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Introduction
Motivation

I Example of information acquisition:
– A car manufacturer is deciding the design of new product:

� with laser sensors v.s. without ?

– Uncertainty: are autonomous technologies viable?

– Information facilitates decision making, but learning takes money and time.
– Choose an R&D plan: what to learn & when to stop.

� Direction: which specific technology to test.
� Precision: the amount of data collected and analyzed.
� Frequency: how intensively experiments are run.
� …

I Learning strategy is rich in multiple salient aspects

– What is the optimal choice of “what to learn” and “when to stop”?
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Introduction
Modeling information acquisition

I Canonical models: limited learning strategy.
– Exogenous information.

� Optimal stopping problem: Wald 1947,Arrow, Blackwell, and Girshick 1949

– Parametric information process.

� Precision: Moscarini and Smith 2001
� Direction: Che and Mierendorff 2016, Liang, Mu, and Syrgkanis 2017

I My approach: flexible learning strategy.
– Non-parametric information process.

� Optimize in all aspects jointly.
� Static flexible information: Matejka and McKay 2014, Caplin and Dean 2015, Kamenica and
Gentzkow 2009.

� Repeated rational inattention: Hébert and Woodford 2016, Steiner, Stewart, and Matejka
2016.
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Introduction
Why a flexible model?

I Theoretically:

– Provides intuitions in flexible benchmark
– Identifies the endogenously important aspects of learning.

I Practically:
– Parametric models:

� Can be misleading when wrong restriction is made.
� Difficult to identify the restrictions.
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Introduction
Preview of results

I Optimal learning strategy is a Poisson signal: induces Poisson belief process.

– Direction: confirming prior belief.
– Precision: increasing over time.
– Frequency: decreasing over time.

I Optimal stopping strategy:

– Immediately after signal arrival.
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Introduction
Outline

1. Model Setup

– Key assumptions

2. Main theorems:

– Simplification: the HJB equation
– Optimal strategy & proof: a concavification method

3. Discussion of key assumptions

4. Applications
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Model setup
A flexible learning framework

I Decision problem:

– Continuous time: t2[0;1).
– One-shot choice of action: e��tu(a;x).

� a2A, x2X both finite, �>0, prior �2�X.

I Strategy:

– What to learn: stochastic belief h�ti2M
– When to stop: �
– Choice of action: F (�t)

I Stochastic control problem:

V (�)= sup
h�t i2M;�

E

[
e���F (�� )︸ ︷︷ ︸
Stopping payoff

�

∫ �

0

e��tC(It)︸ ︷︷ ︸
flow control cost

dt

]
(P)

I Canonical models: M restricted to a parametric family.
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Model setup
Key assumptions

V (�)= sup
h�t i2M;�

E

[
e���F (�� )�

∫ �

0

e��tC(It)dt

]
(P)

Assumption 1

Let H(�) be a concave function. It=�E
[
dH(�t )
dt

∣∣∣Ft

]
(denoted by �LtH(�t)).

– H(�) is an uncertainty measure
– It is the uncertainty reduction speed — intensity of learning

– Technical restriction on M.
� h�ti’s transition kernel is right-continuous in t (w�� topology).

Assumption 2

C is weakly increasing, convex and continuous. lim
I!1

C 0(I)=1.

– Inada condition: strict incentive to smooth information.
� Special case: C is linear, optimal �=0. (Steiner, Stewart, and Matejka 2016)
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Simplification
Dynamic programming and HJB equation

V (�)= sup
h�t i2M;�

E

[
e���F (�� )�

∫ �

0

e��tC(�LtH(�t))dt

]
(P)

I Technical challenge: abstract strategy space M.

– Generalized principle of DP:

�V (�t)︸ ︷︷ ︸
discount

=max
{
�F (�t)︸ ︷︷ ︸

stopping value

;sup
d�t

{LtV (�t)︸ ︷︷ ︸
flow value

�C(�LtH(�t))︸ ︷︷ ︸
flow control cost

}}
(1)

– Need a verification theory for equation (P)()equation (1).
– Need a representation theory for Lt .
– Verification theory applies to different problems. Representation theory only shows
existence. (Davis 1979,Boel and Kohlmann 1980,Striebel 1984)
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Simplification
Example: HJB for Gaussian learning

I General principle of DP

�V (�t)=sup
d�t

fLtV (�t)�C(�LtH(�t))g

I Restricted to learning from Brownian Motion signal:

– Binary state: �t2[0;1].
– Belief follows Gaussian process M=

{
�t

∣∣d�t=�td�t

}
. h�ti — signal precision.

