58% 26.71%

LN(0.25) 26.75% 29.29% 10.65% 21.23% 18.61% 26.36%

H2(4) 66.77% 68.02% 28.13% 23.50% 22.22% 28.86%

LN(4) 86.79% 87.34% 39.50% 23.23% 22.07% 28.59%

G(4) 56.67% 57.85% 24.23% 23.40% 22.04% 29.18%

Table 6.11: The absolute relative error of the RQ approximation at station 2 of two queues

in series models with E4 service times at station 2.
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Service 2 Service 1, ρ1 = 0.9

LN(0.25) E4 LN(0.25) M H2(4) LN(4) G(4)

A
ve

ra
ge

R
E

A
rr

iv
al

E4 13.78% 14.41% 2.25% 11.44% 10.31% 9.81%

LN(0.25) 13.61% 14.20% 2.22% 11.42% 10.34% 9.83%

H2(4) 22.60% 24.00% 7.18% 12.82% 13.46% 10.54%

LN(4) 25.59% 27.01% 8.76% 13.59% 14.37% 11.27%

G(4) 20.58% 21.87% 5.84% 12.27% 12.77% 10.10%

M
ax

im
u

m
R

E

A
rr

iv
al

E4 26.20% 28.82% 10.88% 21.24% 18.60% 26.66%

LN(0.25) 26.16% 28.76% 10.67% 21.20% 18.68% 26.32%

H2(4) 66.40% 68.26% 28.30% 23.44% 22.18% 28.85%

LN(4) 86.47% 87.76% 39.15% 23.29% 22.32% 28.51%

G(4) 56.43% 57.99% 24.29% 23.17% 21.91% 29.14%

Table 6.12: The absolute relative error of the RQ approximation at station 2 of two queues

in series models with LN(0.25) service times at station 2.

Service 2 Service 1, ρ1 = 0.9

M E4 LN(0.25) M H2(4) LN(4) G(4)

A
ve

ra
ge

R
E

A
rr

iv
al

E4 7.34% 7.53% 1.71% 9.37% 8.17% 7.58%

LN(0.25) 7.26% 7.44% 1.70% 9.36% 8.14% 7.57%

H2(4) 11.31% 11.80% 4.75% 10.37% 10.51% 8.12%

LN(4) 13.01% 13.50% 6.02% 11.00% 11.17% 8.72%

G(4) 10.35% 10.86% 3.97% 9.95% 9.99% 7.70%

M
ax

im
u

m
R

E

A
rr

iv
al

E4 17.11% 18.14% 7.05% 16.90% 14.18% 20.18%

LN(0.25) 17.12% 18.14% 6.91% 17.17% 14.14% 20.17%

H2(4) 26.13% 26.21% 16.41% 19.73% 17.36% 22.88%

LN(4) 35.20% 35.11% 24.01% 19.95% 17.32% 22.35%

G(4) 23.82% 23.31% 14.71% 19.57% 17.40% 22.67%

Table 6.13: The absolute relative error of the RQ approximation at station 2 of two queues

in series models with M service times at station 2.
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Service 2 Service 1, ρ1 = 0.9

H2(4) E4 LN(0.25) M H2(4) LN(4) G(4)

A
ve

ra
g
e

R
E

A
rr

iv
a
l

E4 2.12% 2.02% 0.96% 5.62% 4.47% 3.88%

LN(0.25) 2.10% 1.98% 0.93% 5.60% 4.43% 3.88%

H2(4) 3.68% 3.72% 2.21% 6.06% 5.60% 3.93%

LN(4) 4.38% 4.37% 2.77% 6.44% 5.93% 4.37%

G(4) 3.40% 3.46% 1.87% 5.77% 5.29% 3.73%

M
ax

im
u

m
R

E

A
rr

iv
al

E4 6.29% 6.10% 2.08% 9.63% 7.88% 9.81%

LN(0.25) 6.33% 6.19% 2.14% 9.50% 7.94% 9.78%

H2(4) 8.67% 8.52% 6.70% 11.81% 9.95% 11.67%

LN(4) 11.47% 11.20% 8.95% 11.65% 9.60% 11.38%

G(4) 8.01% 7.80% 6.50% 11.92% 9.82% 11.59%

Table 6.14: The absolute relative error of the RQ approximation at station 2 of two queues

in series models with H2(4) service times at station 2.

Service 2 Service 1, ρ1 = 0.9

LN(4) E4 LN(0.25) M H2(4) LN(4) G(4)

A
ve

ra
ge

R
E

A
rr

iv
al

E4 2.05% 1.97% 0.92% 5.33% 4.32% 3.89%

LN(0.25) 2.02% 1.95% 0.91% 5.39% 4.37% 3.92%

H2(4) 3.84% 3.81% 2.28% 5.82% 5.55% 3.92%

LN(4) 4.58% 4.51% 2.88% 6.20% 5.89% 4.37%

G(4) 3.51% 3.54% 1.99% 5.52% 5.23% 3.75%

M
ax

im
u

m
R

E

A
rr

iv
al

E4 7.29% 6.65% 2.41% 9.50% 8.01% 9.52%

LN(0.25) 7.21% 6.68% 2.35% 9.57% 8.18% 9.65%

H2(4) 9.67% 9.49% 7.29% 11.63% 10.11% 11.20%

LN(4) 12.57% 12.26% 9.50% 11.43% 9.81% 11.18%

G(4) 8.65% 8.72% 7.09% 11.63% 10.08% 11.11%

Table 6.15: The absolute relative error of the RQ approximation at station 2 of two queues

in series models with LN(4) service times at station 2.
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Service 2 Service 1, ρ1 = 0.9

G(4) E4 LN(0.25) M H2(4) LN(4) G(4)

A
ve

ra
ge

R
E

A
rr

iv
a
l

E4 2.21% 2.28% 0.92% 5.71% 4.65% 4.11%

LN(0.25) 2.18% 2.24% 0.93% 5.69% 4.70% 4.09%

H2(4) 3.68% 3.80% 2.19% 6.14% 5.75% 4.28%

LN(4) 4.44% 4.54% 2.82% 6.50% 6.14% 4.65%

G(4) 3.47% 3.59% 1.90% 5.74% 5.54% 4.11%

M
ax

im
u

m
R

E

A
rr

iv
al

E4 7.86% 8.06% 1.94% 10.51% 8.17% 10.92%

LN(0.25) 7.82% 8.05% 1.88% 10.42% 8.32% 10.89%

H2(4) 8.07% 8.17% 6.72% 12.96% 10.70% 12.63%

LN(4) 10.98% 10.81% 8.53% 12.77% 10.49% 12.36%

G(4) 7.38% 7.50% 6.11% 12.44% 10.80% 12.72%

Table 6.16: The absolute relative error of the RQ approximation at station 2 of two queues

in series models with G(4) service times at station 2.

Service 2 Service 1, ρ1 = 0.7

E4 E4 LN(0.25) M H2(4) LN(4) G(4)

A
ve

ra
ge

R
E

E
x
te

rn
a
l

ar
ri

va
l E4 13.34% 13.63% 5.80% 10.84% 10.40% 8.89%

LN(0.25) 13.21% 13.52% 5.81% 10.79% 10.34% 8.88%

H2(4) 18.57% 19.57% 10.77% 13.56% 13.35% 11.42%

LN(4) 20.46% 21.33% 12.20% 14.45% 14.10% 12.16%

G(4) 14.66% 15.71% 8.68% 12.63% 12.36% 10.14%

M
ax

im
u

m
R

E

E
x
te

rn
al

ar
ri

va
l E4 25.13% 26.83% 13.21% 27.51% 27.26% 27.12%

LN(0.25) 25.31% 26.95% 12.97% 27.42% 27.11% 27.10%

H2(4) 41.71% 41.56% 24.82% 28.95% 26.08% 27.50%

LN(4) 48.28% 48.09% 34.30% 27.88% 25.03% 26.93%

G(4) 27.09% 27.00% 17.12% 29.13% 27.02% 27.40%

Table 6.17: The absolute relative error of the RQ approximation at station 2 of two queues

in series models with ρ1 = 0.7 and E4 service times at station 2.
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Service 2 Service 1, ρ1 = 0.9

M E4 LN(0.25) M H2(4) LN(4) G(4)

0
<
ρ

2
<

1

A
rr

iv
al

E4 17.11% 18.14% 7.05% 16.90% 14.18% 20.18%

LN(0.25) 17.12% 18.14% 6.91% 17.17% 14.14% 20.17%

H2(4) 26.13% 26.21% 16.41% 19.73% 17.36% 22.88%

LN(4) 35.20% 35.11% 24.01% 19.95% 17.32% 22.35%

G(4) 23.82% 23.31% 14.71% 19.57% 17.40% 22.67%

0.
5
<
ρ

2
<

1

A
rr

iv
al

E4 4.43% 3.13% 7.05% 11.20% 9.13% 11.85%

LN(0.25) 4.32% 3.04% 6.91% 11.30% 9.16% 12.01%

H2(4) 26.13% 26.21% 16.41% 10.63% 13.71% 3.86%

LN(4) 35.20% 35.11% 24.01% 11.37% 16.01% 5.92%

G(4) 23.82% 23.31% 14.71% 9.28% 12.11% 2.83%

Table 6.18: The maximum absolute relative error of the RQ approximation at station 2 of

two queues in series models with ρ1 = 0.7 and M service times at station 2.

Service 2 Service 1

LN(4) E4 LN(0.25) M H2(4) LN(4) G(4)

ρ
1

=
0.

7

A
rr

iv
al

E4 6.19% 5.57% 3.35% 8.11% 7.76% 8.21%

LN(0.25) 6.26% 5.60% 3.26% 8.08% 7.47% 8.24%

H2(4) 9.85% 10.03% 7.97% 13.24% 11.33% 11.07%

LN(4) 12.80% 12.76% 10.55% 12.33% 10.47% 10.63%

G(4) 8.43% 8.23% 6.54% 13.35% 10.76% 11.33%

ρ
1

=
0.

9

A
rr

iv
al

E4 7.29% 6.65% 2.41% 9.50% 8.01% 9.52%

LN(0.25) 7.21% 6.68% 2.35% 9.57% 8.18% 9.65%

H2(4) 9.67% 9.49% 7.29% 11.63% 10.11% 11.20%

LN(4) 12.57% 12.26% 9.50% 11.43% 9.81% 11.18%

G(4) 8.65% 8.72% 7.09% 11.63% 10.08% 11.11%

Table 6.19: Comparing the RQ performance for ρ1 = 0.7 and 0.9.
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stipulate that the rate λ ≡ λ1r2+λ2r1
r1+r2

= 1, which yields the following solution

λ2 =
2− γ + c2

aγ − 2λ1

2(1− λ1)

r1 =
2γ(1− λ1)2

2− γ + c2
aγ − 4λ1 + 2λ2

1

r2 =
(c2
a − 1)γ2

2− γ + c2
aγ − 4λ1 + 2λ2

1

, (6.6)

where γ = (1−p)λ1 +pλ2 and λ1 is a free variable such that λ1, λ2, r1, r2 ≥ 0. Consider the

special case of c2
a = 4, and r = 0.5. The range of feasible λ1 is [0, 1) ∪ [1.6,∞), which can

be easily solved from a set of quadratic inequalities λ1, λ2, r1, r2 ≥ 0. Figure 6.11 displays

the mean steady-state workload of the MMPP(2) defined by (2.61) and (6.6) with λ = 1,

c2
a = 4 and r = 0.5. We show multiple choices of λ1 ∈ {1.6, 3.2, 6.4, 12.8, 25.6} within the

feasible set. We do not show examples with λ1 ∈ [0, 1) because we can always swap the two

states and assume that λ1 ≥ 1.6 without loss of generality. In Corollary 3.1, we show that

GI/GI/1 is completely determined by the IDC. Note that the mean steady-state workload

in the case of λ = 1.6 coincides with that of the model with H2 arrival because it corresponds

to the interrupted Poisson process, which is equivalent to the two-phase hyperexponential

distribution [112].

