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Abstract

This paper studies the stationary customer flows in open queueing network. The flows are
the processes counting customers flowing from one queue to another or out of the network.
We establish the existence of unique stationary flows in generalized Jackson networks and con-
vergence to the stationary flows as time increases. We establish heavy-traffic limits for the
stationary flows, allowing an arbitrary subset of the queues to be critically loaded. The heavy-
traffic limit with a single bottleneck queue is especially tractable because it yields limit processes
involving one-dimensional reflected Brownian motion. That limit plays an important role in our
new nonparametric decomposition approximation of the steady-state performance using robust
queueing.
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1 Introduction

In this paper we establish heavy-traffic limits for the stationary flows in a non-Markov open queueing

network (OQN). By flows, we mean the departure processes, flows from one queue to another,

superpositions of such processes and thus the internal arrival processes. We consider an OQN with

K single-server stations, unlimited waiting space, and the first-come first-served service discipline.

We assume that we have mutually independent renewal external arrival processes, sequences of

independent and identically distributed (i.i.d.) service times and Markovian routing. Such a system

is called a generalized Jackson network (GJN), because it generalizes the Markovian OQN analyzed

by Jackson [16] in which all the interarrival times and service times have exponential distributions.

Jackson OQN’s are remarkably tractable because the vector of steady-state queue lengths (number

in system) has a product-form distribution, just as if the queues were independent M/M/1 queues

with the correct arrival rates.

The heavy traffic limits here extend the heavy-traffic limit for the stationary departure process

in the GI/GI/1 model in [23]. As before, we rely heavily on the justification for interchanging the

limits t→∞ and ρ ↑ 1 in a GJN provided by Gamarnik and Zeevi [14] and Budharaja and Lee [6].

By allowing an arbitrary subset of the queues to be bottleneck queues (have nondegenerate limits),

while the rest have null limits, we follow Chen and Mandelbaum [7, 8]. Even though the proofs

follow quite directly from the existing literature, the asymptotic results here are evidently new.

They play an important role in our new robust queueing network analyzer (RQNA) in [23, 24, 25],

which is a nonparametric decomposition approximation.

As a preliminary step for our heavy-traffic limit, we establish conditions for the existence of

stationary flows in a GJN and for convergence to those stationary flows as time evolves. For that

we rely heavily on the Harris recurrence that was used to establish the stability of a GJN under

appropriate regularity, as in Dai [10] (see the remark after Theorem 5.1 for earlier literature); also

see Ch. VII of Asmussen [1].

The rest of the paper is organized as follows. We specify the model and establish the existence

and convergence results (as time increases) for the stationary flows of a GJN in §2. We establish the

main heavy-traffic limit for the stationary flows in §3. In §4 we treat the special case of a GJN with

only one bottleneck queue, which is useful because it involves only one-dimensional RBM. We show

that the approximation technique of feedback elimination discussed in §III of [21] is asymptotically

correct in the HT limit. Finally, we draw conclusions in §5.
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2 The Stationary Flows in an Open Queueing Network

In this section, we establish the existence of unique stationary flows in a GJN and convergence to

those stationary flows as time increases. These issues are complicated, but they are manageable

under appropriate regularity conditions, in particular, if we construct a Markov process representa-

tion and make assumptions implying Harris recurrence as in §5 of [10], Chapter VII of [1], [14] and

references there. In §2.1 we specify the model. Then in §2.2 we make assumptions implying the

Harris recurrence and establish the existence, uniqueness and convergence result for the stationary

flows.

2.1 The OQN Model

We start by formulating a general OQN model that goes beyond the assumptions we make to

establish Harris recurrence. Let there be K single-server stations with unlimited waiting space and

the first-come first-served (FCFS) discipline. We assume that the system starts empty at time 0,

but that could be relaxed. We associate with each station i an external arrival point process A0,i,

which satisfies A0,i(t) < ∞ with probability 1 for any t. Let A0 ≡ (A0,1, . . . , A0,K) denote the

vector of all external arrival processes.

Let {V l
i : l ≥ 1} denote the sequence of service times at station i and define the (uninterrupted)

service point (counting) process as

Si(t) = max
n≥0

{
n∑
l=1

V l
i ≤ t

}
, t ≥ 0,

which we also assume to have finite sample path with probability 1.

In addition to external arrivals, departures from each station may be routed to other queues or

out of the network. To specify the general routing (or splitting) process, let θli ∈ {0, 1}K indicate

the routing vector of the l-th departure from queue i. Following standard conventions, at most one

component of θli is 1, and θli = ej indicates that the l-th departure from the i-th queue is routed to

station j for 1 ≤ j ≤ K, where ej is the j-th standard basis of the Euclidean space RK . The case

θli = 0 indicates that the l-th departure from the i-th queue exits the system. Finally, we define

the routing decisions up to the n-th decision at station i by

Θi(n) ≡ (Θi,1(n), . . . ,Θi,K(n)) ≡
n∑
l=1

θli,

and let Θi,0(n) denote the number of customers that exit the system from station i in the first n

departures.
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For the internal arrival flows, let Ai,j be the customer flow from i to j. Each internal arrival

flow Ai,j splits from the departure process Di according to the splitting decision process Θi,j , so

that

Ai,j(t) = Θi,j(Di(t)), t ≥ 0, 1 ≤ i ≤ K, 0 ≤ j ≤ K. (2.1)

Let Aint(t) ≡ (Ai,j(t) : 1 ≤ i, j ≤ K) denote the matrix of all internal arrival flows.

For total arrival process at station i, let

Ai(t) = A0,i(t) +

K∑
j=1

Aj,i(t)

and let A(t) ≡ (A1(t), . . . , AK(t)) be the vector of total arrival processes.

As observed in (7.1) and (7.2) in §7.2 of [7], the queue-length and departure processes at each

queue are jointly uniquely characterized by the flow balance equations

Qi(t) = Qi(0) +Ai(t)−Di(t)) and Di(t) = Si(Bi(t)), t ≥ 0, 1 ≤ i ≤ K, (2.2)

where Bi(t) is the cumulative busy time of server i up to time t, which by work conservation satisfies

Bi(t) =

∫ t

0
1Qi(u)>0du, t ≥ 0, (2.3)

where 1A is the indicator function with 1A = 1 on the set A and 0 elsewhere.

For the flow exiting the queueing system, let Dext,i denote the flow that exits the system from

station i. Hence

Dext,i(t) =

Di(t)∑
l=1

θli,0 = Θi,0(Di(t)), t ≥ 0.

Finally, let Dext(t) ≡ (Dext,1(t), . . . , Dext,K(t)) be the vector of external departure processes.