– Ito’s lemma: Lt f (�t)=
1
2
�2t f

00(�t).
– Parametric HJB equation:

�V (�)=sup
�

{
1

2
�2V 00(�)�C(�1

2
�2H00(�))

}
– Moscarini and Smith 2001
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Simplification
Verification and representation theorem

Theorem 1

Assume H is strictly concave and C(2), Assumption 1 and Assumption 2 are satisfied, then
V (�)2C(1) solves equation (P) if V (�) is a solution of:

�V (�)=max

{
�F (�); sup

p;�;�
p(V (�)�V (�)�rV (�)(���))+1

2
�THV (�)� (B)

�C
(
p(H(�)�H(�)+rH(�)(���))�1

2
�THH(�)�

)}

I Trade-offs:
1. Exploration – exploitation
2. Gain from learning — cost of learning
3. Poisson — Gaussian
4. Precision — frequency

I Proof methodology:
– Discretize equation (P) and solve the discrete-time problem.
– Characterize V as the limit of discrete-time value function. Discrete-time analysis
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Optimal learning dynamics
Existence and characterization of Solution

�V (�)=max

{
�F (�); sup

p;�;�
p(V (�)�V (�)�rV (�)(���))+

1

2
�THV (�)� (B)

�C

(
p(H(�)�H(�)+rH(�)(���))�

1

2
�THH(�)�

)}

Theorem 2
9 quasi-convex value function V 2C(1)[0;1] solving equation (B). Let E=f�jV (�)>F (�)g
be experimentation region, then 9 unique (a.e.) policy (�;p) s.t. 8�2E:

�V (�)=p
(
V (�(�))�V (�)�V 0(�)(�(�)��))

�C(�p(H(�(�))�H(�)�H0(�)(�(�)��)))

1. Poisson learning: �V (�)>max�
1
2
�2V 00(�)�C(� 1

2
�2H00(�)

) 8�2En��.
2. Direction: confirmatory — 9��2argminV s.t. �>��=)�(�)>� and �<��=)�(�)<�.
3. Precision: k�(�)��k decreasing in k����k on each interval of E.
4. Intensity: I(�) is increasing in k����k.
5. Stopping time: �(�)2EC .
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Optimal learning dynamics
Example

I Decision problem:

– X=fL;Rg, A=fl ;rg, U(l ;L)=U(r;R)=1, U(l ;R)=U(r;L)=�1.

– �t2[0;1], F (�)=maxf1�2�;2��1g.
– H(�)=��log(�)�(1��)log(1��) — Entropy function.
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Optimal learning dynamics
Intuitions
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I Key trade-off: precision-frequency trade-off.
– Extreme belief ! High continuation value ! frequency > precision.
– Ambiguous belief ! Low continuation valie ! frequency < precision.

I Poisson-Gaussian trade-off.
– Gaussian signal: special Poisson signal — infinite frequency, low precision.
– Gaussian signal dominated except for boundary of E.

I Confirmatory-contradictory trade-off.
– Only confirmatory learning is consistent with the key trade-off.
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Proof methodology
Optimality condition and gross value function

I Consider a problem choosing optimal Poisson signal:

sup
p�0;�

p(V (�)�V (�)�V 0(�)(���))︸ ︷︷ ︸
,U(�;�)

�C(p(H(�)�H(�)+H0(�)(���))︸ ︷︷ ︸
,J(�;�)

) (2)

I Change variable:

equation (2)()supp�0;�p�U(�;�)�C(p�J(�;�))
I,p�J(�;�)(====)supI�0;�

(
U(�;�)

J(�;�)

)
�I�C(I)

I Optimal solution (��;I�):��2argmax�
U(�;�)
J(�;�)

C 0(I�)=max�
U(�;�)
J(�;�)

