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We develop a robust queueing network analyzer (RQNA) algorithm to approximate the steady-state per-

formance of a single-class open queueing network of single-server queues with Markovian routing, allowing

non-renewal external arrival processes and non-exponential service-time distributions. Each flow is partially

characterized by its rate and index of dispersion for counts (IDC, i.e., scaled variance-time function). A

robust queueing approximation is used to approximate the mean steady-state number of customers and

workload (remaining service time) at each queue, given the rate and IDC of the arrival process and the

first two moments of the service time. The RQNA algorithm includes subroutines to calculate or estimate

the IDC for each external flow, subroutines to solve systems of linear equations to calculate the rates and

approximate the IDC’s of the internal flows and a feedback elimination procedure. Effectiveness of the RQNA

algorithm is supported by heavy-traffic limits and simulations.
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1. Introduction

In this paper, we develop performance approximations for the single-class stable

(G/GI/1)K/M open queueing network (OQN), with Markovian routing (the /M) among

K single-server queues with unlimited waiting space and the first-come first-served service

discipline, where (i) the external arrival processes and sequences of service times at the

K queues are mutually independent, (ii) each external arrival process is a stationary and

ergodic point process (the G), partially specified by its rate and index of dispersion for

counts (IDC), i.e., scaled variance-time function (assumed to be finite), and (iii) at each
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station the service times are independent and identically distributed (i.i.d.) with general

distributions (the GI) having finite second moments.

1.1. Beyond Markov OQNs: Dependence in Arrival Processes

Many complex systems can be modeled as OQNs. Thus, one of the most important devel-

opments in queueing theory has been the theory of Markovian OQN’s initiated by Jackson

[29], which showed that the steady-state vector for the number at each queue in the Marko-

vian (M/M/1)K/M special case has a product-form (mutually independent distributions

at the queues) with each distribution being geometric. This initial breakthrough was fol-

lowed by vigorous research leading to an elaborate and useful theory, as can be seen from

[30, 40]. Even though general OQNs do not have product-form steady-state distributions,

some complex models do, e.g., [7, 25, 26].

However, applications in communication, manufacturing and service systems are often

complicated by significant deviations from that tractable structure. In most manufacturing

systems, an external arrival process is often far less variable than a Poisson process by

design, while complicated processing operations, such as those involving batching, often

produce complicated variability in the arrival processes at subsequent queues; e.g., see the

example in §3 of [39].

In both manufacturing and communication systems, dependence among successive inter-

arrival times and among successive interdeparture times at a queue often occur because

there are multiple classes of customers with different characteristics, e.g., [4]. Multiple

classes can even cause significant dependence (i) among interarrival times, (ii) among ser-

vice times and (iii) between interarrival times and service times, which all can contribute

to a major impact on performance, as shown by [15] and reviewed in §9.6 of [50].

In service systems, an external customer arrival process often is well modeled by a Poisson

process, because it is generated by many separate people making decisions independently,

at least approximately, but dependence may be induced by over-dispersion, e.g., see [34]

and references there.

Even if external arrival processes can be regarded as Poisson processes, service-time

distributions are often non-exponential. Internal arrival processes are necessarily departure

processes from other queues or superpositions of such processes. If some of the service-time

distributions are non-exponential, then these processes cannot be renewal processes because

(i) a departure process from a M/GI/1 queue (or any GI/GI/1 queue) is necessarily
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non-renewal if the service-time distribution is non-exponential and (ii) the superposition

of independent renewal processes cannot be renewal unless all component processes are

Poisson processes (in which case the superposition process is also Poisson); e.g., see [12,

13, 14]. Indeed, for departure processes this property is consistent with our heavy-traffic

limit theorem for the stationary departure process from a GI/GI/1 queue in [51], which

we review in §4.3.1. It shows that, asymptotically, the IDC of the stationary departure

process is a convex combination of the IDCs of the arrival and service processes; see (22).

1.2. A New Decomposition Approximation

Motivated by the product-form property of the Markovian OQNs, researchers investigated

decomposition approximations for non-Markov OQNs, in which the steady-state queue

lengths are treated as approximately independent. For example, in [45] and [39] each queue

is approximated by a GI/GI/1 queue, where the arrival process is approximated by a

renewal process partially characterized by the mean and squared coefficient of variation

(scv, variance divided by the square of the mean) of an interarrival time. Another decompo-

sition method investigated by Kim [32, 33] approximates each queue by a MMPP (2)/GI/1

model, where the arrival process is a Markov-modulated Poisson process with two states.

(We discuss connections to this approach in Remark 5.)

While the decomposition approximations do often perform well, it was recognized that

dependence in the arrival processes of the internal flows can be a significant problem. The

approximation for superposition processes used in [45] already attempts to address the

dependence. Nevertheless, significant problems remained, as was dramatically illustrated

by comparisons of QNA in [45] to model simulations in [42], [15] and [43], as discussed in

[49]. A serious effort to address this problem was made by the introduction of the IDW in

Fendick and Whitt [17] and showing its connection to the normalized workload (see §2),

but that did not yield systematic approximations.

We advance that approach based on the IDW further by exploiting the new functional

robust queueing (RQ) method in [54], which extends the first parametric RQ approximation

in Bandi, Bertsimas and Youssef et al. [3]. (We review the RQ algorithm from [54] in §3.)

In that way, we develop a new decomposition approximation, where the arrival process at

each queue is partially specified by its rate and index of dispersion for counts (IDC), i.e.,

scaled variance-time function.
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By replacing a single variability parameter for each arrival process (an scv in a renewal

process approximation) by an entire function, we are better able to capture the essential

stochastic properties of each arrival process. Because the IDC is a scaled variance function,

the decomposition approximation here based on the rate and the IDC of each arrival

process is similar in spirit to QNA in [45], but the IDC captures the dependence over time

in the arrival process. Indeed, a stationary renewal process is fully characterized by its rate

and IDC; see [53].

1.3. Heavy-Traffic Limits

The early decomposition approximation in [45] drew heavily on the central limit theorem

(CLT) and heavy-traffic (HT) limit theorems. Approximations for a single queue follow

from [27, 28]. With these tools, approximations for general point processes and arrival pro-

cesses were developed in [44, 46]. Heavy-traffic approximation of queues with superposition

arrival processes in [47] helped capture the impact of dependence in such queues; see §4.3

of [45].

Another approach is to apply heavy-traffic (HT) limit theorems for the entire network.

Such HT limits were established for feedforward OQN’s in Iglehart and Whitt [27, 28] and

Harrison [20, 21] and then for general OQN’s by Reiman [36], but the limiting multidi-

mensional reflected Brownian motion (RBM) is not easy to work with. A more general

case with strictly bottleneck and non-bottleneck queues and general initial conditions was

studied in [8]. These general heavy-traffic results for OQN’s have been exploited to develop

approximations for OQNs, notably by the QNET algorithm in Harrison and Nguyen [22],

the Individual Bottleneck Decomposition (IBD) algorithm in Reiman [37] and the Sequen-

tial Bottleneck Decomposition (SBD) algorithm in Dai, Nguyen and Reiman [10], which

combines QNET with the decomposition method. These algorithms rely on the theoreti-

cal and numerical analysis of the stationary distribution of the multi-dimensional RBM,

studied in [11, 23, 24].

What we do here is closely related to the IBD algorithm in [37] and the SBD algorithm

in [10], but we focus on the stationary flows instead of the steady-state queue lengths.

For the stationary flows, we rely on HT limits that we established in [51, 52]. In order

to establish those HT limits for the stationary flows, we exploited the HT limits for the

stationary vector queue-length process in Gamarnik and Zeevi [19] and Budhiraja and Lee

[6]. In order to get a general Markov process for the system state process, they assumed



W. Whitt and W. You: RQNA
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 5

that the OQN is a Generalized Jackson Network (GJN), i.e., a (GI/GI/1)K/M OQN, with

renewal external arrival processes. Thus, all our HT limits for the stationary flows require

this stronger assumption as well, but our approximations are intended for more general

models, allowing non-renewal external arrival processes, partially characterized by their

rate and IDC.

1.4. Our Main Contributions

In this paper we apply the HT limits in in [51, 52] together with the RQ algorithm for

the mean workload at a single G/GI/1 queue in [54] to create a full algorithm; i.e., we

develop the RQNA based on IDCs to approximate the steady-state performance of the

(G/GI/1)K/M OQN. We also draw on [55] to calculate the IDC of each external arrival

process, based on model data or statistical estimation from arrival process sample paths.

In this paper we also conduct simulation experiments to evaluate the effectiveness of the

new RQNA and compare it to previous algorithms in [10, 22, 45].

Our RQNA algorithm has five components:

1. the robust queueing (RQ) approximation from [54] for the mean workload (remaining

service time) at a G/GI/1 queue partially characterized by the arrival rate and IDC of the

arrival process and the mean and scv of the service time (see §3.1);

2. formulas to compute associated approximations for the expected number of customers

at the G/GI/1 queue and the expected sojourn time in the entire (G/GI/1)K/M OQN

(see §3.2);

3. algorithms to determine the IDC of each external arrival process, either by numerical

calculation from a model or estimation from data or simulation (see §2.3);

4. systems of linear equations to calculate the rate and the approximate IDC of each

internal arrival process at the queues within the network (see §4 and §6).

5. a feedback elimination procedure for queues with high traffic intensity and high feed-

back probability to refine performance (see §5).

Most of our work here is devoted to the fourth and fifth components and evaluating its

effectiveness by conducting extensive simulation experiments. Our experiments indicate

that RQNA performs as well or better than previous algorithms.

1.5. Organization

The rest of the paper is organized as follows. In §2 we define the indices of dispersion and

briefly review methods to determine them for the external arrival processes. We also discuss
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the close connection between the index of dispersion for work and the mean steady-state

workload. In §3 we review the RQ algorithm for a single G/GI/1 queue from [54] and

discuss approximations for other steady-state performance measures. In §4 we develop a

framework for approximating the IDC’s of the flows. In §5 we discuss feedback elimination.

In §6 we present the full RQNA algorithm. We also present a more elementary version for

tree-structured OQNs in §6.1. In §7 we discuss numerical experiments.

We present additional material in the appendix. First, in §A we discuss additional numer-

ical experiments. Second, in §B we present additional theoretical support, including for

our algorithm to estimate the IDC from the sample path of an arrival process. Third, in

§C we provide additional heavy-traffic support.

2. The Indices of Dispersion

In §2.1 we define the two continuous-time indices of dispersion that we consider: the IDC

and the IDW. We present the useful decomposition of the IDW for the G/GI/1 model in

(3). In §2.2 we review the close connection between the IDW and mean steady-state work-

load from [17]. (In §A.1 we present an important illustrative example.) In §2.3 we review

the IDC of a stationary renewal process, which can be the basis for numerical algorithms,

including numerical transform inversion, and we present our method for estimating the

IDC from data.

2.1. Definitions of the IDC and IDW

Consider a general single-server queue with arrival process A(t) and service times {Vi : i≥
1}, where Vi is the service requirement of the i-th customer. Let

Y (t)≡
A(t)∑
i=1

Vi

denote the cumulative work input process. We define two indices of dispersion, associated

with A(t) and Y (t).

The index of dispersion for counts (IDC) associated with the arrival process A is defined

as in §4.5 of [9] by

Ia(t)≡
V ar(A(t))

E[A(t)]
, t≥ 0. (1)

and the index of dispersion for work (IDW) associated with the cumulative input process

Y is defined as in (1) of [17] by

Iw(t)≡ V ar(Y (t))

E[V1]E[Y (t)]
, t≥ 0. (2)



W. Whitt and W. You: RQNA
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 7

Clearly, these indices of dispersion are just scaled versions of the associated variance-time

function, but the scaling is important for understanding, because they expose the variability

over time, independent of the scale. We prefer the indices of dispersion for the same reason

we prefer the scv of a nonnegative random variable to the variance, because it exposes the

variability independent of the mean.

Remark 1. (time scaling convention) In [54] we defined the IDC and IDW in terms of

rate-1 processes, so that the actual rate of the process had to be inserted as part of the

time argument. In contrast, here as in [51] we let the underlying processes A and Y have

any given rate, so no further scaling is needed. That changes the formulas for the IDC

of a superposition process, e.g., compare (36) of [54] to (35) here. To illustrate the idea,

consider A(t) with rate-1 and Aλ(t) =A(λt) with rate-λ. Let IA(t) denote the IDC of A(t),

then we have IAλ(t)≡Var(A(λt))/E[A(λt)] = IA(λt). �

Since we are interested in the steady-state performance of the OQN, we assume that the

processes A and Y have stationary increments. Given that these processes have constant

determined rates, much of the remaining behavior is determined by the variance-time

function or index of dispersion. We are interested in the variance-time function, because it

captures the dependence through the covariances; the processes (A,Y ) have independent

increments for the M/GI/1 model, but otherwise not.

When the service times Vi are i.i.d, independent of the arrival process A(t), the condi-

tional variance formula gives a useful decomposition of the IDW

Iw(t) = Ia(t) + c2s, t≥ 0, (3)

where c2s is the scv of the service-time distribution. However, even in the (G/GI/1)K

OQN model we consider here, (3) need not to hold. This happens when there is customer

feedback, which makes the service times necessarily correlated with the arrival process at

the feedback queue. We address this issue for a large class of OQNs in §5 by eliminating

near-immediate feedback at some queues.

The reference case is a Poisson arrival process, for which Ia(t) = 1, t≥ 0. However, for

other GI/GI/1 models, including D/GI/1, the IDC is more complicated. Even the IDC

for a determinsitic D arrival process is complicated, because the IDC is for the stationary

version of the arrival process, which lets the initial point be uniformly distributed over the

constant interarrival time.
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2.2. The IDW and the Mean Steady-State Workload

The IDC and IDW are important because of their close connection to the mean steady-

state workload E[Zρ]. The workload process Z(t) is the time needed for the station to

serve all customers in the system at time t. Under regularity conditions, the workload

Z(t) converges to the steady-state workload Zρ as t increases to infinity. In [17] it was

shown that the IDW Iw is intimately related to a scaled mean workload c2Z(ρ), defined by

comparing to what it would be in the associated M/D/1 model; i.e.,

c2Z(ρ)≡ E[Zρ]

E[Zρ;M/D/1]
=

2(1− ρ)E[Zρ]

E[V1]ρ
. (4)

The normalization in (4) exposes the impact of variability separately from the traffic

intensity. Under regularity conditions, the following finite positive limits exist and are

equal:

lim
t→∞
{Iw(t)} ≡ Iw(∞) = c2Z(1)≡ lim

ρ→1
{c2Z(ρ)}, and

lim
t→0
{Iw(t)} ≡ Iw(0) = c2Z(0)≡ lim

ρ→0
{c2Z(ρ)}; (5)

see [17] and §EC.5.5 of [54].