2.2 Existence, Uniqueness and Convergence Via Harris Recurrence

In this section we establish the existence of unique stationary flows and convergence to them as

time increases for any initial state. Toward that end, we make three assumptions, the first one

being

Assumption 2.1 We assume that the OQN is a GJN, in particular:

(i) The K external arrival processes are mutually independent (possibly null) renewal processes

with finite rates λi, where the interarrival times have finite squared coefficient of variation

(scv, variance divided by the square of the mean) c2
a0,i for 1 ≤ i ≤ K.
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(ii) The service times come from K mutually independent sequences of i.i.d. random variables

with means 1/µi, 0 < µi <∞, and finite scv c2
si for 1 ≤ i ≤ K.

(iii) The routing is Markovian with a substochastic K ×K routing matrix P = (pi,j)1≤i,j≤K such

that pi,j ≥ 0, pi,0 ≡ 1−
∑K

j=1 pi,j ≥ 0 and I−P ′ is invertible; For each 1 ≤ i ≤ K, the sequence

{Θi(1),Θi(2), . . . } is i.i.d. with P (Θi(n) = ej) = pi,j and P (Θi(n) = 0) = pi,0 ≡ 1−
∑K

j=1 pi,j.

(iv) The arrival, service and routing processes are mutually independent.

For completeness, we also assume that the network starts empty at time 0, so that no customer is in

service or waiting, but this can be relaxed. The condition of finite scv’s is used in the convergence of

the distribution and in the next section; for relaxed assumptions, see the discussions below Theorem

2.1 and Theorem 2.2. Note that I−P ′ is invertible if we assume that all customers eventually leave

the system; see [9] or Theorem 3.2.1 of [17].

Let U(t) denote the vector of residual external arrival times at time t; let V (t) be the vector of

residual service times at time t, set to 0 when the server is idle; and let the system state process be

S(t) ≡ (Q(t), U(t), V (t)), t ≥ 0. (2.4)

Under our assumption, the initial condition is specified by S(0) = (0, 0, 0). The system state

process S in (2.4) is an element of the function space D([0,∞),R3K) of real-valued functions on

the half-line [0,∞) taking values in the Euclidean space R3K that are right-continuous with left

limits. As stated in §2.2 of [10], which draws on [12], Assumption 2.1 implies some basic regularity

conditions.

Theorem 2.1 (strong Markov process) Under Asusmption 2.1, the system state process S is

a strong Markov process.

We remark that Assumption 2.1 is stronger than needed to ensure the strong Markov property.

Since S is a piecewise-deterministic Markov process (defined in §3 of [12]), §4 of [12] showed that if

the expected number of jumps on any interval [0, t] is finite, then the process possesses the strong

Markov property.

We now state the stability assumption in the sense of the traffic intensities. Let λ0 = (λ0,1, . . . , λ0,K)

be the external arrival rate vector and let λ = (λ1, . . . , λK) denote the vector of total arrival rate.

We obtain λ by solving the traffic-rate equations

λi = λ0,i +
K∑
j=1

λj,i = λ0,i +
K∑
i=1

λjpj,i, (2.5)
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or, in matrix form,

(I − P ′)λ = λ0,

where I denotes the K ×K identity matrix and P ′ is the transpose of P . Let λi,j ≡ λipi,j be the

rate of the internal arrival flow from i to j. Finally, let ρi ≡ λi/µi be the traffic intensity at station

i.

Assumption 2.2 The traffic intensities satisfy maxi ρi < 1.

Following convention, we say that the OQN is stable if the system state process in (2.4) is stable,

i.e., if there exists a distribution π on R3K for S(0) such that S(t) has that same distribution π

for all t ≥ 0. We now state the additional assumption to ensure the uniqueness of the stationary

distribution π and the convergence of the distribution of S(t) to π.

Assumption 2.3 Each non-null external arrival process has an interarrival-time distribution with

a density that is positive for almost all t.

Our assumption here implies the key assumption (A3) in both [10] and [11] that the distribution

is unbounded and spread out, see also [10] and Chapter VII of [1]. This clearly avoids periodic

behavior associated with the lattice case, but otherwise it is not restrictive for practical modeling.

The following theorem follows from Theorem 2 of [14] or Theorem 5.1 of [10] or Theorem 6.2

of [11], which extend earlier work on stability for OQNs in [4], [19] and [13].

Theorem 2.2 (existence, uniqueness and convergence) Under Assumptions 2.1-2.3, the sys-

tem state stochastic process S in (2.4) is a positive Harris recurrent Markov process. There exists a

unique stationary distribution π and for every initial condition and the distribution of S(t) converges

to π as t→∞.

For a strong Markov process with right-continuous and left limit sample paths, the existence of a

stationary distribution is shown in the early [2], which in turn draws on [15]. The uniqueness is

shown in [10], which assumes that the interarrival times are unbounded, spreadout and have finite

mean, and the service times have finite mean; see (1.2)-(1.5) there. The convergence follows from

[11] under the additional assumption of finite second moment.

We now state the strong implications of Theorem 2.2. For that, we consider the system that

starts at time s. For the system state processes, let Qs(t) = Q(s + t), Us(t) = U(s + t) and

Vs(t) = V (s + t), so that Ss ≡ (Qs, Us, Vs) is the system state process with initial condition S(s).

Let ⇒ denote weak convergence. Theorem 2.2 implies that
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Corollary 2.1 Under Assumptions 2.1-2.3, Qs(t) has unit (±1) jumps and

Ss ⇒ Se ≡ (Qe, Ue, Ve), as s→∞, (2.6)

where Se is the system state process with initial condition Se(0) distributed as the stationary distri-

bution π and ⇒ denote weak convergence in each coordinate.

Proof. Assumption 2.3 implies that with probability 1, there is at most 1 (internal or external)

arrival at any station and that the arrival times do not coincide with departure times at any station.

Hence, Qs only has unit-jumps.

From Theorem 2.2, we have the convergence of one-dimensional distribution

Ss(t1)⇒ Se(t1), for all t1 ≥ 0.

To extend the convergence to any finite-dimensional distribution, we utilize the Markov property

of S(t) in Theorem 2.1. For any t2 = t1 + δ1 > t1, the conditional probability distribution of the

state S(t1), conditioning on the past values up to the time t1, depends only on the current state

Ss(t1). Apply Theorem 2.2 again with initial state Ss(t1), we have

(Ss(t1),Ss(t2))⇒ (Se(t1),Se(t2)), for all 0 ≤ t1 < t2.

By induction, the convergence can be extended to any finite-dimensional distribution. The weak

convergence of the process Ss then follows from Theorem 12.6 in [3].

Now, we turn to the existence of stationary flows. Define the auxiliary cumulative process C,

as in §VI.3 of [1], by

C(t) ≡ (B(t), Y (t)), (2.7)

where Bi(t) is the cumulative busy times for server i over interval [0, t] and

Yi(t) ≡ µi(t−Bi(t)) (2.8)

is the cumulative idle time of station i, scaled by the service rate µi.