�,C0(I�)(===)
U(�;�)��J(�;�)�0 8�2[0;1]
U(�;��)��J(�;��)=0

I Define G(�),V (�)+�H(�), then U��J=G(�)�G(�)�G0(�)(���):G(�)�G(�)+G
0(�)(���) 8�2[0;1]

G(��)=G(�)+G 0(�)(����)
(3)
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Proof methodology
Geometric Characterization

G(�)�G(�)+G0(�)(���) 8�2[0;1]

G(��)=G(�)+G0(�)(����)
(3)

U

0 μ ν 1
μ

V
Value function

J

0 μ ν 1
μ

H
Uncertainty Measure

0 μ ν 1
μ

G
Gross value function
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Proof methodology
Feasibility condition

I Consider a problem choosing optimal Poisson signal:

sup
p�0;�

p(V (�)�V (�)�V 0(�)(���))︸ ︷︷ ︸
,U(�;�)

�C(p(H(�)�H(�)+H0(�)(���))︸ ︷︷ ︸
,J(�;�)

) (2)

I Change variable:

equation (2)()supp�0;�p�U(�;�)�C(p�J(�;�))
I,p�J(�;�)(====)supI�0;�

(
U(�;�)

J(�;�)

)
�I�C(I)

I Using HJB equation:

�V (�)=I�
U(�;��)

J(�;��)
�C(I�)=I��C0(I�)�C(I�) (4)

I G(�)�G(�)+G0(�)(���) 8�2[0;1]

G(��)=G(�)+G0(�)(����)
(3)

equations (3) and (4) pin down the whole solution.
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Proof methodology
Key trade-offs: utility-cost trade-off

I equation (4): �V (�)=I��C0(I�)�C(I�).

– d
dI
(IC 0(I)�C(I))=IC 00(I)>0 =) I� is co-monotonic with continuation value V (�).

– Value-intensity monotonicity.

I Intuition:

– Consider increase I� proportionately.
– Marginal cost: IC 0(I).
– Marginal gain: decrease waiting time proportionately =) �V (�)+C(I).

I A refinement of Moscarini and Smith 2001:

– In a Gaussian learning model, �t controls both precision and intensity.
– The monotonicity is associated with intensity.
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Proof methodology
Key trade-offs: precision-frequency trade-off

0 μ ν 1
μ

G

I Value-precision anti-monotonicity.

– Prior � and optimal posterior � are on the boundary of a concavified region.

– Higher V (�) =) larger I and � =) more concave G.
– � and � get closer — lower precision.

I Intuition:

– Marginal rate of substitution of presision and frequency.
– Higher continuation value =) lose more from waiting =) frequency is more prefered.
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Proof methodology
Key trade-offs: Poisson-Gaussian trade-off

I Consider the optimal Gaussian signal:

sup
�

1

2
�2V 00(�)�C

(
�
1

2
�2H00(�)

)
=)FOC:V 00(�)+�H00(�)=0

I If Gaussian signal is optimal, then:G(�)�G(�)�G0(�)(���)�0

G00(�)=0
=)��!�

I Intuition:

– Gaussian signal is a special kind of Poisson signal:
infinitely high frequency, very low precision.

– Suppose Gaussian signal is optimal at �:
more impatient =) immediate stopping;
more patient =) Poisson signal is optimal.

– Gaussian learning is optimal only for knife-edge cases.
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Proof methodology
Key trade-offs: confirmatory-contradictory trade-off

I Compare confirmatory signal and contradictory signal at �:

– �R: optimal confimatory posterior; �L: optimal contradictory posterior.

I Suppose seeks confirmatory signal: belief drifts to �1.

– �R becomes further from prior =) �R relatively less frequent.
– V (�1) is lower =) prefers frequency less. ,

I Suppose seeks contradictory signal: belief drifts to �2.

– �L becomes further from prior =) �L relatively less frequent.
– V (�1) is higher =) prefers frequency more. /

μνL νR
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Proof methodology
Proof of theorem 2

�V (�)=max

{
�F (�); sup

p;�;�
p(V (�)�V (�)�V 0(�)(���))+1

2
�2V 00(�) (B)

�C
(
p(H(�)�H(�)+H0(�)(���))�1

2
�2H00(�)

)}

I Step 1: construct a solution with properties in theorem 2.