The reference case is the classical M/GI/1 queue, for which we have

c2Z(ρ) = 1 + c2s = Iw(t) for all ρ, t, 0<ρ< 1, t≥ 0. (6)

In great generality, we have

c2Z(0) = 1 + c2s = Iw(0) and c2Z(1) = c2A + c2s = Iw(∞), (7)

where c2A is the asymptotic variability parameter, i.e., the normalization constant in the

CLT for the arrival process, which coincides with the scv c2a of an interarrival time for a

renewal process.

Clearly, when c2A is not nearly 1, c2Z(ρ) varies significantly as a function of ρ, so that

the impact of the variability in the arrival process upon the queue performance clearly

depends on the traffic intensity. This important insight from [17] is the starting point for our

analysis. In well-behaved models, c2Z(ρ) as a function of ρ and Iw(t) as a function of t tend

to change smoothly and monotonically between those extremes, but OQNs can produce

more complex behavior when both the traffic intensities at the queues and the levels of

variability in the arrival and service processes at different queues vary. We illustrate in

§A.1.
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2.3. Estimating and Calculating the IDC

For applications, it is significant that the IDC Ia(t) can readily be estimated from data from

system measurements or simulation and calculated in a wide class of stochastic models.

The time-dependent variance functions can be estimated from the time-dependent first

and second moment functions, as discussed in §III.B of [16]. Calculation depends on the

specific model structure.

2.3.1. The IDC’s for Renewal Processes. For renewal processes, the variance

Var(A(t)) and thus the IDC Ia(t) can either be calculated directly or can be characterized

via their Laplace transforms and thus calculated by inverting those transforms and approx-

imated by performing asymptotic analysis. Because we are interested in the steady-state

behavior of the OQN, we are primarily interested in the equilibrium renewal process, as in

§3.5 of [38]; see Remark 2.

In turns out that the variance of the equilibrium arrival renewal process V (t)≡Var(A(t))

can be expressed in terms of the renewal function m(t)≡E[A0(t)], where A0 is the corre-

sponding ordinary renewal process. For a function f , let f̂ denote the Laplace transform

of f , defined by

f̂(s)≡L(f)(s)≡
∫ ∞
0

e−stf(t)dt.

The following formula is taken from §2 of [51]

V̂ (s) =
λ

s2
+

2λ

s
m̂(s)− 2λ2

s3
=
λ

s2
+

2λ

s

ĝ(s)

s (1− ĝ(s))
− 2λ2

s3
, (8)

where g is the density function of the interarrival-time dsitribution. The variance function

can then be obtained numerically, which is discussed in §13 of [1]. The hyperexponential

(H2) and Erlang (E2) special cases are described in §III.G of [17].

It is also possible to carry out similar analyses for much more complicated arrival pro-

cesses. [35] applies matrix-analytic methods to give explicit representations of the variance

V ar(A(t)) for the versatile Markovian point process or Neuts process; see §5.4, especially

Theorem 5.4.1. Explicit formulas for the Markov modulated Poisson process (MMPP) are

given on pp. 287-289.
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2.3.2. Numerical Estimation of the IDC from Data. Now we present an algorithm

from [55] to numerically estimate the variance V (t) = Var(A(t)) from a given realized

sample path of the stationary point process A(t). The main idea is based on Section 5.4

(iii) of [9].

Our goal is to estimate V (t) for 0 < t < t0 using a realization of A(t) for 0 < t < T .

The simplest way is to apply crude Monte Carlo method to estimate V (t) for a fixed t

and repeat over a finite grid of t’s. This method divide the sample path of A(t) into non-

overlapping intervals of length t and count the number of arrivals in each interval. The

variance is then estimated by the sample variance of the counts. This method is simple to

implement but can be slow to converge.

To accelerate the crude Monte Carlo method, we apply three techniques: (i) we use

overlapping intervals instead of non-overlapping ones, which introduces bias but reduces

sample variance; (ii) we calculate V (t) only over a finite grid equally spaced in the logarithm

scale instead of the linear scale (further discussed in §A.1); and (iii) we re-use the tallied

number of events for shorter intervals to calculate the total number of events for longer

interval, which avoids repetitive counting. We discuss the three techniques in turn:

To use overlapping intervals, consider first k= T/t number of non-overlapping intervals,

each with length t. Now, we further divide each intervals of length t in to r intervals of

the same length τ = t/r. Hence we have rk number of non-overlapping intervals of length

τ . Let ni be the number of events fall in the i-th interval, consider

Ui ≡A(Ii)≡A[iτ, (i+ r)τ) = ni +ni+1 + · · ·+ni+r−1, i= 0,1, . . . , rk− r+ 1.

We estimate V (t) with the sample variance V̄l of {Ui}li=1, where l= rk− r+ 1. This esti-

mator is in general biased but can achieve lower variance compared with the one obtained

with crude Monte Carlo method. In [55] we show that this estimator of V (t) is asymp-

totically consistent under mild conditions that V (t) is differentiable with derivative V̇ (t)

having finite positive limits as t→∞. We review this theorem and proof in §B.

For the third technique, we now present a algorithm to simultaneously estimate V (2iτ)

for some τ > 0 and i= 0,1, . . . , l. Let {Ii} be the collection of non-overlapping intervals of

length τ that covers [0, T ]. Let ni =A(Ii) be the number of events on interval Ii. Then we

have the following table from [9].
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time horizon t

sample τ 2τ 22τ · · ·

1 n1 n1 +n2 n1 +n2 +n3 +n4 · · ·

2 n2 n2 +n3 n3 +n4 +n5 +n6 · · ·

3 n3 n3 +n4 n5 +n6 +n7 +n8 · · ·
...

...
...

...
...

We find the estimation of V (2iτ) by calculating the sample variance of the corresponding

column.

Now that we have a efficient algorithm to estimate V (2iτ) for fixed τ , we have obtained

the estimations of a grid equally spaced in logarithm scale. To obtain estimations for finer

grids we shift the crude grid by picking several τ ≤ τj ≤ 2τ equally spaced in log scale and,

for each j, simultaneously estimate V (2iτj) for all i.

3. The Robust Queueing Algorithm

In this section, we review the RQ algorithm for single-server queues and discuss approxi-

mations for other performance measures obtained as a result.

3.1. The RQ Workload Approximation for a G/GI/1 Queue

In [54] RQ algorithms were developed for the mean steady-state values of both the discrete-

time waiting time W and the continuous-time workload Z. We will be applying the RQ

algorithm for the continuous-time workload Z. The arrival process A is assumed to be a

stationary and ergodic point process, partially characterized by the arrival rate λ, and the

IDC Ia defined in (1). For stationary point process, we always have E[A(t)] = λt, see §2.7

of [41]. We further assume that the service time distribution is partially characterized by

its rate µ and squared coefficient of variation (scv) c2s.

Let Z ≡Z(λ, Ia, µ, c
2
s) be the steady-state workload in the G/GI/1 model partially char-

acterized by the four-tuple (λ, Ia, µ, c
2
s), assuming that ρ≡ λ/µ< 1 to have model stability.

The RQ algorithm provides approximation for E[Z] with (λ, Ia, µ, c
2
s) as input data.

To obtain the RQ algorithm, we start with a reverse-time construction of the workload

process as in §3 of [54]. Define the net-input process N(t) as

N(t)≡ Y (t)− t, t≥ 0, (9)
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then the workload at time t, starting empty at time 0, is the reflection map Ψ applied to

N , i.e.,

Z = Ψ(N)(t)≡N(t)− inf
0≤s≤t

{N(s)}, t≥ 0. (10)

As in §6.3 of [41], we use a reverse-time construction to represent the workload. With a

slight abuse of notation, let Z(t) be the workload at time 0 of a system that started empty

at time −t. Then Z(t) can be represented as

Z(t)≡ sup
0≤s≤t

{N(s)}, t≥ 0, (11)

where N is defined in terms of Y as before, but Y is interpreted as the total work in service

time to enter over the interval [−s,0]. That is achieved by letting Vk be the kth service

time indexed going backwards from time 0 and A(s) counting the number of arrivals in

the interval [−s,0].

The reverse-time process Z(t) defined in (11) is nondecreasing in t and hence necessarily

converges to a limit Z, For the stable stationary G/GI/1 model, Z corresponds to the

steady-state workload and satisfies P (Z <∞) = 1; see §6.3 of [41].

In the ordinary stochastic queueing model, N(s) is a stochastic process and hence Z(t) is

a random variable. However, in Robust Queueing practice,N(s) is viewed as a deterministic

instance drawn from a pre-determined uncertainty set U of input functions, while the

workload Z∗ for a Robust Queue is regarded as the worst case workload over the uncertainty

set, i.e.

Z∗ ≡ sup
Ñ∈U

sup
x≥0
{Ñ(x)}.

In our specific settings, we have the following uncertainty set motivated from CLT

Uρ ≡
{
Ñρ : R+→R : Ñρ(s)≤E[Nρ(s)] +

√
2Var(Nρ(s)), s≥ 0

}
,

=
{
Ñρ :R+→R : Ñρ(s)≤−(1− ρ)s+

√
2ρs(Ia(s) + c2s)/µ, s≥ 0

}
, (12)

where Nρ(t) is the net input process associated with the stochastic queue with traffic

intensity ρ, so

E[Nρ(t)] =E[Yρ(t)− t] = ρt− t,

Var(Nρ(t)) = Var(Yρ(t)) = Iw(t)E[V1]E[Yρ(t)] = (Ia(t) + c2s)ρt/µ.
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As in §4 of [54], and the RQ approximation based on this partial model characterization

is

E[Zρ]≡E[Z(λ, Ia, µ, c
2
s)]≈Z∗ρ ≡ sup

Ñρ∈Uρ
sup
x≥0
{Ñ(x)}

= sup
x≥0
{−(1− ρ)x+

√
2ρx(Ia(x) + c2s)/µ}, (13)

where the second line follows Theorem 2 of [54].

The approximation (13) is a variant of (28) in [54], assuming that we set the parameter

bf =
√

2, which makes the approximation asymptotically correct for the GI/GI/1 model

in both the heavy-traffic and light-traffic limits; see Theorem 5 of [54]. We focus on the

slightly more general form in (13) in terms of a general service rate because we can no longer

assume unit-rate service across all stations when we move beyond single-server queues to

consider a queueing network. The expression here reduces to (27) of [54] by appropriately

choosing time units, i.e., by change of variable s = µx. Let Ia,λ denote the IDC of the

rate-λ arrival process, assuming that arrival processes with different rates are related by

Aλ1(t/λ1) =Aλ2(t/λ2), then

Z∗(λ, Ia, µ, c
2
s) = sup

x≥0
{−(1− ρ)x+

√
2ρx(Ia,λ(x) + c2s)/µ}

= sup
s≥0
{−(1− ρ)s/µ+

√
2ρs(Ia,λ(s/µ) + c2s)/µ

2}

= sup
s≥0
{−(1− ρ)s+

√
2ρs(Ia,1(ρs) + c2s)}/µ (14)

= sup
s≥0
{−(1− ρ)s+

√
2ρs(Ia,ρ(s) + c2s)}/µ

d
=Z(ρ, Ia,ρ,1, c

2
s)/µ. (15)

The expression in (14) is exactly (27) of [54]. From (15), we see that the RQ solution in

(13) is linear in the mean service time τ ≡ 1/µ as expected.

Notice that the approximation in (13) is directly a supremum of a real-valued function,

and so can be computed quite easily for any given 4-tuple (λ, Ia, µ, c
2
s). Indeed, the deter-

ministic function before we take the supremum is revealing to show how the performance

depends on the parameters.

Remark 2. (continuous-time stationarity) We emphasize that, in the RQ formulation,

it is essential to use the continuous-time stationary version of the IDC in (1) and the IDW
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in (2), instead of their discrete-time Palm stationary versions; see [41] for a comprehensive

discussion. The continuous-time stationary IDC we use here yields asymptotically correct

light-traffic limit, whereas the Palm stationary IDC does not. See §5.2 of [54] for more

discussion. �

Theorem 5 in [54] states that the RQ algorithm is asymptotically exact in both light-

traffic and heavy-traffic limits. Through extensive simulation experiments, it has been

found that the mean steady-state workload E[Z] can be well approximated by the IDW-

based RQ algorithm, see §A.2 for a numerical example.

In the i.i.d. service time setting, the IDW reduces to the IDC plus the service scv as in

(3). Thus, the main challenge for the RQNA algorithm for OQNs is developing a successful

approximation for the IDC of the internal arrival process at each queue, which we discuss

in §4 and §6.

3.2. Other Steady-State Performance Measures

We develop approximations for other steady-state performance measures by applying exact

relations for the G/GI/1 queue that follow from Little’s law L= λW and its generalization

H = λG; e.g., see [48] and Chapter X of [2] for the GI/GI/1 special case. Let W,Q and X

be the steady-state waiting time, queue length and the number in system (including the

one in service, if any, at an arbitrary time). By Little’s law,

E[Q] = λE[W ] = ρE[W ] and

E[X] =E[Q] + ρ= ρ(E[W ] + 1). (16)

By Brumelle’s formula [5] or H = λG, (6.20) of [48],

E[Z] = ρE[W ] + ρ
E[V 2]

2µ
= ρE[W ] + ρ

(c2s + 1)

2µ
, (17)

Hence, given an approximation Z∗ for E[Z], we can use the approximations

E[W ]≈max{0,Z∗/ρ− (c2s + 1)/2µ} and

E[Q]≈ λE[W ]. (18)

Remark 3. (network performance measures) So far we only have discussed the per-

formance measures for a single station. The total network performance measures, on the

other hand, can also be derived. For example, the expected value of the total sojourn time
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T tot
i , i.e. the time needed to flow through the queueing network for a customer that enters

the system from station i, is easily estimated from the obtained mean waiting time at

each station. Assuming Markov routing with routing matrix P , a standard argument from

discrete time Markov chain theory gives the mean total number of visits ξi,j to station j

by a customer entering the system at station i as

ξi,j =
(
(I −P )−1

)
i,j
,

where (I −P )−1 is the so-called fundamental matrix of a absorbing Markov chain. Hence,

the mean steady-state total sojourn time E[T tot
i ] is approximated by

E[T tot
i ]≈

K∑
j=1

ξi,j(Wj + 1/µj). (19)

In real world applications, customers often experiences non-Markovian routing, where

routes are customer-dependent. For ways to represent those scenarios and convert them

(approximately) to the current framework, see §2.3 and §6 of [45]. �

4. Approximating the IDCs of the Internal Flows

In this section we develop a framework for approximating the IDCs of the internal flows in

the OQN. These flows are assumed to be continuous-time stationary point processes. As

a basis for the heavy-traffic limits for the stationary flows of an (GI/GI/1)K/M OQN in

[52], we showed that these stationary flows exist and are well defined in that setting.