To focus on the flows, we describe the GJN by the aggregate process

M(t) ≡ (S(t), C(t),F(t)), (2.9)

where

F(t) ≡ (A0(t), Aint(t), A(t), S(t), D(t), Dext(t)) (2.10)
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is a vector of cumulative point processes, with the processes defined in §2.1. We refer to F in (2.10)

as the flows. We say that a flow is stationary if it has stationary increments. We refer to [20] and

Chapter 6 of [5] for background on stationary stochastic processes and ergodicity.

For the flows, let A0,s(t) = A0(t + s) − A0(s) be the external arrival counting process that

starts at time s. Similarly, let Aint,s(t) = Aint(t + s) − Aint(s), As(t) = A(t + s) − A(s), Ds(t) =

D(t+s)−D(s), Dext,s(t) = Dext(t+s)−Dext(s), Bs(t) = B(t+s)−B(s) and Ys(t) = Y (t+s)−Y (s)

be the corresponding processes that starts at time s. The service processes Ss(t) are more subtly

defined by

Si,s(t) ≡ Si(Bi(s) + t)− Si(Bi(s)), for i = 1, 2, . . . ,K, (2.11)

which is a vector of delayed renewal processes with first intervals distributed as V (s), the vector

residual service time and at system time s (its i-th component is also the residual service time of

the process Si at time Bi(s)). This definition of the service process allow us to write the departure

process as a composition of the two processes Ss and Bs via

Ds(t) ≡ D(s+ t)−D(s) = (S �B)(s+ t)− (S �B)(s)

= (Ss �Bs)(t), t ≥ 0., (2.12)

where � is understood as component-wise composition, i.e. Di,s = Si,s ◦ Bi,s for all i. Finally, let

Cs ≡ (Bs, Ys) and Fs ≡ (A0,s, Aint,s, As, Ss, Ds, Dext,s).

Theorem 2.3 (Existence and convergence of the stationary flows) Under Assumptions 2.1-

2.3, there exists unique stationary and ergodic cumulative processes (with stationary increments

satisfying the LLN)

Ce ≡ (Be, Ye), Fe ≡ (A0,e, Aint,e, Ae, Se, De, Dext,e)

and a unique stationary process

Se ≡ (Qe, Ue, Ve),

such that, as s→∞,

Ms ≡ (Ss, Cs,Fs)⇒ (Se, Ce,Fe) ≡Me, (2.13)

where⇒ denote weak convergence in each coordinate. Furthermore, A0,e is the vector of equilibrium

external arrival renewal processes, Se is a vector of delayed renewal process with first interval

distributed as Ve(0).
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Proof By Corollary 2.1 and the definition of Ss in (2.11), the convergence of Vs(0) = V (s)

implies the convergence of Ss to Se, with the later one being a delayed renewal process with first

interval distributed as Ve(0) and other intervals distributed as a generic service time. Similarly, the

components of A0,s are delayed renewal process with the first interval distributed as the components

of Us(0), which is converging to the vector A0,e of the equilibrium external arrival processes. By

the convergence of Ss, we have as s→∞

(Qs, Us, Vs, A0,s, Ss)⇒ (Qe, Ue, Ve, A0,e, Se) (2.14)

We now turn our focus to the cumulative busy time process defined in (2.3). Let h : R+ → R

be a continuous function defined by h(t) = t ∧ 1 ≡ min{t, 1}, t ≥ 0. Then the busy period process

can be written as

Bi,s(t) =

∫ s+t

s
1Qi(u)>0du =

∫ t

0
1Qi,s(u)>0du =

∫ t

0
h(Qi,s(u))du, for 1 ≤ i ≤ K. (2.15)

The busy-period process thus has stationary increments because it is a measurable integrable func-

tion of Qi,e, which is itself stationary. (Recall that general measurable functions of stationary

process are stationary; see Proposition 6.6 of [5].) Let C(R+,R) denote the space of bounded con-

tinuous functions from R+ to R, equipped with uniform norm. The mapping defined in (2.15) is

a continuous mapping from D to C(R+,R); see Theorem 11.5.1 in [22]. The continuous mapping

theorem then asserts that Bs ⇒ Be, where Bi,e(t) ≡
∫ t

0 h(Qi,e(u))du for t ≥ 0 and all i. For the

cumulative idle-time process Yi,s(t) ≡ Yi(t+ s)− Yi(s) = µi(t−Bi,s(t)), we note that t and Bi,s(t)

have continuous sample path, so that the linear function in (2.8) is continuous. Hence, we can

extend the convergence as s→∞ in (2.14) to

(Qs, Us, Vs, A0,s, Ss, Bs, Ys)⇒ (Qe, Ue, Ve, A0,e, Se, Be, Ye) (2.16)

The convergence established so far now implies associated convergence for the flows because

the flow process Fs is determined by the state process Ss. To make the connection, we introduce

random vectors (Ts, Js), where Ts is the time of the first jump in Qs and Js is the type of jump

(external arrival to queue i, flow from queue i to queue j, or external departure from queue i),

defined by

Ts ≡ min {T as , T ds }, where

T as ≡ min {Us,i(0) : 1 ≤ i ≤ K} and

T ds ≡ min {Vs,i(0) : Qi(0) > 0, 1 ≤ i ≤ K}. (2.17)
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while Js = (0, i), (i, j) or (i, 0) if the minimum in the definition of Ts is attained, respectively, by

T as with index i, T ds with index i and the routing is to j, T ds with index i and the routing is to

outside the network.

We observe that the we can regard (T, J) : (s,Ss) → R × N , where N is a finite set, as a

continuous map, so that (Ts, Js)⇒ (Te, Je) as s→∞. We also observe that Ts is a stopping time

with respect to the strong Markov process {Ss(t) : t ≥ 0}, so that we can repeat the construction

for all successive jumps after time Ts.

In this way, we get convergence of the process of successive jump times and jump types (indexed

by k)

{(Ts,k, Js,k) : k ≥ 1} ⇒ {(Te,k, Je,k) : k ≥ 1} in (R×N )∞ as s→∞. (2.18)

That in turn implies convergence for the associated flow counting processes by applying the inverse

map in §13.6 of [22] as stated. For example, we can write

Ns(t) ≡ min {k ≥ 0 : Ts,1 + · · ·+ Ts,k ≤ t} and

As,i,j(t) =

Ns(t)∑
k=1

1Js,k=(i,j).

3 Heavy-Traffic Limit Theorems for the Stationary Processes

To set the stage for our heavy-traffic limits, in §3.1 we present a centered representation of the

flows. This representation parallels those used in [7, 8, 10, 18], but here we focus on the flows.

Then in §3.2 we establish our main heavy-traffic limit.