– Identify ��.
– Solve constrained problem: for ���� Construction

�V (�)=max
���

I(�;�)
F (�)�V (�)�V 0(�)(���)
H(�)�H(�)+H0(�)(���)�C(I(�;�))

where I(�;�)=C 0�1
(

F (�)�V (�)�V 0(�)(���)
H(�)�H(�)+H0(�)(���)

)
I Step 2: verify that V (�) also solves full problem equation (B).

– Replace F (�) with V (�).
– Remove constraint ���.
– Add Gaussian signals.
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Discussion
Assumptions

I Economic assumption:

– It= uncertainty reduction speed.
– Exponential discounting e��� .
– Convex cost C(I).

I Restrictive assumption:

– kXk=2.
– kAk<1.

I Technical assumption:

– F (�)>0.
– H:�X 7!R� is C(2) smooth.
– H00(�) is Lipschitz continuous and negative definite.
– C is C(2) smooth.
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Discussion
Economic assumption: information measure

I Compare only Poisson and Gaussian learning.

I Generic information cost:

�V (�)=max
{
�F (�); sup

p;�;�2

p(V (�)�V (�)�V 0(�)(���))+
1

2
�2V 00(�)

}
(5)

s:t: pJ(�;�)+�(�;�)��I

Assumption 3

J2C(4)(0;1)2, J(�;�)=J 0�(�;�)=0.
�(�;�)= 1

2
�2J 00��(�;�)>0.

I Cost is continuous in signal process.

– pJ(�;�)= 1
2
pJ 00��(�;�)(���)2+O(���)3.
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Discussion
Economic assumption: information measure

Theorem 3
Given Assumption 3, suppose V 2C(3)(0;1) solves equation (5). Let L(�) be defined by:

L(�)=
�

�I
J 00��(�;�)

2�
2J

(3)
���(�;�)

2+J
(3)
���(�;�)J

(3)
���(�;�)

J 00��(�;�)
+J

(4)
����(�;�)+J

(4)
����(�;�)

Then set
{
�V (�)=�I V 00(�)

J00�� (�;�)

∣∣∣�2E; L(�) 6=0
}
is of zero measure.

I Sufficient conditions for L6=0:

– J����0 (J is sufficiently close to Assumption 1 locally).
– �

I
sufficiently high (the DM is sufficiently impatient).

I Special cost structures that support Gaussian learning?

– 8 F , �

I
and �, exists a (unique) such J0(�;�). Construction

I Key assumptions for optimality of Poisson signal:

– Continuity of cost function in different signal forms.
– Discounting.
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Discussion
Economic assumption: discounting

I What is the role of discounting?

– Discounting is the key factor determining precision-frequency trade-off.
– What if cost of waiting is value-independent?

V (�)= sup
h�t i2M;�

E

[
F (�� )�m��

∫ �

0

C(It)dt

]
(6)

Theorem 4
Given Assumption 1 and Assumption 2, V (�) solves equation (6) if and only if:

V (�)= sup
P2�2(X);�>0

EP [F (�)]�m+C(�)

�
EP [H(�)�H(�)]

and any h�ti s.t. �1�P �, It=�� is optimal.

I Fixed waiting cost =) indifference. (Hébert and Woodford 2016)
I More general analysis in Zhong 2018:

– Decision time distributions are ranked by MPS order.
– Poisson learning’s decision time is MPS of any other strategies.
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Discussion
Economic assumptions: convex C

I What is the role of convex cost?

– Smoothing of information over time.
– What if C(I) is linear?

Theorem 5

Given Assumption 1 and C(I)=�I, V (�) solves equation (P) if and only if:

V (�)= sup
P2�2(X)

EP [F (�)]��EP [H(�)�H(�)] (7)

I Optimal strategy is to learn immediately (Steiner, Stewart, and Matejka 2016).
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Further discussion
Convergence of policy

I equation (B) is proved by approximation using equation (B-dt).

I Can we make any prediction of behavior in discrete time?

Definition 1 (Lévy metric)
Let F;G:[0;1]![0;1] be two correspondences. Define the graph distance between them to
be:

L(F;G):=dH(graph(F );graph(G))

where dH is Hausdorff distance in R2.