We start in §4.1 by reviewing the OQN model and the required model data for the RQNA

algorithm. We review the standard traffic rate equations in §4.2. We develop the new traffic

variability equations in §4.3. As in other decomposition methods, three network operations

are essential: the departure operation (flow through a queue), the splitting operation and

the superposition operation.

4.1. The OQN Model Data

4.1.1. Model Assumptions. Each queue has a single server, unlimited waiting space

and provides service in order of arrival. For each queue (node or station) i, 1≤ i≤K, we

have an external arrival process A0,i ≡ {A0,i(t) : t≥ 0} and a sequence of i.i.d. service times

{V l
i ; l ≥ 1}. We assume that all these external arrival processes and service processes are

mutually independent.
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Each external arrival process A0,i is assumed to be a simple (no batches) stationary

and ergodic point process (having stationary increments) with E[A2
0,i(t)] <∞ for all t.

We assume that this external arrival process A0,i is partially specified by its rate λ0,i and

its IDC Ia,i,0 ≡ {Ia,i,0(t) : 0 ≤ t ≤∞}, as defined in (1). We assume that the IDC Ia,i,0 is

continuous with finite limits at 0 and +∞.

We assume that the service times V l
i are distributed as Vi with cdf Gi, finite mean 1/µi

and scv c2s,i. Let the associated service renewal counting process be Si ≡ {Si(t) : t ≥ 0},

where

Si(t) = max

{
n≤ 0 :

n∑
l=1

V l
i ≤ t

}
, t≥ 0.

Let Is,i ≡ {Is,i(t); 0≤ t≤∞} be the IDC of the associated stationary renewal process. We

assume that the IDC Is,i is continuous with limits at 0 and +∞. We necessarily have

Is,i(∞) = c2s,i.

We assume that departures are routed from node to node and out of the network by

Markovian routing, which is independent of the arrival and service processes. We assume

that each arrival eventually leaves w.p.1. Let pi,j denote the probability that a departure

from node i is routed to node j Let P ≡ {pi,j : 1≤ i, j ≤K} be the (substochastic) routing

matrix. Furthermore, let pi,0 ≡ 1−
∑

j pi,j denote the probability that a customer departs

the system after completing service at from node i.

4.1.2. Model Data. For our RQNA algorithm, we assume that we are given the param-

eter 5-tuple (λi, Ia,i, µi, c
2
s,i, Is,i) for each queue i and the routing matrix P . For the GI

service process, it suffices to specify the service-time cdf Gi; then 1/µi is its mean and c2s,i

its scv, while Is,i can be computed from Gi as indicated in §2.3.1.

As opposed to the QNA algorithm in [45], the RQNA algorithm requires the IDC’s of

the external arrival processes and the service processes, in addition to the means and scv’s.

If we are only given the first two moments, then we can fit a convenient cdf Gi to these

parameters and use the corresponding as indicated in §3 of [44]. In particular, we would

use (i) an exponential cdf when c2s,i = 1, (ii) a deterministic distribution when c2s,i = 0,

(iii) a hyperexponential (H2, mixture of two exponential distributions) cdf with balanced

means as in (3.7) of [44] when c2s,i > 1, (iv) an Erlang (Ek, sum of exponential random

variables) distribution when c2s,i = 1/k, and (v) a shifted-exponential distribution otherwise

when 0< c2s,i < 1; see (3.12) of [44].
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If we are only give sample data of the processes, then we can apply the numerical

algorithm in §2.3 to estimate the rate and IDC of the process.

4.2. The Traffic Rate Equations and Traffic Intensities

We use the same traffic rate equations as in Markovian (M/M/1)K/M networks to deter-

mine the internal (net) arrival rate at each queue. Let λ0 ≡ (λ0,1, . . . , λ0,K) be the external

arrival rate vector; so that λi,j ≡ λipi,j is the rate of the internal arrival stream from i to j,

denoted by Ai,j. Let λ≡ (λ1, . . . , λK) denote the total arrival rate vector, then the (exact)

traffic-rate equations are

λi = λ0,i +
K∑
j=1

λj,i = λ0,i +
K∑
i=1

λjpj,i, 1≤ i≤K, (20)

or in matrix form

(I −P ′)λ= λ0,

where I denotes the identity matrix. We assume that I −P ′ is invertible; i.e., we assume

that all customers eventually leave the system. The condition for the invertibility of I−P ′

to hold is well known, e.g. in Theorem 3.2.1 of [31]. Hence, the vector of internal arrival

rates is given by

λ= (I −P ′)−1λ0. (21)

Then the traffic intensity at queue i is defined as usual by ρi ≡ λi/µi. We assume that

ρi < 1 for all i to ensure that the OQN is stable.

4.3. The Traffic Variability Equations

Paralleling §4 of [45], we develop traffic variability equations to approximate the IDC of the

internal arrival process to each queue. We develop equations for each of the basic network

operations: (i) departure (flow through a queue), (ii) splitting and (iii) superposition.

However, we go significantly beyond [45] by having a variability function, the IDC Ia,i ≡

{Ia,i(t); t≥ 0} instead of the single variability parameter c2a,i. Moreover, in treating splitting

and superposition, we obtain more general formulas by relaxing customary independence

assumptions (which do not hold in general OQN’s allowing customer feedback).
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4.3.1. The Departure Operation. For queue i, given the parameter 5-tuple

(λi, Ia,i, µi, c
2
s,i, Is,i), its traffic intensity is ρi = λi/µi. The departure process necessarily has

the same rate λi. We approximate the IDC Id,i by a convex combination of the arrival IDC

Ia,i and the service IDC Is,i using a weight function that depends on both time t and the

traffic intensity ρi.

In forming this convex combination, recall our scaling convention in Remark 1, indi-

cating that we scale any IDC by giving it the rate of the stationary point process under

consideration. Below we will assume that both processes are given the same rate λ as

given for the arrival process. Given that the given stationary service process has rate µ,

we convert it to rate λ by considering Is(ρt). (This change in notation should have been

made in [51], because there too the rate was taken to be λ for both Ia and Is. Of course,

this change has no impact on the heavy-traffic limits.)

In particular, we propose the approximation

Id,i(t)≈wρi(t)Ia,i(t) + (1−wρi(t))Is,i(ρt), t≥ 0, (22)

where the weight function wρi is expressed in terms of a single weight function w∗ by

wρi(t)≡w∗((1− ρi)2λit/h(ρi)c
2
x,i), t≥ 0, (23)

where c2x,i ≡ c2a,i+ c2s,i and c2a,i = Ia,i(∞), h(ρ) is an increasing continuous tuning function of

the traffic intensity ρ with h(0)≡ 0 and h(1)≡ 1, and the canonical weight function w∗ is

w∗(t)≡ 1− 1− c∗(t)
2t

, t≥ 0. (24)

with c∗(t) being the correlation function of the stationary version of canonical one-

dimensional RBM.

To elaborate on the role of RBM in the canonical weight function, let R be canonical

one-dimensional RBM (having drift −1, diffusion coefficient 1) and let Re be the stationary

version, which has the exponential marginal distribution for each t with mean 1/2. Let

c∗(t) be the correlation function of Re, defined by

c∗(t)≡ E[Re(0)Re(t)]−E[Re(0)]E[Re(t)]

Var(Re(0))
= 1− E[R(t)2|R(0) = 0]

E[R(∞)2]

= 2(1− 2t− t2)Φc(
√
t) + 2

√
tφ(
√
t)(1 + t), t≥ 0, (25)
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where Φ is the cdf of standard normal distribution and φ is the associated density function.

The weight function w∗ is a monotonically increasing function with w∗(0) = 0 and w∗(∞) =

1. For more discussion of the correlation function and the weight function, see §3 of [51]

and the references there.

The approximation in (22), for any tuning function h(ρ), is supported by heavy-traffic

limits for the stationary departure processes, where we push the queue of interest (denoted

by h) to the heavy-traffic limit while keeping other stations strictly under-saturated. Such

HT limits are established in Theorems 5.1-5.3 and Corollary 6.1 of [51] for the GI/GI/1

model and extended to cover the (GI/GI/1)K/M) OQN model in Corollary 4.2 of [52].

Under regularity conditions (uniform integrability, for which it suffices to have uniformly

bounded finite fourth moments of the interarrival time and service time), the approximation

in (22) is asymptotically correct as ρh→ 1. See [52] for technical support of (22) for general

OQNs.

It remains to specify the tuning function h used in the ρi-dependent weight wρi(t) in (23).

It is chosen to improve the quality of approximations at queues with light-to-moderate

traffic intensities. In specific, we propose

h(ρ)≡ ρ2, 0≤ ρ≤ 1. (26)

This specific choice of the tuning function is motivated from Remark 5.2 of [51], where we

replace γ by γρ in the pre-limit weight function and recall that the usual case of µρ = λ/ρ

corresponds to γρ = 1/ρ. The tuning function in (26) also corresponds to (33) of in [54]. We

remark that hρ can be used as a tuning parameter to improve the quality of approximations.

We will illustrate in our numerical examples.

Remark 4. (parallel to QNA) The convex combination in the approximation (22) is

reminiscent of the convex combination for variability parameters in (38) of [45], which is

a stationary-interval approximation, as discussed in [44, 45, 46]. In (38) of [45]

cd,i ≈ (1− ρ2i )c2a,i + ρ2i c
2
s,i. (27)

Clearly approximation (27) puts more weight on the service scv c2s,i as ρi increases,

approaching the values 0 and 1 in the extremes. This makes sense intuitively, because the

queue should be busy most of the time as ρi increases toward 1. Thus departure times tend
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to be minor variations of service times. In contrast, if ρi is very small, then the queue acts

only as a minor perturbation of the arrival process.

Similar behavior can be seen in approximation (22). In particular, since the weight

function w∗ in (24) is a monotonically increasing function with w∗(0) = 0 and w∗(∞) = 1

and since wρi(t)≡w∗((1− ρi)2λit/h(ρi)c
2
x,i), we see that for each t, wρi(t) also places less

weight on Ia,i(t) and more weight on Is,i(t) as ρi increases.

However, (22) also reveals a more subtle interaction between t and ρ. In complex sta-

tionary point processes, such as the departure processes in §A.1, the variability in a point

process is not the same at all time scales. Moreover, the impact of the variability in an

arrival process at a later queue depends on the traffic intensity of that later queue. The

heavy-traffic limits expose the importance of the time scaling by (1−ρ)−2. Since, wρi(t)≡
w∗((1 − ρi)2λit/h(ρi)c

2
x,i) by (23), we see that wρi((1 − ρ)−2t) = w∗(λit/h(ρi)c

2
x,i), which

tends to be nearly independent of ρi for larger values of ρi. In other words, the weight is

approximately constant in scaled time. �

4.3.2. The Splitting Operation. To treat splitting, we write the split process Ai,j as

a random sum. To represent general routing, let θli ∈ {0,1}K indicates the routing vector

of the l-th departure from queue i. So at most one component of θli is 1 and the j-th

component θli,j = 1 indicates that the the l-th departure from the i-th station is routed to

the j-th station. Then observe that

Ai,j(t) =

Di(t)∑
l=1

θli,j, t≥ 0. (28)

We apply the conditional-variance formula to write the variance Va,i,j(t)≡Var(Ai,j(t)) as

Va,i,j(t) = E[V ar(Ai,j(t)|Di(t))] +V ar(E[Ai,j(t)|Di(t)]). (29)

With the Markovian routing we have assumed, the routing decisions at each queue at

each time are i.i.d. and independent of the history of the network. As a consequence, for

feed-forward queueing networks, we can deduce that the collection of all routing decisions

made at queue i up to time t is independent of Di(t), but not more generally. With customer

feedback, there is a complicated dependence.

For the case in which independence holds, we can apply (29) to express Vai,j(t) in terms

of the variance of the departure process, Vd,i(t)≡Var(Di(t)); in particular,

Va,i,j(t) = p2i,jVd,i(t) + pi,j(1− pi,j)λit, (30)
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or, equivalently, since E[Di(t)] = λit and E[Ai,j(t)] = pi,jλit= pi,jE[Di(t)],

Ia,i,j(t) = pi,jId,i(t) + (1− pi,j). (31)

The formula (31) is an initial approximation, which parallels the approximation used for

splitting in (40) of [45], i.e., c2a,i,j = pi,jc
2
d,i + (1− pi,j).

However, we develop a more general formula to improve the approximation in general

OQNs. For that purpose, we apply the heavy-traffic FCLT for split processes in §9.5 of [50];

we give the detailed derivation in §C.2. Based on that heavy-traffic analysis, we propose

the splitting IDC equation as

Ia,i,j(t) = pi,jId,i(t) + (1− pi,j) +αi,j(t), (32)

so that the additional correction term αi,j is defined as

αi,j(t)≡ Ia,i,j(t)− pi,jId,i(t)− (1− pi,j). (33)

In §C.2 we develop a heavy-traffic approximation for αi,j(t) that is asymptotically correct

in that heavy-traffic limit, but in general it is hard to evaluate. So we also obtain a more

concrete approximation by considering a heavy-traffic limit in which only queue i enters

heavy traffic in the limit. That leads to the correction term

αi,j,ρi(t) ≈ 2ξi,jpi,j(1− pi,j)wρi(t)

= 2ξi,jpi,j(1− pi,j)w∗((1− ρi)−2λit/(h(ρi)c
2
x,i)), t≥ 0, (34)

where wρi(t) is the weight function for the departure IDC in (23), c2x,i, c
2
a,i and c2s,i are also

as in (23), while ξi,j is the (i, j)th entry of the matrix (I −P ′)−1.

4.3.3. The Superposition Operation. In this section, we investigate the effect of the

superposition operation on the IDC’s. To start, consider the case in which the individual

streams are mutually independent. In this case, we have

Va,i(t)≡Var(Ai(t)) = Var

(
K∑
j=0

Aj,i(t)

)
=

K∑
j=0

Var(Aj,i(t)),

so that

Ia,i(t) =

K∑
j=0

(λj,i/λi)Ia,j,i(t), (35)
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where Ia,j,i(t)≡Var(Aj,i(t))/E[Aj,i(t)]. Recall that (35) differs from (36) of [54] because we

are not assuming rate-1 processes in our definitons of the IDC; see Remark 1.

While (35) is exact when the streams are independent, it is not exact in general cases.

Even for feed-forward networks, we may have a stream that splits and then recombines

later, which introduces dependence.