3.1 Representation of the Centered Stationary Flows

Recall that the external arrival rate vector is λ0, so the total arrival rates are given by λ =

(I − P ′)−1λ0 as in (2.5). For service, we start with rate-1 base service process S0
i for station i and

scale it by µi so that the service process at station i is denoted by Si ≡ S0
i ◦µie with e(t) = t being

the identity function. Let the center processes be defined by

Ã0,i = A0,i − λ0,ie, Ãi = Ai − λie, D̃i = Di − λie,

Θ̃j,i = Θj,i ◦ (Sj ◦Bj)− pj,iSj ◦Bj , and S̃i = Si ◦Bi − µiBi. (3.1)

Furthermore, let X(t) be the net-input process, allowing the service to run continuously, defined as

X ≡ Q(t)− (I − P ′)Y, (3.2)
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where Y is defined in (2.8).

The next theorem expresses the queue length processes, the centered total arrival and the

centered departure flows in terms of the centered external arrival, service and routing processes.

Let ψ be the K-dimensional reflection map; e.g., see Chapter 14 of [22].

Theorem 3.1 (Centered representation) The net-input process can be written as

X = Q(0) + Ã0 + Θ̃′1− (I − P ′)S̃ + (λ0 − (I − P ′)µ)e, (3.3)

while the queue length process can be written as

Q = X + (I − P ′)Y = ψI−P ′(X), (3.4)

where ψI−P ′ is the K-dimensional reflection mapping with reflection matrix I − P ′. In addition,

the centered total arrival and departure processes can be written as

Ã = P ′(I − P ′)−1 (Q(0)−Q) + (I − P ′)−1
(
Ã0 + Θ̃′1

)
, (3.5)

D̃ = (I − P ′)−1
(
Q(0)−Q+ Ã0 + Θ̃′1

)
, (3.6)

where the centered processes are defined in (3.1).

Remark 3.1 (Stationary flows) Note that the representation in Theorem 3.1 does not impose

any assumption on the initial condition of the open queueing network. As ensured by Theorem 2.3,

there exists a stationary distribution π such that the flows are stationary if S(0) ∼ π. With this

specific initial condition, Theorem 3.1 applies to the stationary flows.

Proof With the standard flow conservation law, we can write the queue length process in terms

of the centered processes

Qi = Qi(0) +Ai − Si ◦Bi

= Qi(0) +A0i +

K∑
j=1

Θji(Sj ◦Bj)− Si ◦Bi

= Qi(0) + (A0i − λ0ie) +

K∑
j=1

(Θji(Sj ◦Bj)− pjiSj ◦Bj)

−
K∑
j=1

(δji − pji) (Sj ◦Bj − µjBj) +
K∑
j=1

(δji − pji)µj (e−Bj)
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+ λ0ie−
K∑
j=1

(δji − pji)µje.

Because Yi ≡ µi (t−Bi) is the cumulative idle time, we can express Q in matrix form as

Q = Q(0) +A0 + Θ̃′1− (I − P ′)S̃ + (I − P ′)Y + (λ0 − (I − P ′)µ)e.

Furthermore, we have Q = X + (I −P ′)Y. Because Y is non-decreasing, Y (0) = 0 and Yi increases

only when Qi = 0, (3.4) follows from the usual reflection argument.

Similarly, we can re-write the overall arrival process in terms of the centered processes

Ai = A0i +
K∑
j=1

Θji(Sj ◦Bj)

= (A0i − λ0ie) +

K∑
j=1

(Θji(Sj ◦Bj)− pjiSj ◦Bj) +

K∑
j=1

pji (Sj ◦Bj − µjBj)

−
K∑
j=1

pjiµj (e−Bj) + λ0ie+
K∑
j=1

pjiµje

or, in matrix notation, by

A = Ã0 + Θ̃′1 + P ′S̃ − P ′Y + (λ0 + P ′µ)e.

By (3.4), we have

−P ′Y = P ′(I − P ′)−1(X −Q)

= P ′(I − P ′)−1
(
Q(0)−Q+ Ã0 + Θ̃′1 + λ0e

)
− P ′S̃ − P ′µe.

Substituting into the matrix form of the arrival process, we have

A = Ã0 + Θ̃′1 + P ′S̃ − P ′Y + (λ0 + P ′µ)e

= Ã0 + Θ̃′1 + P ′S̃ + (λ0 + P ′µ)e

+P ′(I − P ′)−1
(
Q(0)−Q+ Ã0 + Θ̃′1 + λ0e

)
− P ′S̃ − P ′µe

= P ′(I − P ′)−1 (Q(0)−Q) + (I − P ′)−1
(
Ã0 + Θ̃′1

)
+ λe. (3.7)

Finally, note that D = Q(0) +A−Q.

3.2 Heavy-Traffic Limit with Any Subset of Bottlenecks

Throughout this section, we assume that the system is stationary in the sense of Theorem 2.3

and we suppress the subscript e to simplify the notation. We let an arbitrary pre-selected subset
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H of the K stations be pushed into the HT limit while other stations stay unsaturated. Two

important special cases are: (i) |H| = K so that all stations approaches HT at the same time,

which corresponds to the original case in [18]; and (ii) |H| = 1 so that only one station is in HT.

This second case is appealing for applications because the RBM is only one-dimensional. We focus

on it in detail later.

To start, consider a family of systems indexed by ρ. Let the ρ-dependent service rates be

µi,ρ ≡ λi/(ciρ), 1 ≤ i ≤ K, (3.8)

and set ci = 1 for all i ∈ H and ci < 1 for all i /∈ H. Equivalently, we have ρi = ciρ. For the

pre-limit systems we have the same representation of the flows as described in Theorem 3.1, with

the only exception that µi in (3.3) is now replaced by the ρ-dependent version in (3.8).

We now define the HT-scaled processes. As in the usual HT scaling, we scale time by (1− ρ)−2

and scale space by (1− ρ). Thus we make the definitions

A∗0,i,ρ(t) ≡ (1− ρ)[A0,i((1− ρ)−2t)− (1− ρ)−2λ0,it],

A∗i,ρ(t) ≡ (1− ρ)[Ai,ρ((1− ρ)−2t)− (1− ρ)−2λit],

S∗i,ρ(t) ≡ (1− ρ)[Si,ρ((1− ρ)−2t)− (1− ρ)−2µi,ρt],

D∗i,ρ(t) ≡ (1− ρ)[Di,ρ((1− ρ)−2t)− (1− ρ)−2λit],

D∗ext,i,ρ(t) ≡ (1− ρ)[Dext,i,ρ((1− ρ)−2t)− (1− ρ)−2λipi,0t],

A∗i,j,ρ(t) ≡ (1− ρ)[Ai,j,ρ((1− ρ)−2t)− (1− ρ)−2λipi,jt],

Θ∗i,j,ρ(t) ≡ (1− ρ)

b(1−ρ)−2tc∑
l=1

θli,j − pi,j(1− ρ)−2t

 ,
Q∗i,ρ(t) ≡ (1− ρ)Qi,ρ((1− ρ)−2t), for 1 ≤ i, j ≤ K. (3.9)

Furthermore, let Θ∗i,ρ ≡ (Θ∗i,j,ρ : 1 ≤ j ≤ K); let Θ∗ext,ρ ≡ (Θ∗i,0,ρ : 1 ≤ i ≤ K); and let F∗ρ collects

all the flows, defined as

F∗ρ (t) ≡ (A∗0,ρ(t), A
∗
int,ρ(t), A

∗
ρ(t), S

∗
ρ(t), D∗ρ(t), D

∗
ext,ρ(t)). (3.10)

Finally, let Z∗i,ρ(t) ≡ (1 − ρ)Zi,ρ((1 − ρ)2t) denote the HT scaled workload process at station i in

the ρ-th system.