Theorem 6
Let N(�)=f�g[�(�). Let Ndt(�) be support of optimal posteriors solving equation (B-dt).
Then:

lim
dt!0

L(N;Ndt)=0
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Further discussion
Convergence of policy

Figure: Convergence of policy w.r.t. dt
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Further discussion
Other extensions: continuum of actions

I Infinite action space?

– Discretize action space can approximate both value and policy function.
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Figure: Approximation of policy function and value function.
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Further discussion
Other extensions: continuum of actions

I Infinite action space?

– Discretize action space can approximate both value and policy function.

Theorem 7 (Convergence of policy function)

Let fFng be a set of piecewise linear functions on [0,1] satisfying:

1. kFn�Fk1!0;

2. 8�2[0;1]; limF 0
n(�)=F

0(�).

Define Vdt(Fn) as the solution to equation (B-dt). Define functional V(F )=limdt!0Vdt(F ).
Then:

1. kV(F )�V(Fn)k!0.

2. V(F ) solves equation (B).

3. 8� s.t. V (�)>F (�), let �n be maximizer of V(Fn) s.t. �=limn!1�n exists, then �

achieves V(F ) at �.
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Further discussion
Other extensions: larger state space

�V (�)=max

{
�F (�);max

�;p;�
p(V (�)�V (�)�rV (�)�(���))+�THV (�)�

}
s:t: �p(H(�)�H(�)�rH(�)�(���))��THH(�)��c (8)

Theorem 8

Let E=f�2�(X)jV (�)>F (�)g be experimentation region. Suppose there exists C(2)

smooth V (�) on E solving equation (8), then 9 policy function �:E 7!�(X) s.t.

�V (�)=�c F (�(�))�V (�)�rV (�)(�(�)��)
H(�(�))�H(�)�rH(�)(�(�)��)

where � satisfies the following properties:

1. Poisson learning: �V (�)�sup��c �THV (�)�

�THH(�)�
.

2. Direction: D���V (�)�0 and F (�)>V (�).

3. Precision: D����(�)�HH(�)(���)�0.

4. Stopping time: �(�)2EC .

There exists a nowhere dense set K s.t. strict inequality holds on EnK in property 1,3,4.
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Other extensions: larger state space

0.2 0.4 0.6 0.8 1.0
μ1

0.2

0.4

0.6

0.8

1.0

μ2

0.2 0.4 0.6 0.8 1.0
μ1

0.2

0.4

0.6

0.8

1.0

μ2

0.2 0.4 0.6 0.8 1.0
μ1

0.2

0.4

0.6

0.8

1.0

μ2

Figure: Optimal Policy of 3X3 problem.
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Applications
Radical innovation

I What kind of firm innovates “more”?

– Firm with high safe option (H) v.s. firm with low safe option (L).
– Both firms have identical risky option.
– Obviously, H invests more in R&D (value-intensity monotonicity).

I Which firm innovates more “radically”? (Holding intensity the same)

– Radicality: measured by j�(�)��j for each �.
– Competing incentives:

� Impatience effect: H has higher continuation value ! prefer signal precision less.
� Threshold effect: H has higher threshold for risky option ! low precision signal is less useful.

Proposition 1
9�c s.t. 8�2E, firm H innovates more radically iff �>�c .
Moreover, E

∩
(0;�c) 6=; and E

∩
(�c ;1)6=;.
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Applications
Radical innovation

I Which firm innovates more “radically”?
– Competing incentives:

� Impatience effect: H has higher continuation value ! prefer signal precision less.
� Threshold effect: H has higher threshold for risky option ! low precision signal is less useful.
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– The first effect decreases with �, as value functions get closer.
– The second effect increases with �, as adopting the risky options gets more likely.
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Applications
Response time

I Neuroscience choice experiments: response times (RT) — Choice accuracy

– Rapid decision making (<1s), low cognitivity level.
– Fitted by drift-diffusion models (DDM). (Ratcliff et al. 2016)

I Puzzle: non-monotonic RT-accuracy relation. (Luce et al. 1986)

– Low difficulty — fast error; high difficulty — slow error.
– Random drift & starting point v.s. Varying boundary
– The flexible learning model: fit the shape of measure H(�).
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I Puzzle: non-monotonic RT-accuracy relation. (Luce et al. 1986)
– Low difficulty — fast error; high difficulty — slow error.
– Random drift & starting point v.s. Varying boundary
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Applications
Response time

Proposition 2
Suppose jAj=2, H0(�) and F (�) are symmetric around �0=0:5 and satisfy Assumption 3.
8 partition of R+: f0;c1:::;cK ;1g, there exists H(�) satisfying Assumption 3 such that
then sign of ����0 alternates on each partition.
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Summary of results

I Assumptions:

– Convex cost C(I).
– It= uncertainty reduction speed.
– Binary states.