For dependent streams, the variance of the superposition total arrival process at queue

i can be written as

Va,i(t)≡Var

(
K∑
j=0

Aj,i(t)

)
=

K∑
j=0

Var (Aj,i(t)) +βi(t)E[Ai(t)]

where A0,i denotes the external arrival process at station i,

βi(t)≡
∑
j 6=k

βj,i;k,i(t), and βj,i;k,i(t)≡
cov (Aj,i(t),Ak,i(t))

E[Ai(t)]
. (36)

In terms of the IDC’s, we have

Iai(t) =
K∑
j=0

(λj,i/λi)Iaj,i(t) +βi(t). (37)

We do not have an exact characterization of the correction terms βi(t) in (36) and (37).

Thus, we again apply heavy-traffic limits to generate an approximation; see Corollary 4.2

of [52]. As a consequence, we obtain the approximation

βj,i;k,i(t) = βk,i;j,i(t)≈ (ζj,i;k,i/λi)w
∗((1− ρj)2pj,iλjt/h(ρ)c2x,j,i), (38)

where w∗ is the weight function in (24), h(ρ) is the tuning function in (26), c2x,j,i = pj,ic
2
a,j +

(1− pj,i) + pj,ic
2
s,j and c2a,j is solved from the variability equations for the asymptotic vari-

ability parameters in (44), while ζj,i;k,i are scaled covariances of Brownian limit processes.

In particular,

ζj,i;k,i = ν ′j

(
diag(c2a,0,iλi) +

K∑
l=1

Σl

)
νk + ν ′kΣjei + ν ′jΣkei, (39)

where νl ≡ pl,ie′l(I−P ′)−1 for l= j, k, ei is the i-th unit vector, diag(c2a,0,iλi) is the diagonal

matrix with c2a,0,iλi as the i-th diagonal entry, Σl is the covaraince matrix of the splitting

decision process at station l defined as Σl ≡ (σli,j) with σli,i = pl,i(1 − pl,i)λl and σli,j =

−pl,ipl,jλl for i 6= j. Detailed derivation of (39) appears in §C.3.2.
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4.4. The IDC Equation System

We now assemble the building blocks into a system of linear equations (for each t) that

describes the IDC’s in the OQN. Combining (22), (32) and (37), we obtain the IDC equa-

tions. These are equations that should be satisfied by the unknown IDCs. For 1≤ i≤K,

the equations are

Ia,i(t) =
K∑
j=1

(λj,i/λi)Ia,j,i(t) + (λ0,i/λi)Ia,0,i(t) +βi(t),

Ia,i,j(t) = pi,jId,i(t) + (1− pi,j) +αi,j(t),

Id,i(t) =wi(t)Ia,i(t) + (1−wi(t))Is,i(ρt). (40)

The coefficient parameters pi,j, λi,j and λi are determined by the system parameters

introduced in §4.1 and the traffic rate equations in §4.2. The external arrival IDC Ia0,i(t)

and the service IDC Isi(t) are assumed to be calculated via exact or numerical inversion

of Laplace Transforms, or estimated from data, see §2.3.

The weight functions

wi(t)≡w∗((1− ρi)2λit/(h(ρi)c
2
x,i)) (41)

involves a pre-determined function w∗(t) defined in (24), the tuning function in (26), the

effective arrival rate λi from (20), the traffic intensity ρi and a limiting variability parameter

c2x,i ≡ Ia,i(∞) + c2s,i, as discussed in §4.3.1.

To solve for the limiting variability parameters Ia,i(∞), we let t→∞ in (40) and denote

c2a,i ≡ Ia,i(∞), c2a,i,j ≡ Ia,i,j(∞) and c2d,i ≡ Id,i(∞). Furthermore, we define

c2αi,j ≡ αi,j(∞) = 2ξi,jpi,j(1− pi,j),

c2βi ≡ βi(∞) =
2

λi

∑
j<k

ζj,i;k,i,

where we used w∗(∞) = 1 in (34) and (38). Hence, we have the limiting variability equa-

tions:

c2a,i =
K∑
j=1

(λj,i/λi)c
2
a,j,i + (λ0,i/λi)c

2
a,0,i + c2βi ,

c2a,i,j = pi,jc
2
d,i + (1− pi,j) + c2αi,j ,

c2d,i = c2a,i, 1≤ i≤K. (42)



W. Whitt and W. You: RQNA
24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

where we used the fact that wi(t)→ 1 as t→∞.

For a concise matrix notation, let

I(t)≡ (Ia,1(t), . . . , Ia,K(t), Ia,1,1(t), . . . , Ia,K,K(t), Id,1(t), . . . , Id,K(t)),

b(t)≡ (ba,1(t), . . . , ba,K(t), ba,1,1(t), . . . , ba,K,K(t), bd,1(t), . . . , bd,K(t)),

M(t)≡ (Mm,n(t))∈R(2K+K2)2 , m,n∈ {a1, . . . , aK , a1,1, . . . , aK,K , d1, . . . , dK},

c2 ≡ (c2a,1, . . . , c
2
a,K , c

2
a,1,1, . . . , c

2
a,K,K , c

2
d,i, . . . , c

2
d,K),

where

ba,i(t)≡
λ0,i

λi
Ia,0,i(t) +βi(t), ba,i,j ≡ (1− pi,j) +αi,j(t),

bd,i(t)≡ (1−wi(t))Is,i(t); Mai,aj,i(t) =
λj,i
λi
,

Mai,j ,di(t) = pi,j,Mdi,ai(t) =wi(t), and Mm,n(t) = 0 otherwise.

Then the IDC equations can be expressed concisely as

(E−M(t))I(t) = b(t), (43)

while the limiting variability equations can be expressed as

(E−M(∞))c2 = b(∞), (44)

where E∈R(2K+K2)2 is the identity matrix.

The following theorem states that these equations have unique solutions.

Theorem 1. Assume that I − P ′ is invertible. Then E −M(t) is invertible for each

fixed t ∈R+ ∪{∞}. Hence, for any given t and b, the IDC equations in (40) or eqn: IDC

equations have the unique solution

I(t) = (E−M(t))−1b(t)

and the limiting variability equations in (44) have the unique solution

c = (E−M(∞))−1b(∞).
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Proof. Let δi,j be the Kronecker delta functioon. Then substituting the equations for

Ia,j,i(t) and Id,i(t) into the equation for Ia,i(t), we obtain an equation set for Ia,i(t) with

coefficient matrix (δi,j − (λj,i/λi)pj,iwj(t)) ∈RK2
. Note that (λj,i/λi)wj(t)≤ 1 for t ∈R+ ∪

{∞}, the invertibility of I−P ′ implies that the equations for Ia,i(t) have an unique solution.

Substituting in the solution for Ia,i(t), we obtain solutions for Ia,i,j(t) and Id,i(t). �

The correction terms, defined in (33) and (36), provides a way to treat general queueing

network settings such as customer feedback and dependence among flows. In deployment,

one needs to specify or approximate αi,j(t) and βi(t). Clearly, well defined correction term

are of crucial important in obtaining an accurate RQNA algorithm. In §6, we discuss

specific αi,j(t) and βi(t) supported by the heavy-traffic limit theorems.

Remark 5. (the Kim [32, 33] MMPP (2) decomposition) As indicated in §1, a decom-

position approximation of queueing networks based on MMPP (2)/GI/1 queues is inves-

tigated in Kim [32, 33]. The waiting time of such system is known from [18]. The four

rate parameters in the MMPP(2) are determined from the approximations of the mean,

IDC and the third moment process of the arrival process at a pre-selected time t0 and

the limiting variability parameter of the arrival process. The IDC and third moment pro-

cesses are approximated by the network equations with correction terms motivated from

the Markovian routing settings.

At first glance, the IDC equations proposed here are quite similar to the network equa-

tions used in [32], see (20), (22) and (31) there. However, the three methods are different

in three significant aspects. First, our approach does not fit the flows to special processes

(MMPP in [32]), instead we partially characterize the flows by the IDC and apply the RQ

algorithm reviewed in §3. Secondly, the entire IDC function is utilized in the RQ algo-

rithm, whereas [32] used IDC evaluated at a pre-selected time t0 to fit the parameters of

the MMPP. Thirdly, we rely on more detailed heavy-traffic limit to propose asymptotically

exact correction terms, see §6. �

5. Feedback Elimination

In this section, we discuss the case in which customers can return (feedback) to a station

after receiving service there. The possibility of feedback introduces dependence between the

arrival process and the service times, even when the service times themselves are mutually

independent. As a result, the decomposition Iw(t) = Ia(t) + c2s in (3) is no longer valid.
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Indeed, assuming that it is, as we do so far, can introduce serious errors, as we show in

our simulation examples. We address this problem by introducing a feedback elimination

procedure. We start with the so-called immediate feedback in §5.1 and generalize it into

near-immediate feedback in §5.2.

5.1. Immediate Feedback Elimination

In Section III of [45] it is observed that it is often helpful to pre-process the model data

by eliminating immediate feedback for queues with feedback. We now review how that can

be done.

We consider a single queue with i.i.d. feedback. In this case, all feedback is immediate

feedback, meaning that the customer feeds back to the station immediately after completing

service, without first going through another station. For a G/GI/1 model allowing feed-

back, all feedback is necessarily immediate because there is only one station. Normally, the

immediate feedback returns the customer back to the end of the line at the same station.

However, in the immediate feedback elimination procedure, the approximation step is to

put the customer back at the head of the line. Thus, the customer receives a geometrically

random number of service times all at once. Clearly this does not alter the queue length

process or the workload process, because the approximation step is work-conserving.

The modified system does not have a feedback flow. Let Np denote a geometric random

variable with success probability 1−p and support N+, the positive natural numbers, then

the new service time can be expressed as

Sp =

Np∑
i=1

Si, (45)

where Si’s are i.i.d. copies of the original service times. This modification in service times

results in a change in the service scv. By the conditional variance formula, the scv of the

total service time is c̃2s = p+ (1− p)c2s. The new service IDC in the modified system is the

IDC of the stationary renewal process associated with the new service times. To obtain the

new service IDC, we need only find the Laplace Transform of the new service distribution,

then apply the algorithm in §2.3.1. Let gp denote the density function of the new service

time, we have

ĝp(s)≡E

[
exp

(
−s

Np∑
i=1

Si

)]
=E

[
E

[
exp

(
−s

Np∑
i=1

Si

)∣∣∣∣∣Np

]]
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=E

[
Np∏
i=1

E [exp (−sSi)]

]
=E

[
ĝNp(s)

]
=Mp(ĝ(s)),

where ĝ(s) is the Laplace transform of the original service distribution and Mp is the

probability generating function of the geometric random variable described above.

For the mean waiting time, we need to adjust for per-visit waiting time by multiplying

the waiting time in the modified system by (1−p). Note that (1−p)−1 is the mean number

of visit by a customer in the original system.

In §4.1 of [52] it is shown that the modified system after the immediate feedback elim-

ination procedure shares the same HT limits of the queue length process, the external

departure process, the workload process and the waiting time process. Hence, the imme-

diate feedback elimination procedure as an approximation is asymptotically exact in the

heavy-traffic limit.

5.2. Near-Immediate Feedback

Now, we consider general OQNs, where the feedback does not necessarily happen imme-

diately, meaning that a customer may visit other stations before coming back to the feed-

back station. To treat general OQNs, we extend the immediate feedback concept to near-

immediate feedback, which depends on the traffic intensities of the queues on the feedback

path. Near-immediate feedback is then defined as feedback that does not go through any

station with higher traffic intensity. The RQNA algorithm eliminates all near-immediate

feedback.

An alternative algorithm eliminates only all near-immediate feedback from the bottle-

neck queues, where a bottleneck queue is a station with a traffic intensity that equals the

highest traffic intensity in the network. For each bottleneck queue in the network, by the

definition of near-immediate feedback, we eliminate all feedback at this queue when we

analyze the mean workload at that queue, even if the feedback flow passes through other

bottleneck queues.

To help understand near-immediate feedback, consider a modified OQN with one bot-

tleneck queue, denoted by h, while all non-bottleneck queues have service times set to 0 so

that they serve as instantaneous switches. In the reduced network, we define an external

arrival Â0 to the bottleneck queue to be any external arrival that arrive at the bottleneck

queue for the first time. Hence, an external arrival may have visited one or multiple non-

bottleneck queues before its first visit to the bottleneck queue. In particular, the external
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arrival process can be expressed as the superposition of (i) the original external arrival

process A0,h at station h; and (ii) the Markov splitting of the external arrival process A0,i

at station i with probability p̂i,h, for i 6= h, where p̂i,h denote the probability of a customer

that enters the original system at station i ends up visiting the bottleneck station h. For

the explicit formula of p̂i,h, see Remark 3.2 of [52].

In §4.2 of [52], we showed that this reduced network is asymptotically equivalent in

the HT limit to the single-server queue with i.i.d. feedback that we considered in §5.1. In

particular, the arrival process of the equivalent single-station system is Â0 as described

above, the service times remain unchanged and the feedback probability is p̂, which is

exactly the probability of a near-immediate feedback in the original system; see (3.9) of [52]

for the expression of p̂. Hence we showed that eliminating all feedback at the bottleneck

queue as described above prior to analysis is asymptotically correct in HT for OQNs with a

single bottleneck queue in terms of the queue length process, the external departure process,

the workload process and the waiting time process. Moreover, the different variants of the

algorithm - eliminating all near immediate feedback or only the near-immediate feedback

at the bottleneck queues - are asymptotically exact in the HT limit for an OQN with a

single-bottleneck queue, because only the bottleneck queues have nondegenerate HT limit.

In contrast, if there are multiple bottleneck queues, the HT limit requires multidimensional

RBM, which is not used in our RQNA.

6. The RQNA Algorithm

As basic input parameters, the RQNA algorithm requires the model data specified in §4.1:

1. Network topology specified by the routing matrix P ;

2. External arrival processes specified by (i) the interarrival distribution, if renewal; or

(ii) rate λ and IDC; or (iii) a realized sample path of the stationary external arrival process;

3. Service renewal process specified by (i) the service distribution; or (ii) the rate and

IDC; or (iii) a realized sample path of the service renewal process.

Combining the traffic-rate equation, the limiting variability equation, the IDC equation

and the feedback elimination procedure, we have obtained a general framework for the

RQNA algorithm, which we summarize in Algorithm 1.

The general framework here allows different choices of (1) the tuning function in (23),

(2) the correction terms αi,j in §4.3.2 and βi in §4.3.3 and (3) the feedback elimination

procedure.
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Algorithm 1: A general framework of the RQNA algorithm for the approximation

of the system performance measures.

Require: Specification of the correction terms αi,j(t) in §4.3.2 and βi(t) in §4.3.3, a

set of stations to perform feedback elimination as specified in §5 and the

flows to eliminate for each of the selected station.

Output : Approximation of the system performance measures.