Before presenting the HT limit of the systems, we introduce useful notation by discussing a

modified and yet asymptotically equivalent system, where all service times at the nonbottleneck

queues are set to zero.
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Remark 3.2 (Equivalent network) This system with bottleneck stations designated by H is

asymptotically equivalent to a reduced H-station network, where all non-bottleneck queues have

zero service times, so that they can be viewed as instantaneous switches. To obtain the rates and

routing matrix in the equivalent network, we let IA denote the |A| × |A| identity matrix for any

index set A; let PH be the |H| × |H| submatrix of the original routing matrix P corresponding to

the rows and columns in H; similarly, let PHc be the |Hc| × |Hc| submatrix of P corresponding to

Hc; and let PHc,H collect the routing probablities from stations in Hc to the ones in H, similarly,

define PH,Hc . Now the new |H| × |H| routing matrix, denoted by P̂H, is

P̂H = PH +
∞∑
l=0

PH,Hc (PHc)l PHc,H

= PH + PH,Hc

∞∑
l=0

(PHc)l PHc,H

= PH + PH,Hc (IHc − PHc)−1 PHc,H. (3.11)

Note that the inverse (IHc − PHc)−1 appearing in (3.11) is the fundamental matrix associated

with the transient finite Markov chain with transition matrix PHc . If we let P̂Hc,H denote the

matrix of the probabilities that the first visit to a bottleneck queue of an external arrival at a

non-bottleneck queue i ∈ Hc is at j ∈ H, then we have

P̂Hc,H =
∞∑
l=0

(PHc)lPHc,H = (IHc − PHc)−1 PHc,H. (3.12)

Similarly, for the new external arrival rate λ̂0,H, we write

λ̂0,H = λ0,H + P̂ ′Hc,Hλ0,Hc = λ0,H + P ′Hc,H
(
IHc − P ′Hc

)−1
λ0,Hc , (3.13)

where λ0,A denotes the column vector of the entries in λ0 that corresponds to the index set A.

Since the total arrival rate in the modified system remains the same as the original system, we have

λ̂H = (I − P̂ ′H)−1λ̂0,H = λH. (3.14)

To simplify notation, we suppress the subscript used in the identity matrix I in the rest of the

paper whenever there is no confusion on its dimension.

The following theorem states the joint heavy-traffic limit of the queue length process, the

workload and waiting time processes, the splitting-decision process and all the flows. As in [7, 8],

we allow an arbitrary subset of nodes to be bottleneck queues (critically loaded) while the rest
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are sub-critically loaded. To treat the stationary processes, we apply [14] and [6], extended to

include non-bottleneck queues. Because our basic model data involves only single arrival and

service processes, with only the parameters being scaled, we do not need Assumption (A4) in [6].

Theorem 3.2 (Heavy-traffic FCLT) Under Assumption 2.1-2.2, consider a family of open queue-

ing networks in stationarity, indexed by ρ. Let H ⊂ {1, 2, . . . ,K} denote the index of the bottleneck

stations: Assume that µi,ρ = λi/(ciρ) for 1 ≤ i ≤ K and set ci = 1 for all i ∈ H and ci < 1 for all

i /∈ H. Then, as ρ ↑ 1,

(Q∗ρ, Z
∗
ρ ,Θ

∗
ρ,Θ

∗
ext,ρ,F∗ρ )⇒ (Q∗, Z∗,Θ∗,Θ∗ext,F∗), (3.15)

where:

(i) For 0 ≤ i ≤ K, A∗0,i = ca0,iBa0,i ◦λ0,ie and S∗i = csiBsi ◦λie, where Ba0,i and Bsi are standard

Brownian motions. (Θ∗,Θ∗ext) is a zero-drift (K + 1)-dimensional Brownian motion with

covariance matrix Σi = (σ2
jk : 0 ≤ j, k ≤ K), where σ2

j,j = pi,j(1−pi,j)λi and σ2
j,k = −pi,jpi,kλi

for 0 ≤ i 6= j ≤ K. Furthermore, Ba0,i, Bsi and (Θ∗,Θ∗ext) are mutually independent,

1 ≤ i ≤ K.

(ii) The queue length process Q∗ consists of two parts. Q∗Hc ≡ 0 and Q∗H is a stationary |H|-

dimensional RBM

Q∗H ≡ ψH
(
X̂∗H

)
,

where ψH is the |H|-dimensional refelction map with reflection matrix RH ≡ I − P̂H and X̂∗H

is the net-input process associated with the bottleneck queues, defined below. Furthermore,

Q∗H(0) has unique stationary distribution of the stationary RBM. X̂∗H is a |H|-dimensional

Brownian motion

X̂∗H = Q∗H(0) +
(
e′H + P̂ ′Hc,He

′
Hc

) (
A∗0 + (Θ∗)′ 1

)
− (I − P̂H)S∗H − λ̂0,He (3.16)

where eA collects columns in the K-dimensional identity matrix I that corresponds to index

set A; P̂H, P̂Hc,H and λ̂0,H are defined in (3.11), (3.12) and (3.13), respectively.

(iii) The total arrival process A∗ can be regarded as a stationary process, having stationary incre-

ments, specified by

A∗ = (I − P ′)−1
(
A∗0 + (Θ∗)′ 1

)
+ P ′(I − P ′)−1 (Q∗(0)−Q∗)

= (I − P ′)−1
(
A∗0 + (Θ∗)′ 1

)
+ P ′(I − P ′)−1eH (Q∗H(0)−Q∗H) .
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(iv) The stationary departure process D∗ is specified as

D∗ = (I − P ′)−1
(
Q∗(0)−Q∗ +A∗0 + (Θ∗)′ 1

)
.

In particular,

D∗Hc = Q∗Hc +A∗Hc −Q∗Hc(0) = A∗Hc .