I Optimal learning dynamics:

– Poisson signal.
– Confirmatory.
– Increasing precision/ decreasing frequency.
– Immediate action.

I Applications:

– Radical innovations of firms.
– Response time and decision accuracy.
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Discrete time foundation
Discretization of equation (1)

I Given Assumption 1, 8h�ti, � admissible,
– Dicretize h�ti and � with period length dt : �̂i=�idt , �=d�=dte.
– h�̂i i is discrete-time martingale and � is stopping time.
– Define Riemann sum:

Wdt(�̂i ;�)=E

[
e���dtF (�̂�)�

�∑
i=0

e��idtC

(
E

[
H(�̂idt)�H(�̂(i+1)dt)

dt

])
dt

]

– By definition, V (�)= sup
h�t i;�

lim
dt!0

Wdt(�̂i ;�).

I Consider a discrete-time stochastic control problem:
– Define W �

dt(�)= sup
h�̂t i;�

Wdt(�̂i ;�).

– Obviously, V (�)� lim
dt!0

W �
dt(�).

Lemma 1

V (�)= lim
dt!0

W �
dt(�).
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Discrete time foundation
Bellman equation

Lemma 2 (Bellman equation)

W �
dt=Vdt , where Vdt solves Bellman equation:

Vdt(�)=max

{
F (�);sup

p;�;c
e��dt

∑
piVdt(�i)�Cdt

(
H(�)�

∑
piH(�i)

)}
(B-dt)

s:t:
∑

pi�i=�

Lemma 3

Assume H is strictly concave and C(2), Assumption 1 and Assumption 2 are satisfied, then
if V (�) solves HJB equation (B) and Vdt solves equation (B-dt): Vdt

dt!0���!
L1

V .
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Discrete time foundation
Proof of theorem 1

Theorem 1
Assume H is strictly concave and C(2), Assumption 1 and Assumption 2 are satisfied, then
V (�)2C(1) solves equation (P) if V (�) is a solution of:

�V (�)=max

{
�F (�); sup

p;�;�
p(V (�)�V (�)�rV (�)(���))+1

2
�THV (�)� (B)

�C
(
p(H(�)�H(�)+rH(�)(���))�1

2
�THH(�)�

)}

I Indirect method:
– lemma 2: discrete-time Bellman () discrete-time value function.
– lemma 1: discrete-time value function ! continuous-time value function.
– lemma 3: discrete-time Bellman ! continuous-time HJB.

V Vdt
lemma 1

Continuous-
time HJB

Discrete-time
Bellman

lemma 3

theorem 1 lemma 2

Back
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Proof of lemma 3
Convergence

Proof.

I Fix any dt, Vdt=2k (�) converges monotonically to V dt . Because with period length dt=2k ,
any policy with k 0<k can be replicated by decomposition.

I For any dt;dt 0, Vdt should be less than Vdt 0 . By slicing dt 0=2k , any policy with dt can be
approximated arbitrarily well.

I So there exists a unique V =V dt . Convergence speed is O(dt).
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Proof of lemma 3
Equivalence

Proof.

I V is unimprovable. Suppose c V (�0)�V (�)�DV (�;�0)(�0��)
H(�)�H(�0)+H0(�)(�0��) ��V (�)+".

– Then by definition of DV , 9�1 on other side of �.

c
V (�0)�V (�)� V (�1)�V (�)

�1��
(�0��)

H(�)�H(�0)+ H(�1)�H(�)
�1��

(�0��)
��V (�)+ "

2
.

– Rearrange terms: ���1
�0��1 V (�

0)+ �0��
�0��1 V (�1)� �

c
V (�)I(�1;�

0j�)+V (�)+ "
2c
I(�0;�1j�).