1 Solve the traffic rate equations by λ= (I −P ′)−1λ0 as in §4.2 and let ρi = λi/µi;

2 Solve the limiting variability equations by c = (E−M(∞))−1b(∞) specified in §4.4;

3 Solve the IDC equations by I(t) = (E−M(t))−1b(t) for the total arrival IDCs,

where we use c from Step 2 in (41);

4 Select a set of stations to perform feedback elimination, as in §5. For each selected

station, identify the flows to eliminate, then identify the corresponding feedback

probability, the modified service IDC as in §5.1 as well as the reduced network.

Repeat Step 1 to Step 3 on the reduced network to obtain the modified IDW (as

the sum of the modified total arrival IDC and the modified service scv) at the

selected station.

5 Apply the RQ algorithm in (13) to obtain the approximations for the mean

steady-state workload at each station.

6 Apply the formulas in §3.2 to obtain approximations for the expected values of the

steady-state queue length and waiting time at each queue and the total sojourn

time for the system.

As default, we use the tuning function in (26), the correction terms in (34) and (38).

For the feedback elimination procedure, we apply near-immediate feedback elimination to

all stations.

6.1. RQNA for Tree-Structured Queueing Networks

We also develop a more elementary algorithm for tree-structured OQNs. A tree-structured

queueing network is an OQN whose topology forms a directed tree. Recall that a directed

tree is a connected directed graph whose underlying undirected graph is a tree. The queue-

ing network in this setting contains either re-combining after splitting nor customer feed-

back. The tree-structured network is a special case of feed-forward network in which the

superposed flows ate each node have no common origin.
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This special structure greatly simplifies the IDC-based RQNA algorithm. First, feedback

elimination is unnecessary because there is no customer feedback. Second, for any internal

flow Ai,j that is non-zero, we must have αi,j = 0 for the correction term in (33), because

the tree structure implies that the two processes D∗i and Θ∗i,j are mutually independent.

In particular, by definition,

α∗i,j(t)≡ 2cov(pi,jD
∗
i (t),Θ

∗
i,j(λit))/E[A∗i,j(t)] = 0.

Finally, the tree structure implies that βi = 0 for the correction term for superposition

because all superposed processes are independent.

With these simplifications of the correction terms, the equations in (40), yield, for 1≤

i, j ≤K,

Iai(t) =
K∑
j=1

λj,i
λi
Iaj,i(t) + (λ0,i/λi)Ia0,i(t),

Iai,j(t) = pi,jIdi(t) + (1− pi,j),

Idi(t) =wi(t)Iai(t) + (1−wi(t))Isi(t).

The IDC equations in this setting inherit a special structure that allows a recursive

algorithm. Note that the stations in the tree-structured network can be partitioned into

disjoint layers {L1, . . . ,Ll} such that for station i ∈ Lk, it takes only the input flows from

j ∈
⋃k−1
j=1 Lj for 1≤ k ≤ l. To simplify the notation, we sort the node in the order of their

layers and assign arbitrary order to nodes within the same layer. If i∈Lk, then
⋃k−1
j=1 Lj ⊂

{1,2, . . . , i−1}, so that λj,i = 0 for all j ≥ i. Hence, by substituting in the equations for Idi

and Iai,j into that of Iai , we have

Iai(t) =

K∑
j=1

λj,i
λi

(
pj,i
(
wj(t)Iaj(t) + (1−wj(t))Isj(t)

)
+ (1− pj,i)

)
+
λ0,i

λi
Ia0,i(t),

=
∑
j<i

λj,i
λi

(
pj,i
(
wj(t)Iaj(t) + (1−wj(t))Isj(t)

)
+ (1− pj,i)

)
+
λ0,i

λi
Ia0,i(t). (46)

Note that (46) exhibits a lower-triangular shape so that we can explicitly write down

the solution in the order of the stations. We summarize the procedure in Algorithm 2.

With the total arrival IDCs, we simply continue to Step 5 and 6 in Algorithm 1 to obtain

approximations to the system performance measures.
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Algorithm 2: The RQNA algorithm for approximating the IDC’s in a tree-

structured queueing networks.

Require: The queueing network has tree structure.

Output : Solution to the IDC equations (43).

1 for i= 1 to n do

2 λi← λ0,i +
∑

j<i λjpj,i;

3 ρi← λi/µi;

4 c2a,i←
∑

j<i
λj,i
λi
c2a,j,i +

λ0,i
λi
c2a,0,i;

5 c2x,i← c2a,i + c2s,i;

6 wi(t)←w∗((1− ρi)2λit/(ρic2x,i));

7 Iai(t)←
∑

j<i
λj,i
λi

(pj,i (wj(t)Ia,j(t) + (1−wj(t))Is,j(t)) + (1− pj,i)) +
λ0,i
λi
Ia,0,i(t);

8 Idi(t)←wi(t)Ia,i(t) + (1−wi(t))Is,i(t);

9 for j < i do

10 Ia,i,j(t)← pi,jId,i(t) + (1− pi,j);

11 end

12 end

13 return I(t).

7. Numerical Studies

We have conducted a wide range of simulation experiments to confirm the effectiveness of

RQNA. Some of them have been done in our previous papers and so are here put in §A of

the appendix. We briefly discuss these first. Afterwards, we discuss examples of networks

with significant near-immediate feedback from [10]. We show that the near-immediate

feedback in these examples makes a big difference in the performance descriptions. Hence

our predictions with and without feedback elmination are very different. We find that our

RQNA with near-immediate feedback elimination performs as well or better than the other

algorithms.

7.1. Examples from Previous Papers

An important innovation in this work is in the way we look at the performance of an

OQN. On the one hand, we take a limited view, looking only at the mean steady-state

workload at each queue in the OQN. However, we look at this mean steady-state workload

as a function of the traffic intensity of that queue; i.e., we look at the normalized mean
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workload c2Z(ρ) as a function of ρ. That perspective is achieved by scaling the mean service

time at the queue so that the traffic intensity ρ varies across its full range 0<ρ< 1.

Hence, our performance measures are not single mean values, but instead are sets of

mean values in the normalized form c2Z(ρ) in (4). Thus, we are evaluating not one OQN, but

instead a continuum of OQNs. In our experiments we achieve these continua approximately

by looking at large finite subsets.

7.1.1. An Example Having an IDW with Six Modes. To illustrate how the normal-

ized mean workload c2Z(ρ) can vary as a function of ρ and how that behavior can be

captured by the IDW Iw(t) as a function of t, in §A.1 we consider the EHEHE →M

example from §EC.8.2 of [54]. This example has 5 single-server queues in series, where the

variability increases and then decreases 5 times, with the traffic intensities at successive

queues decreasing. That makes the external arrival process and the earlier queues relevant

only as the traffic intensity increases. Specifically, the example can be denoted by

E10/H2/1→ ·/E10/1→ ·/H2/1→ ·/E10/1→ ·/M/1. (47)

In particular, the external arrival process is a rate-1 renewal process with Erlang E10

interarrival times, thus c2a = 0.1. The 1st queue has hyperexponential H2 service times with

mean 0.99 and c2s = 10 thus the traffic intensity at this queue is 0.99. (Throughout this

paper, we fix the third H2 parameter by stipulating that it also has balanced means, as

on p. 137 of [44].) The 2nd queue has E10 service time with mean and thus traffic intensity

0.98. The 3rd queue has H2 service times with mean 0.70 and c2s = 10. The 4th queue has

E10 service times with mean and thus traffic intensity 0.5. The last (5th) queue has an

exponential service-time distribution. with mean and traffic intensity ρ.

Figure 3 (left) shows the IDW at that last queue over the interval [10−2,105] in log scale,

while Figure 3 (right) shows the impact of ρ on the performance of that last queue. Figure

3 shows that the IDW and the normalized mean workload are not nearly constant, showing

that a single variability parameter cannot possibly perform well at all traffic intensities.

The limits of these functions at the endpoints are consistent with (5), but these functions

have substantial variation in between. These functions have six modes if we consider the

left and right end points.
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7.1.2. Evaluation of RQ and RQNA for 10 Queues in Series. Next, the example

in §A.2 taken from §5.2 of [54] evaluates both our approximation for the IDC and the

normalized workload. For this example, we consider 10 single-server queues in series. The

external arrival process is a rate-1 renewal process with H2 interarrival times, having c2a = 5.

The first 9 queues all have Erlang service times with c2a = 0.5 denoted by E2, i.e., the sum

of 2 i.i.d. exponential random variables. The first 8 queues have mean service time and thus

traffic intensity 0.6, while the 9th queue has mean service time and thus traffic intensity

0.95. The difference in variability level of the arrival and service process introduces complex

variability structure underneath the first 9 queues in series. The 10th queue serves as a test

queue and has an exponential service-time distribution with mean and traffic intensity ρ,

which is allowed to vary from 0 to 1 in order to expose the complex impact of the variability

on the performance measure of the test queue.

The RQNA algorithm in this case is a simple special case of Algorithm 2. The IDC’s of

the external flows (Ia1 for external arrival at station 1 and Isi service flows) can be derived

by explicitly inverse (8), see §III.G of [17]. For internal flows, we apply the departure

approximation in (22) recursively, so that for 2≤ i≤ 9,

Id1(t) =w1Ia1(t) + (1−w1)Is1(t), and

Idi(t) =wiIdi−1
(t) + (1−wi)Isi(t), (48)

where we used (23) with h(ρ) = ρ2 as in (26) with ρi = 0.6 for 1≤ i≤ 8, ρ9 = 0.95, λi = 1.

For the variability parameters, we note that c2xi ≡ c
2
ai

+c2si = c2ai +0.5 and that, for 2≤ i≤ 9,

c2ai ≡ Iai(∞) = Idi−1
(∞) = Iai−1

(∞) = · · ·= Ia1(∞) = c2a1 = 5.

With Ia10(t) = Id9(t), we can now apply the RQ algorithm in (13) to obtain approximation

of the steady-state mean workload.

Figure 4 (left) shows that the IDC approximation in the RQNA algorithm performs very

well, while Figure 4 (right) shows that both RQ (with directly estimated IDC) and RQNA

are accurate, just as for the more complex example in §A.1.

7.1.3. Comparisons with Previous Algorithms for Queues in Series. In §A.4 we com-

pare the performance of our RQNA algorithm to the performance of QNA from [45], QNET
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from [22], SBD from [10] and RQ from [54], for the example with 9 queues in series consid-

ered by [43]. This example was introduced by [43] to illustrate the heavy-traffic bottleneck

phenomenon. This example is also discussed in §5 of [53].

In particular, we consider an OQN with 9 stations in tandem, each with i.i.d. exponential

service times. Station 1 has the only external arrival process, which is a rate-1 general

renewal process. The traffic intensities at the first 8 queues are set to ρi = 0.6 for 1≤ i≤ 8,

while the last queue has the significantly higher traffic intensity ρ9 = 0.9. As in [43], two

specific external renewal arrival processes are considered: (i) deterministic interarrival times

with c2a0 = 0; and (ii) highly variable H2 interarrival times with c2a0 = 8 (and again balanced

means).

The heavy-traffic bottleneck phenomenon illustrates that the variability of the external

arrival process can have only very limited impact on the performance of the following

queues, especially after passing through several queues, and yet dramatically affect the

performance of a later queue with a much higher traffic intensity. This phenomenon is a

result of complicated long-range dependence embedded in the arrival processes, introduced

by flowing through a queue (the departure processes), as discussed in §A.1 and revealed by

the departure approximation in (22). This example was introduced to show the limitation

of traditional decomposition methods, e.g. the QNA algorithm, and is often used as a

benchmark for different approximation methods, see §3.3 of [10].

Table 6 (for low variability) and Table 7 (for high variability) compare the various

approximations of the mean steady-state waiting time at each station, as well as the total

waiting time in the system, to simulation estimates.

We make the following observations from this experiment:

1. The new RQNA algorithm does better than the QNA and QNET methods on total

time spent waiting in queue, and is comparable with the SBD method, even though RQNA

does not require solving an RBM.

2. The RQNA algorithm does exceptionally well at the final bottleneck queue and is

competitive with all other methods for approximating the mean waiting time. The new

RQNA method is based on heavy-traffic limits just as the previous methods methods, but

focuses on the flows, and exploits RQ instead of analyzing an RBM.

3. The RQNA algorithm can benefit from further improvement for light-to-medium

traffic intensities. As demonstrated in Table 7, the mean waiting times at queues 3-8 are
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pushed too much towards the M/M/1 values in the departure IDC approximation for light

to medium traffic intensity. That remains to be a direction for future research.

In §5 of [53] we also consider a variant of this experiment in which the third parameter

of the H2 interarrival-time distributon in the renewal external arrival process is changed,

so that the distribution no longer has balanced means. Since this change leaves the first

two moments unchanged, all previous approximations remain unchanged. However, since

RQ and RQNA depend on the entire distribution of the interarrival-time distribution,

it changes. Table 2 of [53] shows that RQ and RQNA perform better than the other

methods in these modified models. For third parameter r= 0.9, 0.5 and 0.1, the simulation

estimates of the total mean waiting time are 28.8, 45.3 and 47.5, the corresponding RQNA

approximations are 33.8, 40.1 and 43.7 and the SBD approximation is always 49.8. The

maximum relative errors of RQNA and SBD for these three cases are 20% and 73%.

7.2. Examples from [10] with Significant Feedback

As discussed in §5, the RQNA algorithm can benefit from the feedback elimination pro-

cedure when customer feedback is present. In this section, we show various numerical

examples to support feedback elimination. For that purpose, we discuss two examples from

[10] with significant feedback. We remark that the SBD algorithm performed remarkably

well in these examples.

7.2.1. Feedback Elimination: A Three-Station Example. In this section, we look at

the suite of three-station examples §3.1 of [10] depicted in Figure 1. This example is

designed to have three stations that are tightly coupled with each other, so that the

dependence among the queues and the flows is fairly complicated.

λ0,1 = 0.225
Queue 1 Queue 2

p2,3
Queue 3

p2,1

p3,2

Figure 1 A three-station example.

In this example, we have three stations in tandem but also allow customer feedback from

station 2 to station 1 and from station 3 to station 2, with probability p2,1 = p2,3 = p3,2 = 0.5.

The only external arrival process is a Poisson process which arrives at station 1 with rate

λ0,1 = 0.225, hence by (20) the effective arrival rate is λ1 = 0.675, λ2 = 0.9 and λ3 = 0.45.
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For the service distributions, we consider the same sets of parameters as in [10], sum-

marized in Table 1 and 2. Note that Case 2 is relatively more challenging because there

are two bottlneck stations; in contrast, all the other cases have only one.

Table 1 Traffic intensity of the
four cases in the three-station

example.

Case ρ1 ρ2 ρ3
1 0.675 0.900 0.450
2 0.900 0.675 0.900
3 0.900 0.675 0.450
4 0.900 0.675 0.675

Table 2 Variability of the
service distributions of the

four cases in the
three-station example.