(v) The internal arrival flow A∗i,j can be expressed as

A∗i,j = pi,jD
∗
i + Θ∗i,j ◦ λie, for 1 ≤ i, j ≤ K

and the external departure flow can be expressed as

D∗ext,i = pi,0D
∗
i + Θ∗i,0 ◦ λie, for 1 ≤ i ≤ K.

(vi) Z∗i = λ−1
i Q∗i .

Proof of Theorem 3.2 Much of the statement follows from [7, 8] and [6]. First, the HT limit

for the state process with an arbitrary subset H of critically loaded stations follows from [7, 8].

Second, the HT limit for the steady-state queue length follows from [6]. The papers [14] and [6]

do not consider non-bottleneck stations, but their arguments extend to that more general setting.

(See Remark 3.3 below for discussion.) We subsequently establish the heavy-traffic limits for the

flows. We do so by exploiting the continuous mapping theorem with the direct representations of

the stationary flows that we have established.

To carry out our proof, we work with the centered representation in Theorem 3.1, using the

HT-scaling in (3.9). Thus, the HT-scaled net-input process is

X∗ρ = Q∗ρ(0) +A∗0,ρ +
(

Θ̃∗ρ

)′
1− (I − P ′)S̃∗ρ + (λ0 − (I − P ′)µρ)(1− ρ)−1e, (3.17)

where S̃∗i,ρ ≡ S∗i,ρ ◦ ¯̄Bi,ρ,
¯̄Bi,ρ = (1 − ρ)2Bi,ρ ◦ (1 − ρ)−2e, Θ̃∗ρ is a matrix with its ij-th entry being

Θ∗ij,ρ ◦ S ◦Bi,ρ and S ◦Bρ is a vector of length K with S ◦Bi,ρ ≡ (1 − ρ)2Si,ρ ◦ Bi,ρ ◦ (1 − ρ)−2e.

The HT-scaled queue length can be written as

Q∗ρ = X∗ρ + (I − P ′)Y ∗ρ .

We now re-write Q∗H,ρ and Q∗Hc,ρ in block-wise matrix representation as follows

Q∗H,ρ = X∗H,ρ + (I − P ′H,H)Y ∗H,ρ − P ′Hc,HY
∗
Hc,ρ (3.18)

16



Q∗Hc,ρ = X∗Hc,ρ + (I − P ′Hc,Hc)Y ∗Hc,ρ − P ′H,HcY ∗H,ρ (3.19)

Solving for Y ∗Hc,ρ in (3.19) and substituting into (3.18), we have

Q∗H,ρ = X̂∗H,ρ + (I − P̂ ′H)Y ∗H,ρ, (3.20)

where

X̂∗H,ρ = X∗H,ρ − P ′Hc,H(I − P ′Hc,Hc)−1(Q∗Hc,ρ −X∗Hc,ρ).

Now, we substitute into X̂∗H,ρ the expression for X∗ρ from (3.17), in block matrix notation,

leaving a constant η̂ρ in the final deterministic drift term initially unspecified, to obtain

X̂∗H,ρ = Q∗H,ρ(0) +A∗0,H,ρ + e′H(Θ̃∗ρ)
′1− (I − P ′H,H)S̃∗H,ρ + P ′Hc,HS̃

∗
Hc,ρ

− P ′Hc,H(I − P ′Hc,Hc)−1Q∗Hc,ρ

+ P ′Hc,H(I − P ′Hc,Hc)−1
(
Q∗Hc,ρ(0) +A∗0,Hc,ρ

+e′Hc(Θ̃∗ρ)
′1− (I − P ′Hc,Hc)S̃∗Hc,ρ + P ′H,HcS̃∗H,ρ

)
+ η̂ρ(1− ρ)−1e

= Q∗H,ρ(0) +A∗0,H,ρ + P ′Hc,H(I − P ′Hc,Hc)−1A∗0,Hc,ρ + (I − P̂ ′H)S̃∗H,ρ

+ e′H(Θ̃∗ρ)
′1 + P ′Hc,H(I − P ′Hc,Hc)−1e′Hc(Θ̃∗ρ)

′1

+ P ′Hc,H(I − P ′Hc,Hc)−1(Q∗Hc,ρ(0)−Q∗Hc,ρ) + η̂ρ(1− ρ)−1e.

Now we derive the drift term η̂ρ. To start, let

ηρ = λ0 − (I − P ′)µρ.

Just like how we treat the HT-scaled queue length process, we can re-write ηρ into blocks

ηH,ρ = λ0,H − (I − P ′H,H)µH,ρ + P ′Hc,HµHc,ρ, (3.21)

ηHc,ρ = λ0,Hc − (I − P ′Hc,Hc)µHc,ρ + P ′H,HcµH,ρ. (3.22)

Hence

η̂ρ ≡ ηH,ρ + P ′Hc,H(I − P ′Hc,Hc)−1ηHc,ρ

= λ0,H + P ′Hc,H(I − P ′Hc,Hc)−1λ0,Hc − (I − P̂ ′H)µH,ρ. (3.23)

Note that the traffic-rate equation can be written as

λ0,H = (I − P ′H,H)λH − P ′Hc,HλHc ,
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λ0,Hc = (I − P ′Hc,Hc)λHc − P ′H,HcλH.

Substitute both λ0,H and λ0,Hc into (3.23), we have

η̂ρ = (I − P̂ ′H)(λH − µH,ρ). (3.24)

To summarize, the HT-scaled net-input process associated with the bottleneck queues can be

expressed as

X̂∗H,ρ = Q∗H,ρ(0) +A∗0,H,ρ + P ′Hc,H(I − P ′Hc,Hc)−1A∗0,Hc,ρ − (I − P̂ ′H)S̃∗H,ρ

+e′H(Θ̃∗ρ)
′1 + P ′Hc,H(I − P ′Hc,Hc)−1e′Hc(Θ̃∗ρ)

′1

+(I − P̂H)(λH − µH,ρ)(1− ρ)−1e

+P ′Hc,H(I − P ′Hc,Hc)−1(Q∗Hc,ρ(0)−Q∗Hc,ρ). (3.25)

Now we are ready to deduce the claimed conclusions. First for conclusion (i), most follows

directly from Donsker’s theorem, Theorem 4.3.2 of [22], and the GJN assumptions. The exception

is the limit

(S̃∗ρ , Θ̃
∗
ρ)⇒ (S∗,Θ∗)

which follows from the continuous mapping theorem by a random-time-change argument, as shown

in [8].

For conclusion (ii), we apply [6] to get

(Q∗H,ρ(0), Q∗Hc,ρ(0))⇒ (Q∗H(0), Q∗Hc(0)) as ρ ↑ 1.

Then the conclusion (ii) follows from Theorem 6.1 of [8]. In particular, there we see that Q∗Hc is

null, so that we can treat the two components of (Q∗H,ρ, Q
∗
Hc,ρ) separately. First, to treat Q∗H,ρ, we

apply the continuous mapping theorem with the reflection map using the representation above. To

do so, we observe that, as ρ ↑ 1,

(I − P̂H)(λH − µH,ρ)(1− ρ)−1e→ −(I − P̂H)λHe

and

Q∗H,ρ = X̂∗H,ρ + (I − P̂ ′H)Y ∗H,ρ = ψI−P̂ ′H
(X̂∗H,ρ). (3.26)

Conclusions (iii) and (iv) follows from the representations derived in Theorem 3.1, the contin-

uous mapping theorem and the established convergence of the queue length process, the external
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arrival processes and the splitting-decision processes. To this end, we only need to apply diffusion

scaling (accelerate time by (1− ρ)−2 and scale space by (1− ρ)) to the representations in Theorem

3.1 so that

A∗ρ = P ′(I − P ′)−1
(
Q∗ρ(0)−Q∗ρ

)
+ (I − P ′)−1

(
A∗0,ρ + (Θ̃∗ρ)

′1
)
,

D∗ρ = (I − P ′)−1
(
Q∗ρ(0)−Q∗ρ +A∗0,ρ + (Θ̃∗ρ)

′1
)
. (3.27)

The second expression follows from the fact that Q∗Hc = 0.

Next, conclusions (v) follows from the limit of the departure process and the FCLT of the

splitting operation in §9.5 of [22]. Finally, the associated limits for the workload can be related to

the limit for the queue length as indicated in [8].

Remark 3.3 (Elaboration on the application of [6]) We apply [6], but it must be extended

to the model with non-bottleneck queues. We do not go through all details because we regard that

step as minor, but we now briefly explain.

First, the main stability condition (A6) there holds in our setting here. Notice that our scaling

convention here relies on the traffic intensity parameter ρ instead of the scaling parameter n used in

[6]. Comparing (3.9) here with (A5) there, For the bottleneck queues, the two scaling conventions

are connected by setting n = (1 − ρ)−2, ṽni = 0 and β̃ni = −λi/ρ. The stability condition here is

then connected to that in [6] by setting θ0 = −1 in (13) there.

For the moment estimation in their Theorem 3.3, we treat QH and Q∗Hc separately. For QH,

our representation (3.20) and (3.25) can be mapped to the representations (16) on p.51 of [6], but

with slightly more complicated constant terms associated with the matrix multiplication we have in

(3.25). Noting the expression of the drift term we have in (3.24), the rest of the proof is essentially

the same. For Q∗Hc , by [7, 8], it is negligible in the sense of Theorem 3.3 of [6]. Theorem 3.4 of [6]

relies only on the moment estimation as in their Theorem 3.3 and the strong Markov property of

S(t) (which they denoted as X(t)). Finally, Theorem 3.5 and Theorem 3.2 of [6] remain unchanged.

Remark 3.4 (Functional Central Limit Theorem of the flows) An important special case

of Theorem 3.2 arises when we set |H| = 0 so that all stations are strictly non-bottleneck, i.e.,

µi,ρ = λ/(ciρ) where ci < 1 for all i. As ρ ↑ 1, the family of systems converges to a limiting system

where the traffic intensity at station i is ρi = ci. Hence, the scaling used in (3.9) corresponds to

the diffusion scaling used in the usual FCLT. In particular, the diffusion limits can be written as

A∗0,i = ca0,iBa0,i ◦ λ0,ie,
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S∗i = csiBsi ◦ λie,

A∗ = D∗ = (I − P ′)−1
(
A∗0 + (Θ∗)′ 1

)
,

A∗i,j = pi,jD
∗
i + Θ∗i,j ◦ λie,

D∗ext,i = pi,0D
∗
i + Θ∗i,0 ◦ λie, for 1 ≤ i, j ≤ K.

where Ba0,i and Bsi and (Θ∗i,j : 0 ≤ j ≤ K) are Brownian motions defined as in part (i) of Theorem

3.2.

4 The Special Case of Only One Bottleneck Queue

In this section we consider the special case in which there is only one bottleneck queue, which is

especially tractable, because it involves one-dimensional RBM instead of multi-dimensional RBM.

In particular, the limiting variance functions in such diffusion limits can be written explicitly. The

variance functions are applied in RQNA [23, 24, 25].

We start with the easiest special case: when |H| = K = 1, which corresponds to the GI/GI/1

queue with i.i.d. customer feedback. We observe that this model is asymptotically equivalent

to a modified single-server queue model without customer feedback, where the arrival process is

generalized to include the immediate feedback.

Furthermore, we show that it is asymptotically correct in HT for a GJN with a single bottleneck

queue to eliminate all feedback prior to analysis. We show how to quantify feedback elimination.

4.1 Single-Server Queue with Customer Feedback

Consider a single-server queue with customer feedback as depicted in Figure 1. Let A0 denote the

renewal external arrival process with rate λ0 and scv c2
a0 . Let the feedback probability be p, so that

the effective arrival rate is λ = λ0/(1 − p). Let service times be i.i.d. with rate µρ = λ/ρ and scv

c2
s, hence a traffic intensity of ρ. Let A denote the total arrival process; let Aint be the feedback

flow; let S denote the service process; let D be the total departure process; and let Dext denote the

flow that exits the system.

Aext(t)
Queue 1

D(t)

Feedback prob. p

Figure 1: A single-server queue with feedback example.
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As observed in Section III of [21], to develop effective parametric-decomposition approximations

for OQNs it is often helpful to preprocess the model data by eliminating immediate feedback for

queues with feedback. The immediate feedback returns the customer to the end of the line. The

approximation step is to put the customer instead back at the head of the line, so as to receive all

its (geometrically random number of) service times at once. Clearly this does not alter the queue

length process and the workload process. The modified system does not have a feedback flow and

the new service time will be the geometric random sum of the i.i.d. copies of the original service

times, let S̃ denote the new service counting process.

This modification results in a change in the service rate and service scv. The new service rate is

(1−p)µ = (1−p)λ/ρ = λ0/ρ and, by conditional variance formula, the new scv is c̃2
s = p+(1−p)c2

s.

Hence, the heavy-traffic limit of the new service process is S̃∗ ≡ c̃2
sB̃s ◦ λ0e. We now claim that

S̃∗
dist.
= Θ∗ − (1− p)S∗. To this end, note that Θ∗ =

√
p(1− p)BΘ ◦ λe and S∗ = csBs ◦ λe, where

BΘ, Bs are independent standard Brownian motions (zero drift and unit variance) and λ0 = (1−p)λ.

The joint HT limit for the flows in the original system can be obtained from Theorem 3.2 by

setting K = 1 and H to be the only queue in the system (also the bottleneck queue). From part

(ii) of Theorem 3.2, we have

X∗
dist.
= Q∗(0) +A∗0 + S̃∗ − λ0e. (4.1)

Let Q̃∗, Z̃∗ denote the HT limit of the queue length process and the workload process in the

modified single-server queue without feedback, having arrival process A0 and service process S̃.