The examples here show that even if the IDC’s remain the same across all cases, the

possible range of the performance measure can be substantial. Since the current version of

RQ depends only on the IDC in this example, we cannot expect it to work consistently well

across these examples. However, we would like to point out that these models are quite

abnormal in the sense that the generating matrix of the MAP have extremely small entries.

For example, when λ1 = 25.6, we have r2 = 0.0004. This implies that the underlying

state is rarely switched to state 2, but when it does, the arrival rate changes dramatically

(λ1 = 25.6 versus λ2 = 0.976).

6.3 Robust Queueing Network Analyzer for Tandem Queues

In this section, we compare the RQNA approximation to the simulation estimation of the

mean steady-state workload in various queues in series models. As discussed in Chapter

3.3, the only relevent network operation is the departure operation.
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Figure 6.11: Comparing the mean steady-state workload in single-server queues with iden-

tical arrival IDC and service-time distribution.

In Section 6.3.1, we look at the performance of the RQNA approximation for the sta-

tionary departure processes. In Section 6.3.4, we investigate the performance of our RQNA

algorithm in tandem queues.

6.3.1 Departure IDC Approximation in G/G/1 Models

We start with the RQNA approximation of the departure IDC, discussed in Section 5.1.

Figure 6.12 contrasts the simulation estimation of the departure IDC’s with the RQNA

approximations in (5.1) for G(4)/GI/1 and E4/GI/1 models with various service time-

distributions: E4, LN(0.25), M , H2(4), LN(4) and G(4). For each model, two cases are

displayed: ρ1 = 0.9 and ρ1 = 0.7 These plots validate Theorem 5.1 by stunning approxima-

tion performance. RQNA performance for ρ1 = 0.7 is satisfactory but not as good as the

cases with higher traffic intensity.

Recall that the theoretical support for our departure approximation is established in

Theorem 5.1 only for generalized Jackson network. But we conjecture that this heavy-traffic

limit theorem for the departure variance function holds in much more general settings in

Conjecture 5.1. We now provide numerical support for it.
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Figure 6.12: The RQNA approximation of the departure IDC of the G(4)/GI/1 and

E4/GI/1 models.
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Consider the MAP defined by (6.1) for the arrival process, or by (6.5) for the service

process. Figure 6.13 displays the RQNA approximation for the departure IDC in various

G/G/1 models with MAP as arrival or service processes. Each plot focuses on the same

G/G/1 model, but displays cases with ρ1 = 0.5, 0.7 and 0.9.

We observe that the RQNA approximation is asymptotically exact in HT limit for all

cases, strongly supporting Conjecture 5.1. We also see that the approximation works well

in MAP/GI/1 models but not as well in GI/MAP/1 models, leaving us some headroom

for future refinements in light traffic.

6.3.2 An Illustrative Example

In this section, we consider a similar example as in Section 2.2.9, where the normalized

workload as a function of ρ also has several modes, but the external arrival here has high

variability.

In this example we use groups of queues in series with the same distribution and traffic

intensity in order to better bring about an adjustment in the level of variability. Specifically,

this example has 13 single-server queues in series. The external arrival process is a rate-1

renewal process with H2 interarrival times with c2
a = 10. A group of three queues having E10

service times with mean 0.99 is then added to smooth the highly variable external arrivals.

The next group of three queues has H2 service times with mean 0.92 and squared coefficient

of variation 5. These queues will bring up the variability of the departure process. Then,

another group of three queues with mean 0.9 has E10 service times to smooth the departure

process again. The variability is then raised by yet another group of three queues having

H2 service times with mean 0.3 and c2
S = 10. Finally, the last (13th) queue has exponential

service times with mean and traffic intensity ρ. As before, we explore the impact of ρ on

the performance of that last queue.

As explained in last example, for sufficiently low traffic intensities ρ at the last queue, the

last queue should behave approximately the same as an H2/M/1 queue, which has c2
a = 10,

but as ρ increases, the arrival process at the last queue should inherit the variability of the

previous service times and the external arrival process, and altering between E10/M/1 and

H2/M/1 as the traffic intensity at the last queue increases. This implies that the normalized
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Figure 6.13: The RQNA approximation of the departure IDC of the models with MAP.
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workload c2
Z(ρ) in (2.27) as a function of ρ should have several modes, corresponding to the

variability of the external arrival process and the service processes at the first 4 groups of

queues.
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Figure 6.14: Comparing the simulation estimation to the RQ approximation for the work-

load, as a function of traffic intensity, at the last queue of a thirteen-queues-in-series model.

The workload function have four internal modes.

We then have the similar plots in Figure 6.14, which compares simulation estimates of

the normalized mean workload c2
Z(ρ) in (2.27) at the last queue with the RQ approximation

c2
Z∗(ρ) in (2.36) (left) and shows the IDW for this example (right). Again, we are using

the same scale as in Figure 2.2 (left), i.e., − ln(1− ρ), to stretch out the plot under heavy

traffic.

Figure 6.14 (left) shows that the the normalized workload at the last queue again has

four internal modes and that RQ successfully captures all modes and provides a reasonably

accurate approximation for all ρ. Figure 6.14 (right) shows that the IDW has the same

qualitative property as the RQ approximation, which is explained in (2.40). However, the

fluctuations in the simulation values for 0 < ρ < 1 in Figure 6.14 are much less than in

Figure 2.2.

We conclude that (i) the IDW and RQ do capture the qualititative behavior and (ii) the

RQ approximation based on the IDW is reasonably accurate in these difficult examples.
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Queue Sim QNA QNET SBD RQ RQNA

1 0.290 (2.41%) 0.45 (55%) 0.45 (55%) 0.45 (55%) 0.30 (2.3%) 0.30(2.3%)

2 0.491 (1.43%) 0.61 (24%) 0.66 (35%) 0.66 (35%) 0.55 (13%) 0.53 (8.1%)

3 0.607 (1.32%) 0.72 (19%) 0.74 (22%) 0.74 (22%) 0.70 (15%) 0.66 (9.4%)

4 0.666 (1.20%) 0.78 (17%) 0.79 (18%) 0.79 (19%) 0.77 (16%) 0.74 (11%)

5 0.706 (1.42%) 0.83 (18%) 0.82 (16%) 0.82 (16%) 0.80 (14%) 0.79 (12%)

6 0.731 (1.78%) 0.85 (16%) 0.84 (14%) 0.84 (15%) 0.83 (13%) 0.82 (13%)

7 0.748 (1.34%) 0.87 (16%) 0.85 (14%) 0.85 (14%) 0.84 (12%) 0.85 (13%)

8 0.775 (1.68%) 0.88 (14%) 0.86 (11%) 0.86 (11%) 0.85 (9.2%) 0.86 (11%)

9 5.031 (4.31%) 7.99 (59%) 6.97 (39%) 4.05 (-20%) 4.95 (-2.0%) 4.50 (-11%)

Total 10.05 14.0 (39%) 13.0 (29%) 10.1 (0.09%) 10.6 (5.3%) 10.1 (0.13%)

Table 6.20: A comparison of four approximation methods to simulation for 9 exponential

(M) queues in series fed by a deterministic arrival process with c2
a = 0.

6.3.3 Comparisons with Previous Algorithms for Queues in Series

In this section, we compare the performance of our RQNA algorithm to the performance

of QNA from [134], QNET from [73], SBD from [44] and RQ from [145], for the example

with 9 queues in series considered by [125]. This example was introduced by [125] to

illustrate the heavy-traffic bottleneck phenomenon and to show the limitation of traditional

decomposition methods, e.g. the QNA algorithm.

In particular, we consider an OQN with 9 stations in tandem, each with i.i.d. exponential

service times. Station 1 has the only external arrival process, which is a rate-1 general

renewal process. The traffic intensities at the first 8 queues are set to ρi = 0.6 for 1 ≤ i ≤ 8,

while the last queue has the significantly higher traffic intensity ρ9 = 0.9. As in [125],

two specific external renewal arrival processes are considered: (i) deterministic interarrival

times with c2
a0 = 0; and (ii) highly variable H2(8) interarrival times with c2

a0 = 8 (and again

balanced means).

Table 6.20 (for low variability) and Table 6.21 (for high variability) compare the various

approximations of the mean steady-state waiting time at each station, as well as the total

waiting time in the system, to simulation estimates.

In the parentheses, we include (i) the relative half-width of the 95% confidence interval
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Queue Sim QNA QNET SBD RQ RQNA

1 3.284 (3.50%) 4.05 (23%) 4.05 (23%) 4.05 (23%) 3.95 (20%) 3.95 (20%)

2 2.321 (4.18%) 2.92 (26%) 1.81 (22%) 1.82 (-22%) 2.61 (12%) 1.95 (-15%)

3 1.914 (3.40%) 2.19 (14%) 1.47 (-23%) 1.49 (-22%) 2.04 (6.7%) 1.07 (-44%)

4 1.719 (4.07%) 1.73 (0.64%) 1.16 (-33%) 1.19 (-31%) 1.72 (0.31%) 0.94 (-41%)

5 1.598 (3.69%) 1.43 (-11%) 1.07 (-33%) 1.10 (-31%) 1.53 (-4.1%) 0.91 (-43%)

6 1.478 (4.13%) 1.24 (-16%) 1.03 (-31%) 1.06 (-28%) 1.41 (-4.6%) 0.90 (-39%)

7 1.423 (3.23%) 1.12 (-21%) 1.00 (-30%) 1.03 (-28%) 1.33 (-6.8%) 0.90 (-37%)

8 1.413 (4.67%) 1.04 (-26%) 0.98 (-30%) 1.01 (-29%) 1.27 (-10%) 0.90 (-36%)

9 30.12 (16.8%) 8.90 (-71%) 6.04 (-80%) 36.5 (21%) 36.9 (23%) 32.8 (9.0%)

Total 45.27 24.6 (-46%) 18.6 (-59%) 49.8 (10%) 52.8 (17%) 44.4 (-2.0%)

Table 6.21: A comparison of four approximation methods to simulation for 9 exponential

(M) queues in series fed by a highly-variable H2 renewal arrival process with c2
a = 8.

for simulation estimates (column Sim); and (ii) the relative error of the approximations

compared to the simulation estimates. The first 5 columns in Table 6.20 and Table 6.21 are

taken directly from Tables VIII and IX of [44], but the simulation and QNA approximations

come from [125]. The last column is obtained from the RQNA algorithm. The RQNA

approximations of the workload are transformed into the approximations of the waiting

time by (2.50).

To put these performance measures in perspective, note that in an M/M/1 queue with

arrival rate 1 we would have EW = ρ2/(1− ρ), which would be 0.90 at the first 8 queues,

but 8.1 at the last queue. For the D arrival process in Table 6.20, we expect that EW will

be smaller; for the the H2 arrival process in Table 6.21, we expect EW to be higher, but

we see a big impact at the last queue, more than might be expected.

We make the following observations from this experiment:

1. The new RQNA algorithm does better than the QNA and QNET methods on total

time spent waiting in queue, and is comparable with the SBD method, even though

RQNA does not require solving an RBM.

2. The RQNA algorithm does exceptionally well at the final bottleneck queue and is

competitive with all other methods for approximating the mean waiting time. The
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new RQNA method is based on heavy-traffic limits just as the previous methods

methods, but focuses on the flows, and exploits RQ instead of analyzing an RBM.

3. The RQNA algorithm can benefit from further improvement for light-to-medium traf-

fic intensities. As demonstrated in Table 6.21, the mean waiting times at queues 3-8

are pushed too much towards the M/M/1 values in the departure IDC approxima-

tion for light to medium traffic intensity. That remains to be a direction for future

research.

6.3.4 RQNA Performance in Tandem Queueus

In this section, we systematically investigate the RQNA approximation in the queues in se-

ries models, described in Section 3.3.2. In particular, we compare the simulation estimation,

the RQ approximation and the RQNA approximation for examples in Section 6.2.5.

In Table 6.22 - 6.25, we look at various GI1/GI2/1 → ·/GI3/1 models with ρ1 = 0.9,

GI1, GI3 ∈ {E4, LN(4)} and GI2 ∈ {E4, LN(0.25),M,H2(4), LN(4), G(4)}. In Table 6.26

- 6.29, we look at analog tables but with ρ1 = 0.7. We observe that RQNA approximation

matches closely with the RQ approximation, even though the IDC is calculated from our

IDC equations instead of simulation estimations. Both approximation provide effective

approximation of the simulated values.

6.4 Robust Queueing Network Analyzer for Open Queueing

Networks

We discuss examples of networks with significant near-immediate feedback from [44]. We

show that the near-immediate feedback in these examples have a significant impact on the

performance measures. As discussed in Section 5.5, the RQNA algorithm can benefit from

the feedback elimination procedure when customer feedback is present. Hence our predic-

tions with and without feedback elimination are very different. We find that our RQNA with

near-immediate feedback elimination performs as well or better than the other algorithms.

We remark that the SBD algorithm performed remarkably well in these examples.
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External arrival LN(4), Service 2 = E4, ρ1 = 0.9

Service 1 = E4 Service 1 = LN(0.25) Service 1 = M

ρ2 Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 1.12 1.24(11%) 1.23(10%) 1.11 1.24(12%) 1.24(11%) 1.26 1.25(-1%) 1.26(0%)

0.16 1.06 1.23(16%) 1.22(15%) 1.05 1.23(17%) 1.23(16%) 1.26 1.25(-1%) 1.26(0%)

0.21 1.01 1.21(20%) 1.21(20%) 1.00 1.21(21%) 1.21(22%) 1.27 1.25(-2%) 1.25(-1%)

0.26 0.96 1.18(23%) 1.18(23%) 0.94 1.18(25%) 1.18(25%) 1.28 1.25(-2%) 1.26(-2%)

0.31 0.92 1.15(25%) 1.14(25%) 0.90 1.15(27%) 1.15(27%) 1.28 1.25(-3%) 1.26(-2%)

0.36 0.88 1.10(25%) 1.10(25%) 0.86 1.10(28%) 1.10(28%) 1.29 1.25(-3%) 1.26(-2%)

0.41 0.85 1.05(24%) 1.04(23%) 0.82 1.05(27%) 1.04(26%) 1.30 1.25(-4%) 1.27(-3%)

0.46 0.82 0.99(21%) 0.98(20%) 0.79 0.98(24%) 0.97(23%) 1.32 1.26(-4%) 1.28(-3%)

0.51 0.79 0.92(16%) 0.91(15%) 0.77 0.91(18%) 0.90(17%) 1.33 1.26(-5%) 1.29(-3%)

0.56 0.77 0.85(9%) 0.84(9%) 0.75 0.83(11%) 0.82(10%) 1.35 1.28(-5%) 1.31(-2%)

0.61 0.76 0.77(2%) 0.77(1%) 0.74 0.75(2%) 0.74(1%) 1.37 1.30(-5%) 1.35(-2%)

0.66 0.75 0.70(-6%) 0.72(-4%) 0.73 0.68(-7%) 0.71(-3%) 1.40 1.33(-5%) 1.40(1%)

0.71 0.76 0.70(-8%) 0.77(1%) 0.74 0.68(-7%) 0.76(3%) 1.44 1.38(-4%) 1.50(4%)

0.76 0.78 0.77(-1%) 0.93(20%) 0.76 0.77(0%) 0.93(22%) 1.49 1.48(-0%) 1.66(11%)

0.81 0.84 1.00(19%) 1.28(53%) 0.83 1.00(21%) 1.28(55%) 1.58 1.67(6%) 1.92(22%)

0.86 0.99 1.50(51%) 1.85(87%) 0.99 1.50(52%) 1.85(87%) 1.75 2.03(16%) 2.34(34%)

0.91 1.51 2.40(59%) 2.70(79%) 1.51 2.40(59%) 2.70(78%) 2.12 2.69(27%) 2.96(39%)

0.96 2.83 3.71(31%) 3.82(35%) 2.83 3.71(31%) 3.82(35%) 3.03 3.75(24%) 3.87(28%)

Service 1 = H2(4) Service 1 = LN(4) Service 1 = G(4)

ρ Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 1.36 1.26(-8%) 1.25(-8%) 1.30 1.24(-4%) 1.23(-5%) 2.47 1.78(-28%) 1.76(-29%)

0.16 1.43 1.26(-11%) 1.26(-11%) 1.37 1.23(-10%) 1.23(-10%) 2.66 1.96(-26%) 1.93(-27%)

0.21 1.50 1.28(-15%) 1.28(-15%) 1.45 1.23(-15%) 1.23(-15%) 2.81 2.15(-24%) 2.11(-25%)

0.26 1.60 1.30(-19%) 1.31(-18%) 1.54 1.24(-20%) 1.24(-19%) 2.95 2.34(-21%) 2.30(-22%)

0.31 1.71 1.33(-22%) 1.35(-21%) 1.64 1.27(-23%) 1.28(-22%) 3.08 2.54(-18%) 2.50(-19%)

0.36 1.84 1.39(-24%) 1.41(-23%) 1.74 1.33(-24%) 1.36(-22%) 3.19 2.74(-14%) 2.71(-15%)

0.41 2.00 1.49(-25%) 1.53(-23%) 1.86 1.44(-22%) 1.49(-20%) 3.29 2.95(-10%) 2.92(-11%)

0.46 2.18 1.67(-23%) 1.75(-20%) 1.99 1.60(-19%) 1.67(-16%) 3.39 3.15(-7%) 3.13(-8%)

0.51 2.38 1.98(-17%) 2.12(-11%) 2.12 1.82(-14%) 1.91(-10%) 3.48 3.35(-4%) 3.33(-4%)

0.56 2.60 2.40(-8%) 2.59(-0%) 2.27 2.08(-9%) 2.21(-3%) 3.58 3.53(-1%) 3.53(-1%)

0.61 2.83 2.85(1%) 3.07(8%) 2.44 2.37(-3%) 2.54(4%) 3.66 3.68(1%) 3.70(1%)

0.66 3.07 3.26(6%) 3.48(13%) 2.63 2.69(2%) 2.91(11%) 3.73 3.81(2%) 3.86(3%)

0.71 3.30 3.57(8%) 3.81(16%) 2.84 3.03(7%) 3.31(17%) 3.81 3.92(3%) 3.99(5%)

0.76 3.52 3.80(8%) 4.07(16%) 3.06 3.35(9%) 3.70(21%) 3.89 4.00(3%) 4.11(6%)

0.81 3.74 3.96(6%) 4.26(14%) 3.34 3.66(10%) 4.07(22%) 3.95 4.07(3%) 4.22(7%)

0.86 3.91 4.08(4%) 4.40(13%) 3.64 3.92(8%) 4.40(21%) 4.02 4.13(3%) 4.31(7%)

0.91 4.07 4.17(2%) 4.47(10%) 3.98 4.12(3%) 4.61(16%) 4.07 4.18(3%) 4.37(7%)

0.96 4.17 4.22(1%) 4.38(5%) 4.28 4.21(-1%) 4.55(6%) 4.11 4.22(3%) 4.33(5%)

Table 6.22: The RQNA approximation in various LN(4)/GI/1 → ·/E4/1 models with

ρ1 = 0.9.
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External arrival E4, Service 2 = LN(4), ρ1 = 0.9

Service 1 = E4 Service 1 = LN(0.25) Service 1 = M

ρ2 Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 4.70 4.96(6%) 4.96(6%) 4.65 4.96(7%) 4.96(7%) 4.96 5.00(1%) 5.00(1%)

0.16 4.58 4.91(7%) 4.91(7%) 4.62 4.91(6%) 4.91(6%) 5.01 5.00(-0%) 4.99(-0%)

0.21 4.53 4.84(7%) 4.84(7%) 4.69 4.83(3%) 4.83(3%) 4.95 4.99(1%) 4.99(1%)

0.26 4.63 4.73(2%) 4.74(2%) 4.55 4.73(4%) 4.73(4%) 4.91 4.98(2%) 4.98(2%)

0.31 4.53 4.61(2%) 4.62(2%) 4.52 4.59(2%) 4.60(2%) 4.90 4.97(2%) 4.97(2%)

0.36 4.50 4.49(-0%) 4.51(0%) 4.45 4.46(0%) 4.47(0%) 4.88 4.95(1%) 4.96(1%)

0.41 4.44 4.40(-1%) 4.42(-0%) 4.45 4.38(-2%) 4.40(-1%) 4.89 4.93(1%) 4.94(1%)

0.46 4.43 4.35(-2%) 4.37(-1%) 4.41 4.34(-2%) 4.36(-1%) 4.86 4.91(1%) 4.92(1%)

0.51 4.42 4.32(-2%) 4.34(-2%) 4.41 4.31(-2%) 4.33(-2%) 4.85 4.89(1%) 4.90(1%)

0.56 4.37 4.30(-2%) 4.31(-1%) 4.36 4.29(-2%) 4.31(-1%) 4.85 4.87(0%) 4.87(0%)

0.61 4.35 4.28(-2%) 4.29(-1%) 4.35 4.28(-2%) 4.30(-1%) 4.87 4.84(-1%) 4.84(-0%)

0.66 4.33 4.27(-1%) 4.28(-1%) 4.36 4.27(-2%) 4.29(-2%) 4.81 4.80(-0%) 4.81(-0%)

0.71 4.34 4.26(-2%) 4.27(-2%) 4.35 4.26(-2%) 4.28(-2%) 4.76 4.76(-0%) 4.77(0%)

0.76 4.30 4.26(-1%) 4.26(-1%) 4.34 4.26(-2%) 4.27(-2%) 4.72 4.70(-0%) 4.71(-0%)

0.81 4.31 4.25(-1%) 4.26(-1%) 4.29 4.25(-1%) 4.26(-1%) 4.65 4.63(-1%) 4.64(-0%)

0.86 4.31 4.25(-1%) 4.25(-1%) 4.28 4.25(-1%) 4.26(-0%) 4.58 4.53(-1%) 4.54(-1%)

0.91 4.27 4.25(-0%) 4.25(-0%) 4.27 4.25(-1%) 4.25(-0%) 4.52 4.40(-3%) 4.41(-2%)

0.96 4.25 4.25(-0%) 4.25(-0%) 4.26 4.25(-0%) 4.25(-0%) 4.38 4.28(-2%) 4.28(-2%)

Service 1 = H2(4) Service 1 = LN(4) Service 1 = G(4)

ρ Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 5.26 5.02(-4%) 5.02(-5%) 5.19 4.98(-4%) 4.98(-4%) 6.21 5.74(-8%) 5.66(-9%)

0.16 5.32 5.05(-5%) 5.05(-5%) 5.23 4.99(-5%) 4.99(-4%) 6.47 5.97(-8%) 5.86(-10%)

0.21 5.46 5.10(-7%) 5.09(-7%) 5.33 5.04(-5%) 5.04(-5%) 6.51 6.18(-5%) 6.05(-7%)

0.26 5.70 5.17(-9%) 5.16(-10%) 5.55 5.12(-8%) 5.12(-8%) 6.60 6.38(-3%) 6.23(-6%)

0.31 5.78 5.28(-9%) 5.27(-9%) 5.59 5.24(-6%) 5.23(-6%) 6.78 6.57(-3%) 6.40(-6%)

0.36 5.89 5.43(-8%) 5.42(-8%) 5.67 5.38(-5%) 5.36(-5%) 6.74 6.75(0%) 6.57(-3%)

0.41 5.97 5.65(-5%) 5.64(-6%) 5.72 5.54(-3%) 5.52(-4%) 6.83 6.90(1%) 6.71(-2%)

0.46 6.11 5.92(-3%) 5.92(-3%) 5.81 5.72(-2%) 5.69(-2%) 6.80 7.03(3%) 6.84(1%)

0.51 6.22 6.22(-0%) 6.23(0%) 5.91 5.90(-0%) 5.87(-1%) 6.88 7.12(3%) 6.95(1%)

0.56 6.31 6.50(3%) 6.52(3%) 5.98 6.07(2%) 6.06(1%) 6.80 7.17(6%) 7.01(3%)

0.61 6.39 6.71(5%) 6.75(6%) 6.05 6.24(3%) 6.24(3%) 6.88 7.18(4%) 7.04(2%)

0.66 6.45 6.83(6%) 6.88(7%) 6.13 6.37(4%) 6.41(5%) 6.85 7.14(4%) 7.02(2%)

0.71 6.52 6.85(5%) 6.92(6%) 6.22 6.46(4%) 6.54(5%) 6.74 7.04(4%) 6.95(3%)

0.76 6.47 6.77(5%) 6.87(6%) 6.23 6.48(4%) 6.61(6%) 6.66 6.88(3%) 6.82(2%)

0.81 6.44 6.58(2%) 6.70(4%) 6.25 6.39(2%) 6.59(5%) 6.52 6.64(2%) 6.60(1%)

0.86 6.30 6.25(-1%) 6.38(1%) 6.19 6.15(-1%) 6.42(4%) 6.28 6.28(-0%) 6.27(-0%)

0.91 5.95 5.69(-4%) 5.82(-2%) 5.97 5.65(-5%) 5.98(0%) 5.92 5.70(-4%) 5.71(-4%)

0.96 5.29 4.75(-10%) 4.82(-9%) 5.42 4.74(-12%) 4.98(-8%) 5.25 4.75(-10%) 4.77(-9%)

Table 6.23: The RQNA approximation in various E4/GI/1 → ·/LN(4)/1 models with

ρ1 = 0.9.
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External arrival E4, Service 2 = E4, ρ1 = 0.9

Service 1 = E4 Service 1 = LN(0.25), ρ1 = 0.9 Service 1 = M

ρ2 Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 1.12 1.24(11%) 1.24(11%) 1.11 1.24(12%) 1.24(11%) 1.24 1.25(1%) 1.25(1%)

0.16 1.06 1.23(16%) 1.23(16%) 1.05 1.23(17%) 1.23(17%) 1.24 1.25(1%) 1.25(1%)

0.21 1.00 1.21(20%) 1.21(20%) 0.99 1.21(22%) 1.21(22%) 1.23 1.25(2%) 1.25(1%)

0.26 0.95 1.18(24%) 1.18(24%) 0.94 1.18(25%) 1.18(25%) 1.22 1.25(2%) 1.25(2%)

0.31 0.91 1.14(26%) 1.14(26%) 0.89 1.14(28%) 1.14(28%) 1.22 1.25(2%) 1.24(2%)

0.36 0.87 1.10(27%) 1.10(27%) 0.85 1.10(29%) 1.10(29%) 1.21 1.24(3%) 1.24(2%)

0.41 0.83 1.04(26%) 1.04(26%) 0.81 1.04(29%) 1.04(29%) 1.20 1.23(3%) 1.23(2%)

0.46 0.79 0.98(24%) 0.98(24%) 0.77 0.98(26%) 0.97(26%) 1.20 1.22(2%) 1.22(2%)

0.51 0.76 0.91(20%) 0.91(20%) 0.74 0.90(22%) 0.90(22%) 1.18 1.21(2%) 1.21(2%)

0.56 0.72 0.83(15%) 0.84(15%) 0.71 0.82(16%) 0.82(16%) 1.17 1.19(2%) 1.20(2%)

0.61 0.70 0.75(9%) 0.76(9%) 0.68 0.74(9%) 0.74(9%) 1.16 1.18(1%) 1.18(2%)

0.66 0.67 0.67(1%) 0.68(3%) 0.65 0.65(0%) 0.66(1%) 1.15 1.15(1%) 1.16(1%)

0.71 0.64 0.60(-5%) 0.62(-3%) 0.63 0.59(-6%) 0.61(-3%) 1.13 1.13(0%) 1.14(1%)

0.76 0.61 0.56(-8%) 0.58(-5%) 0.61 0.55(-9%) 0.58(-5%) 1.10 1.10(-0%) 1.10(0%)

0.81 0.59 0.53(-9%) 0.55(-7%) 0.59 0.53(-9%) 0.55(-6%) 1.07 1.05(-1%) 1.06(-1%)

0.86 0.56 0.52(-8%) 0.53(-7%) 0.56 0.51(-9%) 0.53(-6%) 1.01 0.99(-3%) 1.00(-2%)

0.91 0.54 0.51(-6%) 0.51(-5%) 0.54 0.51(-7%) 0.52(-5%) 0.93 0.88(-5%) 0.89(-4%)

0.96 0.52 0.50(-3%) 0.50(-3%) 0.52 0.50(-4%) 0.50(-3%) 0.78 0.69(-12%) 0.69(-11%)

Service 1 = H2(4) Service 1 = LN(4) Service 1 = G(4)

ρ Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 1.34 1.26(-6%) 1.26(-6%) 1.28 1.24(-3%) 1.24(-3%) 2.35 1.78(-24%) 1.72(-27%)

0.16 1.39 1.26(-9%) 1.26(-9%) 1.34 1.23(-8%) 1.23(-8%) 2.50 1.96(-22%) 1.87(-25%)

0.21 1.45 1.28(-12%) 1.27(-12%) 1.40 1.23(-12%) 1.23(-12%) 2.63 2.14(-19%) 2.03(-23%)

0.26 1.52 1.30(-15%) 1.29(-15%) 1.47 1.24(-16%) 1.24(-16%) 2.73 2.32(-15%) 2.19(-20%)

0.31 1.61 1.33(-17%) 1.32(-18%) 1.54 1.26(-18%) 1.27(-18%) 2.83 2.51(-11%) 2.35(-17%)

0.36 1.71 1.38(-19%) 1.37(-20%) 1.62 1.32(-19%) 1.32(-19%) 2.91 2.69(-8%) 2.51(-14%)

0.41 1.84 1.46(-21%) 1.44(-21%) 1.71 1.41(-17%) 1.40(-18%) 2.98 2.87(-4%) 2.68(-10%)

0.46 1.97 1.60(-19%) 1.58(-20%) 1.79 1.54(-14%) 1.52(-15%) 3.04 3.03(-0%) 2.84(-7%)

0.51 2.12 1.83(-14%) 1.82(-14%) 1.89 1.71(-10%) 1.68(-11%) 3.09 3.18(3%) 2.98(-3%)

0.56 2.28 2.16(-5%) 2.16(-5%) 1.99 1.90(-5%) 1.87(-6%) 3.13 3.30(5%) 3.11(-1%)

0.61 2.44 2.51(3%) 2.53(3%) 2.10 2.11(0%) 2.08(-1%) 3.17 3.38(7%) 3.21(1%)

0.66 2.59 2.81(8%) 2.84(10%) 2.21 2.32(5%) 2.31(4%) 3.17 3.43(8%) 3.27(3%)

0.71 2.72 3.01(11%) 3.06(12%) 2.33 2.51(8%) 2.52(9%) 3.16 3.42(8%) 3.29(4%)

0.76 2.82 3.10(10%) 3.17(12%) 2.43 2.66(9%) 2.71(12%) 3.13 3.35(7%) 3.25(4%)

0.81 2.87 3.07(7%) 3.15(10%) 2.53 2.73(8%) 2.84(12%) 3.05 3.21(5%) 3.13(3%)

0.86 2.84 2.90(2%) 3.00(6%) 2.60 2.68(3%) 2.85(10%) 2.90 2.97(2%) 2.92(1%)

0.91 2.64 2.52(-4%) 2.63(-0%) 2.54 2.42(-5%) 2.65(5%) 2.62 2.55(-3%) 2.53(-3%)

0.96 2.07 1.74(-16%) 1.83(-11%) 2.16 1.72(-21%) 1.97(-9%) 2.00 1.75(-13%) 1.76(-12%)

Table 6.24: The RQNA approximation in various E4/GI/1→ ·/E4/1 models with ρ1 = 0.9.
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External arrival LN(4), Service 2 = LN(4), ρ1 = 0.9

Service 1 = E4 Service 1 = LN(0.25), ρ1 = 0.9 Service 1 = M

ρ2 Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 4.73 4.96(5%) 4.96(5%) 4.68 4.96(6%) 4.96(6%) 5.02 5.00(-0%) 5.00(-0%)

0.16 4.63 4.91(6%) 4.91(6%) 4.66 4.91(5%) 4.91(5%) 5.09 5.00(-2%) 5.00(-2%)

0.21 4.60 4.84(5%) 4.84(5%) 4.75 4.84(2%) 4.83(2%) 5.08 5.00(-1%) 5.01(-1%)

0.26 4.72 4.74(1%) 4.74(0%) 4.63 4.74(2%) 4.73(2%) 5.06 5.00(-1%) 5.02(-1%)

0.31 4.65 4.63(-0%) 4.63(-1%) 4.62 4.61(-0%) 4.60(-1%) 5.09 5.01(-2%) 5.03(-1%)

0.36 4.65 4.53(-3%) 4.53(-3%) 4.59 4.49(-2%) 4.50(-2%) 5.10 5.02(-2%) 5.05(-1%)

0.41 4.62 4.46(-3%) 4.48(-3%) 4.63 4.44(-4%) 4.46(-4%) 5.16 5.03(-2%) 5.07(-2%)

0.46 4.65 4.44(-5%) 4.48(-4%) 4.62 4.43(-4%) 4.46(-3%) 5.16 5.05(-2%) 5.10(-1%)

0.51 4.69 4.45(-5%) 4.50(-4%) 4.67 4.44(-5%) 4.50(-4%) 5.22 5.08(-3%) 5.15(-1%)

0.56 4.69 4.49(-4%) 4.57(-3%) 4.67 4.48(-4%) 4.56(-2%) 5.28 5.12(-3%) 5.22(-1%)

0.61 4.74 4.55(-4%) 4.67(-2%) 4.74 4.55(-4%) 4.66(-2%) 5.36 5.19(-3%) 5.31(-1%)

0.66 4.81 4.66(-3%) 4.81(0%) 4.83 4.65(-4%) 4.81(-0%) 5.42 5.27(-3%) 5.43(0%)

0.71 4.94 4.82(-2%) 5.03(2%) 4.94 4.81(-2%) 5.02(2%) 5.50 5.40(-2%) 5.60(2%)

0.76 5.05 5.06(0%) 5.31(5%) 5.08 5.06(-0%) 5.31(5%) 5.61 5.59(-0%) 5.83(4%)

0.81 5.29 5.42(2%) 5.71(8%) 5.27 5.42(3%) 5.71(8%) 5.77 5.87(2%) 6.14(6%)

0.86 5.67 5.96(5%) 6.25(10%) 5.60 5.96(6%) 6.25(12%) 6.01 6.29(5%) 6.55(9%)

0.91 6.20 6.77(9%) 6.98(13%) 6.21 6.77(9%) 6.97(12%) 6.50 6.92(6%) 7.12(10%)

0.96 7.07 7.69(9%) 7.76(10%) 7.08 7.69(9%) 7.76(10%) 7.18 7.71(7%) 7.79(8%)

Service 1 = H2(4) Service 1 = LN(4) Service 1 = G(4)

ρ Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 5.34 5.02(-6%) 5.03(-6%) 5.26 4.98(-5%) 4.98(-5%) 6.39 5.74(-10%) 5.72(-11%)

0.16 5.44 5.05(-7%) 5.06(-7%) 5.34 4.99(-6%) 5.00(-6%) 6.69 5.97(-11%) 5.94(-11%)

0.21 5.59 5.11(-9%) 5.12(-8%) 5.48 5.05(-8%) 5.07(-7%) 6.78 6.20(-9%) 6.16(-9%)

0.26 5.89 5.19(-12%) 5.22(-11%) 5.74 5.14(-10%) 5.17(-10%) 6.88 6.42(-7%) 6.39(-7%)

0.31 6.00 5.31(-11%) 5.36(-11%) 5.82 5.27(-9%) 5.32(-9%) 7.13 6.64(-7%) 6.61(-7%)

0.36 6.17 5.50(-11%) 5.57(-10%) 5.94 5.44(-8%) 5.50(-7%) 7.14 6.85(-4%) 6.82(-4%)

0.41 6.30 5.76(-9%) 5.86(-7%) 6.03 5.64(-7%) 5.72(-5%) 7.28 7.04(-3%) 7.02(-4%)

0.46 6.50 6.10(-6%) 6.24(-4%) 6.20 5.86(-5%) 5.97(-4%) 7.26 7.22(-1%) 7.21(-1%)

0.51 6.69 6.48(-3%) 6.65(-1%) 6.35 6.11(-4%) 6.25(-2%) 7.43 7.38(-1%) 7.39(-1%)

0.56 6.84 6.85(0%) 7.04(3%) 6.49 6.38(-2%) 6.55(1%) 7.39 7.51(2%) 7.54(2%)

0.61 7.00 7.17(2%) 7.38(5%) 6.64 6.65(0%) 6.87(3%) 7.58 7.62(0%) 7.67(1%)

0.66 7.15 7.41(4%) 7.65(7%) 6.81 6.92(2%) 7.19(6%) 7.64 7.70(1%) 7.78(2%)

0.71 7.35 7.59(3%) 7.85(7%) 7.02 7.19(2%) 7.52(7%) 7.64 7.77(2%) 7.88(3%)

0.76 7.48 7.72(3%) 8.01(7%) 7.21 7.44(3%) 7.83(9%) 7.71 7.82(1%) 7.97(3%)

0.81 7.64 7.82(2%) 8.13(6%) 7.45 7.65(3%) 8.10(9%) 7.77 7.87(1%) 8.05(4%)

0.86 7.80 7.89(1%) 8.21(5%) 7.70 7.81(1%) 8.30(8%) 7.79 7.91(2%) 8.11(4%)

0.91 7.86 7.95(1%) 8.20(4%) 7.87 7.93(1%) 8.38(6%) 7.88 7.95(1%) 8.12(3%)

0.96 7.94 7.97(0%) 8.09(2%) 8.04 7.97(-1%) 8.21(2%) 7.91 7.98(1%) 8.06(2%)

Table 6.25: The RQNA approximation in various LN(4)/GI/1 → ·/LN(4)/1 models with

ρ1 = 0.9.
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External arrival LN(4), Service 2 = E4, ρ1 = 0.7

Service 1 = E4 Service 1 = LN(0.25) Service 1 = M

ρ2 Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 1.12 1.24(11%) 1.24(11%) 1.11 1.24(11%) 1.25(12%) 1.28 1.25(-2%) 1.25(-2%)

0.16 1.07 1.23(15%) 1.23(15%) 1.06 1.23(16%) 1.23(17%) 1.30 1.25(-4%) 1.25(-3%)

0.21 1.02 1.21(18%) 1.21(18%) 1.01 1.21(20%) 1.21(20%) 1.31 1.25(-5%) 1.26(-4%)

0.26 0.99 1.18(20%) 1.18(19%) 0.97 1.18(22%) 1.18(22%) 1.33 1.25(-6%) 1.26(-5%)

0.31 0.96 1.15(19%) 1.14(19%) 0.94 1.15(22%) 1.14(22%) 1.36 1.25(-8%) 1.27(-6%)

0.36 0.94 1.11(17%) 1.10(16%) 0.92 1.11(20%) 1.10(19%) 1.39 1.25(-9%) 1.29(-7%)

0.41 0.94 1.06(13%) 1.05(12%) 0.91 1.06(16%) 1.04(14%) 1.42 1.26(-11%) 1.31(-8%)

0.46 0.94 1.01( 7%) 0.99( 5%) 0.92 1.00( 9%) 0.98( 6%) 1.46 1.28(-12%) 1.34(-8%)

0.51 0.96 0.95(-1%) 0.93(-3%) 0.94 0.94(-0%) 0.91(-3%) 1.51 1.31(-13%) 1.40(-7%)

0.56 1.00 0.89(-11%) 0.91(-9%) 0.98 0.87(-11%) 0.89(-9%) 1.57 1.36(-13%) 1.49(-5%)

0.61 1.07 0.89(-17%) 1.07(-0%) 1.06 0.88(-17%) 1.07( 1%) 1.66 1.46(-12%) 1.64(-1%)

0.66 1.19 1.11(-7%) 1.42(19%) 1.19 1.10(-7%) 1.42(20%) 1.77 1.64(-7%) 1.88( 7%)

0.71 1.39 1.54(10%) 1.92(38%) 1.40 1.53(10%) 1.92(38%) 1.91 1.94( 2%) 2.24(18%)

0.76 1.69 2.13(26%) 2.50(48%) 1.70 2.13(25%) 2.51(47%) 2.10 2.38(13%) 2.69(28%)

0.81 2.09 2.80(34%) 3.10(48%) 2.09 2.80(34%) 3.10(48%) 2.37 2.93(23%) 3.19(34%)

0.86 2.55 3.44(35%) 3.62(42%) 2.56 3.44(34%) 3.63(42%) 2.72 3.48(28%) 3.65(34%)

0.91 3.07 3.92(28%) 4.00(30%) 3.07 3.92(28%) 4.01(31%) 3.15 3.94(25%) 4.01(27%)

0.96 3.66 4.18(14%) 4.20(15%) 3.67 4.18(14%) 4.21(15%) 3.68 4.18(14%) 4.20(14%)

Service 1 = H2(4) Service 1 = LN(4) Service 1 = G(4)

ρ Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 1.39 1.26(-10%) 1.26(-10%) 1.34 1.24(-7%) 1.23(-8%) 2.32 1.77(-23%) 1.69(-27%)

0.16 1.48 1.26(-14%) 1.27(-14%) 1.43 1.23(-14%) 1.23(-14%) 2.47 1.94(-21%) 1.84(-25%)

0.21 1.58 1.28(-19%) 1.29(-19%) 1.53 1.23(-20%) 1.24(-19%) 2.60 2.11(-19%) 1.99(-23%)

0.26 1.70 1.30(-24%) 1.32(-23%) 1.64 1.24(-25%) 1.27(-23%) 2.73 2.28(-17%) 2.15(-21%)

0.31 1.86 1.33(-28%) 1.37(-26%) 1.77 1.27(-28%) 1.32(-25%) 2.83 2.45(-14%) 2.31(-18%)

0.36 2.03 1.39(-32%) 1.46(-28%) 1.90 1.33(-30%) 1.43(-25%) 2.93 2.62(-11%) 2.49(-15%)

0.41 2.21 1.49(-33%) 1.62(-27%) 2.04 1.44(-29%) 1.58(-22%) 3.02 2.79(-8%) 2.67(-12%)

0.46 2.42 1.66(-31%) 1.91(-21%) 2.20 1.60(-27%) 1.80(-18%) 3.12 2.95(-5%) 2.85(-9%)

0.51 2.63 1.95(-26%) 2.31(-12%) 2.36 1.82(-23%) 2.07(-12%) 3.19 3.11(-2%) 3.03(-5%)

0.56 2.83 2.33(-18%) 2.75(-3%) 2.55 2.08(-19%) 2.39(-6%) 3.26 3.25(-0%) 3.20(-2%)

0.61 3.03 2.73(-10%) 3.15( 4%) 2.73 2.37(-13%) 2.76( 1%) 3.34 3.39( 1%) 3.37( 1%)

0.66 3.21 3.08(-4%) 3.49( 9%) 2.94 2.69(-8%) 3.14( 7%) 3.41 3.50( 3%) 3.53( 4%)

0.71 3.38 3.38(-0%) 3.76(11%) 3.16 3.03(-4%) 3.53(12%) 3.48 3.61( 4%) 3.69( 6%)

0.76 3.52 3.61( 3%) 3.97(13%) 3.38 3.35(-1%) 3.90(15%) 3.55 3.72( 5%) 3.85( 8%)

0.81 3.66 3.80( 4%) 4.13(13%) 3.59 3.66( 2%) 4.20(17%) 3.60 3.85( 7%) 4.00(11%)

0.86 3.75 3.98( 6%) 4.23(13%) 3.81 3.92( 3%) 4.39(15%) 3.67 3.99( 9%) 4.13(12%)

0.91 3.87 4.13( 7%) 4.26(10%) 3.99 4.12( 3%) 4.41(10%) 3.78 4.13( 9%) 4.21(11%)

0.96 4.02 4.21( 5%) 4.24( 6%) 4.14 4.21( 2%) 4.28( 3%) 3.97 4.21( 6%) 4.26( 7%)

Table 6.26: The RQNA approximation in various LN(4)/GI/1 → ·/E4/1 models with

ρ1 = 0.7.
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External arrival E4, Service 2 = LN(4), ρ1 = 0.7

Service 1 = E4 Service 1 = LN(0.25) Service 1 = M

ρ2 Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 4.67 4.96( 6%) 4.96( 6%) 4.70 4.96( 6%) 4.96( 6%) 4.95 5.00( 1%) 4.99( 1%)

0.16 4.64 4.91( 6%) 4.91( 6%) 4.69 4.91( 5%) 4.91( 5%) 4.88 4.99( 2%) 4.98( 2%)

0.21 4.71 4.84( 3%) 4.84( 3%) 4.60 4.84( 5%) 4.83( 5%) 4.85 4.97( 3%) 4.96( 2%)

0.26 4.57 4.73( 4%) 4.74( 4%) 4.52 4.73( 4%) 4.73( 5%) 4.78 4.94( 3%) 4.94( 3%)

0.31 4.54 4.61( 2%) 4.63( 2%) 4.49 4.60( 2%) 4.61( 3%) 4.80 4.90( 2%) 4.90( 2%)

0.36 4.48 4.49( 0%) 4.53( 1%) 4.46 4.47( 0%) 4.51( 1%) 4.75 4.84( 2%) 4.86( 2%)

0.41 4.48 4.40(-2%) 4.46(-0%) 4.46 4.39(-2%) 4.45(-0%) 4.71 4.78( 2%) 4.81( 2%)

0.46 4.42 4.35(-2%) 4.40(-1%) 4.42 4.34(-2%) 4.40(-1%) 4.70 4.73( 1%) 4.76( 1%)

0.51 4.43 4.32(-3%) 4.36(-2%) 4.40 4.31(-2%) 4.36(-1%) 4.63 4.67( 1%) 4.71( 2%)

0.56 4.38 4.30(-2%) 4.33(-1%) 4.40 4.29(-2%) 4.33(-2%) 4.64 4.61(-1%) 4.65( 0%)

0.61 4.36 4.28(-2%) 4.30(-1%) 4.42 4.28(-3%) 4.31(-2%) 4.60 4.55(-1%) 4.59(-0%)

0.66 4.37 4.27(-2%) 4.29(-2%) 4.37 4.27(-2%) 4.29(-2%) 4.58 4.49(-2%) 4.52(-1%)

0.71 4.36 4.26(-2%) 4.27(-2%) 4.34 4.26(-2%) 4.28(-2%) 4.55 4.43(-3%) 4.46(-2%)

0.76 4.34 4.26(-2%) 4.26(-2%) 4.32 4.26(-1%) 4.27(-1%) 4.49 4.37(-3%) 4.39(-2%)

0.81 4.29 4.25(-1%) 4.26(-1%) 4.29 4.25(-1%) 4.26(-1%) 4.45 4.32(-3%) 4.33(-3%)

0.86 4.28 4.25(-1%) 4.25(-1%) 4.27 4.25(-0%) 4.25(-0%) 4.40 4.28(-3%) 4.29(-2%)

0.91 4.27 4.25(-1%) 4.25(-1%) 4.28 4.25(-1%) 4.25(-1%) 4.34 4.26(-2%) 4.26(-2%)

0.96 4.26 4.25(-0%) 4.25(-0%) 4.26 4.25(-0%) 4.25(-0%) 4.29 4.25(-1%) 4.25(-1%)

Service 1 = H2(4) Service 1 = LN(4) Service 1 = G(4)

ρ Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 5.17 5.02(-3%) 5.01(-3%) 5.07 4.98(-2%) 4.98(-2%) 5.85 5.71(-2%) 5.47(-6%)

0.16 5.18 5.05(-3%) 5.03(-3%) 5.22 4.99(-4%) 4.99(-4%) 5.84 5.90( 1%) 5.60(-4%)

0.21 5.27 5.08(-4%) 5.06(-4%) 5.19 5.02(-3%) 5.02(-3%) 5.89 6.07( 3%) 5.70(-3%)

0.26 5.47 5.13(-6%) 5.10(-7%) 5.25 5.08(-3%) 5.07(-3%) 6.00 6.20( 3%) 5.79(-3%)

0.31 5.48 5.19(-5%) 5.16(-6%) 5.40 5.15(-5%) 5.13(-5%) 5.91 6.29( 6%) 5.86(-1%)

0.36 5.53 5.27(-5%) 5.25(-5%) 5.36 5.23(-2%) 5.19(-3%) 5.93 6.35( 7%) 5.92(-0%)

0.41 5.55 5.38(-3%) 5.37(-3%) 5.44 5.31(-2%) 5.26(-3%) 5.95 6.39( 7%) 5.97( 0%)

0.46 5.60 5.52(-2%) 5.53(-1%) 5.40 5.39(-0%) 5.34(-1%) 5.87 6.39( 9%) 6.00( 2%)

0.51 5.63 5.64( 0%) 5.69( 1%) 5.49 5.45(-1%) 5.42(-1%) 5.85 6.35( 8%) 6.00( 3%)

0.56 5.62 5.73( 2%) 5.81( 3%) 5.41 5.49( 2%) 5.49( 1%) 5.83 6.26( 7%) 5.97( 2%)

0.61 5.61 5.77( 3%) 5.86( 4%) 5.51 5.50(-0%) 5.54( 1%) 5.77 6.13( 6%) 5.89( 2%)

0.66 5.58 5.72( 3%) 5.83( 5%) 5.50 5.46(-1%) 5.57( 1%) 5.67 5.95( 5%) 5.77( 2%)

0.71 5.55 5.58( 1%) 5.72( 3%) 5.44 5.37(-1%) 5.55( 2%) 5.57 5.72( 3%) 5.60( 1%)

0.76 5.43 5.37(-1%) 5.52( 2%) 5.42 5.22(-4%) 5.47( 1%) 5.45 5.44(-0%) 5.38(-1%)

0.81 5.33 5.08(-5%) 5.25(-2%) 5.34 4.99(-7%) 5.31(-1%) 5.28 5.11(-3%) 5.11(-3%)

0.86 5.18 4.75(-8%) 4.89(-6%) 5.21 4.71(-10%) 5.04(-3%) 5.11 4.75(-7%) 4.78(-6%)

0.91 4.92 4.45(-10%) 4.52(-8%) 5.03 4.44(-12%) 4.67(-7%) 4.87 4.45(-9%) 4.47(-8%)

0.96 4.59 4.29(-7%) 4.30(-6%) 4.70 4.29(-9%) 4.33(-8%) 4.55 4.29(-6%) 4.29(-6%)

Table 6.27: The RQNA approximation in various E4/GI/1 → ·/LN(4)/1 models with

ρ1 = 0.7.
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External arrival E4, Service 2 = E4, ρ1 = 0.7

Service 1 = E4 Service 1 = LN(0.25), ρ1 = 0.9 Service 1 = M

ρ2 Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 1.12 1.24(11%) 1.24(11%) 1.11 1.24(11%) 1.24(11%) 1.22 1.25( 3%) 1.25( 2%)

0.16 1.06 1.23(16%) 1.23(16%) 1.05 1.23(16%) 1.23(16%) 1.20 1.25( 4%) 1.25( 3%)

0.21 1.01 1.21(20%) 1.21(20%) 1.00 1.21(21%) 1.21(21%) 1.19 1.25( 5%) 1.24( 5%)

0.26 0.96 1.18(23%) 1.18(23%) 0.95 1.18(24%) 1.18(24%) 1.17 1.24( 6%) 1.23( 6%)

0.31 0.92 1.14(25%) 1.14(25%) 0.91 1.14(26%) 1.14(26%) 1.15 1.23( 7%) 1.22( 6%)

0.36 0.88 1.10(25%) 1.10(25%) 0.87 1.10(27%) 1.10(27%) 1.13 1.22( 8%) 1.21( 7%)

0.41 0.84 1.04(24%) 1.04(24%) 0.83 1.04(26%) 1.04(26%) 1.11 1.20( 8%) 1.19( 8%)

0.46 0.81 0.98(22%) 0.98(22%) 0.80 0.98(23%) 0.98(23%) 1.09 1.17( 8%) 1.17( 8%)

0.51 0.77 0.91(18%) 0.92(19%) 0.76 0.90(18%) 0.90(18%) 1.06 1.13( 6%) 1.14( 7%)

0.56 0.74 0.83(12%) 0.84(14%) 0.73 0.82(12%) 0.83(13%) 1.04 1.08( 5%) 1.10( 6%)

0.61 0.71 0.75( 6%) 0.77( 9%) 0.71 0.74( 5%) 0.76( 7%) 1.01 1.03( 3%) 1.06( 5%)

0.66 0.68 0.67(-1%) 0.70( 3%) 0.68 0.66(-3%) 0.69( 2%) 0.97 0.98( 1%) 1.01( 4%)

0.71 0.65 0.60(-8%) 0.65(-1%) 0.65 0.60(-9%) 0.64(-2%) 0.94 0.93(-1%) 0.96( 2%)

0.76 0.63 0.56(-10%) 0.60(-5%) 0.63 0.56(-11%) 0.60(-5%) 0.89 0.86(-4%) 0.89(-0%)

0.81 0.60 0.53(-11%) 0.56(-7%) 0.60 0.53(-12%) 0.56(-6%) 0.84 0.79(-7%) 0.82(-3%)

0.86 0.57 0.52(-10%) 0.53(-7%) 0.58 0.52(-11%) 0.54(-7%) 0.78 0.70(-10%) 0.73(-7%)

0.91 0.55 0.51(-7%) 0.51(-6%) 0.55 0.51(-8%) 0.51(-7%) 0.70 0.60(-15%) 0.62(-12%)

0.96 0.52 0.50(-4%) 0.50(-4%) 0.52 0.50(-4%) 0.50(-4%) 0.60 0.52(-14%) 0.52(-13%)

Service 1 = H2(4) Service 1 = LN(4) Service 1 = G(4)

ρ Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 1.31 1.26(-4%) 1.25(-5%) 1.27 1.24(-2%) 1.24(-2%) 2.00 1.77(-11%) 1.59(-20%)

0.16 1.35 1.26(-7%) 1.26(-7%) 1.31 1.23(-6%) 1.24(-6%) 2.08 1.93(-7%) 1.69(-19%)

0.21 1.40 1.27(-9%) 1.26(-10%) 1.36 1.23(-9%) 1.23(-9%) 2.14 2.08(-2%) 1.79(-16%)

0.26 1.46 1.29(-12%) 1.28(-13%) 1.41 1.23(-12%) 1.24(-12%) 2.19 2.23( 2%) 1.88(-14%)

0.31 1.53 1.31(-14%) 1.29(-16%) 1.46 1.25(-14%) 1.26(-14%) 2.22 2.35( 6%) 1.96(-12%)

0.36 1.61 1.35(-16%) 1.32(-18%) 1.51 1.29(-14%) 1.29(-15%) 2.25 2.46( 9%) 2.03(-10%)

0.41 1.69 1.39(-18%) 1.36(-20%) 1.56 1.35(-14%) 1.33(-15%) 2.27 2.54(12%) 2.10(-7%)

0.46 1.78 1.45(-18%) 1.42(-20%) 1.62 1.41(-13%) 1.38(-15%) 2.27 2.60(14%) 2.16(-5%)

0.51 1.86 1.55(-17%) 1.53(-18%) 1.67 1.49(-11%) 1.44(-14%) 2.27 2.64(16%) 2.21(-3%)

0.56 1.93 1.69(-13%) 1.70(-12%) 1.73 1.58(-9%) 1.52(-12%) 2.26 2.64(17%) 2.24(-1%)

0.61 1.98 1.83(-8%) 1.88(-5%) 1.77 1.66(-6%) 1.61(-9%) 2.23 2.61(17%) 2.25( 1%)

0.66 2.02 1.95(-3%) 2.03( 0%) 1.83 1.72(-6%) 1.70(-7%) 2.20 2.54(16%) 2.24( 2%)

0.71 2.03 2.01(-1%) 2.10( 4%) 1.86 1.75(-6%) 1.77(-5%) 2.14 2.42(13%) 2.18( 2%)

0.76 2.02 1.99(-1%) 2.10( 4%) 1.88 1.73(-8%) 1.81(-4%) 2.05 2.26(10%) 2.07( 1%)

0.81 1.96 1.87(-4%) 1.99( 2%) 1.87 1.66(-12%) 1.80(-4%) 1.93 2.03( 5%) 1.90(-2%)

0.86 1.83 1.65(-10%) 1.77(-3%) 1.82 1.50(-18%) 1.70(-7%) 1.76 1.72(-2%) 1.66(-6%)

0.91 1.60 1.29(-19%) 1.41(-12%) 1.67 1.22(-27%) 1.46(-13%) 1.51 1.32(-12%) 1.31(-13%)

0.96 1.19 0.78(-34%) 0.86(-28%) 1.34 0.77(-43%) 0.98(-27%) 1.10 0.78(-29%) 0.80(-27%)

Table 6.28: The RQNA approximation in various E4/GI/1→ ·/E4/1 models with ρ1 = 0.7.
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External arrival LN(4), Service 2 = LN(4)

Service 1 = E4 Service 1 = LN(0.25), ρ1 = 0.7 Service 1 = M

ρ2 Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 4.77 4.96( 4%) 4.96( 4%) 4.79 4.96( 4%) 4.96( 4%) 5.14 5.00(-3%) 5.01(-3%)

0.16 4.81 4.92( 2%) 4.91( 2%) 4.84 4.92( 2%) 4.91( 1%) 5.15 5.00(-3%) 5.01(-3%)

0.21 4.94 4.85(-2%) 4.84(-2%) 4.83 4.85( 0%) 4.83( 0%) 5.21 5.00(-4%) 5.03(-3%)

0.26 4.87 4.77(-2%) 4.75(-2%) 4.83 4.76(-1%) 4.73(-2%) 5.22 5.01(-4%) 5.05(-3%)

0.31 4.93 4.69(-5%) 4.67(-5%) 4.88 4.66(-4%) 4.64(-5%) 5.33 5.03(-6%) 5.09(-4%)

0.36 4.95 4.63(-7%) 4.65(-6%) 4.94 4.60(-7%) 4.63(-6%) 5.39 5.07(-6%) 5.15(-4%)

0.41 5.07 4.63(-9%) 4.71(-7%) 5.04 4.61(-8%) 4.70(-7%) 5.44 5.12(-6%) 5.22(-4%)

0.46 5.13 4.70(-8%) 4.83(-6%) 5.11 4.69(-8%) 4.82(-6%) 5.56 5.20(-6%) 5.33(-4%)

0.51 5.26 4.83(-8%) 5.01(-5%) 5.24 4.82(-8%) 5.01(-4%) 5.61 5.31(-5%) 5.48(-2%)

0.56 5.35 5.03(-6%) 5.27(-2%) 5.40 5.03(-7%) 5.27(-2%) 5.77 5.46(-5%) 5.68(-2%)

0.61 5.55 5.31(-4%) 5.60( 1%) 5.58 5.31(-5%) 5.61( 0%) 5.89 5.68(-3%) 5.93( 1%)

0.66 5.76 5.68(-1%) 6.01( 4%) 5.75 5.68(-1%) 6.01( 4%) 6.05 5.97(-1%) 6.25( 3%)

0.71 5.99 6.14( 2%) 6.45( 8%) 5.96 6.14( 3%) 6.45( 8%) 6.23 6.33( 2%) 6.61( 6%)

0.76 6.23 6.64( 7%) 6.91(11%) 6.22 6.64( 7%) 6.91(11%) 6.43 6.75( 5%) 6.99( 9%)

0.81 6.49 7.13(10%) 7.32(13%) 6.49 7.13(10%) 7.32(13%) 6.67 7.18( 8%) 7.36(10%)

0.86 6.79 7.54(11%) 7.65(13%) 6.79 7.54(11%) 7.65(13%) 6.93 7.56( 9%) 7.66(11%)

0.91 7.20 7.82( 9%) 7.86( 9%) 7.20 7.82( 9%) 7.87( 9%) 7.23 7.83( 8%) 7.87( 9%)

0.96 7.61 7.95( 5%) 7.97( 5%) 7.60 7.95( 5%) 7.99( 5%) 7.63 7.95( 4%) 7.98( 5%)

Service 1 = H2(4) Service 1 = LN(4) Service 1 = G(4)

ρ Sim RQNA RQ Sim RQNA RQ Sim RQNA RQ

0.11 5.40 5.02(-7%) 5.03(-7%) 5.30 4.98(-6%) 4.99(-6%) 6.29 5.72(-9%) 5.62(-11%)

0.16 5.53 5.05(-9%) 5.08(-8%) 5.54 4.99(-10%) 5.03(-9%) 6.39 5.93(-7%) 5.82(-9%)

0.21 5.69 5.10(-10%) 5.15(-10%) 5.63 5.05(-10%) 5.11(-9%) 6.53 6.13(-6%) 6.01(-8%)

0.26 6.01 5.19(-14%) 5.27(-12%) 5.77 5.14(-11%) 5.24(-9%) 6.75 6.32(-6%) 6.20(-8%)

0.31 6.14 5.31(-14%) 5.44(-11%) 6.04 5.27(-13%) 5.40(-10%) 6.74 6.50(-4%) 6.39(-5%)

0.36 6.30 5.49(-13%) 5.69(-10%) 6.09 5.44(-11%) 5.61(-8%) 6.85 6.67(-3%) 6.57(-4%)

0.41 6.44 5.74(-11%) 6.02(-7%) 6.29 5.64(-10%) 5.85(-7%) 6.96 6.83(-2%) 6.75(-3%)

0.46 6.62 6.05(-9%) 6.39(-3%) 6.35 5.86(-8%) 6.12(-4%) 7.00 6.98(-0%) 6.92(-1%)

0.51 6.79 6.39(-6%) 6.77(-0%) 6.60 6.11(-7%) 6.43(-3%) 7.08 7.10( 0%) 7.08(-0%)

0.56 6.91 6.72(-3%) 7.10( 3%) 6.64 6.38(-4%) 6.75( 2%) 7.20 7.22( 0%) 7.22( 0%)

0.61 7.04 7.00(-1%) 7.37( 5%) 6.93 6.65(-4%) 7.08( 2%) 7.25 7.32( 1%) 7.37( 2%)

0.66 7.17 7.23( 1%) 7.59( 6%) 7.05 6.92(-2%) 7.40( 5%) 7.29 7.41( 2%) 7.50( 3%)

0.71 7.32 7.41( 1%) 7.76( 6%) 7.20 7.19(-0%) 7.70( 7%) 7.35 7.51( 2%) 7.64( 4%)

0.76 7.39 7.57( 2%) 7.89( 7%) 7.36 7.44( 1%) 7.95( 8%) 7.43 7.61( 2%) 7.76( 4%)

0.81 7.51 7.71( 3%) 7.97( 6%) 7.52 7.65( 2%) 8.11( 8%) 7.47 7.72( 3%) 7.87( 5%)

0.86 7.63 7.83( 3%) 8.01( 5%) 7.66 7.81( 2%) 8.17( 7%) 7.55 7.84( 4%) 7.94( 5%)

0.91 7.69 7.93( 3%) 8.01( 4%) 7.82 7.93( 1%) 8.11( 4%) 7.66 7.93( 3%) 7.98( 4%)

0.96 7.83 7.97( 2%) 7.99( 2%) 7.93 7.97( 1%) 8.02( 1%) 7.80 7.97( 2%) 8.01( 3%)

Table 6.29: The RQNA approximation in various LN(4)/GI/1 → ·/LN(4)/1 models with

ρ1 = 0.7.
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6.4.1 Feedback Elimination: A Three-Station Example.

We look at the suite of three-station examples depicted in Figure 6.15, as in Section 3.1

of [44]. This example is designed to have three stations that are tightly coupled with each

other, so that the dependence among the queues and the flows is fairly complicated.

λ0,1 = 0.225
Queue 1 Queue 2

p2,3
Queue 3

p2,1

p3,2

Figure 6.15: A three-station example.

In this example, we have three stations in tandem but also allow customer feedback

from station 2 to station 1 and from station 3 to station 2, with probability p2,1 = p2,3 =

p3,2 = 0.5. The only external arrival process is a Poisson process which arrives at station 1

with rate λ0,1 = 0.225, hence by (4.6) the effective arrival rate is λ1 = 0.675, λ2 = 0.9 and

λ3 = 0.45.

For the service distributions, we consider the same sets of parameters as in [44], sum-

marized in Table 6.30 and 6.31. Note that Case 2 is relatively more challenging because

there are two bottlneck stations; in contrast, all the other cases have only one.

Case ρ1 ρ2 ρ3

1 0.675 0.900 0.450

2 0.900 0.675 0.900

3 0.900 0.675 0.450

4 0.900 0.675 0.675

Table 6.30: Traffic intensity of the four

cases in the three-station example.

Case c2
s,1 c2

s,2 c2
s,3

A 0.00 0.00 0.00

B 2.25 0.00 0.25

C 0.25 0.25 2.25

D 0.00 2.25 2.25

E 8.00 8.00 0.25

Table 6.31: Variability of the service dis-

tributions of the four cases in the three-

station example.

We now compare the RQNA approximations and four previous algorithms as in Section

6.3.3, with the simulated mean sojourn times at each station, as well as the total sojourn
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time of the network. The sojourn time for each station is defined as the waiting time plus

the service time at that station, whereas the total sojourn time is the time that a customer

stay in the system defined in (2.51). We consider two cases of the RQNA algorithm: (1) the

plain RQNA algorithm without feedback elimination, as in Algorithm 1 and (2) the RQNA

algorithm with feedback elimination, as discussed in Section 5.5.

For RQNA with feedback elimination, we apply feedback elimination to each station

that has at least one feedback flow that only passes through stations with equal or lower

traffic intensities. We eliminate all such flows in the feedback elimination procedure. Take

Case 1 for example, we do not apply feedback elimination for Station 1 because all feedback

customers go through Station 2, which has higher traffic intensity; we will, however, elim-

inate the flow from 2 to 1 as well as the flow from 3 to 2 for Station 2, since both Station

1 and 3 have lower traffic intensities. As another example, for both Station 2 and 3 in case

4, we eliminate the flow from 3 to 2, but we do not eliminate the flow from 2 to 1, since

Station 2 and 3 share the same traffic intensity while Station 1 has higher traffic intensity.

Tables 6.32 and 6.33 expand Tables II and III in [44] by adding values for (1) the mean

total sojourn time and (2) the RQ and RQNA approximations, with and without feedback

elimination. For each table, we indicate by an asterisk in the last column the stations where

elimination is applied.

We observed that the plain RQNA algorithm works well for stations with moderate to

low traffic intensities, but not so satisfactory for congested stations. On the other hand,

the accuracy of the RQNA algorithm with feedback elimination is on par with, if not better

than the best previous algorithm.

6.4.2 A Ten-Station Example with Feedback.

We conclude with the 10-station OQN example with feedback in Figure 6.16, which was

considered in Section 3.5 of [44].