Case c2s,1 c2s,2 c2s,3
A 0.00 0.00 0.00
B 2.25 0.00 0.25
C 0.25 0.25 2.25
D 0.00 2.25 2.25
E 8.00 8.00 0.25

We now compare the RQNA approximations and four previous algorithms as in §A.4,

with the simulated mean sojourn times at each station, as well as total sojourn time of the

network. The sojourn time for each station is defined as the waiting time plus the service

time at that station, whereas the total sojourn time of the network is defined as in (19). We

consider two cases of the RQNA algorithm: (1) the plain RQNA algorithm without feedback

elimination, as in Algorithm 1 and (2) the RQNA algorithm with feedback elimination, as

discussed in §5.

For RQNA with feedback elimination, we apply feedback elimination to each station

that has at least one feedback flow that only passes through stations with equal or lower

traffic intensities. We eliminate all such flows in the feedback elimination procedure. Take

Case 1 for example, we do not apply feedback elimination for Station 1 because all feed-

back customers go through Station 2, which has higher traffic intensity; we will, however,

eliminate the flow from 2 to 1 as well as the flow from 3 to 2 for Station 2, since both

Station 1 and 3 have lower traffic intensities. As another example, for both Station 2 and

3 in case 4, we eliminate the flow from 3 to 2, but we do not eliminate the flow from 2 to

1, since Station 2 and 3 share the same traffic intensity while Station 1 has higher traffic

intensity.

Tables 3 and 4 expand Tables II and III in [10] by adding values for (1) the mean

total sojourn time and (2) the RQ and RQNA approximations, with and without feedback

elimination. For each table, we indicate by an asterisk in the last column the stations where

elimination is applied.
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Table 3 A comparison of six approximation methods to simulation for the total sojourn time in the three-station example in
Figure 1 with parameters specified in Table 1 and 2.

Case Simulation QNA QNET SBD RQ RQNA RQNA (elim)
A 1 40.39 (3.75%) 20.5 (-49%) diverging 43.0 (6.4%) 73.9 (83%) 83.5 (107%) 44.8 (11.0%)

2 59.58 (3.29%) 36.0 (-40%) 56.7 (-4.9%) 58.2 (-2.4%) 78.0 (31%) 94.3 (58%) 69.3 (16.4%)
3 40.72 (4.78%) 24.0 (-41%) 38.7 (-5.0%) 40.2 (-1.3%) 57.2 (41%) 74.7 (83%) 43.3 (6.3%)
4 42.12 (3.36%) 26.2 (-38%) 41.8 (-0.7%) 42.7 (1.3%) 59.3 (41%) 75.1 (78%) 41.2 (-2.2%)

B 1 52.40 (2.64%) 42.0 (-20%) 52.6 (0.4%) 50.2 (-4.2%) 72.4 (38%) 93.7 (79%) 53.1 (1.4%)
2 91.52 (3.77%) 94.1 (2.8%) 83.7 (-8.5%) 95.3 (4.1%) 109 (20%) 169 (85%) 94.5 (3.2%)
3 61.68 (3.44%) 72.2 (17%) 61.9 (0.4%) 60.9 (-1.3%) 79.4 (29%) 133 (115%) 60.5 (-1.9%)
4 63.34 (2.83%) 75.8 (20%) 64.1 (1.3%) 64.7 (2.1%) 83.0 (31%) 135 (113%) 62.4 (-1.4%)

C 1 44.24 (1.96%) 31.3 (-29%) 37.0 (-16%) 47.1 (6.4%) 75.7 (71%) 91.4 (106%) 42.1 (-4.8%)
2 92.42 (4.23%) 87.4 (-5.4%) 91.2 (-1.4%) 91.6 (-0.83%) 106 (15%) 156 (68%) 96.0 (3.8%)
3 44.26 (4.69%) 33.2 (-25%) 44.0 (-0.7%) 45.0 (1.7%) 61.3 (38%) 84.2 (90%) 44.0 (-0.6%)
4 50.20 (1.04%) 41.4 (-18%) 51.1 (1.7%) 52.2 (4.0%) 67.4 (34%) 91.2 (82%) 45.9 (-8.6%)

E 1 134.4 (4.77%) 265 (97%) 155 (15%) 116 (-14%) 158 (17%) 305 (127%) 120 (-11%)
2 213.1 (3.47%) 308 (45%) 228 (7.1%) 206 (-3.3%) 234 (10%) 367 (72%) 173 (-19%)
3 138.7 (3.97%) 244 (76%) 161 (16%) 135 (-2.5%) 163 (17%) 300 (116%) 136 (-2.0%)
4 155.1 (4.37%) 252 (63%) 168 (8.2%) 147 (-5.0%) 178 (15%) 312 (101%) 148 (-4.8%)

Table 4 A comparison of six approximation methods to simulation for the sojourn time at each station of the three-station example in Figure
1 for Case D as specified in Table 1 and 2.

Case Station Simulation QNA QNET SBD RQ RQNA RQNA (elim)
D1 1 2.476 (0.61%) 2.24 (-9.4%) 2.48 (0.3%) 2.47 (-0.1%) 2.47 (-0.28%) 2.68 (7.8%) 2.68 (7.8%)

2 10.85 (3.21%) 14.9 (37%) 11.6 (6.5%) 11.4 (5.2%) 19.8 (83%) 28.4 (162%) 11.1∗ (2.7%)
3 2.544 (0.63%) 2.53 (-0.8%) 2.54 (-0.0%) 2.59 (1.6%) 2.57 (1.2%) 2.53 (-0.7%) 2.53 (-0.7%)
Total 55.81 (2.58%) 71.4 (28%) 58.8 (5.3%) 58.2 (4.3%) 91.8 (64%) 127 (127%) 57.6 (3.3%)

D2 1 11.35 (3.29%) 8.01 (-29%) 10.8 (-4.5%) 11.1 (-1.9%) 13.7 (20%) 16.6 (46%) 11.3∗ (0.1%)
2 2.643 (1.25%) 2.96 (12%) 2.75 (4.0%) 2.82 (6.7%) 2.85 (7.8%) 3.06 (16%) 3.06 (16%)
3 26.87 (2.04%) 32.9 (22%) 26.8 (-0.4%) 24.9 (-7.5%) 27.5 (2.2%) 36.4 (35%) 31.1∗ (16%)
Total 98.36 (1.82%) 102 (3.4%) 97.2 (-1.2%) 94.4 (-4.0%) 104 (6.0%) 132 (34%) 105 (7.1%)

D3 1 11.39 (3.04%) 7.95 (-30%) 11.0 (-3.5%) 11.3 (-0.5%) 15.8 (39%) 16.5 (45%) 11.3∗ (-0.5%)
2 2.290 (1.27%) 2.90 (27%) 2.53 (10%) 2.26 (-1.4%) 2.57 (12%) 3.04 (33%) 2.10∗ (-8.2%)
3 2.220 (0.59%) 2.40 (7.9%) 2.38 (7.0%) 2.59 (16%) 2.39 (7.6%) 2.43 (9.6%) 2.43 (9.6%)
Total 47.72 (2.51%) 40.2 (-16%) 47.8 (0.2%) 48.2 (1.0%) 62.6 (31%) 66.6 (39%) 47.5 (0.51%)

D4 1 11.30 (6.39%) 7.97 (-29%) 10.9 (-3.2%) 11.3 (0.3%) 14.2 (26%) 16.43 (45%) 11.3∗ (0.3%)
2 2.414 (1.12%) 2.93 (21%) 2.64 (9.5%) 2.60 (7.7%) 2.65 (10%) 3.05 (26%) 2.10∗ (-13%)
3 5.886 (1.05%) 6.83 (16%) 6.31 (7.3%) 6.17 (4.8%) 6.47 (10%) 6.85 (16%) 5.95∗ (1.1%)
Total 55.24 (4.37%) 49.3 (-11%) 56.0 (1.4%) 56.7 (2.7%) 69.3 (25%) 75.5 (37%) 54.3 (-1.7%)

Average absolute relative error 20.24% 4.72% 4.52% 21.61% 42.60% 5.51%

We observed that the plain RQNA algorithm works well for stations with moderate to

low traffic intensities, but not so satisfactory for congested stations. On the other hand, the

accuracy of the RQNA algorithm with feedback elimination is on par with, if not better

than the best previous algorithm.

7.2.2. A 10-Station Example with Feedback. We conclude with the 10-station OQN

example with feedback considered in §3.5 of [10]. It is depicted here in Figure 2.
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The only exogenous arrival process is Poission with rate 1. For each station,

if there are two routing destinations, the departing customer follows Markovian

routing with equal probability, each being 0.5. The vector of mean service times

is (0.45,0.30,0.90,0.30,0.38571,0.20,0.1333,0.20,0.15,0.20), so that the traffic inten-

sity vector is (0.6,0.4,0.6,0.9,0.9,0.6,0.4,0.6,0.6,0.4). The scv’s at these stations are

(0.5,2,2,0.25,0.25,2,1,2,0.5,0.5), where we assume a Erlang distribution if c2s < 1, an

exponential distribution if c2s = 1 and a hyperexponential distribution if c2s > 1.

In particular, note that stations 4 and 5 are bottleneck queues, having equal traffic

intensity, far greater than the traffic intensities at the other queues. Moreover, these two

stations are quite closely coupled. Thus, at first glance, we expect that SBD with two-

dimensional RBM should perform very well, which proves to be correct. Moreover, this

example should be challenging for RQNA because it is based on heavy-traffic limits for

OQNs with only a single bottleneck, thus involving only one-dimensional RBM.

1 2 3

6 4 5

7 8 9 10

Figure 2 A ten-station with customer feedback example.

In Table 5, we report the simulation estimates and approximattions for the steady-state

mean sojourn time (waiting time plus service time) at each station, as well as the total

sojourn time of the system, calculated as in (19). For the approximations, we compare

QNA from [45], QNET from [22], SBD from [10], RQ from [54] (with estimated IDC), as

well as the RQNA algorithms here. The simulation, QNA, QNET and SBD columns are

taken from Table XIV of [10].

Again, we consider two versions of RQNA algorithm, the first one does not eliminate

feedback, while the second one (marked by ‘elim’) applies the feedback elimination pro-

cedure. As before, in eliminating customer feedback, for each station, we identify the

near-immediate feedback flows as the flows that come back to the station after complet-

ing service, without passing through any station with a higher traffic intensity. We then
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eliminate all near-immediate feedback flows, apply plain RQNA algorithm on the reduced

network and use the new RQNA approximation as the approximation for that station.

Table 5 A comparison of six approximation methods to simulation for the mean steady-state sojourn times at each station of the
open queueing network in Figure 2.

Station Simulation QNA QNET SBD RQ RQNA RQNA (elim)
1 0.99 (0.86%) 0.97 (-2.8%) 1.00 (0.2%) 1.00 (0.4%) 0.97 (-2.0%) 1.09 (9.2%) 1.00∗ (0.4%)
2 0.55 (0.69%) 0.58 (6.0%) 0.56 (2.6%) 0.55 (0.2%) 0.55 (-0.1%) 0.56 (1.3%) 0.56 (1.4%)
3 2.82 (1.93%) 2.93 (4.2%) 2.90 (3.2%) 2.76 (-2.0%) 2.96 (5.0%) 3.40 (21%) 2.75∗ (-2.5%)
4 1.79 (3.71%) 1.34 (-25%) 1.41 (-21%) 1.76 (-1.6%) 2.34 (31%) 3.51 (97%) 2.11∗ (18%)
5 2.92 (4.77%) 2.49 (-15%) 2.44 (-17%) 2.81 (-3.6%) 3.77 (29%) 9.07 (211%) 3.35∗ (15%)
6 0.58 (0.78%) 0.64 (10%) 0.62 (7.4%) 0.59 (2.2%) 0.60 (3.8%) 0.70 (20%) 0.49∗ (-16%)
7 0.24 (0.28%) 0.24 (-1.7%) 0.26 (7.1%) 0.27 (11%) 0.23 (-3.0%) 0.24 (-1.3%) 0.24 (-1.3%)
8 0.58 (0.67%) 0.64 (9.6%) 0.61 (4.6%) 0.60 (1.7%) 0.61 (3.9%) 0.70 (20%) 0.59∗ (0.6%)
9 0.34 (0.63%) 0.32 (-6.1%) 0.35 (2.0%) 0.43 (26%) 0.33 (-4.2%) 0.73 (111%) 0.42∗ (21%)
10 0.29 (0.19%) 0.30 (2.4%) 0.29 (1.4%) 0.28 (-1.7%) 0.28 (-1.5%) 0.26 (-8.7%) 0.26 (-8.7%)
Total 22.0 (2.45%) 20.3 (-7.9%) 20.4 (-7.3%) 22.4 (1.7%) 26.1 (18%) 44.5 (102%) 24.2∗ (9.9%)

We make the following observations from this numerical example:

1. Particular attention should be given to the two bottleneck stations: 4 and 5. Note

that QNA and QNET produce 15− 25% error, which is satisfactory, but SBD does far

better with only 1− 4% error.

2. The RQNA algorithm without feedback elimination can perform very poorly with

high traffic intensity and high feedback probability, presumably due to the break down of

(3).

3. With feedback elimination, the RQNA algorithm performs significantly better and is

competitive with previous algorithms in this complex setting, producing 15− 18% error

at stations 4 and 5. The performance of RQNA at the tightly coupled bottleneck queues

evidently suffers because the current RQNA depends heavily on one-dimensional RBM.

8. Conclusions

In this paper we developed a new robust queueing network queueing analyzer (RQNA)

based on indices of dispersion. The indices of dispersion are scaled variance time curves.

They enable the approximations to exploit the dependence in the arrival processes over

time to describe the mean workload as a function of the traffic intensity at each station.

After reviewing the indices of dispersion in §2 and the robust queueing approximation

for a single queue in §3, we developed the important variability linear equations for the

IDCs of the internal arrival processes in §4. We then introduced the extra step of feedback
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elimination in §5. These approximations draw heavily on heavy-traffic limits in [51, 52, 54]

involving one-dimensional RBM. We put all this together into a full algorithm in §6,

developing a simplified version for networks with tree structure in §6.1.

We then evaluated the performance of the new RQNA-IDC by making comparisons with

simulations for various examples in §7 and §A. These experiments confirm that RQNA-IDC

is remarkably effective. They also point to directions for future research, including devel-

oping refined approximations for the flows that exploit multi-dimensional RBM instead of

just one-dimensional RBM.
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Appendix

In this appendix we provide addtional supporting material. First, in §A we discuss additional numerical

experiments. Second, in §B we present supporting technical details. Third, in §C we provide additional

heavy-traffic support.