Standard heavy-traffic theory implies that (4.1) is exactly the HT limit of the net-input process of

a single-server queue so that Q̃∗
dist.
= Q∗. Hence, we have

Z̃∗ ≡ λ−1
0 Q̃∗

dist.
= (1− p)−1λ−1Q∗ ≡ (1− p)−1Z∗.

Note that the expected number of visit for the same customer is (1 − p)−1. This implies that for

approximating the waiting time and workload in the original system, we need to adjust for per-visit

version by multiplying the values in the modified system by (1− p).

Theorem 4.1 (Eliminating immediate feedback) For the single-server queue with feedback

model in Figure 1, consider the modified single-server queue, where immediate feedback are elim-

inated by placing the feedback customers at the head of the line. The joint heavy-traffic limit for

the queue length process, the waiting time process, the workload process and the external departure

process in the original model can be expressed in terms of those in the modified system as

(Q∗, Z∗, D∗ext)
dist.
= (Q̃∗, (1− p)Z̃∗, D̃∗ext).
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4.2 Networks with One Bottleneck Queue

We now consider the more general special case in which K ≥ 1 but |H| = 1 and show that feedback

elimination is also asymptotically correct for networks with one bottleneck.

In doing so, we first observe that a GJN with one bottleneck queue that the bottleneck queue

is asymptotically equivalent to a G/GI/1 single-server queue with feedback in the HT limit, where

the arrival process is a complex superposition of renewal arrival processes. We derive the explicit

expression for the external arrival process and feedback probability in the equivalent network.

We start with a convenient representation of the HT limit of the bottleneck queue. Without

loss of generality, let H = {h}, so that station h is the only bottleneck station. Let p̂i,h be the

(i, h)-th component of P̂Hc,H in (3.12) and recall that p̂ ≡ P̂h is the feedback probability defined

in Remark 3.2.

Theorem 4.2 The HT limit X̂∗h in (3.16), with H = {h}, can be expressed as the following one-

dimensional Brownian motion

X̂∗h = Q∗h(0) + Â∗ +
(

Θ̂∗S − (1− p̂)S∗h
)

+ λ̂0,he, (4.2)

where

Â∗ = A∗0,h +
∑
i∈Hc

(
p̂i,hA

∗
0,i + Θ̂∗i,h

)
, (4.3)

Θ̂∗i,h =
√
p̂i,h(1− p̂i,h)BΘ̂i,h

◦ λ0,ie, and Θ̂∗S =
√
p̂(1− p̂)BΘ̂S

◦ λie, (4.4)

while BΘ̂i,h
and BΘ̂S

are independent standard Brownian motions.

Proof Since the drift term, the terms associated with A∗0 and S∗h remain unchanged, it suffices to

show that the terms related with the splitting decision processes share the same variance. In fact,

by algebraic manipulation, one can check that

Var

(∑
i∈Hc

Θ̂∗i,h + Θ̂∗S

)
=
∑
i∈Hc

p̂i,h(1− p̂i,h)λ0,ie+ p̂(1− p̂)λie

=
K∑
i=1

(
e′h + P̂ ′Hc,he

′
Hc

)
Σi

(
eh + eHcP̂Hc,h

)
e

= Var
(
e′h (Θ∗)′ 1 + P̂ ′Hc,he

′
Hc (Θ∗)′ 1

)
where Σi are the variance matrix defined in Theorem 3.2.
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Now, consider a reduced one-station network consist of the only bottleneck queue, while all non-

bottleneck queues have service times set to 0 so that they serve as instantaneous switches. In the

reduced network, we define an external arrival Â0 to the bottleneck queue to be any external arrival

that arrive at the bottleneck queue for the first time. Hence, an external arrival may have visited

one or multiple non-bottleneck queues before its first visit to the bottleneck queue. In particular,

the external arrival process can be expressed as the superposition of (i) the original external arrival

process A0,h at station h; and (ii) the Markov splitting of the external arrival process A0,i at station

i with probability p̂i,h, for i ∈ Hc.

Theorem 4.2 implies that the reduced network is asymptotically equivalent to the original

bottleneck queue in the sense of the stationary queue length process in the HT limit. Furthermore,

one can check by comparing Theorem 4.2 with part (ii) of Theorem 3.2 that (4.2) coincides with

the HT limit of the net-input process in a single-server queue with feedback, where the external

arrival process is Â, the service times remain unchanged and the feedback probability is p̂.

We then eliminate immediate feedback customers just as in Theorem 4.1, but with the extended

interpretation of immediate feedback. Recalling that the non-bottleneck queues act as instantaneous

switches, we recognize all customers that feed back to the bottleneck queue as immediate feedback,

even after visiting non-bottleneck queues. The probability of feedback is then exactly p̂ ≡ P̂h

as in Remark 3.2. After feedback elimination, the new service process Ŝ is the renewal process

associated with the new service times, i.e., a geometric sum of the original service times at the

bottleneck queue. Note that the modified service process after feedback elimination have a HT

limit Ŝ∗ ≡ Θ̂∗S − (1 − p̂)S∗h, where Θ∗S is defined in (4.4), just as discussed in Section 4.1. This

matches exactly with the “service” component in (4.2). Hence, we have the following extension of

Theorem 4.1.

Theorem 4.3 (Feedback elimination with one bottleneck queue) For the bottleneck queue

in the generalized Jackson network, consider the modified single-server queue with arrival process

Â and service process Ŝ. The joint heavy-traffic limit for the queue length process, the waiting

time process, the workload process and the external departure process in the original model can be

expressed in terms of those in the modified system as

(Q∗, Z∗, D∗ext)
dist.
= (Q̂∗, (1− p)Ẑ∗, D̂∗ext).
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5 Conclusions

After establishing existence and convergence (as time increases) for the stationary flows under

Assumptions 2.1, 2.2 and 2.3 in Theorem 2.3, we established in Theorem 3.2 a general heavy-traffic

limit for the system state process in (2.4) together with the flow process in (2.10), allowing an

arbitrary subset of the stations to be critically loaded, while the rest are sub-critically loaded. For

the heavy-traffic limit in Theorem 3.2, the processes of interest are centered and scaled as in (3.9)

and (3.10). We then obtained explicit results for the special case in which only one station is

critically loaded in §4.

There are many important topics for future research. First, it remains to establish an extension

of Theorem 3.2 to the model generalized by allowing non-renewal arrival processes, which requires

generalizing the key supporting theorems in [6, 14]. It also remains to develop useful explicit

formulas based on Theorem 3.2 when more than one station is critically loaded. Of course, it

would also be good to obtain corresponding results for models with multiple classes and queues

with multiple servers.
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