– Pick �1 close enough to �:
e�

�
c
I(�1;�

0j�)
(

���1
�0��1 V (�

0)+ �0��
�0��1 V (�1)

)
�V (�)+ "

4c
I(�0;�1j�)

– This can be replicated in a dtn=
I(�1;�

0j�)
c2n

problem. Then Vdtn will be improvable.
Therefore V�V .

I Suppose V (�)>V (�), then 8dt>0 small enough, Vdt(�)�V (�)+". Then V will be
improvable.
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Proof of theorem 2
Construction of V (�)

I Step 1: Construct ��.

– By assumption, searching �<�� and �>�� give same utility at ��. V is minimized at
��

– Calculate utility from searching �>�� (while assuming V 0=0).
– Calculate utility from searching �<��.
– Unique intersection determines �� and V (��).
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Proof of theorem 2
Construction of V (�)

I Step 2: Construct V (�).
– Take ��;V (��);V 0(��)=0 as starting point.
– At ��+d�, take V 0=0 and maximize V .
– At ��+2d�, take V 0= V (��+d�)�V (��)

d�
and maximize V .

– Continue this process (with d�!0). V determined by ODE.
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Proof of theorem 2
Multiple actions

I Step 3: Update value function by adding more actions.

0.5 0.6 0.7 0.8 0.9 1.0
⋁

0.05

0.10

0.15

0.20

0.25

0.30
V

0.5 0.6 0.7 0.8 0.9 1.0
⋁

0.05

0.10

0.15

0.20

0.25

0.30
V

0.5 0.6 0.7 0.8 0.9 1.0
⋁

0.05

0.10

0.15

0.20

0.25

0.30
V

0.5 0.6 0.7 0.8 0.9 1.0
⋁

0.05

0.10

0.15

0.20

0.25

0.30
V

0.5 0.6 0.7 0.8 0.9 1.0
⋁

0.05

0.10

0.15

0.20

0.25

0.30
V

0.5 0.6 0.7 0.8 0.9 1.0
⋁

0.05

0.10

0.15

0.20

0.25

0.30
V

Back

10 / 14



Proof of theorem 2
Multiple actions

I Step 3: Update value function by adding more actions.
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General cost structure
Construction of the special cost

I Primitives:

– F (�)=maxf1�2�;2��1g; �=I=1.
– H(�)=��log(�)�(1��)log(1��)—Entropy function.

I Suppose Gaussian learning is optimal:

V (�)= V 00(�)

J00�� (�;�)
=� V 00(�)

H00(�)

()V (�)=C1G
2;0
2;2

(
1+(�1)

2
3 ;1�(�1)

2
3

0;1

∣∣∣∣∣�
)
�C2�2F1

(
1�(�1)

1
3 ;1+(�1)

2
3 ;2;�

)
– Apply smooth pasting to pin down C1;C2.
– Optimality of Gaussian learning implies: V (�)� V (�)�V (�)�V 0(�)(���)

J(�;�)
, 8�.

I Define J0(�;�)=
V (�)�V (�)�V 0(�)(���)

V (�) .

1. J0��(�;�)=�H00(�). J0 satisfies Assumption 3.
2. If J0 is the cost function, then all strategies are equally optimal.
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General cost structure
Construction of the special cost

I Compare J(�;�) and J0(�;�).

– Gaussian learning supported by J only if: J(�;�)�J0(�;�)=o((���)3).

ρ=7.4
ρ=5
ρ=3.3
ρ=2.2
ρ=1.5
ρ=1
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-100

-50

50
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General cost structure
Construction of the special cost

I Suppose the cost depends only on the information structure:

P=

l r

s1 1��p�dt 1� �p
�
dt

s2 �
p
�dt �p

�
dt

– Let cost be ��(log(�))2.
– Then J(�;�)=

(log( 1��
� )�log( 1��

� ))
2

�
√

1��
1��

�
�
+(1��)

√
1��
1��

�
�

. Construct J0(�;�) from J��(�;�)=
2

�2(1��)2 .

0.2 0.4 0.6 0.8 1.0
μ

-200

-100

100

200
Jννν(μ,μ)
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Deterministic decision time
I Learning stratgy with: Back

– Deterministic decision time
– Constant flow cost
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