A. Additional Numerical Experiments

A.1. An Important Illustrative Example

An important innovation in this work is in the way we look at the performance of an OQN. On the one

hand, we take a limited view, looking only at the mean steady-state workload at each queue in the OQN.

However, we look at this mean steady-state workload as a function of the traffic intensity of that queue; i.e.,

we look at the normalized mean workload c2Z(ρ) as a function of ρ. That perspective is achieved by adjusting

the mean service time at the queue so that the traffic intensity ρ varies across its full range 0<ρ< 1.

Hence, our performance measures are not single mean values but instead a continuum of mean values in

the normalized form c2Z(ρ) in (4). Thus, we are evaluating not one OQN, but instead a continuum of OQNs.

In our experiments we achieve these continua approximately by looking at large finite subsets.

To illustrate how the normalized mean workload c2Z(ρ) can vary as a function of ρ and how that behavior

can be captured by the IDW Iw(t), we consider the EHEHE →M example from §EC.8.2 of [54]. This

example has 5 single-server queues in series, where the variability increases and then decreases 5 times, with

the traffic intensities at successive queues decreasing. That makes the external arrival process and the earlier

queues relevant only as the traffic intensity increases. Specifically, the example can be denoted by

E10/H2/1→ ·/E10/1→ ·/H2/1→ ·/E10/1→ ·/M/1. (49)

In particular, the external arrival process is a rate-1 renewal process with Erlang E10 interarrival times, thus

c2a = 0.1. The 1st queue has hyperexponential H2 service times with mean 0.99 and c2s = 10 thus the traffic
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intensity at this queue is 0.99. (Throughout this paper, we fix the third H2 parameter by stipulating that

it also has balanced means, as on p. 137 of [44].) The 2nd queue has E10 service time with mean and thus

traffic intensity 0.98. The 3rd queue has H2 service times with mean 0.70 and c2s = 10. The 4th queue has E10

service times with mean and thus traffic intensity 0.5. The last (5th) queue has an exponential service-time

distribution. with mean and traffic intensity ρ.

Figure 3 (left) shows the IDW at that last queue over the interval [10−2,105] in log scale, while Figure 3

(right) shows the impact of ρ on the performance of that last queue.
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Figure 3 The IDW at the last queue over the interval [10−2,105] in log scale (left) and a comparison between

simulation estimates of the normalized workload c2Z(ρ) at the last queue as a function of traffic intensity

ρ with the RQ approximation (right).

Looking backwards starting from the 4th queue, i.e., the queue just before the last queue, the Erlang

service act to smooth the arrival process at the last queue. Thus, for sufficiently low traffic intensities ρ at

the last queue, the last queue should behave essentially the same as a E10/M/1 queue, which has c2a = 0.1,

but as ρ increases, the arrival process at the last queue should inherit the variability of the previous service

times and the external arrival process, and altering between H2/M/1 and E10/M/1 as the traffic intensity

at the last queue increases. This implies that the normalized workload c2Z(ρ) as a function of ρ should have

four internal modes, as we see. (If we also count the left and right ends, there are six modes.) Clearly, the

IDW has the same qualitative property as the normalized workload as well as the RQ approximation.

This example was carefully designed to expose the complicated dependence structure that can be intro-

duced by a series of queues with different level of variability in service. To a large extent, the scaling can

be explained by the heavy-traffic limits which involve a time scaling by (1− ρ)−2. Consistent with that HT

scaling, our departure process IDC approximation is a time-varying convex combination of the service IDC

and arrival IDC, where the weight function for the i-th station includes a time scaling of (1− ρi)−2 with

respect to the traffic intensity ρi; e.g., see (22). We obtain good separation for the chosen traffic intensities,

because (1− ρi)−2 = 104 for ρi = 0.99, 2.5× 10−3 for ρi = 0.98, 11.1 for ρi = 0.7 and 4.0 for ρi = 0.5. That is

why we use the log scaling for the IDW and IDC throughout this paper.



W. Whitt and W. You: RQNA
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 45

In closing, we observe that in this example, as in other feed-forward OQNs, we can regard the mean

workload at the last queue as a direct function of the IDW at that queue as well as the arrival rate and

mean service time. However, there is a more complex relation in OQN’s with customer feedback. Then the

performance at individual queues should be regarded as a function of the IDC’s, arrival rates and mean

service times at all the queues. In §6 we develop different RQNA algorithms for the two cases.

A.2. Comparison with RQ: Ten Queues in Series

This example is taken from §5.2 of [54], where we consider 10 single-server queues in series. The external

arrival process is a rate-1 renewal process with H2 interarrival times, having c2a = 5. The first 9 queues all have

Erlang service times with c2a = 0.5 denoted by E2, i.e., the sum of 2 i.i.d. exponential random variables. The

first 8 queues have mean service time and thus traffic intensity 0.6, while the 9th queue has mean service time

and thus traffic intensity 0.95. The difference in variability level of the arrival and service process introduces

complex variability structure underneath the first 9 queues in series. The 10th queue serves as a test queue

and has an exponential service-time distribution with mean and traffic intensity ρ, which is allowed to vary

from 0 to 1 in order to expose the complex impact of the variability on the performance measure of the test

queue.

The RQNA algorithm in this case is a simple special case of Algorithm 2. The IDC’s of the external flows

(Ia1 for external arrival at station 1 and Isi service flows) can be derived by explicitly inverse (8), see §III.G
of [17]. For internal flows, we apply the departure approximation in (22) recursively, so that for 2≤ i≤ 9,

Id1(t) =w1Ia1(t) + (1−w1)Is1(t), and

Idi(t) =wiIdi−1
(t) + (1−wi)Isi(t), (50)

where we used (23) with h(ρ) = ρ2 as in (26) with ρi = 0.6 for 1≤ i≤ 8, ρ9 = 0.95, λi = 1. For the variability

parameters, we note that c2xi ≡ c
2
ai

+ c2si = c2ai + 0.5 and that, for 2≤ i≤ 9,

c2ai ≡ Iai(∞) = Idi−1
(∞) = Iai−1

(∞) = · · ·= Ia1(∞) = c2a1 = 5.

With Ia10(t) = Id9(t), we can now apply the RQ algorithm in (13) to obtain approximation of the steady-state

mean workload.

Figure 4 reports on two aspects the performance of the RQNA algorithm at the (10th) test queue: (i) the

approximation of the IDW, and (ii) the RQNA approximation of the steady-state mean workload. Figure 4

(left) shows that the IDC approximation in the RQNA algorithm performs very well, while Figure 4 (right)

shows that both RQ (with directly estimated IDC) and RQNA are accurate, just as for the more complex

example in §A.1.

A.3. A Single-Server Queue with i.i.d. Feedback

We start the minimal example with customer feedback, i.e., single-server queue with i.i.d. customer feedback.

In specific, we look at two settings: (1) H2 external arrival and service distribution, both with balanced

mean but c2a = 6 and c2s = 2, the external arrival rate is set to 1 and the feedback probability is p= 0.5; and

(2) E2 external arrival distribution so that c2a = 1/2 and H2 service distribution with balanced mean and

c2s = 6, the external arrival rate is again 1 but the feedback probability is p= 0.75.
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Figure 4 Contrasting the RQNA approximation of the IDW at the 10-th queue and simulation estimated IDW

(left) in the ten queues in series example. Simulation estimation of the steady-state mean workload,

the RQ approximation in (13) and the RQNA approximation from Algorithm 2 shown in the right plot.

To exposed the impact of the traffic intensity on the mean steady-state workload, we allow traffic in tensity

to vary in the full range of (0,1).

Figure 5 reports various robust queueing approximation of the two examples. We observer that feedback

elimination produces exact values in the HT limit, however, it does not capture the correct LT limit. On

the other hand, the RQ-IDW algorithm, as well as the RQNA-IDC algorithms with suitable tuning function

gives exact LT limit, but incorrect HT limit.

A.4. Comparisons with Previous Algorithms for Queues in Series

In this section, we compare the performance of our RQNA algorithm to the performance of QNA from [45],

QNET from [22], SBD from [10] and RQ from [54], for the example with 9 queues in series considered by

[43]. This example was introduced by [43] to illustrate the heavy-traffic bottleneck phenomenon.

In particular, we consider an OQN with 9 stations in tandem, each with i.i.d. exponential service times.

Station 1 has the only external arrival process, which is a rate-1 general renewal process. The traffic intensities

at the first 8 queues are set to ρi = 0.6 for 1≤ i≤ 8, while the last queue has the significantly higher traffic

intensity ρ9 = 0.9. As in [43], two specific external renewal arrival processes are considered: (i) deterministic

interarrival times with c2a0 = 0; and (ii) highly variable H2 interarrival times with c2a0 = 8 (and again balanced

means).

The heavy-traffic bottleneck phenomenon illustrates that the variability of the external arrival process can

have only very limited impact on the performance of the following queues, especially after passing through

several queues, and yet dramatically affect the performance of a later queue with a much higher traffic inten-

sity. This phenomenon is a result of complicated long-range dependence embedded in the arrival processes,

introduced by flowing through a queue (the departure processes), as discussed in §A.1 and revealed by the
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Figure 5 Contrasting the RQ algorithm with simulated IDW in §3.1, the RQNA algorithm with feedback elimina-

tion in §5.1 and the RQNA-IDC algorithm described in §6 with the simulation estimation of the mean

steady-state workload, as functions of the traffic intensity ρ. For the RQNA-IDC algorithm, we display

results for two different tuning functions h(ρ) as specified in the legend.

departure approximation in (22). This example was introduced to show the limitation of traditional decom-

position methods, e.g. the QNA algorithm, and is often used as a benchmark for different approximation

methods, see §3.3 of [10].

Table 6 (for low variability) and Table 7 (for high variability) compare the various approximations of the

mean steady-state waiting time at each station, as well as the total waiting time in the system, to simulation

estimates.

In the parentheses, we include (i) the relative half-width of the 95% confidence interval for simulation

estimates (column Sim); and (ii) the relative error of the approximations compared to the simulation esti-

mates. The first 5 columns in Table 6 and Table 7 are taken directly from Tables VIII and IX of [10], but

the simulation and QNA approximations come from [43]. The last three columns are the approximations

obtained from the RQNA algorithm discussed in this paper with various choice of the tuning function h(ρ).

The RQNA approximations of the workload are transformed into the approximations of the waiting time by

(18).

To put these performance measures in perspective, note that in an M/M/1 queue with arrival rate 1 we

would have EW = ρ2/(1− ρ), which would be 0.90 at the first 8 queues, but 8.1 at the last queue. For the

D arrival process in Table 6, we expect that EW will be smaller; for the the H2 arrival process in Table 7,

we expect EW to be higher, but we see a big impact at the last queue, more than might be expected.

We make the following observations from this experiment:

1. The new RQNA algorithm does better than the QNA and QNET methods on total time spent waiting

in queue, and is comparable with the SBD method, even though RQNA does not require solving an RBM.

2. The RQNA algorithm does exceptionally well at the final bottleneck queue and is competitive with all

other methods for approximating the mean waiting time. The new RQNA method is based on heavy-traffic
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limits just as the previous methods methods, but focuses on the flows, and exploits RQ instead of analyzing

an RBM.

3. The RQNA algorithm can benefit from further improvement for light-to-medium traffic intensities. As

demonstrated in Table 7, the mean waiting times at queues 3-8 are pushed too much towards the M/M/1

values in the departure IDC approximation for light to medium traffic intensity. That remains to be a

direction for future research.

B. Supporting Technical Details

In this section we provide theoretical support for our algorithm to estimate the IDC from data in §2.3.

We now review Theorem 2 from [55], which states that the estimator of the of the variance function V (t)

is asymptotically consistent under mild regularity conditions that V (t) is differentiable with derivative V̇ (t)

having finite positive limits as t→∞, i.e.,

V̇ (t)→ σ2 as t→∞,

for an appropriate constant σ2. This condition is also used in §3.3 of [54].

Theorem 2 (Consistency of the estimator). Let A be a time-stationary and ergodic point process

with variance function V (t) that is differentiable with derivative V̇ (t) having finite positive limit as t→∞,

i.e.,

V̇ (t)→ σ2 as t→∞.

Then we have

lim
l→∞

bias(V̄l) = 0

for l= rk− r+ 1, r= t/τ, k= T/t and V̄k is the sample variance of {Ui}ki=1. Furthermore,

lim
l→∞

V̄l = V (t), w.p.1.

Proof. Let K = rk− r+ 1 be the sample size, and assume that V (t) = I(t)t < Ct for some constant C.

Then

E
[
V̄
]

=
1

K − 1

K∑
i=1

E
[
U2
i

]
− 1

K(K − 1)
E

( K∑
i=1

Ui

)2


=
1

K − 1

(
K∑
i=1

E
[
U2
i

]
− 1

K
E

[
K∑
i=1

U2
i + 2

∑
i>j

UiUj

])

=E
[
U2

1

]
−E [U1]

2− 2

K(K − 1)

∑
i<j

cov(Ui,Uj)

= V (t)− 2

K(K − 1)

( ∑
j<i<j+r

cov(Ui,Uj) +
∑

i>j+r+1

cov(Ui,Uj)

)

= V (t)− 2

K(K − 1)

(
r−1∑
i=1

(K − i)cov(U1,Ui+1) +

K−1∑
i=r

(K − i)cov(U1,Ui+1)

)
≡ V (t)− (A+B)



W. Whitt and W. You: RQNA
50 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

The covariance terms can be expressed as

cov(U1,U1+i) =

{
V (t− iτ) +V (t+ iτ)−V (t)−V (iτ), i= 1,2, . . . , r− 1
V (t+ iτ)− 2V (iτ) +V (iτ − t), i= r, r+ 1, . . . ,K − 1

(51)

Using the bound on I(t), we have

A=
2

K(K − 1)

r−1∑
i=1

(K − i)cov(U1,Ui+1)

≤ 2

K

r−1∑
i=1

(V (t− iτ) +V (t+ iτ))

≤ 4Ct(r− 1)

K
≤ 4Ct

k− 1
,

and

B =
2

K(K − 1)

K−1∑
i=r

(K − i)cov(U1,Ui+1)

≤ 2

K

K−1∑
i=r

((V (t+ iτ)−V (iτ))− (V (iτ)−V (iτ − t)))

≤ 2t

K

K−1∑
i=r

(
V (t+ iτ)−V (iτ)

t
− V (iτ)−V (iτ − t)

t

)
→ 0, as k→∞,

where we used the regularity condition that V̇ (t)→ σ2 as t→∞, and the fact that the average converges to

0 if the summands converge to 0.

Note that

V̄k ≡
1

k− 1

k∑
i=1

U2
i −

1

k(k− 1)

(
k∑
i=1

Ui

)2

By Continuous Mapping Theorem, we need only prove that both {Ui} and {U2
i } follows Strong Law of

Large Number (SLLN). This in turns is implied by the Strong Ergodic Theorem for stationary and ergodic

sequence. The stationarity of both sequences are implied by the time-stationarity of the point process N(t).