The only exogenous arrival process is Poission with rate 1. For each station, if there are

two routing destinations, the departing customer follows Markovian routing with equal prob-

ability, each being 0.5. The vector of mean service times is (0.45, 0.30, 0.90, 0.30, 0.38571,

0.20, 0.1333, 0.20, 0.15, 0.20), so that the traffic intensity vector is (0.6, 0.4, 0.6, 0.9, 0.9, 0.6,
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Case Simulation QNA QNET SBD RQ RQNA RQNA (elim)

A 1 40.39 (3.75%) 20.5 (-49%) diverging 43.0 (6.4%) 73.9 (83%) 83.5 (107%) 44.8 (11.0%)

2 59.58 (3.29%) 36.0 (-40%) 56.7 (-4.9%) 58.2 (-2.4%) 78.0 (31%) 94.3 (58%) 69.3 (16.4%)

3 40.72 (4.78%) 24.0 (-41%) 38.7 (-5.0%) 40.2 (-1.3%) 57.2 (41%) 74.7 (83%) 43.3 (6.3%)

4 42.12 (3.36%) 26.2 (-38%) 41.8 (-0.7%) 42.7 (1.3%) 59.3 (41%) 75.1 (78%) 41.2 (-2.2%)

B 1 52.40 (2.64%) 42.0 (-20%) 52.6 (0.4%) 50.2 (-4.2%) 72.4 (38%) 93.7 (79%) 53.1 (1.4%)

2 91.52 (3.77%) 94.1 (2.8%) 83.7 (-8.5%) 95.3 (4.1%) 109 (20%) 169 (85%) 94.5 (3.2%)

3 61.68 (3.44%) 72.2 (17%) 61.9 (0.4%) 60.9 (-1.3%) 79.4 (29%) 133 (115%) 60.5 (-1.9%)

4 63.34 (2.83%) 75.8 (20%) 64.1 (1.3%) 64.7 (2.1%) 83.0 (31%) 135 (113%) 62.4 (-1.4%)

C 1 44.24 (1.96%) 31.3 (-29%) 37.0 (-16%) 47.1 (6.4%) 75.7 (71%) 91.4 (106%) 42.1 (-4.8%)

2 92.42 (4.23%) 87.4 (-5.4%) 91.2 (-1.4%) 91.6 (-0.83%) 106 (15%) 156 (68%) 96.0 (3.8%)

3 44.26 (4.69%) 33.2 (-25%) 44.0 (-0.7%) 45.0 (1.7%) 61.3 (38%) 84.2 (90%) 44.0 (-0.6%)

4 50.20 (1.04%) 41.4 (-18%) 51.1 (1.7%) 52.2 (4.0%) 67.4 (34%) 91.2 (82%) 45.9 (-8.6%)

E 1 134.4 (4.77%) 265 (97%) 155 (15%) 116 (-14%) 158 (17%) 305 (127%) 120 (-11%)

2 213.1 (3.47%) 308 (45%) 228 (7.1%) 206 (-3.3%) 234 (10%) 367 (72%) 173 (-19%)

3 138.7 (3.97%) 244 (76%) 161 (16%) 135 (-2.5%) 163 (17%) 300 (116%) 136 (-2.0%)

4 155.1 (4.37%) 252 (63%) 168 (8.2%) 147 (-5.0%) 178 (15%) 312 (101%) 148 (-4.8%)

Table 6.32: A comparison of six approximation methods for the total sojourn time in the

three-station example in Figure 6.15 with parameters specified in Table 6.30 and 6.31.

Case Station Simulation QNA QNET SBD RQ RQNA RQNA (elim)

D1 1 2.476 (0.61%) 2.24 (-9.4%) 2.48 (0.3%) 2.47 (-0.1%) 2.47 (-0.28%) 2.68 (7.8%) 2.68 (7.8%)

2 10.85 (3.21%) 14.9 (37%) 11.6 (6.5%) 11.4 (5.2%) 19.8 (83%) 28.4 (162%) 11.1∗ (2.7%)

3 2.544 (0.63%) 2.53 (-0.8%) 2.54 (-0.0%) 2.59 (1.6%) 2.57 (1.2%) 2.53 (-0.7%) 2.53 (-0.7%)

Total 55.81 (2.58%) 71.4 (28%) 58.8 (5.3%) 58.2 (4.3%) 91.8 (64%) 127 (127%) 57.6 (3.3%)

D2 1 11.35 (3.29%) 8.01 (-29%) 10.8 (-4.5%) 11.1 (-1.9%) 13.7 (20%) 16.6 (46%) 11.3∗ (0.1%)

2 2.643 (1.25%) 2.96 (12%) 2.75 (4.0%) 2.82 (6.7%) 2.85 (7.8%) 3.06 (16%) 3.06 (16%)

3 26.87 (2.04%) 32.9 (22%) 26.8 (-0.4%) 24.9 (-7.5%) 27.5 (2.2%) 36.4 (35%) 31.1∗ (16%)

Total 98.36 (1.82%) 102 (3.4%) 97.2 (-1.2%) 94.4 (-4.0%) 104 (6.0%) 132 (34%) 105 (7.1%)

D3 1 11.39 (3.04%) 7.95 (-30%) 11.0 (-3.5%) 11.3 (-0.5%) 15.8 (39%) 16.5 (45%) 11.3∗ (-0.5%)

2 2.290 (1.27%) 2.90 (27%) 2.53 (10%) 2.26 (-1.4%) 2.57 (12%) 3.04 (33%) 2.10∗ (-8.2%)

3 2.220 (0.59%) 2.40 (7.9%) 2.38 (7.0%) 2.59 (16%) 2.39 (7.6%) 2.43 (9.6%) 2.43 (9.6%)

Total 47.72 (2.51%) 40.2 (-16%) 47.8 (0.2%) 48.2 (1.0%) 62.6 (31%) 66.6 (39%) 47.5 (0.51%)

D4 1 11.30 (6.39%) 7.97 (-29%) 10.9 (-3.2%) 11.3 (0.3%) 14.2 (26%) 16.43 (45%) 11.3∗ (0.3%)

2 2.414 (1.12%) 2.93 (21%) 2.64 (9.5%) 2.60 (7.7%) 2.65 (10%) 3.05 (26%) 2.10∗ (-13%)

3 5.886 (1.05%) 6.83 (16%) 6.31 (7.3%) 6.17 (4.8%) 6.47 (10%) 6.85 (16%) 5.95∗ (1.1%)

Total 55.24 (4.37%) 49.3 (-11%) 56.0 (1.4%) 56.7 (2.7%) 69.3 (25%) 75.5 (37%) 54.3 (-1.7%)

Average relative error 20.24% 4.72% 4.52% 21.61% 42.60% 5.51%

Table 6.33: A comparison of six approximation methods for the sojourn time at each station

of the three-station example for Case D with parameters specified in Table 6.31.
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0.4, 0.6, 0.6, 0.4). The scv’s at these stations are (0.5, 2, 2, 0.25, 0.25, 2, 1, 2, 0.5, 0.5), where

we assume a Erlang distribution if c2
s < 1, an exponential distribution if c2

s = 1 and a

hyperexponential distribution if c2
s > 1.

Note that stations 4 and 5 are bottleneck queues, having equal traffic intensity, far

greater than the traffic intensities at the other queues. Moreover, these two stations are

quite closely coupled. Thus, at first glance, we expect that SBD with two-dimensional RBM

should perform very well, which proves to be correct. Moreover, this example should be

challenging for RQNA because it is based on heavy-traffic limits for OQN’s with only a

single bottleneck, thus involving only one-dimensional RBM.

1 2 3

6 4 5

7 8 9 10

Figure 6.16: A ten-station with customer feedback example.

In Table 6.34, we report the simulation estimates and approximattions for the steady-

state mean sojourn time (waiting time plus service time) at each station, as well as the total

sojourn time of the system, calculated as in (2.51). For the approximations, we compare

QNA from [134], QNET from [73], SBD from [44], RQ from [145] (with estimated IDC), as

well as the RQNA algorithms here. The simulation, QNA, QNET and SBD columns are

taken from Table XIV of [44].

Again, we consider two versions of RQNA algorithm, the first one does not eliminate

feedback, while the second one (marked by ‘elim’) applies the feedback elimination pro-

cedure. As before, in eliminating customer feedback, for each station, we identify the

near-immediate feedback flows as the flows that come back to the station after complet-

ing service, without passing through any station with a higher traffic intensity. We then

eliminate all near-immediate feedback flows, apply plain RQNA algorithm on the reduced

network and use the new RQNA approximation as the approximation for that station.
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Station Simulation QNA QNET SBD RQ RQNA RQNA (elim)

1 0.99 (0.86%) 0.97 (-2.8%) 1.00 (0.2%) 1.00 (0.4%) 0.97 (-2.0%) 1.09 (9.2%) 1.00∗ (0.4%)

2 0.55 (0.69%) 0.58 (6.0%) 0.56 (2.6%) 0.55 (0.2%) 0.55 (-0.1%) 0.56 (1.3%) 0.56 (1.4%)

3 2.82 (1.93%) 2.93 (4.2%) 2.90 (3.2%) 2.76 (-2.0%) 2.96 (5.0%) 3.40 (21%) 2.75∗ (-2.5%)

4 1.79 (3.71%) 1.34 (-25%) 1.41 (-21%) 1.76 (-1.6%) 2.34 (31%) 3.51 (97%) 2.11∗ (18%)

5 2.92 (4.77%) 2.49 (-15%) 2.44 (-17%) 2.81 (-3.6%) 3.77 (29%) 9.07 (211%) 3.35∗ (15%)

6 0.58 (0.78%) 0.64 (10%) 0.62 (7.4%) 0.59 (2.2%) 0.60 (3.8%) 0.70 (20%) 0.49∗ (-16%)

7 0.24 (0.28%) 0.24 (-1.7%) 0.26 (7.1%) 0.27 (11%) 0.23 (-3.0%) 0.24 (-1.3%) 0.24 (-1.3%)

8 0.58 (0.67%) 0.64 (9.6%) 0.61 (4.6%) 0.60 (1.7%) 0.61 (3.9%) 0.70 (20%) 0.59∗ (0.6%)

9 0.34 (0.63%) 0.32 (-6.1%) 0.35 (2.0%) 0.43 (26%) 0.33 (-4.2%) 0.73 (111%) 0.42∗ (21%)

10 0.29 (0.19%) 0.30 (2.4%) 0.29 (1.4%) 0.28 (-1.7%) 0.28 (-1.5%) 0.26 (-8.7%) 0.26 (-8.7%)

Total 22.0 (2.45%) 20.3 (-7.9%) 20.4 (-7.3%) 22.4 (1.7%) 26.1 (18%) 44.5 (102%) 24.2∗ (9.9%)

Table 6.34: A comparison of six approximation methods to simulation for the mean steady-

state sojourn times at each station of the open queueing network in Figure 6.16.

We make the following observations from this numerical example:

1. Particular attention should be given to the two bottleneck stations: 4 and 5. Note

that QNA and QNET produce 15 − 25% error, which is satisfactory, but SBD does

far better with only 1− 4% error.

2. The RQNA algorithm without feedback elimination can perform very poorly with high

traffic intensity and high feedback probability, presumably due to the break down of

(2.26).

3. With feedback elimination, the RQNA algorithm performs significantly better and is

competitive with previous algorithms in this complex setting, producing 15 − 18%

error at stations 4 and 5. The performance of RQNA at the tightly coupled bot-

tleneck queues evidently suffers because the current RQNA depends heavily on one-

dimensional RBM.
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