The ergodicity of both sequence follows from the ergodicity of the underlying process N(t). �

C. Additional Heavy Traffic Results

In this section, we provide detailed HT limits.

C.1. Heavy-Traffic Limits for Departure Processes

We first provide theoretical support for the approximation (22) of the departure IDC. That approximation is

ultimately supported by the heavy-traffic limit theorem obtained in Corollary 4.2 of [52]. To use that result,

we start by presenting a slight variant of it. We refer to §3.2 of [52] for the notations used here.

Lemma 1. Under the assumption of Corollary 4.2 of [52], the HT limit of the departure process of the

bottleneck station h can be written as

D∗h = Q̃∗h(0) + Ã∗h− Q̃∗h, (52)
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where

Ã∗h = e′h(I −P ′)−1 (A∗0 + (Θ∗)′1) (53)

and

Q̃∗h =
1

1− P̂h
Q∗h =ψ

(
Q̃∗h(0) + Ã∗h−S∗h−λhe

)
. (54)

As a result, the limiting variance function of the departure process is where

V ∗d,h(t) =w∗(λht/c
2
x,h)c2a,hλht+ (1−w∗(λht/c2x,h))c2s,hλht, (55)

where w∗(t) is the weight function in (24). The variability parameter is c2x,h = c2a,h + c2s,h with c2s,h being the

service scv and c2a,h being the limiting variability of the total arrival at station h, given by c2a,h ≡ V ar(Ã∗h)/λht.

Proof. Start by claiming that

e′hP̂
′
Hc,Heh =

1

1− P̂h
, λh =

λ̂0,h

1− P̂h
and that

1

1− P̂h

(
e′h + P̂ ′Hc,He

′
Hc

)
= e′h(I −P ′)−1.

In fact, all three assertions can be check by writing the transition matrix in blocks according to two sets of

indices {H,Hc}.

Now, (54) follows from dividing both sides of the limiting queue length process in Corollary 4.2 of [52] by

(1− P̂ ′h) and the fact that ψ(f/c) =ψ(f)/c for any function f and constant c.

The limiting variance function is derived in the exact same way as in Theorem 5.3 of [51] by noting that Ã∗h

and S∗h are two independent Brownian motions. The only change here is that we have an additional tuning

function h(ρ). This, however, does not change the argument, since we require that limρ↑1 h(ρ) = 1. �

The approximation (22) is then justified by the exact same procedure as described in §6.2 of [51].

C.2. Heavy-Traffic Limits for Splitting

We now provide additional theoretical support for the splitting approximation in S 4.3.2. For that purpose,

let

Θi(n)≡ (Θi,1(n), . . . ,Θi,K(n)) =

n∑
l=1

θli

denote the splitting decisions up to the n-th decision at station i. Consider the diffusion-scaled processes

indexed by ρ

D∗i,ρ(t) = (1− ρ)
[
Di((1− ρ)−2t)−λi(1− ρ)−2t

]
,

Θ∗i,ρ(t) = (1− ρ)

b(1−ρ)−2tc∑
l=1

θl−pi(1− ρ)−2t

∈DK , (56)

A∗i,ρ(t) = (1− ρ)
[
Ai((1− ρ)−2t)−λipi(1− ρ)−2t

]
∈DK ,

for t≥ 0, where pi ≡E[θli] is the i-th row of the routing matrix and Ai,ρ = (Ai,j,ρ : j = 1,2, . . . ,K) is the vector

consists of all the streams after splitting. The following result rephrases Theorem 9.5.1 in Whitt (2002).
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Theorem 3. (Theorem 9.5.1 of [50]) Suppose that

(D∗i,ρ,Θ
∗
i,ρ)⇒ (D∗i ,Θ

∗
i ) as ρ ↑ 1 in DK+1 (57)

and that almost surely D∗ and Θ∗ ◦λe have no common discontinuities of opposite sign. Then

A∗i,ρ⇒A∗i in DK ,

with

A∗i,j ≡ pi,jD∗+ Θ∗i,j ◦λie, for 1≤ j ≤K, (58)

where e(t) = t is the identity mapping.

Remark 6. (splitting the departures from a G/GI/1 queue) If we split the departure process from the

GI/GI/1 model with Markovian routing, then D∗ is independent of Θ∗ and Θ∗ is a zero-drift K-dimensional

Brownian motion with covariance matrix Σ = (σi,j)∈RK×K , where σ2
i,i = pi(1−pi) and σ2

i,j =−pipj for i 6= j.

Hence, from (58) we obtain

A∗ = pD∗+ Θ∗ ◦λe, (59)

which is consistent with (30) and thus (31). �

Theorem 3 assumes only a joint FCLT for the flow to split and the splitting decision process, so dependence

is allowed. Thus it provides support for the general splitting equation in (32) and (33) for the case where

Di,j and Θi,j are correlated. Furthermore, define the HT-scaled correction term as

α∗i,j,ρ(t)≡ αi,j((1− ρ)−2t). (60)

Finally, define the limiting correction term as

α∗i,j(t)≡ 2cov(pi,jD
∗
i (t),Θ

∗
i,j(λit))/pi,jλit. (61)

The following corollary follows from Theorem 3.

Corollary 1. Under the assumptions in Theorem 3 plus the uniform integrability conditions, we have

α∗i,j,ρ(t)⇒ α∗i,j(t) as ρ ↑ 1.

Proof. By the definitions of the correction term in (33) and HT-scaled processes, we write

α∗i,j,ρ(t) = αi,j((1− ρ)−2t)

= Ia,i,j((1− ρ)−2t)− pi,jId,i((1− ρ)−2t)− (1− pi,j)

=
Var((1− ρ)Ai,j((1− ρ)−2t))

pi,jλit
− pi,j

Var((1− ρ)Di((1− ρ)−2t))

λit
− (1− pi,j)

=
Var(A∗i,j,ρ(t))

pi,jλit
− pi,j

Var(D∗i,ρ(t))

λit
− (1− pi,j)

⇒
Var(A∗i,j(t))

pi,jλit
− pi,j

Var(D∗i (t))

λit
− (1− pi,j) = α∗i,j(t). �

This corollary supports the following approximation for the correction term αi,j in

αi,j(t)≈ α∗i,j((1− ρ)2t) (62)

with α∗i,j defined in (61).
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C.3. An Approximation Scheme for General Correction Terms

In a general open queueing network with feedback and superposition of dependent flows, the correction terms

αi,j and βi can be non-trivial. The key idea is that, for each correction term, we select a suitable queue and

assume it to be the bottleneck queue. Then we apply Corollary 4.2 of [52] to obtain HT approximation of

the correction terms and utilize Corollary 5.1 of [51] to obtain explicit form of the correction term. We now

discuss the two types of correction terms in turn.

C.3.1. Dependent Splitting: the Correction Term αi,j Unfortunately, the covariance in (61) is

complicated. We do obtain a useful approximation under the extra condition that only queue i enters heavy

traffic.

For any αi,j , the relevant routing flow is Ai,j while the relevant departure flow is Di. Naturally, we choose

station i to be the HT station. So we let ρi = ρ ↑ 1 and keep ρj < 1 for j 6= i. Define the HT scaled processes

as in §3.2 of [52] and apply Lemma 1 with h= i, we have

D∗i,ρ⇒D∗i = Ã∗i + Q̃∗i (0)− Q̃∗i . (63)

For the routing flow Ai,j , we apply Theorem 3 so that

A∗i,j,ρ⇒A∗i,j = pi,jD
∗
i + Θi,j ◦λie as ρ ↑ 1. (64)

Define the correction term α∗i,j as in (62), then Corollary 4.2 of [52] implies the following corollary, which

leads to the correction term in (34).

Theorem 4. Under the assumptions in Corollary 4.2 of [52] and Theorem 3 plus the uniform integrability

conditions, we have

α∗i,j,ρ(t)⇒ 2cov(pi,jD
∗
i (t),Θ

∗
i,j(λit))/(pi,jλit)

= 2ξi,jpi,j(1− pi,j)w∗(λit/c2x,i), as ρ ↑ 1, (65)

where ξi,j is the (i, j)th entry of the matrix (I − P ′)−1, c2x,i = c2a,i + c2s,i and c2a,i is the limiting variability

parameter as solved from (40) and c2s,i is the scv of the service distribution at station i.

Proof. Apply Corollary 4.2 of [52] to obtain expression for D∗i (t), then apply Corollary 5.1 of [51] for the

explicit covariance in (65). �

As a direct result of Theorem 4, we propose to define the correction term as

αi,j,ρ(t) = 2ξi,jpi,j(1− pi,j)w∗((1− ρ)−2λit/(ρc
2
x,i)), (66)

which is asymptotically exact as ρ ↑ 1.

C.3.2. Dependent Superposition: the Correction Term βi Next, we consider the correction term

βi associated with dependent superposition. From (36), it suffices to specify βk,i;j,i for any station i and any

pair of sub-flows (Aj,i,Ak,i) at that station. We assume without loss of generality that (i) ρj ≥ ρk, or (ii)

ρj = ρk and λj,i ≥ λk,i. In the case (ii), we break the tie by picking the index that gives the larger rate λj,i.

In both cases, we consider station j to be the HT station while keep all other stations unsaturated.
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By Corollary 4.2 of [52], we have

A∗ρ⇒A∗ = Ã∗+ γj

(
Q̃∗j (0)− Q̃∗j

)
D∗j,ρ⇒D∗j = Ã∗j + Q̃∗j (0)− Q̃∗j ,

D∗l,ρ⇒D∗l =A∗l , for l 6= j,

where

Ã∗ = (I −P ′)−1 (A∗0 + (Θ∗)′1) ,

Q̃∗j is defined in Lemma 1 with h= j and γj ∈RK is defined as

γj = P ′(I −P ′)−1e′j(1− P̂j)

with P̂j defined as in (3.9) of [52] with H= {j}.

Furthermore, Theorem 3 gives

A∗j,i = pj,iD
∗
j + Θ∗j,i ◦λje

= pj,iÃ
∗
j + Θ∗j,i ◦λje+ pj,i(Q̃

∗
j (0)− Q̃∗j ) (67)

A∗k,i = pk,iD
∗
k + Θ∗k,i ◦λke

= pk,iÃ
∗
k + Θ∗k,i ◦λke+ pk,iγj,k(Q̃

∗
j (0)− Q̃∗j ). (68)

We utilize the following approximations

A∗k,i ≈ pk,iÃ∗k + Θ∗k,i ◦λke≡ Ã∗k,i (69)

and

pj,iQ̃
∗
j ≈ψ

(
pj,iQ̃j(0) + pj,iA

∗
j + Θ∗j,i ◦λje− pj,iS∗j − pj,iλje

)
≡ Q̃∗j,i. (70)

By Corollary 5.1 of [51]

2cov
(
Ã∗k,i(t), Ã

∗
j,i(t)− Q̃∗j,i(t)

)
/(λit) = 2

ζj,i;k,i
λi

w∗(t/c2x,j), (71)

where Ã∗j,i ≡ pj,iÃ∗j + Θ∗j,i ◦λje and ζj,i;k,i is the constant defined as

ζj,i;k,i =
1

t
cov

(
Ã∗k,i(t), Ã

∗
j,i(t)

)
. (72)

Note that ζj,i;k,i is a constant independent of t since Ã∗k,i(t) and Ã∗j,i(t) are Brownian motions.

Finally, we define

βj,i;k,i(t) = βk,i;j,i(t) = 2
ζj,i;k,i
λi

w∗((1− ρj)2pj,iλjt/(ρc2x,j,i)), (73)

where c2x,j,i = pj,ic
2
a,j + (1− pj,i) + pj,ic

2
s,j and c2a,j is solved from (44).

The following lemma gives explicit formula for ζj,i;k,i. Let νl ≡ pl,ie′l(I −P ′)−1 for l= j, k, where ei is the

i-th unit vector.
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Lemma 2.

ζj,i;k,i = ν′j

(
diag(c2a,0,iλi) +

K∑
l=1

Σl

)
νk + ν′kΣjei + ν′jΣkei, (74)

where diag(c2a,0,iλi) is the diagonal matrix with c2a0,iλi as the i-th diagonal entry, Σl is the covaraince matrix

of Brownian limit of the splitting decision process (Θ∗l,i)
K
i=1 at station l defined as Σl ≡ (σli,j) with σli,i =

pl,i(1− pl,i)λl and σli,j =−pl,ipl,jλl for i 6= j.

Proof. By the definition of Ã∗ and Ã∗j,i, we have

Ã∗j,i ≡ pj,iÃ∗j + Θ∗j,i = pj,ie
′
j(I −P ′)−1(A∗0 + (Θ∗)′1) + Θ∗j,i

= νj

(
A∗0 +

K∑
l=1

Θ∗l

)
+ e′iΘ

∗
j ,

Ã∗k,i ≡ pk,iÃ∗k + Θ∗k,i = pk,ie
′
k(I −P ′)−1(A∗0 + (Θ∗)′1) + Θ∗k,i,

= νk

(
A∗0 +

K∑
l=1

Θ∗l

)
+ e′iΘ

∗
k,

where A∗0 is the Brownian limit of the external arrival processes, i.e., A∗0,i
d
= ca0,iBa0,i ◦ λie and Θ∗ ≡

(Θ∗1, . . . ,Θ
∗
K)′ ∈RK×K with Θ∗i = (Θ∗i,1, . . . ,Θ

∗
i,K). Recall that Θ∗i is the the collection of the Brownian limits

of the decision processes at station i, so that

cov(Θ∗i,j ,Θ
∗
i,k) =

{
pi,j(1− pi,j)λit, j = k,
−pi,jpi,kλit, j 6= k.

Define

Σi ≡
(
cov(Θ∗i,j ,Θ

∗
i,k)/t

)K
j,k=1

∈RK×K

so that Σi is a constant matrix independent of t.

Notice that A∗0,i, Θ∗j for 1≤ i, j ≤K are mutually independent, we have

ζj,i;k,i ≡
1

t
cov

(
Ã∗k,i(t), Ã

∗
j,i(t)

)
=

1

t
cov

(
νjA

∗
0 +

K∑
l=1

(νj + δl,je
′
i) Θ∗l , νkA

∗
0 +

K∑
l=1

(νk + δl,ke
′
i) Θ∗l

)

=
1

t
cov (νjA

∗
0, νkA

∗
0) +

1

t

K∑
l=1

cov ((νj + δl,je
′
i) Θ∗l , (νk + δl,ke

′
i) Θ∗l )

= ν′j

(
diag(c2a0,iλi) +

K∑
l=1

Σl

)
νk + ν′kΣjei + ν′jΣkei. �


