Optimal Dynamic Information Acquisition

Weijie Zhong^a

^aColumbia University

October 1, 2018 Economic Theory Workshop, Columbia University

- Example of information acquisition:
 - A car manufacturer is deciding the design of new product:
 - $\cdot\,$ with laser sensors v.s. without ?
 - Uncertainty: are autonomous technologies viable?

- Example of information acquisition:
 - A car manufacturer is deciding the design of new product:
 - · with laser sensors v.s. without ?
 - Uncertainty: are autonomous technologies viable?
 - Information facilitates decision making, but learning takes money and time.

- Example of information acquisition:
 - A car manufacturer is deciding the design of new product:
 - $\cdot\,$ with laser sensors v.s. without ?
 - Uncertainty: are autonomous technologies viable?
 - Information facilitates decision making, but learning takes money and time.
 - Choose an R&D plan: what to learn & when to stop.
 - · Direction: which specific technology to test.
 - \cdot $\mathit{Precision:}$ the amount of data collected and analyzed.
 - · Frequency: how intensively experiments are run.
 - ...

- Example of information acquisition:
 - A car manufacturer is deciding the design of new product:
 - with laser sensors v.s. without ?
 - Uncertainty: are autonomous technologies viable?
 - Information facilitates decision making, but learning takes money and time.
 - Choose an R&D plan: what to learn & when to stop.
 - · Direction: which specific technology to test.
 - · Precision: the amount of data collected and analyzed.
 - · Frequency: how intensively experiments are run.
 - ...
- Learning strategy is rich in multiple salient aspects
 - What is the optimal choice of "what to learn" and "when to stop"?

- · Canonical models: limited learning strategy.
 - Exogenous information.
 - · Optimal stopping problem: Wald 1947, Arrow, Blackwell, and Girshick 1949

- Canonical models: limited learning strategy.
 - Exogenous information.
 - · Optimal stopping problem: Wald 1947, Arrow, Blackwell, and Girshick 1949
 - Parametric information process.
 - Precision: Moscarini and Smith 2001
 - · Direction: Che and Mierendorff 2016, Liang, Mu, and Syrgkanis 2017

- Canonical models: limited learning strategy.
 - Exogenous information.
 - · Optimal stopping problem: Wald 1947, Arrow, Blackwell, and Girshick 1949
 - Parametric information process.
 - Precision: Moscarini and Smith 2001
 - · Direction: Che and Mierendorff 2016, Liang, Mu, and Syrgkanis 2017
- My approach: flexible learning strategy.
 - Non-parametric information process.
 - · Optimize in all aspects jointly.

- Canonical models: limited learning strategy.
 - Exogenous information.
 - · Optimal stopping problem: Wald 1947, Arrow, Blackwell, and Girshick 1949
 - Parametric information process.
 - Precision: Moscarini and Smith 2001
 - · Direction: Che and Mierendorff 2016, Liang, Mu, and Syrgkanis 2017
- My approach: flexible learning strategy.
 - Non-parametric information process.
 - · Optimize in all aspects jointly.
 - Static flexible information: Matejka and McKay 2014, Caplin and Dean 2015, Kamenica and Gentzkow 2009.

- Canonical models: limited learning strategy.
 - Exogenous information.
 - · Optimal stopping problem: Wald 1947, Arrow, Blackwell, and Girshick 1949
 - Parametric information process.
 - Precision: Moscarini and Smith 2001
 - · Direction: Che and Mierendorff 2016, Liang, Mu, and Syrgkanis 2017
- My approach: flexible learning strategy.
 - Non-parametric information process.
 - · Optimize in all aspects jointly.
 - Static flexible information: Matejka and McKay 2014, Caplin and Dean 2015, Kamenica and Gentzkow 2009.
 - Repeated rational inattention: Hébert and Woodford 2016, Steiner, Stewart, and Matejka 2016.

Why a flexible model?

- Theoretically:
 - Provides intuitions in flexible benchmark
 - Identifies the endogenously important aspects of learning.

Why a flexible model?

- Theoretically:
 - Provides intuitions in flexible benchmark
 - Identifies the endogenously important aspects of learning.
- Practically:
 - Parametric models:
 - · Can be misleading when wrong restriction is made.
 - · Difficult to identify the restrictions.

Preview of results

• Optimal learning strategy is a Poisson signal: induces Poisson belief process.

Preview of results

- Optimal learning strategy is a Poisson signal: induces Poisson belief process.
 - Direction: confirming prior belief.
 - Precision: increasing over time.
 - Frequency: decreasing over time.

Preview of results

- Optimal learning strategy is a Poisson signal: induces Poisson belief process.
 - Direction: confirming prior belief.
 - Precision: increasing over time.
 - Frequency: decreasing over time.
- Optimal stopping strategy:
 - Immediately after signal arrival.

Outline

- 1. Model Setup
 - Key assumptions
- 2. Main theorems:
 - Simplification: the HJB equation
 - Optimal strategy & proof: a concavification method
- 3. Discussion of key assumptions
- 4. Applications

- Decision problem:
 - Continuous time: $t \in [0,\infty)$.
 - One-shot choice of action: $e^{-\rho t}u(a,x)$.
 - · $a \in A$, $x \in X$ both finite, $\rho > 0$, prior $\mu \in \Delta X$.

- Decision problem:
 - Continuous time: $t \in [0,\infty)$.
 - One-shot choice of action: $e^{-\rho t}u(a,x)$.
- Strategy:
 - What to learn: stochastic belief $\langle \mu_t \rangle \in \mathbb{M}$
 - $\cdot \ \ensuremath{\mathbb{M}}$ contains all martingale processes.

- Decision problem:
 - Continuous time: $t \in [0,\infty)$.
 - One-shot choice of action: $e^{-\rho t}u(a,x)$.
- Strategy:
 - What to learn: stochastic belief $\langle \mu_t \rangle \in \mathbb{M}$
 - When to stop: au

- Decision problem:
 - Continuous time: $t \in [0,\infty)$.
 - One-shot choice of action: $e^{-\rho t}u(a,x)$.
- Strategy:
 - What to learn: stochastic belief $\langle \mu_t \rangle \in \mathbb{M}$
 - When to stop: au
 - Choice of action: $F(\mu_t)$
 - $\cdot F(\mu_t) = \max_a E_{\mu_t}[u(a,x)]$

- Decision problem:
 - Continuous time: $t \in [0,\infty)$.
 - One-shot choice of action: $e^{-\rho t}u(a,x)$.
- Strategy:
 - What to learn: stochastic belief $\langle \mu_t \rangle \in \mathbb{M}$
 - When to stop: au
 - Choice of action: $F(\mu_t)$
- Stochastic control problem:

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E\left[\underbrace{e^{-\rho\tau}F(\mu_{\tau})}_{\text{Stopping payoff}} - \int_0^{\tau} \underbrace{e^{-\rho t}C(I_t)}_{\text{flow control cost}} dt\right]$$
(P

A flexible learning framework

- Decision problem:
 - Continuous time: $t \in [0,\infty)$.
 - One-shot choice of action: $e^{-\rho t}u(a,x)$.
- Strategy:
 - What to learn: stochastic belief $\langle \mu_t \rangle \in \mathbb{M}$
 - When to stop: au
 - Choice of action: $F(\mu_t)$
- Stochastic control problem:

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E\left[\underbrace{e^{-\rho\tau}F(\mu_{\tau})}_{\text{Stopping payoff}} - \int_0^{\tau} \underbrace{e^{-\rho\tau}C(I_t)}_{\text{flow control cost}} dt\right]$$

Canonical models: M restricted to a parametric family.

(P)

Key assumptions

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E\left[e^{-\rho\tau}F(\mu_{\tau}) - \int_0^{\tau} e^{-\rho t}C(I_t) \mathrm{d}t\right]$$
(P)

Key assumptions

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E\left[e^{-\rho\tau}F(\mu_{\tau}) - \int_0^{\tau} e^{-\rho t}C(I_t) \mathrm{d}t\right]$$
(P)

Assumption 1

Let
$$H(\mu)$$
 be a concave function. $I_t = -E\left[\frac{dH(\mu_t)}{dt}\Big|\mathcal{F}_t\right]$ (denoted by $-\mathcal{L}_t H(\mu_t)$).

Key assumptions

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E\left[e^{-\rho\tau} F(\mu_{\tau}) - \int_0^{\tau} e^{-\rho t} C(I_t) \mathrm{d}t\right]$$
(P)

Assumption 1

Let $H(\mu)$ be a concave function. $I_t = -E\left[\frac{dH(\mu_t)}{dt}\Big|\mathcal{F}_t\right]$ (denoted by $-\mathcal{L}_t H(\mu_t)$).

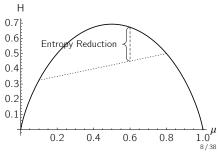
- $H(\mu)$ is an uncertainty measure

Key assumptions

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E\left[e^{-\rho\tau} F(\mu_{\tau}) - \int_0^{\tau} e^{-\rho t} C(I_t) \mathrm{d}t\right]$$
(P)

Assumption 1

- $H(\mu)$ is an uncertainty measure
 - · $E[H(\mu)]$ decreasing in MPS of μ distribution.
 - · Example: Entropy function.



Key assumptions

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E\left[e^{-\rho\tau} F(\mu_{\tau}) - \int_0^{\tau} e^{-\rho t} C(I_t) \mathrm{d}t\right]$$
(P)

Assumption 1

- $H(\mu)$ is an uncertainty measure
- *I_t* is the *uncertainty reduction speed intensity* of learning

Key assumptions

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E\left[e^{-\rho\tau} F(\mu_{\tau}) - \int_0^{\tau} e^{-\rho t} C(I_t) \mathrm{d}t\right]$$
(P)

Assumption 1

- $H(\mu)$ is an uncertainty measure
- It is the uncertainty reduction speed intensity of learning
 - Assumption 1 makes the problem tractable.
 - Discrete-time foundation: posterior separability: Caplin, Dean, and Leahy 2017, Frankel and Kamenica 2018, Morris and Strack 2017.

Key assumptions

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E\left[e^{-\rho\tau} F(\mu_{\tau}) - \int_0^{\tau} e^{-\rho t} C(I_t) \mathrm{d}t\right]$$
(P)

Assumption 1

- $H(\mu)$ is an uncertainty measure
- It is the uncertainty reduction speed intensity of learning
- Technical restriction on M.
 - $\langle \mu_t \rangle$'s transition kernel is right-continuous in t (w-* topology).

Key assumptions

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E\left[e^{-\rho\tau} F(\mu_{\tau}) - \int_0^{\tau} e^{-\rho t} C(I_t) \mathrm{d}t\right]$$
(P)

Assumption 1

Let $H(\mu)$ be a concave function. $I_t = -E\left[\frac{dH(\mu_t)}{dt}\Big|\mathcal{F}_t\right]$ (denoted by $-\mathcal{L}_t H(\mu_t)$).

- $H(\mu)$ is an uncertainty measure
- It is the uncertainty reduction speed intensity of learning
- Technical restriction on M.
 - $\langle \mu_t \rangle$'s transition kernel is right-continuous in t (w-* topology).

Assumption 2

- C is weakly increasing, convex and continuous. $\lim_{l \to \infty} C'(l) = \infty$.
 - Inada condition: strict incentive to smooth information.
 - · Special case: C is linear, optimal τ =0. (Steiner, Stewart, and Matejka 2016)

Dynamic programming and HJB equation

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E\left[e^{-\rho\tau} F(\mu_\tau) - \int_0^\tau e^{-\rho t} C(-\mathcal{L}_t H(\mu_t)) dt \right]$$
(P)

▶ Technical challenge: abstract strategy space M.

Dynamic programming and HJB equation

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E\left[e^{-\rho\tau}F(\mu_{\tau}) - \int_0^{\tau} e^{-\rho t}C(-\mathcal{L}_t H(\mu_t)) \mathrm{d}t\right]$$
(P)

- ► Technical challenge: abstract strategy space M.
 - Generalized principle of DP:

$$\underbrace{\rho V(\mu_t)}_{\text{discount}} = \max \left\{ \underbrace{\rho F(\mu_t)}_{\text{stopping value}}, \sup_{d\mu_t} \left\{ \underbrace{\mathcal{L}_t V(\mu_t)}_{\text{flow value}} - \underbrace{C(-\mathcal{L}_t H(\mu_t))}_{\text{flow control cost}} \right\} \right\}$$
(1)

Dynamic programming and HJB equation

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E\left[e^{-\rho\tau} F(\mu_{\tau}) - \int_0^{\tau} e^{-\rho t} C(-\mathcal{L}_t H(\mu_t)) \mathrm{d}t \right]$$
(P)

- ▶ Technical challenge: abstract strategy space M.
 - Generalized principle of DP:

- Need a verification theory for equation (P) \iff equation (1).

Dynamic programming and HJB equation

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E\left[e^{-\rho\tau}F(\mu_{\tau}) - \int_0^{\tau} e^{-\rho t}C(-\mathcal{L}_t H(\mu_t)) \mathrm{d}t\right]$$
(P)

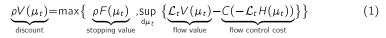
- ▶ Technical challenge: abstract strategy space M.
 - Generalized principle of DP:

- Need a verification theory for equation (P) \iff equation (1).
- Need a representation theory for \mathcal{L}_t .

Dynamic programming and HJB equation

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E\left[e^{-\rho\tau}F(\mu_{\tau}) - \int_0^{\tau} e^{-\rho t}C(-\mathcal{L}_t H(\mu_t)) \mathrm{d}t\right]$$
(P)

- ▶ Technical challenge: abstract strategy space M.
 - Generalized principle of DP:



- Need a verification theory for equation (P) \iff equation (1).
- Need a representation theory for \mathcal{L}_t .
- Verification theory applies to different problems. Representation theory only shows existence. (Davis 1979,Boel and Kohlmann 1980,Striebel 1984)

Example: HJB for Gaussian learning

General principle of DP

$$\rho V(\mu_t) = \sup_{d\mu_t} \{ \mathcal{L}_t V(\mu_t) - C(-\mathcal{L}_t H(\mu_t)) \}$$

Example: HJB for Gaussian learning

General principle of DP

$$\rho V(\mu_t) = \sup_{d\mu_t} \{ \mathcal{L}_t V(\mu_t) - C(-\mathcal{L}_t H(\mu_t)) \}$$

• Restricted to learning from Brownian Motion signal:

Example: HJB for Gaussian learning

$$\rho V(\mu_t) = \sup_{d\mu_t} \{ \mathcal{L}_t V(\mu_t) - C(-\mathcal{L}_t H(\mu_t)) \}$$

- Restricted to learning from Brownian Motion signal:
 - Binary state: $\mu_t \in [0,1]$.

Example: HJB for Gaussian learning

$$\rho V(\mu_t) = \sup_{d\mu_t} \{ \mathcal{L}_t V(\mu_t) - C(-\mathcal{L}_t H(\mu_t)) \}$$

- Restricted to learning from Brownian Motion signal:
 - Binary state: $\mu_t \in [0,1]$.
 - Belief follows Gaussian process $\mathbb{M} = \{\mu_t | d\mu_t = \sigma_t d\mu_t\}$. $\langle \sigma_t \rangle$ signal *precision*.

Example: HJB for Gaussian learning

$$\rho V(\mu_t) = \sup_{d\mu_t} \{ \mathcal{L}_t V(\mu_t) - C(-\mathcal{L}_t H(\mu_t)) \}$$

- Restricted to learning from Brownian Motion signal:
 - Binary state: $\mu_t \in [0,1]$.
 - Belief follows Gaussian process $\mathbb{M} = \{\mu_t | d\mu_t = \sigma_t d\mu_t\}$. $\langle \sigma_t \rangle$ signal *precision*.
 - Ito's lemma: $\mathcal{L}_t f(\mu_t) = \frac{1}{2} \sigma_t^2 f''(\mu_t)$.

Example: HJB for Gaussian learning

$$\rho V(\mu_t) = \sup_{d\mu_t} \{ \mathcal{L}_t V(\mu_t) - C(-\mathcal{L}_t H(\mu_t)) \}$$

- Restricted to learning from Brownian Motion signal:
 - Binary state: $\mu_t \in [0,1]$.
 - Belief follows Gaussian process $\mathbb{M} = \{\mu_t | d\mu_t = \sigma_t d\mu_t\}$. $\langle \sigma_t \rangle$ signal *precision*.
 - Ito's lemma: $\mathcal{L}_t f(\mu_t) = \frac{1}{2} \sigma_t^2 f''(\mu_t)$.
 - Parametric HJB equation:

$$\rho V(\mu) = \sup_{\sigma} \left\{ \frac{1}{2} \sigma^2 V''(\mu) - C(-\frac{1}{2} \sigma^2 H''(\mu)) \right\}$$

Example: HJB for Gaussian learning

General principle of DP

$$\rho V(\mu_t) = \sup_{d\mu_t} \{ \mathcal{L}_t V(\mu_t) - C(-\mathcal{L}_t H(\mu_t)) \}$$

- Restricted to learning from Brownian Motion signal:
 - Binary state: $\mu_t \in [0,1]$.
 - Belief follows Gaussian process $\mathbb{M} = \{ \mu_t | d\mu_t = \sigma_t d\mu_t \}$. $\langle \sigma_t \rangle$ signal precision.
 - Ito's lemma: $\mathcal{L}_t f(\mu_t) = \frac{1}{2} \sigma_t^2 f''(\mu_t)$.
 - Parametric HJB equation:

$$\rho V(\mu) = \sup_{\sigma} \left\{ \frac{1}{2} \sigma^2 V''(\mu) - C(-\frac{1}{2} \sigma^2 H''(\mu)) \right\}$$

- Moscarini and Smith 2001

Verification and representation theorem

Theorem 1

Assume *H* is strictly concave and $C^{(2)}$, Assumption 1 and Assumption 2 are satisfied, then $V(\mu) \in C^{(1)}$ solves equation (P) if $V(\mu)$ is a solution of:

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - \nabla V(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^{T} H V(\mu)\sigma \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + \nabla H(\mu)(\nu - \mu)) - \frac{1}{2}\sigma^{T} H H(\mu)\sigma \right) \right\}$$

Verification and representation theorem

Theorem 1

Assume *H* is strictly concave and $C^{(2)}$, Assumption 1 and Assumption 2 are satisfied, then $V(\mu) \in C^{(1)}$ solves equation (P) if $V(\mu)$ is a solution of:

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - \nabla V(\mu)(\nu - \mu)) + \frac{1}{2} \sigma^T H V(\mu) \sigma \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + \nabla H(\mu)(\nu - \mu)) - \frac{1}{2} \sigma^T H H(\mu) \sigma \right) \right\}$$

• Remark: optimal strategy represented by Markov jump-diffusion process.

Verification and representation theorem

Theorem 1

Assume *H* is strictly concave and $C^{(2)}$, Assumption 1 and Assumption 2 are satisfied, then $V(\mu) \in C^{(1)}$ solves equation (P) if $V(\mu)$ is a solution of:

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - \nabla V(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^{T} H V(\mu)\sigma \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + \nabla H(\mu)(\nu - \mu)) - \frac{1}{2}\sigma^{T} H H(\mu)\sigma \right) \right\}$$

• Remark: optimal strategy represented by Markov jump-diffusion process.

- Let
$$\mathbb{M}_{JD} = \left\{ \langle \mu_t \rangle \middle| d\mu_t = \underbrace{(\nu(\mu_t) - \mu_t)(dJ_t(\rho(\mu_t)) - \rho(\mu_t)dt)}_{\text{compensated Poisson part}} + \underbrace{\sigma(\mu_t)dW_t}_{\text{Gaussian diffusion}} \right\}.$$

Verification and representation theorem

Theorem 1

Assume *H* is strictly concave and $C^{(2)}$, Assumption 1 and Assumption 2 are satisfied, then $V(\mu) \in C^{(1)}$ solves equation (P) if $V(\mu)$ is a solution of:

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - \nabla V(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^{T} H V(\mu)\sigma \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + \nabla H(\mu)(\nu - \mu)) - \frac{1}{2}\sigma^{T} H H(\mu)\sigma \right) \right\}$$

• Remark: optimal strategy represented by Markov jump-diffusion process.

- Let
$$\mathbb{M}_{JD} = \left\{ \langle \mu_t \rangle \middle| d\mu_t = \underbrace{(\nu(\mu_t) - \mu_t)(dJ_t(p(\mu_t)) - p(\mu_t)dt)}_{\text{compensated Poisson part}} + \underbrace{\sigma(\mu_t)dW_t}_{\text{Gaussian diffusion}} \right\}.$$

- $\mathcal{L}V(\mu) \Bigr|_{\mathbb{M}_{JD}} = \underbrace{p(V(\nu) - V(\mu) - \nabla V(\mu)(\nu - \mu))}_{\text{flow value of Poisson jump & drift}} + \underbrace{\frac{1}{2}\sigma^T}_{\text{flow value of diffusion}} + \underbrace{\frac{1}{2}\sigma^T}_{\text{flow valu$

Verification and representation theorem

Theorem 1

Assume *H* is strictly concave and $C^{(2)}$, Assumption 1 and Assumption 2 are satisfied, then $V(\mu) \in C^{(1)}$ solves equation (P) if $V(\mu)$ is a solution of:

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - \nabla V(\mu)(\nu - \mu)) + \frac{1}{2} \sigma^T H V(\mu) \sigma \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + \nabla H(\mu)(\nu - \mu)) - \frac{1}{2} \sigma^T H H(\mu) \sigma \right) \right\}$$

- Trade-offs:
 - 1. Exploration exploitation
 - 2. Gain from learning cost of learning
 - 3. Poisson Gaussian
 - 4. Precision frequency

Verification and representation theorem

Theorem 1

Assume *H* is strictly concave and $C^{(2)}$, Assumption 1 and Assumption 2 are satisfied, then $V(\mu) \in C^{(1)}$ solves equation (P) if $V(\mu)$ is a solution of:

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - \nabla V(\mu)(\nu - \mu)) + \frac{1}{2} \sigma^T H V(\mu) \sigma \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + \nabla H(\mu)(\nu - \mu)) - \frac{1}{2} \sigma^T H H(\mu) \sigma \right) \right\}$$

- Trade-offs:
 - 1. Exploration exploitation
 - 2. Gain from learning cost of learning
 - 3. Poisson Gaussian
 - 4. Precision frequency
- Proof methodology:
 - Discretize equation (P) and solve the discrete-time problem.

Existence and characterization of Solution

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - \nabla V(\mu)(\nu - \mu)) + \frac{1}{2} \sigma^T H V(\mu) \sigma \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + \nabla H(\mu)(\nu - \mu)) - \frac{1}{2} \sigma^T H H(\mu) \sigma \right) \right\}$$

Existence and characterization of Solution

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - \nabla V(\mu)(\nu - \mu)) + \frac{1}{2} \sigma^T H V(\mu) \sigma \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + \nabla H(\mu)(\nu - \mu)) - \frac{1}{2} \sigma^T H H(\mu) \sigma \right) \right\}$$

Assumption 3

(Binary states): ||X||=2. (Positive payoff): $F(\mu)>0$. (Smoothness): $H \in C^{(2)}$, H'' < 0 and Lipschitz continuous. $C \in C^{(2)}$, C'' > 0.

Existence and characterization of Solution

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^2 V''(\mu) \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + H'(\mu)(\nu - \mu)) - \frac{1}{2}\sigma^2 H''(\mu) \right) \right\}$$

Assumption 3

(Binary states): ||X||=2. (Positive payoff): $F(\mu)>0$. (Smoothness): $H \in C^{(2)}$, H'' < 0 and Lipschitz continuous. $C \in C^{(2)}$, C'' > 0.

Existence and characterization of Solution

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^2 V''(\mu) \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + H'(\mu)(\nu - \mu)) - \frac{1}{2}\sigma^2 H''(\mu) \right) \right\}$$

Theorem 2

∃ quasi-convex value function $V \in C^{(1)}[0,1]$ solving equation (B). Let $E = \{\mu | V(\mu) > F(\mu)\}$ be *experimentation region*, then ∃ unique (a.e.) policy (ν, p) s.t. $\forall \mu \in E$:

$$\rho V(\mu) = \rho \left(V(\nu(\mu)) - V(\mu) - V'(\mu)(\nu(\mu) - \mu) \right) - C \left(-\rho \left(H(\nu(\mu)) - H(\mu) - H'(\mu)(\nu(\mu) - \mu) \right) \right)$$

Existence and characterization of Solution

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^2 V''(\mu) \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + H'(\mu)(\nu - \mu)) - \frac{1}{2}\sigma^2 H''(\mu) \right) \right\}$$

Theorem 2

∃ quasi-convex value function $V \in C^{(1)}[0,1]$ solving equation (B). Let $E = \{\mu | V(\mu) > F(\mu)\}$ be *experimentation region*, then ∃ unique (a.e.) policy (ν, p) s.t. $\forall \mu \in E$:

$$\rho V(\mu) = \rho \left(V(\nu(\mu)) - V(\mu) - V'(\mu)(\nu(\mu) - \mu) \right) - C \left(-\rho \left(H(\nu(\mu)) - H(\mu) - H'(\mu)(\nu(\mu) - \mu) \right) \right)$$

1. Poisson learning: $\rho V(\mu) > \max_{\sigma} \frac{1}{2} \sigma^2 V''(\mu) - C(-\frac{1}{2} \sigma^2 H''(\mu)) \forall \mu \in E \setminus \mu^*$.

Existence and characterization of Solution

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^2 V''(\mu) \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + H'(\mu)(\nu - \mu)) - \frac{1}{2}\sigma^2 H''(\mu) \right) \right\}$$

Theorem 2

∃ quasi-convex value function $V \in C^{(1)}[0,1]$ solving equation (B). Let $E = \{\mu | V(\mu) > F(\mu)\}$ be *experimentation region*, then ∃ unique (a.e.) policy (ν, p) s.t. $\forall \mu \in E$:

$$\rho V(\mu) = \rho \left(V(\nu(\mu)) - V(\mu) - V'(\mu)(\nu(\mu) - \mu) \right) - C \left(-\rho \left(H(\nu(\mu)) - H(\mu) - H'(\mu)(\nu(\mu) - \mu) \right) \right)$$

1. Poisson learning: $\rho V(\mu) > \max_{\sigma} \frac{1}{2} \sigma^2 V''(\mu) - C\left(-\frac{1}{2} \sigma^2 H''(\mu)\right) \forall \mu \in E \setminus \mu^*$.

2. Direction: confirmatory — $\exists \mu^* \in \operatorname{argminV}$ s.t. $\mu > \mu^* \Longrightarrow \nu(\mu) > \mu$ and $\mu < \mu^* \Longrightarrow \nu(\mu) < \mu$.

Existence and characterization of Solution

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^2 V''(\mu) \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + H'(\mu)(\nu - \mu)) - \frac{1}{2}\sigma^2 H''(\mu) \right) \right\}$$

Theorem 2

∃ quasi-convex value function $V \in C^{(1)}[0,1]$ solving equation (B). Let $E = \{\mu | V(\mu) > F(\mu)\}$ be *experimentation region*, then ∃ unique (a.e.) policy (ν, p) s.t. $\forall \mu \in E$:

$$\rho V(\mu) = \rho \left(V(\nu(\mu)) - V(\mu) - V'(\mu)(\nu(\mu) - \mu) \right) - C \left(-\rho \left(H(\nu(\mu)) - H(\mu) - H'(\mu)(\nu(\mu) - \mu) \right) \right)$$

1. Poisson learning: $\rho V(\mu) > \max_{\sigma} \frac{1}{2} \sigma^2 V''(\mu) - C\left(-\frac{1}{2} \sigma^2 H''(\mu)\right) \forall \mu \in E \setminus \mu^*$.

2. Direction: confirmatory — $\exists \mu^* \in \operatorname{argminV} \text{ s.t. } \mu > \mu^* \Longrightarrow \nu(\mu) > \mu \text{ and } \mu < \mu^* \Longrightarrow \nu(\mu) < \mu$.

3. *Precision*: $\|\nu(\mu) - \mu\|$ decreasing in $\|\mu - \mu^*\|$ on each interval of *E*.

Existence and characterization of Solution

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^2 V''(\mu) \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + H'(\mu)(\nu - \mu)) - \frac{1}{2}\sigma^2 H''(\mu) \right) \right\}$$

Theorem 2

∃ quasi-convex value function $V \in C^{(1)}[0,1]$ solving equation (B). Let $E = \{\mu | V(\mu) > F(\mu)\}$ be *experimentation region*, then ∃ unique (a.e.) policy (ν, p) s.t. $\forall \mu \in E$:

$$\rho V(\mu) = \rho \left(V(\nu(\mu)) - V(\mu) - V'(\mu)(\nu(\mu) - \mu) \right) - C \left(-\rho \left(H(\nu(\mu)) - H(\mu) - H'(\mu)(\nu(\mu) - \mu) \right) \right)$$

- 1. Poisson learning: $\rho V(\mu) > \max_{\sigma} \frac{1}{2} \sigma^2 V''(\mu) C\left(-\frac{1}{2} \sigma^2 H''(\mu)\right) \forall \mu \in E \setminus \mu^*$.
- 2. Direction: confirmatory $\exists \mu^* \in \operatorname{argminV}$ s.t. $\mu > \mu^* \Longrightarrow \nu(\mu) > \mu$ and $\mu < \mu^* \Longrightarrow \nu(\mu) < \mu$.
- 3. *Precision*: $\|\nu(\mu) \mu\|$ decreasing in $\|\mu \mu^*\|$ on each interval of *E*.
- 4. Intensity: $I(\mu)$ is increasing in $\|\mu \mu^*\|$.

Existence and characterization of Solution

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^2 V''(\mu) \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + H'(\mu)(\nu - \mu)) - \frac{1}{2}\sigma^2 H''(\mu) \right) \right\}$$

Theorem 2

∃ quasi-convex value function $V \in C^{(1)}[0,1]$ solving equation (B). Let $E = \{\mu | V(\mu) > F(\mu)\}$ be *experimentation region*, then ∃ unique (a.e.) policy (ν, p) s.t. $\forall \mu \in E$:

$$\rho V(\mu) = \rho \left(V(\nu(\mu)) - V(\mu) - V'(\mu)(\nu(\mu) - \mu) \right) - C \left(-\rho \left(H(\nu(\mu)) - H(\mu) - H'(\mu)(\nu(\mu) - \mu) \right) \right)$$

- 1. Poisson learning: $\rho V(\mu) > \max_{\sigma} \frac{1}{2} \sigma^2 V''(\mu) C\left(-\frac{1}{2} \sigma^2 H''(\mu)\right) \forall \mu \in E \setminus \mu^*$.
- 2. Direction: confirmatory $\exists \mu^* \in \operatorname{argminV}$ s.t. $\mu > \mu^* \Longrightarrow \nu(\mu) > \mu$ and $\mu < \mu^* \Longrightarrow \nu(\mu) < \mu$.
- 3. *Precision*: $\|\nu(\mu) \mu\|$ decreasing in $\|\mu \mu^*\|$ on each interval of *E*.
- 4. Intensity: $I(\mu)$ is increasing in $\|\mu \mu^*\|$.
- 5. Stopping time: $\nu(\mu) \in E^{C}$.

Example

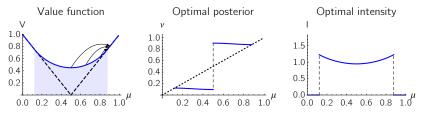
• Decision problem:

$$- X = \{L, R\}, A = \{I, r\}, U(I, L) = U(r, R) = 1, U(I, R) = U(r, L) = -1.$$

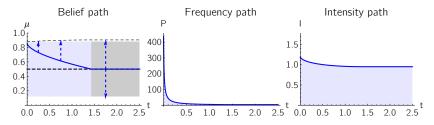
- Decision problem:
 - $\mu_t \in [0,1]$, $F(\mu) = \max\{1-2\mu, 2\mu-1\}$.

- Decision problem:
 - $\mu_t \in [0,1]$, $F(\mu) = \max\{1-2\mu, 2\mu-1\}$.
 - $H(\mu) = -\mu \log(\mu) (1-\mu)\log(1-\mu)$ Entropy function.

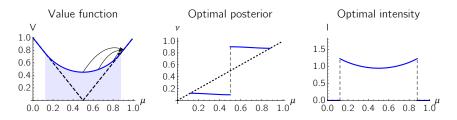
- Decision problem:
 - $\begin{array}{l} \ \mu_t \in [0,1], \ F(\mu) = \max\{1 2\mu, 2\mu 1\}. \\ \ H(\mu) = -\mu \log(\mu) (1 \mu) \log(1 \mu) & \text{Entropy function.} \end{array}$
- Solution:



- Decision problem:
 - $\begin{array}{l} \ \mu_t \in [0,1], \ F(\mu) = \max\{1 2\mu, 2\mu 1\}. \\ \ H(\mu) = -\mu \log(\mu) (1 \mu) \log(1 \mu) & \text{Entropy function.} \end{array}$
- Dynamics:

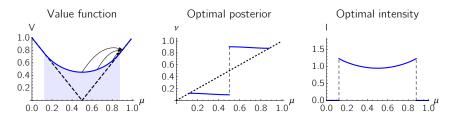


Intuitions



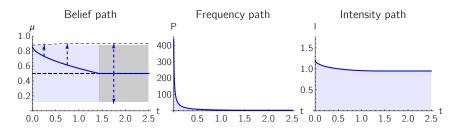
- Key trade-off: precision-frequency trade-off.
 - Extreme belief \rightarrow High continuation value \rightarrow frequency > precision.
 - Ambiguous belief \rightarrow Low continuation valie \rightarrow frequency < precision.

Intuitions



- Key trade-off: precision-frequency trade-off.
 - Extreme belief \rightarrow High continuation value \rightarrow frequency > precision.
 - Ambiguous belief \rightarrow Low continuation value \rightarrow frequency < precision.
- Poisson-Gaussian trade-off.
 - Gaussian signal: special Poisson signal infinite frequency, low precision.
 - Gaussian signal dominated except for boundary of E.

Intuitions



- Key trade-off: precision-frequency trade-off.
 - Extreme belief \rightarrow High continuation value \rightarrow frequency > precision.
 - Ambiguous belief \rightarrow Low continuation valie \rightarrow frequency < precision.
- Poisson-Gaussian trade-off.
 - Gaussian signal: special Poisson signal infinite frequency, low precision.
 - Gaussian signal dominated except for boundary of E.
- Confirmatory-contradictory trade-off.
 - Only confirmatory learning is consistent with the key trade-off.

Optimality condition and gross value function

• Consider a problem choosing optimal Poisson signal:

$$\sup_{p \ge 0,\nu} p(\underline{V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)}) - C(p(\underline{H(\mu) - H(\nu) + H'(\mu)(\nu - \mu)}))$$
(2)
$$\triangleq_{J(\mu,\nu)}$$

Optimality condition and gross value function

• Consider a problem choosing optimal Poisson signal:

$$\sup_{p \ge 0,\nu} \underbrace{p(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu))}_{\triangleq U(\mu,\nu)} - C(p(H(\mu) - H(\nu) + H'(\mu)(\nu - \mu))) \qquad (2)$$

Change variable:

Optimality condition and gross value function

• Consider a problem choosing optimal Poisson signal:

$$\sup_{p \ge 0,\nu} \underbrace{p(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu))}_{\triangleq U(\mu,\nu)} - C(p(H(\mu) - H(\nu) + H'(\mu)(\nu - \mu))) \qquad (2)$$

Change variable:

$$equation (2) \Longleftrightarrow \sup_{p \ge 0, \nu} p \cdot U(\mu, \nu) - C(p \cdot J(\mu, \nu)) \xleftarrow{l \triangleq p \cdot J(\mu, \nu)} \sup_{l \ge 0, \nu} \left(\frac{U(\mu, \nu)}{J(\mu, \nu)} \right) \cdot I - C(l)$$

Optimality condition and gross value function

• Consider a problem choosing optimal Poisson signal:

$$\sup_{p\geq 0,\nu} \underbrace{p(V(\nu)-V(\mu)-V'(\mu)(\nu-\mu))}_{\triangleq U(\mu,\nu)} - C(p(H(\mu)-H(\nu)+H'(\mu)(\nu-\mu))) \qquad (2)$$

• Change variable:

$$equation (2) \iff \sup_{p \ge 0, \nu} p \cdot U(\mu, \nu) - C(p \cdot J(\mu, \nu)) \iff \sup_{l \ge 0, \nu} \left(\frac{U(\mu, \nu)}{J(\mu, \nu)} \right) \cdot I - C(l)$$

• Optimal solution (ν^*, l^*) :

$$\begin{cases} \nu^* \in \operatorname{argmax}_{\nu} \frac{U(\mu,\nu)}{J(\mu,\nu)} & \xrightarrow{\lambda \triangleq C'(I^*)} \\ C'(I^*) = \max_{\nu} \frac{U(\mu,\nu)}{J(\mu,\nu)} & \longleftarrow \\ U(\mu,\nu^*) - \lambda J(\mu,\nu^*) = 0 \end{cases} \forall \nu \in [0,1]$$

Optimality condition and gross value function

• Consider a problem choosing optimal Poisson signal:

$$\sup_{\rho \ge 0,\nu} \underbrace{P(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu))}_{\triangleq U(\mu,\nu)} - C(P(H(\mu) - H(\nu) + H'(\mu)(\nu - \mu))) \qquad (2)$$

Change variable:

$$equation (2) \iff \sup_{p \ge 0, \nu} p \cdot U(\mu, \nu) - C(p \cdot J(\mu, \nu)) \iff \sup_{l \ge 0, \nu} \left(\frac{U(\mu, \nu)}{J(\mu, \nu)} \right) \cdot I - C(l)$$

• Optimal solution (ν^*, l^*) :

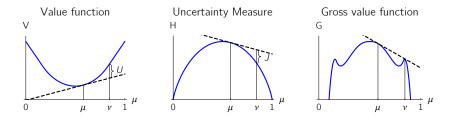
$$\begin{cases} \nu^* \in \operatorname{argmax}_{\nu} \frac{U(\mu,\nu)}{J(\mu,\nu)} & \xrightarrow{\lambda \triangleq C'(I^*)} \\ C'(I^*) = \max_{\nu} \frac{U(\mu,\nu)}{J(\mu,\nu)} & \longleftarrow \\ U(\mu,\nu^*) - \lambda J(\mu,\nu^*) = 0 \end{cases} \forall \nu \in [0,1]$$

• Define $G(\mu) \triangleq V(\mu) + \lambda H(\mu)$, then $U - \lambda J = G(\nu) - G(\mu) - G'(\mu)(\nu - \mu)$:

$$\begin{cases} G(\nu) \le G(\mu) + G'(\mu)(\nu - \mu) & \forall \nu \in [0, 1] \\ G(\nu^*) = G(\mu) + G'(\mu)(\nu^* - \mu) \end{cases}$$
(3)

Geometric Characterization

$$\begin{cases} G(\nu) \le G(\mu) + G'(\mu)(\nu - \mu) & \forall \nu \in [0, 1] \\ G(\nu^*) = G(\mu) + G'(\mu)(\nu^* - \mu) \end{cases}$$



(3)

Feasibility condition

• Consider a problem choosing optimal Poisson signal:

$$\sup_{\substack{\nu \ge 0,\nu}} p(\underbrace{V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)}_{\triangleq U(\mu,\nu)} - C(p(\underbrace{H(\mu) - H(\nu) + H'(\mu)(\nu - \mu)}_{\triangleq J(\mu,\nu)})$$
(2)

• Change variable:

р

$$equation (2) \Longleftrightarrow \sup_{p \ge 0, \nu} p \cdot U(\mu, \nu) - C(p \cdot J(\mu, \nu)) \xleftarrow{l \triangleq p \cdot J(\mu, \nu)} \sup_{l \ge 0, \nu} \left(\frac{U(\mu, \nu)}{J(\mu, \nu)} \right) \cdot I - C(l)$$

Feasibility condition

• Consider a problem choosing optimal Poisson signal:

$$\sup_{\substack{\nu \ge 0,\nu \\ \neq 0 \le 0}} p(\underbrace{V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)}_{\triangleq U(\mu,\nu)} - C(p(\underbrace{H(\mu) - H(\nu) + H'(\mu)(\nu - \mu)}_{\triangleq J(\mu,\nu)})$$
(2)

• Change variable:

р

$$equation (2) \Longleftrightarrow \sup_{p \ge 0, \nu} p \cdot U(\mu, \nu) - C(p \cdot J(\mu, \nu)) \xleftarrow{l \triangleq p \cdot J(\mu, \nu)} \sup_{l \ge 0, \nu} \left(\frac{U(\mu, \nu)}{J(\mu, \nu)} \right) \cdot I - C(l)$$

Using HJB equation:

$$\rho V(\mu) = l^* \frac{U(\mu, \nu^*)}{J(\mu, \nu^*)} - C(l^*) = l^* \cdot C'(l^*) - C(l^*)$$
(4)

Feasibility condition

• Consider a problem choosing optimal Poisson signal:

$$\sup_{D \ge 0,\nu} p\underbrace{P(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu))}_{\triangleq U(\mu,\nu)} - C(p\underbrace{(H(\mu) - H(\nu) + H'(\mu)(\nu - \mu))}_{\triangleq J(\mu,\nu)})$$
(2)

Change variable:

p

$$equation (2) \Longleftrightarrow \sup_{p \ge 0, \nu} p \cdot U(\mu, \nu) - C(p \cdot J(\mu, \nu)) \stackrel{l \triangleq p \cdot J(\mu, \nu)}{\longleftrightarrow} \sup_{l \ge 0, \nu} \left(\frac{U(\mu, \nu)}{J(\mu, \nu)} \right) \cdot I - C(l)$$

Using HJB equation:

$$\rho V(\mu) = l^* \frac{U(\mu, \nu^*)}{J(\mu, \nu^*)} - C(l^*) = l^* \cdot C'(l^*) - C(l^*)$$
(4)

$$\begin{cases} G(\nu) \le G(\mu) + G'(\mu)(\nu - \mu) & \forall \nu \in [0, 1] \\ G(\nu^*) = G(\mu) + G'(\mu)(\nu^* - \mu) \end{cases}$$
(3)

equations (3) and (4) pin down the whole solution.

Key trade-offs: utility-cost trade-off

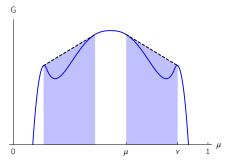
- equation (4): $\rho V(\mu) = l^* \cdot C'(l^*) C(l^*)$.
 - $-\frac{d}{dl}(IC'(l)-C(l))=IC''(l)>0 \implies l^*$ is co-monotonic with continuation value $V(\mu)$.
 - Value-intensity monotonicity.

Key trade-offs: utility-cost trade-off

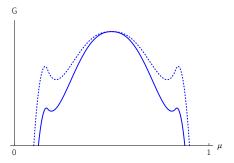
- equation (4): $\rho V(\mu) = l^* \cdot C'(l^*) C(l^*)$.
 - $\frac{d}{dI}(IC'(I) C(I)) = IC''(I) > 0 \implies I^* \text{ is co-monotonic with continuation value } V(\mu).$
 - Value-intensity monotonicity.
- Intuition:
 - Consider increase *I*^{*} proportionately.
 - Marginal cost: IC'(I).
 - Marginal gain: decrease waiting time proportionately $\implies \rho V(\mu) + C(I)$.

Key trade-offs: utility-cost trade-off

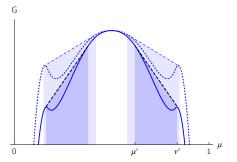
- equation (4): $\rho V(\mu) = l^* \cdot C'(l^*) C(l^*)$.
 - $\frac{d}{dI}(IC'(I) C(I)) = IC''(I) > 0 \implies I^* \text{ is co-monotonic with continuation value } V(\mu).$
 - Value-intensity monotonicity.
- Intuition:
 - Consider increase *I*^{*} proportionately.
 - Marginal cost: IC'(I).
 - Marginal gain: decrease waiting time proportionately $\implies \rho V(\mu) + C(I)$.
- A refinement of Moscarini and Smith 2001:
 - In a Gaussian learning model, σ_t controls both precision and intensity.
 - The monotonicity is associated with intensity.



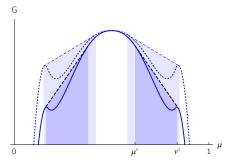
- Value-precision anti-monotonicity.
 - Prior μ and optimal posterior ν are on the boundary of a *concavified region*.



- Value-precision anti-monotonicity.
 - Prior μ and optimal posterior ν are on the boundary of a *concavified region*.
 - Higher $V(\mu) \Longrightarrow$ larger I and $\lambda \Longrightarrow$ more concave G.



- Value-precision anti-monotonicity.
 - Prior μ and optimal posterior ν are on the boundary of a *concavified region*.
 - Higher $V(\mu) \Longrightarrow$ larger I and $\lambda \Longrightarrow$ more concave G.
 - μ and ν get closer lower precision.



- Value-precision anti-monotonicity.
 - Prior μ and optimal posterior ν are on the boundary of a *concavified region*.
 - Higher $V(\mu) \Longrightarrow$ larger I and $\lambda \Longrightarrow$ more concave G.
 - μ and ν get closer lower precision.
- Intuition:
 - Marginal rate of substitution of presision and frequency.
 - Higher continuation value \implies lose more from waiting \implies frequency is more prefered.

Key trade-offs: Poisson-Gaussian trade-off

• Consider the optimal Gaussian signal:

$$\sup_{\sigma} \frac{1}{2} \sigma^2 V''(\mu) - C\left(-\frac{1}{2} \sigma^2 H''(\mu)\right)$$
$$\implies \text{FOC:} V''(\mu) + \lambda H''(\mu) = 0$$

Key trade-offs: Poisson-Gaussian trade-off

• Consider the optimal Gaussian signal:

$$\sup_{\sigma} \frac{1}{2} \sigma^2 V''(\mu) - C\left(-\frac{1}{2} \sigma^2 H''(\mu)\right)$$
$$\implies \text{FOC:} V''(\mu) + \lambda H''(\mu) = 0$$

• If Gaussian signal is optimal, then:

$$\begin{cases} G(\nu) - G(\mu) - G'(\mu)(\nu - \mu) \le 0\\ G''(\mu) = 0 \end{cases} \implies \nu^* \to \mu$$

Key trade-offs: Poisson-Gaussian trade-off

• Consider the optimal Gaussian signal:

$$\sup_{\sigma} \frac{1}{2} \sigma^2 V''(\mu) - C\left(-\frac{1}{2} \sigma^2 H''(\mu)\right)$$
$$\implies \text{FOC:} V''(\mu) + \lambda H''(\mu) = 0$$

• If Gaussian signal is optimal, then:

$$\begin{cases} G(\nu) - G(\mu) - G'(\mu)(\nu - \mu) \le 0\\ G''(\mu) = 0 \end{cases} \implies \nu^* \to \mu$$

Intuition:

Key trade-offs: Poisson-Gaussian trade-off

• Consider the optimal Gaussian signal:

$$\sup_{\sigma} \frac{1}{2} \sigma^{2} V''(\mu) - C\left(-\frac{1}{2} \sigma^{2} H''(\mu)\right)$$

$$\Rightarrow FOC: V''(\mu) + \lambda H''(\mu) = 0$$

• If Gaussian signal is optimal, then:

$$\begin{cases} G(\nu) - G(\mu) - G'(\mu)(\nu - \mu) \le 0\\ G''(\mu) = 0 \end{cases} \implies \nu^* \to \mu$$

- Intuition:
 - Gaussian signal is a special kind of Poisson signal: infinitely high frequency, very low precision.

_

Key trade-offs: Poisson-Gaussian trade-off

• Consider the optimal Gaussian signal:

$$\sup_{\sigma} \frac{1}{2} \sigma^2 V''(\mu) - C\left(-\frac{1}{2} \sigma^2 H''(\mu)\right)$$

$$\Rightarrow FOC: V''(\mu) + \lambda H''(\mu) = 0$$

If Gaussian signal is optimal, then:

$$\begin{cases} G(\nu) - G(\mu) - G'(\mu)(\nu - \mu) \le 0\\ G''(\mu) = 0 \end{cases} \implies \nu^* \to \mu$$

- Intuition:
 - Gaussian signal is a special kind of Poisson signal: infinitely high frequency, very low precision.
 - Suppose Gaussian signal is optimal at μ: more impatient ⇒ immediate stopping; more patient ⇒ Poisson signal is optimal.

Key trade-offs: Poisson-Gaussian trade-off

• Consider the optimal Gaussian signal:

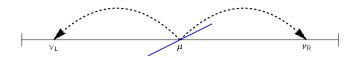
$$\sup_{\sigma} \frac{1}{2} \sigma^{2} V''(\mu) - C\left(-\frac{1}{2} \sigma^{2} H''(\mu)\right)$$

$$\Rightarrow FOC: V''(\mu) + \lambda H''(\mu) = 0$$

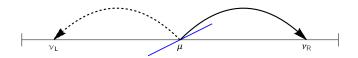
If Gaussian signal is optimal, then:

$$\begin{cases} G(\nu) - G(\mu) - G'(\mu)(\nu - \mu) \le 0\\ G''(\mu) = 0 \end{cases} \implies \nu^* \to \mu$$

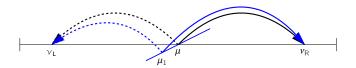
- Intuition:
 - Gaussian signal is a special kind of Poisson signal: infinitely high frequency, very low precision.
 - Suppose Gaussian signal is optimal at μ: more impatient ⇒ immediate stopping; more patient ⇒ Poisson signal is optimal.
 - Gaussian learning is optimal only for knife-edge cases.



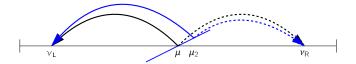
- Compare confirmatory signal and contradictory signal at μ :
 - ν_R : optimal confimatory posterior; ν_L : optimal contradictory posterior.



- Compare confirmatory signal and contradictory signal at μ :
 - ν_R : optimal confimatory posterior; ν_L : optimal contradictory posterior.
- Suppose seeks confirmatory signal: belief drifts to μ_1 .
 - $-\nu_R$ becomes further from prior $\implies \nu_R$ relatively less frequent.
 - $V(\mu_1)$ is lower \implies prefers frequency less. \bigcirc



- Compare confirmatory signal and contradictory signal at μ :
 - ν_R : optimal confimatory posterior; ν_L : optimal contradictory posterior.
- Suppose seeks confirmatory signal: belief drifts to μ_1 .
 - $-\nu_R$ becomes further from prior $\implies \nu_R$ relatively less frequent.
 - $V(\mu_1)$ is lower \implies prefers frequency less. \bigcirc



- Compare confirmatory signal and contradictory signal at μ :
 - ν_R : optimal confimatory posterior; ν_L : optimal contradictory posterior.
- Suppose seeks confirmatory signal: belief drifts to μ_1 .
 - $-\nu_R$ becomes further from prior $\implies \nu_R$ relatively less frequent.
 - $V(\mu_1)$ is lower \implies prefers frequency less. \bigcirc
- Suppose seeks contradictory signal: belief drifts to μ_2 .
 - ν_L becomes further from prior $\implies \nu_L$ relatively less frequent.
 - $V(\mu_1)$ is higher \implies prefers frequency more. \otimes

Proof of theorem 2

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^2 V''(\mu) - C\left(\rho(H(\mu) - H(\nu) + H'(\mu)(\nu - \mu)) - \frac{1}{2}\sigma^2 H''(\mu)\right) \right\}$$
(B)

Proof of theorem 2

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)) + \frac{1}{2} \sigma^2 V''(\mu) \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + H'(\mu)(\nu - \mu)) - \frac{1}{2} \sigma^2 H''(\mu) \right) \right\}$$

- Step 1: construct a solution with properties in theorem 2.
 - Identify μ^* .
 - Solve constrained problem: for $\mu \ge \mu^*$

$$\rho V(\mu) = \max_{\nu \ge \mu} I(\mu, \nu) \frac{F(\nu) - V(\mu) - V'(\mu)(\nu - \mu)}{H(\mu) - H(\nu) + H'(\mu)(\nu - \mu)} - C(I(\mu, \nu))$$

where $I(\mu, \nu) = C'^{-1} \left(\frac{F(\nu) - V(\mu) - V'(\mu)(\nu - \mu)}{H(\mu) - H'(\nu) + H'(\mu)(\nu - \mu)} \right)$

Construction

Proof of theorem 2

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)) + \frac{1}{2} \sigma^2 V''(\mu) \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + H'(\mu)(\nu - \mu)) - \frac{1}{2} \sigma^2 H''(\mu) \right) \right\}$$

- Step 1: construct a solution with properties in theorem 2.
 - Identify μ^* .
 - Solve constrained problem: for $\mu \ge \mu^*$

$$\rho V(\mu) = \max_{\substack{\nu \ge \mu \\ \nu \ge \mu}} I(\mu, \nu) \frac{F(\nu) - V(\mu) - V'(\mu)(\nu - \mu)}{H(\mu) - H(\nu) + H'(\mu)(\nu - \mu)} - C(I(\mu, \nu))$$

where $I(\mu, \nu) = C'^{-1} \left(\frac{F(\nu) - V(\mu) - V'(\mu)(\nu - \mu)}{H(\mu) - H'(\nu) + H'(\mu)(\nu - \mu)} \right)$

- Step 2: verify that $V(\mu)$ also solves full problem equation (B).
 - Replace $F(\nu)$ with $V(\nu)$.
 - Remove constraint $\nu \geq \mu$.
 - Add Gaussian signals.

Construction

Assumptions

- Economic assumption:
 - I_t = uncertainty reduction speed.
 - Exponential discounting $e^{-\rho\tau}$.
 - Convex cost C(I).

Assumptions

- Economic assumption:
 - I_t = uncertainty reduction speed.
 - Exponential discounting $e^{-\rho\tau}$.
 - Convex cost C(I).
- Restrictive assumption:
 - ||X|| = 2.
 - $\|A\| {<} \infty.$

Assumptions

- Economic assumption:
 - I_t = uncertainty reduction speed.
 - Exponential discounting $e^{-\rho\tau}$.
 - Convex cost C(I).
- Restrictive assumption:
 - ||X|| = 2.
 - $\|A\| {<} \infty.$
- Technical assumption:
 - $F(\mu) > 0.$
 - $H: \Delta X \mapsto \mathbb{R}^-$ is $C^{(2)}$ smooth.
 - $H''(\mu)$ is Lipschitz continuous and negative definite.
 - C is $C^{(2)}$ smooth.

Economic assumption: information measure

• Compare only Poisson and Gaussian learning.

Economic assumption: information measure

- Compare only Poisson and Gaussian learning.
- Generic information cost:

$$\rho V(\mu) = \max\left\{\rho F(\mu), \sup_{\rho,\nu,\sigma^2} \rho(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^2 V''(\mu)\right\}$$
(5)
s.t. $\rho J(\mu,\nu) + \kappa(\mu,\sigma) \leq \overline{l}$

Economic assumption: information measure

- Compare only Poisson and Gaussian learning.
- Generic information cost:

$$\rho V(\mu) = \max\left\{\rho F(\mu), \sup_{\rho,\nu,\sigma^2} p(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^2 V''(\mu)\right\}$$
(5)
s.t. $\rho J(\mu,\nu) + \kappa(\mu,\sigma) \leq \overline{l}$

Assumption 3

 $\begin{aligned} J &\in C^{(4)}(0,1)^2, \ J(\mu,\mu) = J'_{\nu}(\mu,\mu) = 0. \\ \kappa(\mu,\sigma) &= \frac{1}{2}\sigma^2 J''_{\nu\nu}(\mu,\mu) > 0. \end{aligned}$

Economic assumption: information measure

- Compare only Poisson and Gaussian learning.
- Generic information cost:

$$\rho V(\mu) = \max\left\{\rho F(\mu), \sup_{\rho,\nu,\sigma^2} p(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^2 V''(\mu)\right\}$$
(5)
s.t. $\rho J(\mu,\nu) + \kappa(\mu,\sigma) \leq \overline{l}$

Assumption 3

 $\begin{aligned} J &\in C^{(4)}(0,1)^2, \ J(\mu,\mu) = J'_{\nu}(\mu,\mu) = 0. \\ \kappa(\mu,\sigma) &= \frac{1}{2}\sigma^2 J''_{\nu\nu}(\mu,\mu) > 0. \end{aligned}$

Cost is continuous in signal process.

Economic assumption: information measure

- Compare only Poisson and Gaussian learning.
- Generic information cost:

$$\rho V(\mu) = \max\left\{\rho F(\mu), \sup_{\rho,\nu,\sigma^2} p(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^2 V''(\mu)\right\}$$
(5)
s.t. $\rho J(\mu,\nu) + \kappa(\mu,\sigma) \leq \overline{l}$

Assumption 3

$$J \in C^{(4)}(0,1)^2, \ J(\mu,\mu) = J'_{\nu}(\mu,\mu) = 0.$$

$$\kappa(\mu,\sigma) = \frac{1}{2}\sigma^2 J''_{\nu\nu}(\mu,\mu) > 0.$$

• Cost is continuous in signal process.

$$- pJ(\mu,\nu) = \frac{1}{2}pJ_{\nu\nu}''(\mu,\mu)(\nu-\mu)^2 + O(\nu-\mu)^3.$$

Economic assumption: information measure

- Compare only Poisson and Gaussian learning.
- Generic information cost:

$$\rho V(\mu) = \max\left\{\rho F(\mu), \sup_{\rho,\nu,\sigma^2} p(V(\nu) - V(\mu) - V'(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^2 V''(\mu)\right\}$$
(5)
s.t. $\rho J(\mu,\nu) + \kappa(\mu,\sigma) \leq \overline{l}$

Assumption 3

$$J \in C^{(4)}(0,1)^2, \ J(\mu,\mu) = J'_{\nu}(\mu,\mu) = 0.$$

$$\kappa(\mu,\sigma) = \frac{1}{2}\sigma^2 J''_{\nu\nu}(\mu,\mu) > 0.$$

• Cost is continuous in signal process.

$$- pJ(\mu,\nu) = \frac{1}{2} p J_{\nu\nu}''(\mu,\mu)(\nu-\mu)^2 + O(\nu-\mu)^3.$$

- Let $\sigma^2 = p(\nu - \mu)^2$: flow variance, then $pJ(\mu, \nu) \sim \kappa(\mu, \sigma)$ when $\nu \rightarrow \mu$.

Economic assumption: information measure

Theorem 3

Given Assumption 3, suppose $V \in C^{(3)}(0,1)$ solves equation (5). Let $L(\mu)$ be defined by:

$$L(\mu) = \frac{\rho}{\bar{l}} J_{\nu\nu\nu}^{\prime\prime}(\mu,\mu)^2 - \frac{2J_{\nu\nu\mu}^{(3)}(\mu,\mu)^2 + J_{\nu\nu\nu}^{(3)}(\mu,\mu)J_{\nu\nu\mu}^{(3)}(\mu,\mu)}{J_{\nu\nu}^{\prime\prime}(\mu,\mu)} + J_{\nu\nu\nu\mu}^{(4)}(\mu,\mu) + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu)$$

Economic assumption: information measure

Theorem 3

Given Assumption 3, suppose $V \in C^{(3)}(0,1)$ solves equation (5). Let $L(\mu)$ be defined by:

$$L(\mu) = \frac{\rho}{l} J_{\nu\nu\nu}''(\mu,\mu)^2 - \frac{2J_{\nu\nu\mu}^{(3)}(\mu,\mu)^2 + J_{\nu\nu\nu}^{(3)}(\mu,\mu)J_{\nu\nu\mu}^{(3)}(\mu,\mu)}{J_{\nu\nu}''(\mu,\mu)} + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu) + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu)$$

hen set $\left\{ \rho V(\mu) = \overline{l} \frac{V''(\mu)}{J_{\nu\nu}'(\mu,\mu)} \middle| \mu \in E, \ L(\mu) \neq 0 \right\}$ is of zero measure.

Economic assumption: information measure

Theorem 3

Т

Given Assumption 3, suppose $V \in C^{(3)}(0,1)$ solves equation (5). Let $L(\mu)$ be defined by:

$$L(\mu) = \frac{\rho}{l} J_{\nu\nu\nu}''(\mu,\mu)^2 - \frac{2J_{\nu\nu\mu}^{(3)}(\mu,\mu)^2 + J_{\nu\nu\nu}^{(3)}(\mu,\mu)J_{\nu\nu\mu}^{(3)}(\mu,\mu)}{J_{\nu\nu}''(\mu,\mu)} + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu) + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu)$$

hen set $\left\{ \rho V(\mu) = \overline{I} \frac{V''(\mu)}{J_{\nu\nu}'(\mu,\mu)} \middle| \mu \in E, \ L(\mu) \neq 0 \right\}$ is of zero measure.

• Sufficient conditions for $L \neq 0$:

Economic assumption: information measure

Theorem 3

Given Assumption 3, suppose $V \in C^{(3)}(0,1)$ solves equation (5). Let $L(\mu)$ be defined by:

$$L(\mu) = \frac{\rho}{\bar{l}} J_{\nu\nu}''(\mu,\mu)^2 - \frac{2J_{\nu\nu\mu}^{(3)}(\mu,\mu)^2 + J_{\nu\nu\nu}^{(3)}(\mu,\mu)J_{\nu\nu\mu}^{(3)}(\mu,\mu)}{J_{\nu\nu}''(\mu,\mu)} + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu) + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu)$$

Then set $\left\{ \rho V(\mu) = \bar{l} \frac{V_{\nu\mu}''(\mu)}{J_{\nu\nu}''(\mu,\mu)} \middle| \mu \in E, \ L(\mu) \neq 0 \right\}$ is of zero measure.

- Sufficient conditions for $L \neq 0$:
 - − $J_{\nu\nu\mu}\approx 0$ (*J* is sufficiently close to Assumption 1 locally).

Economic assumption: information measure

Theorem 3

Given Assumption 3, suppose $V \in C^{(3)}(0,1)$ solves equation (5). Let $L(\mu)$ be defined by:

$$L(\mu) = \frac{\rho}{\bar{l}} J_{\nu\nu}''(\mu,\mu)^2 - \frac{2J_{\nu\nu\mu}^{(3)}(\mu,\mu)^2 + J_{\nu\nu\nu}^{(3)}(\mu,\mu)J_{\nu\nu\mu}^{(3)}(\mu,\mu)}{J_{\nu\nu}''(\mu,\mu)} + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu) + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu)$$

Then set $\left\{ \rho V(\mu) = \bar{l} \frac{V''(\mu)}{J_{\nu\nu}'(\mu,\mu)} \middle| \mu \in E, \ L(\mu) \neq 0 \right\}$ is of zero measure.

- Sufficient conditions for $L \neq 0$:
 - − $J_{\nu\nu\mu}\approx 0$ (*J* is sufficiently close to Assumption 1 locally).
 - $-\frac{\rho}{i}$ sufficiently high (the DM is sufficiently impatient).

Economic assumption: information measure

Theorem 3

$$L(\mu) = \frac{\rho}{\bar{i}} J_{\nu\nu\nu}''(\mu,\mu)^2 - \frac{2J_{\nu\nu\mu}^{(3)}(\mu,\mu)^2 + J_{\nu\nu\nu}^{(3)}(\mu,\mu)J_{\nu\nu\mu}^{(3)}(\mu,\mu)}{J_{\nu\nu}''(\mu,\mu)} + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu) + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu)$$

Then set $\left\{ \rho V(\mu) = \bar{i} \frac{V''(\mu)}{J_{\nu\nu}'(\mu,\mu)} \middle| \mu \in E, \ L(\mu) \neq 0 \right\}$ is of zero measure.

- Sufficient conditions for $L \neq 0$:
 - − $J_{\nu\nu\mu}\approx 0$ (*J* is sufficiently close to Assumption 1 locally).
 - $-\frac{\rho}{i}$ sufficiently high (the DM is sufficiently impatient).
- Special cost structures that support Gaussian learning?

Economic assumption: information measure

Theorem 3

$$L(\mu) = \frac{\rho}{\bar{i}} J_{\nu\nu}''(\mu,\mu)^2 - \frac{2J_{\nu\nu\mu}^{(3)}(\mu,\mu)^2 + J_{\nu\nu\nu}^{(3)}(\mu,\mu)J_{\nu\nu\mu}^{(3)}(\mu,\mu)}{J_{\nu\nu}''(\mu,\mu)} + J_{\nu\nu\nu\mu}^{(4)}(\mu,\mu) + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu)$$

Then set $\left\{ \rho V(\mu) = \bar{i} \frac{V''(\mu)}{J_{\nu\nu}'(\mu,\mu)} \middle| \mu \in E, \ L(\mu) \neq 0 \right\}$ is of zero measure.

- Sufficient conditions for $L \neq 0$:
 - $J_{\nu\nu\mu} \approx 0$ (J is sufficiently close to Assumption 1 locally).
 - $-\frac{\rho}{\bar{i}}$ sufficiently high (the DM is sufficiently impatient).
- Special cost structures that support Gaussian learning?
 - $\forall F, \frac{\rho}{l}$ and κ , exists a (unique) such $J_0(\mu, \nu)$. Construction

Economic assumption: information measure

Theorem 3

$$L(\mu) = \frac{\rho}{\bar{l}} J_{\nu\nu}''(\mu,\mu)^2 - \frac{2J_{\nu\nu\mu}^{(3)}(\mu,\mu)^2 + J_{\nu\nu\nu}^{(3)}(\mu,\mu)J_{\nu\nu\mu}^{(3)}(\mu,\mu)}{J_{\nu\nu}''(\mu,\mu)} + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu) + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu)$$

Then set $\left\{ \rho V(\mu) = \overline{l} \frac{V''(\mu)}{J_{\nu\nu}'(\mu,\mu)} \middle| \mu \in E, \ L(\mu) \neq 0 \right\}$ is of zero measure.

- Sufficient conditions for $L \neq 0$:
 - $J_{\nu\nu\mu} \approx 0$ (J is sufficiently close to Assumption 1 locally).
 - $-\frac{\rho}{\bar{i}}$ sufficiently high (the DM is sufficiently impatient).
- Special cost structures that support Gaussian learning?
 - $\forall F, \frac{\rho}{l}$ and κ , exists a (unique) such $J_0(\mu, \nu)$. \blacktriangleright Construction
- Key assumptions for optimality of Poisson signal:

Economic assumption: information measure

Theorem 3

$$L(\mu) = \frac{\rho}{\bar{l}} J_{\nu\nu}''(\mu,\mu)^2 - \frac{2J_{\nu\nu\mu}^{(3)}(\mu,\mu)^2 + J_{\nu\nu\nu}^{(3)}(\mu,\mu)J_{\nu\nu\mu}^{(3)}(\mu,\mu)}{J_{\nu\nu}''(\mu,\mu)} + J_{\nu\nu\nu\mu}^{(4)}(\mu,\mu) + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu)$$

Then set $\left\{ \rho V(\mu) = \overline{l} \frac{V''(\mu)}{J_{\nu\nu}'(\mu,\mu)} \middle| \mu \in E, \ L(\mu) \neq 0 \right\}$ is of zero measure.

- Sufficient conditions for $L \neq 0$:
 - $J_{\nu\nu\mu} \approx 0$ (J is sufficiently close to Assumption 1 locally).
 - $-\frac{\rho}{\bar{i}}$ sufficiently high (the DM is sufficiently impatient).
- Special cost structures that support Gaussian learning?
 - $\forall F, \frac{\rho}{l}$ and κ , exists a (unique) such $J_0(\mu, \nu)$. \blacktriangleright Construction
- Key assumptions for optimality of Poisson signal:
 - Continuity of cost function in different signal forms.

Economic assumption: information measure

Theorem 3

$$L(\mu) = \frac{\rho}{\bar{l}} J_{\nu\nu}''(\mu,\mu)^2 - \frac{2J_{\nu\nu\mu}^{(3)}(\mu,\mu)^2 + J_{\nu\nu\nu}^{(3)}(\mu,\mu)J_{\nu\nu\mu}^{(3)}(\mu,\mu)}{J_{\nu\nu}''(\mu,\mu)} + J_{\nu\nu\nu\mu}^{(4)}(\mu,\mu) + J_{\nu\nu\mu\mu}^{(4)}(\mu,\mu)$$

Then set $\left\{ \rho V(\mu) = \overline{l} \frac{V''(\mu)}{J_{\nu\nu}'(\mu,\mu)} \middle| \mu \in E, \ L(\mu) \neq 0 \right\}$ is of zero measure.

- Sufficient conditions for $L \neq 0$:
 - $J_{\nu\nu\mu} \approx 0$ (J is sufficiently close to Assumption 1 locally).
 - $-\frac{\rho}{\bar{i}}$ sufficiently high (the DM is sufficiently impatient).
- Special cost structures that support Gaussian learning?
 - $\forall F, \frac{\rho}{l}$ and κ , exists a (unique) such $J_0(\mu, \nu)$. \blacktriangleright Construction
- Key assumptions for optimality of Poisson signal:
 - Continuity of cost function in different signal forms.
 - Discounting.

Economic assumption: discounting

• What is the role of discounting?

Economic assumption: discounting

- What is the role of discounting?
 - Discounting is the key factor determining precision-frequency trade-off.

Economic assumption: discounting

- What is the role of discounting?
 - Discounting is the key factor determining precision-frequency trade-off.
 - What if cost of waiting is value-independent?

Economic assumption: discounting

- What is the role of discounting?
 - Discounting is the key factor determining precision-frequency trade-off.
 - What if cost of waiting is value-independent?

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E \left[F(\mu_\tau) - m\tau - \int_0^\tau C(I_t) dt \right]$$
(6)

Economic assumption: discounting

- What is the role of discounting?
 - Discounting is the key factor determining precision-frequency trade-off.
 - What if cost of waiting is value-independent?

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E \left[F(\mu_\tau) - m\tau - \int_0^\tau C(I_t) dt \right]$$
(6)

Theorem 4

Given Assumption 1 and Assumption 2, $V(\mu)$ solves equation (6) if and only if:

$$V(\mu) = \sup_{P \in \Delta^{2}(X), \lambda > 0} E_{P}[F(\nu)] - \frac{m + C(\lambda)}{\lambda} E_{P}[H(\mu) - H(\nu)]$$

Economic assumption: discounting

- What is the role of discounting?
 - Discounting is the key factor determining precision-frequency trade-off.
 - What if cost of waiting is value-independent?

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E \left[F(\mu_\tau) - m\tau - \int_0^\tau C(I_t) dt \right]$$
(6)

Theorem 4

Given Assumption 1 and Assumption 2, $V(\mu)$ solves equation (6) if and only if:

$$V(\mu) = \sup_{P \in \Delta^2(X), \lambda > 0} E_P[F(\nu)] - \frac{m + C(\lambda)}{\lambda} E_P[H(\mu) - H(\nu)]$$

and any $\langle \mu_t \rangle$ s.t. $\mu_\infty {\sim} P^*,~ \textit{I}_t {=} \lambda^*$ is optimal.

• Fixed waiting cost \implies indifference. (Hébert and Woodford 2016)

Economic assumption: discounting

- What is the role of discounting?
 - Discounting is the key factor determining precision-frequency trade-off.
 - What if cost of waiting is value-independent?

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E \left[F(\mu_\tau) - m\tau - \int_0^\tau C(I_t) dt \right]$$
(6)

Theorem 4

Given Assumption 1 and Assumption 2, $V(\mu)$ solves equation (6) if and only if:

$$V(\mu) = \sup_{P \in \Delta^2(X), \lambda > 0} E_P[F(\nu)] - \frac{m + C(\lambda)}{\lambda} E_P[H(\mu) - H(\nu)]$$

- Fixed waiting cost \implies indifference. (Hébert and Woodford 2016)
- More general analysis in Zhong 2018:

Economic assumption: discounting

- What is the role of discounting?
 - Discounting is the key factor determining precision-frequency trade-off.
 - What if cost of waiting is value-independent?

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E \left[F(\mu_\tau) - m\tau - \int_0^\tau C(I_t) dt \right]$$
(6)

Theorem 4

Given Assumption 1 and Assumption 2, $V(\mu)$ solves equation (6) if and only if:

$$V(\mu) = \sup_{P \in \Delta^2(X), \lambda > 0} E_P[F(\nu)] - \frac{m + C(\lambda)}{\lambda} E_P[H(\mu) - H(\nu)]$$

- Fixed waiting cost \implies indifference. (Hébert and Woodford 2016)
- More general analysis in Zhong 2018:
 - Decision time distributions are ranked by MPS order.

Economic assumption: discounting

- What is the role of discounting?
 - Discounting is the key factor determining precision-frequency trade-off.
 - What if cost of waiting is value-independent?

$$V(\mu) = \sup_{\langle \mu_t \rangle \in \mathbb{M}, \tau} E \left[F(\mu_\tau) - m\tau - \int_0^\tau C(I_t) dt \right]$$
(6)

Theorem 4

Given Assumption 1 and Assumption 2, $V(\mu)$ solves equation (6) if and only if:

$$V(\mu) = \sup_{P \in \Delta^2(X), \lambda > 0} E_P[F(\nu)] - \frac{m + C(\lambda)}{\lambda} E_P[H(\mu) - H(\nu)]$$

- Fixed waiting cost \implies indifference. (Hébert and Woodford 2016)
- More general analysis in Zhong 2018:
 - Decision time distributions are ranked by MPS order.
 - Poisson learning's decision time is MPS of any other strategies.

Economic assumptions: convex C

• What is the role of convex cost?

Economic assumptions: convex C

- What is the role of convex cost?
 - Smoothing of information over time.

Economic assumptions: convex C

- What is the role of convex cost?
 - Smoothing of information over time.
 - What if C(I) is linear?

Economic assumptions: convex C

- What is the role of convex cost?
 - Smoothing of information over time.
 - What if C(I) is linear?

Theorem 5

Given Assumption 1 and $C(I) = \lambda I$, $V(\mu)$ solves equation (P) if and only if:

$$V(\mu) = \sup_{P \in \Delta^2(X)} E_P[F(\nu)] - \lambda E_P[H(\mu) - H(\nu)]$$
⁽⁷⁾

Economic assumptions: convex C

- What is the role of convex cost?
 - Smoothing of information over time.
 - What if C(I) is linear?

Theorem 5

Given Assumption 1 and $C(I) = \lambda I$, $V(\mu)$ solves equation (P) if and only if:

$$V(\mu) = \sup_{P \in \Delta^2(X)} E_P[F(\nu)] - \lambda E_P[H(\mu) - H(\nu)]$$
(7)

• Optimal strategy is to learn immediately (Steiner, Stewart, and Matejka 2016).

Convergence of policy

- equation (B) is proved by approximation using equation (B-dt).
- Can we make any prediction of behavior in discrete time?

Convergence of policy

- equation (B) is proved by approximation using equation (B-dt).
- Can we make any prediction of behavior in discrete time?

Definition 1 (Lévy metric)

Let $F,G:[0,1] \rightarrow [0,1]$ be two correspondences. Define the graph distance between them to be:

$$L(F,G) := d_H(graph(F),graph(G))$$

where d_H is Hausdorff distance in \mathbb{R}^2 .

Convergence of policy

- equation (B) is proved by approximation using equation (B-dt).
- Can we make any prediction of behavior in discrete time?

Definition 1 (Lévy metric)

Let $F,G:[0,1] \rightarrow [0,1]$ be two correspondences. Define the graph distance between them to be:

$$L(F,G) := d_H(graph(F),graph(G))$$

where d_H is Hausdorff distance in \mathbb{R}^2 .

Theorem 6

Let $N(\mu) = {\mu} \cup \nu(\mu)$. Let $N_{dt}(\mu)$ be support of optimal posteriors solving equation (B-dt). Then:

$$\lim_{dt\to 0} L(N, N_{dt}) = 0$$

Convergence of policy

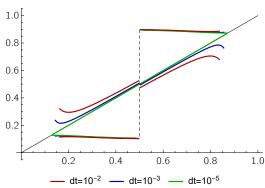


Figure: Convergence of policy w.r.t. dt

Other extensions: continuum of actions

Infinite action space?

Other extensions: continuum of actions

- Infinite action space?
 - Discretize action space can approximate both value and policy function.

Other extensions: continuum of actions

- Infinite action space?
 - Discretize action space can approximate both value and policy function.

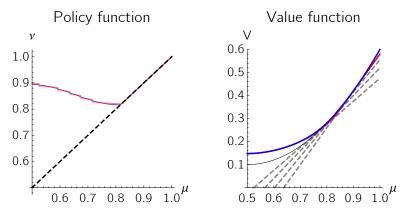


Figure: Approximation of policy function and value function.

Other extensions: continuum of actions

- Infinite action space?
 - Discretize action space can approximate both value and policy function.

Theorem 7 (Convergence of policy function)

Let $\{F_n\}$ be a set of piecewise linear functions on [0,1] satisfying:

1.
$$\|F_n - F\|_{\infty} \rightarrow 0;$$

2.
$$\forall \mu \in [0,1]$$
, $\lim F'_n(\mu) = F'(\mu)$.

Define $\mathcal{V}_{dt}(F_n)$ as the solution to equation (B-dt). Define functional $\mathcal{V}(F) = \lim_{dt\to 0} \mathcal{V}_{dt}(F)$. Then:

- 1. $\|\mathcal{V}(F) \mathcal{V}(F_n)\| \rightarrow 0$.
- 2. $\mathcal{V}(F)$ solves equation (B).
- ∀µ s.t. V(µ)>F(µ), let ν_n be maximizer of V(F_n) s.t. ν=lim_{n→∞}ν_n exists, then ν achieves V(F) at µ.

Other extensions: larger state space

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \max_{\nu, \rho, \Sigma} \rho(V(\nu) - V(\mu) - \nabla V(\mu) \cdot (\nu - \mu)) + \sigma^T H V(\mu) \sigma \right\}$$

s.t.
$$-\rho(H(\nu) - H(\mu) - \nabla H(\mu) \cdot (\nu - \mu)) - \sigma^T H H(\mu) \sigma \le c$$
(8)

Other extensions: larger state space

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \max_{\nu, \rho, \Sigma} \rho(V(\nu) - V(\mu) - \nabla V(\mu) \cdot (\nu - \mu)) + \sigma^T H V(\mu) \sigma \right\}$$

s.t.
$$-\rho(H(\nu) - H(\mu) - \nabla H(\mu) \cdot (\nu - \mu)) - \sigma^T H H(\mu) \sigma \le c$$
(8)

Theorem 8

Let $E = \{\mu \in \Delta(X) | V(\mu) > F(\mu)\}$ be experimentation region. Suppose there exists $C^{(2)}$ smooth $V(\mu)$ on E solving equation (8), then \exists policy function $\nu: E \mapsto \Delta(X)$ s.t.

$$\rho V(\mu) = -c \frac{F(\nu(\mu)) - V(\mu) - \nabla V(\mu)(\nu(\mu) - \mu)}{H(\nu(\mu)) - H(\mu) - \nabla H(\mu)(\nu(\mu) - \mu)}$$

Other extensions: larger state space

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \max_{\nu, \rho, \Sigma} \rho(V(\nu) - V(\mu) - \nabla V(\mu) \cdot (\nu - \mu)) + \sigma^T H V(\mu) \sigma \right\}$$

s.t.
$$-\rho(H(\nu) - H(\mu) - \nabla H(\mu) \cdot (\nu - \mu)) - \sigma^T H H(\mu) \sigma \le c$$
(8)

Theorem 8

Let $E = \{\mu \in \Delta(X) | V(\mu) > F(\mu)\}$ be experimentation region. Suppose there exists $C^{(2)}$ smooth $V(\mu)$ on E solving equation (8), then \exists policy function $\nu: E \mapsto \Delta(X)$ s.t.

$$\rho V(\mu) = -c \frac{F(\nu(\mu)) - V(\mu) - \nabla V(\mu)(\nu(\mu) - \mu)}{H(\nu(\mu)) - H(\mu) - \nabla H(\mu)(\nu(\mu) - \mu)}$$

where ν satisfies the following properties:

Other extensions: larger state space

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \max_{\nu, \rho, \Sigma} \rho(V(\nu) - V(\mu) - \nabla V(\mu) \cdot (\nu - \mu)) + \sigma^T H V(\mu) \sigma \right\}$$

s.t.
$$-\rho(H(\nu) - H(\mu) - \nabla H(\mu) \cdot (\nu - \mu)) - \sigma^T H H(\mu) \sigma \le c$$
(8)

Theorem 8

Let $E = \{\mu \in \Delta(X) | V(\mu) > F(\mu)\}$ be experimentation region. Suppose there exists $C^{(2)}$ smooth $V(\mu)$ on E solving equation (8), then \exists policy function $\nu: E \mapsto \Delta(X)$ s.t.

$$\rho V(\mu) = -c \frac{F(\nu(\mu)) - V(\mu) - \nabla V(\mu)(\nu(\mu) - \mu)}{H(\nu(\mu)) - H(\mu) - \nabla H(\mu)(\nu(\mu) - \mu)}$$

where ν satisfies the following properties:

- 1. Poisson learning: $\rho V(\mu) \ge \sup_{\sigma} C \frac{\sigma^T H V(\mu) \sigma}{\sigma^T H H(\mu) \sigma}$.
- 2. Direction: $D_{\nu-\mu}V(\mu) \ge 0$ and $F(\nu) > V(\mu)$.
- 3. Precision: $D_{\mu-\nu}\nu(\mu) \cdot HH(\nu)(\nu-\mu) \leq 0$.
- 4. Stopping time: $\nu(\mu) \in E^{C}$.

There exists a nowhere dense set K s.t. strict inequality holds on $E \setminus K$ in property 1,3,4.

Other extensions: larger state space

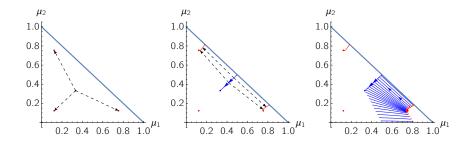


Figure: Optimal Policy of 3X3 problem.

Radical innovation

What kind of firm innovates "more"?

Radical innovation

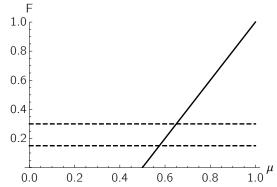
- What kind of firm innovates "more"?
 - Firm with high safe option (H) v.s. firm with low safe option (L).

Radical innovation

- What kind of firm innovates "more"?
 - Firm with high safe option (H) v.s. firm with low safe option (L).
 - Both firms have identical risky option.

Radical innovation

- What kind of firm innovates "more"?
 - Firm with high safe option (H) v.s. firm with low safe option (L).
 - Both firms have identical risky option.



- What kind of firm innovates "more"?
 - Firm with high safe option (H) v.s. firm with low safe option (L).
 - Both firms have identical risky option.
 - Obviously, H invests more in R&D (value-intensity monotonicity).

- What kind of firm innovates "more"?
 - Firm with high safe option (H) v.s. firm with low safe option (L).
 - Both firms have identical risky option.
 - Obviously, H invests more in R&D (value-intensity monotonicity).
- Which firm innovates more "radically"? (Holding intensity the same)

- What kind of firm innovates "more"?
 - Firm with high safe option (H) v.s. firm with low safe option (L).
 - Both firms have identical risky option.
 - Obviously, H invests more in R&D (value-intensity monotonicity).
- Which firm innovates more "radically"? (Holding intensity the same)
 - Radicality: measured by $|\nu(\mu) \mu|$ for each μ .

- What kind of firm innovates "more"?
 - Firm with high safe option (H) v.s. firm with low safe option (L).
 - Both firms have identical risky option.
 - Obviously, H invests more in R&D (value-intensity monotonicity).
- Which firm innovates more "radically"? (Holding intensity the same)
 - Radicality: measured by $|\nu(\mu)-\mu|$ for each μ .
 - Competing incentives:

- What kind of firm innovates "more"?
 - Firm with high safe option (H) v.s. firm with low safe option (L).
 - Both firms have identical risky option.
 - Obviously, H invests more in R&D (value-intensity monotonicity).
- Which firm innovates more "radically"? (Holding intensity the same)
 - Radicality: measured by $|\nu(\mu)-\mu|$ for each μ .
 - Competing incentives:
 - · Impatience effect: H has higher continuation value \rightarrow prefer signal precision less.

- What kind of firm innovates "more"?
 - Firm with high safe option (H) v.s. firm with low safe option (L).
 - Both firms have identical risky option.
 - Obviously, H invests more in R&D (value-intensity monotonicity).
- Which firm innovates more "radically"? (Holding intensity the same)
 - Radicality: measured by $|\nu(\mu)-\mu|$ for each μ .
 - Competing incentives:
 - · Impatience effect: H has higher continuation value \rightarrow prefer signal precision less.
 - · *Threshold effect:* H has higher threshold for risky option \rightarrow low precision signal is less useful.

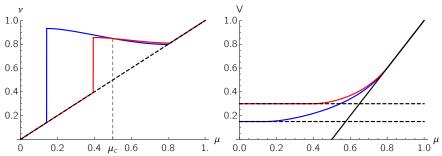
Radical innovation

- What kind of firm innovates "more"?
 - Firm with high safe option (H) v.s. firm with low safe option (L).
 - Both firms have identical risky option.
 - Obviously, H invests more in R&D (value-intensity monotonicity).
- Which firm innovates more "radically"? (Holding intensity the same)
 - Radicality: measured by $|\nu(\mu)-\mu|$ for each μ .
 - Competing incentives:
 - · Impatience effect: H has higher continuation value \rightarrow prefer signal precision less.
 - · Threshold effect: H has higher threshold for risky option \rightarrow low precision signal is less useful.

Proposition 1

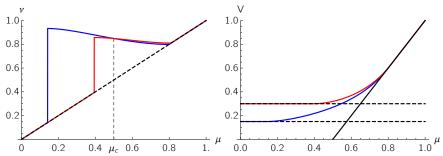
 $\exists \mu_c \text{ s.t. } \forall \mu \in E, \text{ firm } H \text{ innovates more radically } iff \ \mu > \mu_c.$ Moreover, $E \cap (0, \mu_c) \neq \emptyset$ and $E \cap (\mu_c, 1) \neq \emptyset$.

- Which firm innovates more "radically"?
 - Competing incentives:
 - · Impatience effect: H has higher continuation value \rightarrow prefer signal precision less.
 - Threshold effect: H has higher threshold for risky option \rightarrow low precision signal is less useful.



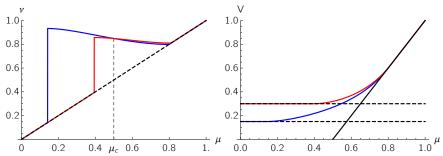
Radical innovation

- Which firm innovates more "radically"?
 - Competing incentives:
 - · Impatience effect: H has higher continuation value \rightarrow prefer signal precision less.
 - Threshold effect: H has higher threshold for risky option \rightarrow low precision signal is less useful.



– The first effect decreases with μ , as value functions get closer.

- Which firm innovates more "radically"?
 - Competing incentives:
 - · Impatience effect: H has higher continuation value \rightarrow prefer signal precision less.
 - · Threshold effect: H has higher threshold for risky option \rightarrow low precision signal is less useful.



- The first effect decreases with μ , as value functions get closer.
- The second effect increases with μ , as adopting the risky options gets more likely.

Response time

▶ Neuroscience choice experiments: response times (RT) — Choice accuracy

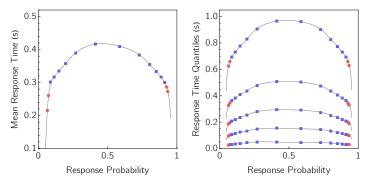
- ▶ Neuroscience choice experiments: response times (RT) Choice accuracy
 - Rapid decision making (<1s), low cognitivity level.

- ▶ Neuroscience choice experiments: response times (RT) Choice accuracy
 - Rapid decision making (<1s), low cognitivity level.
 - Fitted by drift-diffusion models (DDM). (Ratcliff et al. 2016)

- ▶ Neuroscience choice experiments: response times (RT) Choice accuracy
 - Rapid decision making (<1s), low cognitivity level.
 - Fitted by drift-diffusion models (DDM). (Ratcliff et al. 2016)
- ▶ Puzzle: non-monotonic RT-accuracy relation. (Luce et al. 1986)

- ▶ Neuroscience choice experiments: response times (RT) Choice accuracy
 - Rapid decision making (<1s), low cognitivity level.
 - Fitted by drift-diffusion models (DDM). (Ratcliff et al. 2016)
- ▶ Puzzle: non-monotonic RT-accuracy relation. (Luce et al. 1986)
 - Low difficulty fast error; high difficulty slow error.

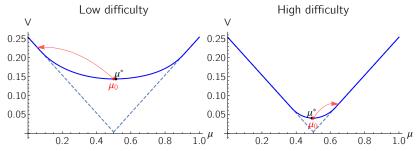
- ▶ Neuroscience choice experiments: response times (RT) Choice accuracy
 - Rapid decision making (<1s), low cognitivity level.
 - Fitted by drift-diffusion models (DDM). (Ratcliff et al. 2016)
- ▶ Puzzle: non-monotonic RT-accuracy relation. (Luce et al. 1986)
 - Low difficulty fast error; high difficulty slow error.



- ▶ Neuroscience choice experiments: response times (RT) Choice accuracy
 - Rapid decision making (<1s), low cognitivity level.
 - Fitted by drift-diffusion models (DDM). (Ratcliff et al. 2016)
- ▶ Puzzle: non-monotonic RT-accuracy relation. (Luce et al. 1986)
 - Low difficulty fast error; high difficulty slow error.
 - Random drift & starting point v.s. Varying boundary

- ▶ Neuroscience choice experiments: response times (RT) Choice accuracy
 - Rapid decision making (<1s), low cognitivity level.
 - Fitted by drift-diffusion models (DDM). (Ratcliff et al. 2016)
- ▶ Puzzle: non-monotonic RT-accuracy relation. (Luce et al. 1986)
 - Low difficulty fast error; high difficulty slow error.
 - Random drift & starting point v.s. Varying boundary
 - The flexible learning model: fit the shape of measure $H(\mu)$.

- ▶ Neuroscience choice experiments: response times (RT) Choice accuracy
 - Rapid decision making (<1s), low cognitivity level.
 - Fitted by drift-diffusion models (DDM). (Ratcliff et al. 2016)
- ▶ Puzzle: non-monotonic RT-accuracy relation. (Luce et al. 1986)
 - Low difficulty fast error; high difficulty slow error.
 - Random drift & starting point v.s. Varying boundary
 - The flexible learning model: fit the shape of measure $H(\mu)$.



Response time

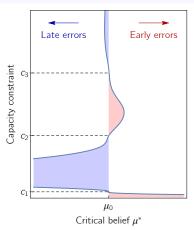
Proposition 2

Suppose |A|=2, $H_0(\mu)$ and $F(\mu)$ are symmetric around $\mu_0=0.5$ and satisfy Assumption 3. \forall partition of \mathbb{R}^+ : $\{0, c_1..., c_K, \infty\}$, there exists $H(\mu)$ satisfying Assumption 3 such that then sign of $\mu^* - \mu_0$ alternates on each partition.

Response time

Proposition 2

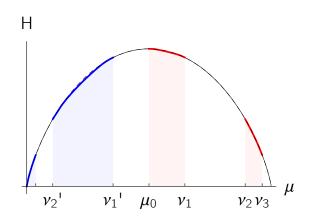
Suppose |A|=2, $H_0(\mu)$ and $F(\mu)$ are symmetric around $\mu_0=0.5$ and satisfy Assumption 3. \forall partition of \mathbb{R}^+ : $\{0, c_1..., c_K, \infty\}$, there exists $H(\mu)$ satisfying Assumption 3 such that then sign of $\mu^* - \mu_0$ alternates on each partition.



Response time

Proposition 2

Suppose |A|=2, $H_0(\mu)$ and $F(\mu)$ are symmetric around $\mu_0=0.5$ and satisfy Assumption 3. \forall partition of \mathbb{R}^+ : $\{0, c_1..., c_K, \infty\}$, there exists $H(\mu)$ satisfying Assumption 3 such that then sign of $\mu^* - \mu_0$ alternates on each partition.



Summary of results

- Assumptions:
 - Convex cost C(I).
 - I_t = uncertainty reduction speed.
 - Binary states.

Summary of results

- Assumptions:
 - Convex cost C(I).
 - I_t = uncertainty reduction speed.
 - Binary states.
- Optimal learning dynamics:
 - Poisson signal.
 - Confirmatory.
 - Increasing precision/ decreasing frequency.
 - Immediate action.

Summary of results

- Assumptions:
 - Convex cost C(I).
 - I_t = uncertainty reduction speed.
 - Binary states.
- Optimal learning dynamics:
 - Poisson signal.
 - Confirmatory.
 - Increasing precision/ decreasing frequency.
 - Immediate action.
- Applications:
 - Radical innovations of firms.
 - Response time and decision accuracy.

Reference I

- Arrow, K. J., Blackwell, D., & Girshick, M. A. (1949). Bayes and minimax solutions of sequential decision problems. *Econometrica, Journal of the Econometric Society*, 213–244.
- Boel, R., & Kohlmann, M. (1980). Semimartingale models of stochastic optimal control, with applications to double martingales. SIAM Journal on Control and Optimization, 18(5), 511–533.
- Caplin, A., & Dean, M. (2015). Revealed preference, rational inattention, and costly information acquisition. *The American Economic Review*, 105(7), 2183–2203.
- Caplin, A., Dean, M., & Leahy, J. (2017). Rationally inattentive behavior: Characterizing and generalizing shannon entropy. (Working Paper No. 23652). National Bureau of Economic Research. doi:10.3386/w23652
- Che, Y.-K., & Mierendorff, K. (2016). Optimal sequential decision with limited attention.
- Davis, M. H. (1979). Martingale methods in stochastic control. In Stochastic control theory and stochastic differential systems (pp. 85–117). Springer.
- Frankel, A., & Kamenica, E. (2018). Quantifying information and uncertainty. Working paper.
- Hébert, B., & Woodford, M. (2016). Rational inattention with sequential information sampling.
- Kamenica, E., & Gentzkow, M. (2009). Bayesian persuasion. National Bureau of Economic Research.
- Liang, A., Mu, X., & Syrgkanis, V. (2017). Optimal learning from multiple information sources.
- Luce, R. D. et al. (1986). *Response times: Their role in inferring elementary mental organization*. Oxford University Press on Demand.

Reference II

- Matejka, F., & McKay, A. (2014). Rational inattention to discrete choices: A new foundation for the multinomial logit model. *The American Economic Review*, 105(1), 272–298.
- Morris, S., & Strack, P. (2017). The wald problem and the equivalence of sequential sampling and static information costs. Retrieved from https://ssrn.com/abstract=2991567
- Moscarini, G., & Smith, L. (2001). The optimal level of experimentation. *Econometrica*, 69(6), 1629–1644.
- Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. *Trends in cognitive sciences*, 20(4), 260–281.
- Steiner, J., Stewart, C., & Matejka, F. (2016). Rational inattention dynamics: Inertia and delay in decision-making. Wiley Online Library.
- Striebel, C. (1984). Martingale conditions for the optimal control of continuous time stochastic systems. Stochastic processes and their applications, 18(2), 329–347.
- Wald, A. (1947). Foundations of a general theory of sequential decision functions. *Econometrica, Journal of the Econometric Society*, 279–313.
- Zhong, W. (2018). Time preference and information acquisition. ArXiv e-prints. arXiv: 1809.05120

Discretization of equation (1)

- Given Assumption 1, $\forall \langle \mu_t \rangle$, τ admissible,
 - Dicretize $\langle \mu_t \rangle$ and τ with period length dt : $\hat{\mu}_i = \mu_{idt}$, $\iota = \lceil \tau/dt \rceil$.
 - $-\ \langle \widehat{\mu}_i \rangle$ is discrete-time martingale and ι is stopping time.
 - Define Riemann sum:

$$W_{dt}(\widehat{\mu}_{i},\iota) = E\left[e^{-\rho\iota dt}F(\widehat{\mu}_{\iota}) - \sum_{i=0}^{\iota}e^{-\rhoidt}C\left(E\left[\frac{H(\widehat{\mu}_{idt}) - H(\widehat{\mu}_{(i+1)dt})}{dt}\right]\right)dt\right]$$

- By definition,
$$V(\mu) = \sup_{\langle \mu_t \rangle, \tau^{dt \to 0}} W_{dt}(\widehat{\mu}_i, \iota).$$

Discretization of equation (1)

- Given Assumption 1, $\forall \langle \mu_t \rangle$, τ admissible,
 - Dicretize $\langle \mu_t \rangle$ and τ with period length dt : $\hat{\mu}_i = \mu_{idt}$, $\iota = \lceil \tau/dt \rceil$.
 - $-~\langle \widehat{\mu}_i \rangle$ is discrete-time martingale and ι is stopping time.
 - Define Riemann sum:

$$W_{dt}(\widehat{\mu}_{i},\iota) = E\left[e^{-\rho\iota dt}F(\widehat{\mu}_{\iota}) - \sum_{i=0}^{\iota}e^{-\rhoidt}C\left(E\left[\frac{H(\widehat{\mu}_{idt}) - H(\widehat{\mu}_{(i+1)dt})}{dt}\right]\right)dt\right]$$

- By definition,
$$V(\mu) = \sup_{\langle \mu_t \rangle, \tau^{dt} \to 0} \lim_{\forall t \in \mathcal{M}} W_{dt}(\widehat{\mu}_i, \iota).$$

• Consider a discrete-time stochastic control problem:

- Define
$$W_{dt}^*(\mu) = \sup_{\langle \widehat{\mu}_t \rangle, \iota} W_{dt}(\widehat{\mu}_i, \iota).$$

- Obviously, $V(\mu) \leq \lim_{dt \to 0} W^*_{dt}(\mu)$.

Lemma 1

$$V(\mu) = \lim_{dt\to 0} W^*_{dt}(\mu).$$

Bellman equation

Lemma 2 (Bellman equation)

 $W_{dt}^* = V_{dt}$, where V_{dt} solves Bellman equation:

$$V_{dt}(\mu) = \max\left\{F(\mu), \sup_{p,\nu,c} e^{-\rho dt} \sum_{p_i V_{dt}} p_i V_{dt}(\nu_i) - C_{dt} \left(H(\mu) - \sum_{p_i} H(\nu_i)\right)\right\}$$
(B-dt)
s.t. $\sum_{i} p_i \nu_i = \mu$

Bellman equation

Lemma 2 (Bellman equation)

 $W_{dt}^* = V_{dt}$, where V_{dt} solves Bellman equation:

$$V_{dt}(\mu) = \max\left\{F(\mu), \sup_{p,\nu,c} e^{-\rho dt} \sum_{p_i \vee_d t} (\nu_i) - C_{dt} \left(H(\mu) - \sum_{p_i} H(\nu_i)\right)\right\}$$
(B-dt)
s.t. $\sum_{i} p_i \nu_i = \mu$

Lemma 3

Assume *H* is strictly concave and $C^{(2)}$, Assumption 1 and Assumption 2 are satisfied, then if $V(\mu)$ solves HJB equation (B) and V_{dt} solves equation (B-dt): $V_{dt} \frac{dt \rightarrow 0}{t} V$.

Proof of theorem 1

Theorem 1

Assume *H* is strictly concave and $C^{(2)}$, Assumption 1 and Assumption 2 are satisfied, then $V(\mu) \in C^{(1)}$ solves equation (P) if $V(\mu)$ is a solution of:

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - \nabla V(\mu)(\nu - \mu)) + \frac{1}{2}\sigma^T H V(\mu)\sigma \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + \nabla H(\mu)(\nu - \mu)) - \frac{1}{2}\sigma^T H H(\mu)\sigma \right) \right\}$$

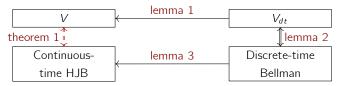
Proof of theorem 1

Theorem 1

Assume *H* is strictly concave and $C^{(2)}$, Assumption 1 and Assumption 2 are satisfied, then $V(\mu) \in C^{(1)}$ solves equation (P) if $V(\mu)$ is a solution of:

$$\rho V(\mu) = \max \left\{ \rho F(\mu), \sup_{\rho,\nu,\sigma} \rho(V(\nu) - V(\mu) - \nabla V(\mu)(\nu - \mu)) + \frac{1}{2} \sigma^T H V(\mu) \sigma \right.$$
(B)
$$\left. - C \left(\rho(H(\mu) - H(\nu) + \nabla H(\mu)(\nu - \mu)) - \frac{1}{2} \sigma^T H H(\mu) \sigma \right) \right\}$$

- Indirect method:
 - lemma 2: discrete-time Bellman \iff discrete-time value function.
 - lemma 1: discrete-time value function \rightarrow continuous-time value function.
 - lemma 3: discrete-time Bellman \rightarrow continuous-time HJB.



Convergence

Proof.

Fix any dt, V_{dt/2^k}(µ) converges monotonically to V
[−]_{dt}. Because with period length dt/2^k, any policy with k' < k can be replicated by decomposition.</p>

Convergence

Proof.

- Fix any dt, V_{dt/2^k}(µ) converges monotonically to V
 [−]_{dt}. Because with period length dt/2^k, any policy with k' < k can be replicated by decomposition.</p>
- For any dt, dt', V_{dt} should be less than $V_{dt'}$. By slicing $dt'/2^k$, any policy with dt can be approximated arbitrarily well.

Convergence

Proof.

- Fix any dt, V_{dt/2^k}(µ) converges monotonically to V
 [−]_{dt}. Because with period length dt/2^k, any policy with k' < k can be replicated by decomposition.</p>
- For any dt, dt', V_{dt} should be less than $V_{dt'}$. By slicing $dt'/2^k$, any policy with dt can be approximated arbitrarily well.
- So there exists a unique $\overline{V} = \overline{V}_{dt}$. Convergence speed is O(dt).

Equivalence

Proof.

• \overline{V} is unimprovable. Suppose $c \frac{\overline{V}(\mu') - \overline{V}(\mu) - D\overline{V}(\mu,\mu')(\mu'-\mu)}{H(\mu) - H(\mu') + H'(\mu)(\mu'-\mu)} \ge \rho V(\mu) + \varepsilon$.

Equivalence

Proof.

• \overline{V} is unimprovable. Suppose $c \frac{\overline{V}(\mu') - \overline{V}(\mu) - D\overline{V}(\mu,\mu')(\mu'-\mu)}{H(\mu) - H(\mu') + H'(\mu)(\mu'-\mu)} \ge \rho V(\mu) + \varepsilon$.

- Then by definition of
$$D\overline{V}$$
, $\exists \mu_1$ on other side of μ .
 $c \frac{\overline{V}(\mu') - \overline{V}(\mu) - \frac{\overline{V}(\mu_1) - \overline{V}(\mu)}{\mu_1 - \mu} (\mu' - \mu)}{H(\mu) - H(\mu') + \frac{H(\mu_1) - H(\mu)}{\mu_1 - \mu} (\mu' - \mu)} \ge \rho \overline{V}(\mu) + \frac{\varepsilon}{2}.$

Equivalence

Proof.

• \overline{V} is unimprovable. Suppose $c \frac{\overline{V}(\mu') - \overline{V}(\mu) - D\overline{V}(\mu,\mu')(\mu'-\mu)}{H(\mu) - H(\mu') + H'(\mu)(\mu'-\mu)} \ge \rho V(\mu) + \varepsilon.$

- Then by definition of
$$D\overline{V}$$
, $\exists \mu_1$ on other side of μ .
 $c \frac{\overline{V}(\mu') - \overline{V}(\mu) - \frac{\overline{V}(\mu_1) - \overline{V}(\mu)}{\mu_1 - \mu} (\mu' - \mu)}{H(\mu) - H(\mu') + \frac{H(\mu_1) - H(\mu)}{\mu_1 - \mu} (\mu' - \mu)} \geq \rho \overline{V}(\mu) + \frac{\varepsilon}{2}.$

- Rearrange terms: $\frac{\mu-\mu_1}{\mu'-\mu_1}\overline{V}(\mu') + \frac{\mu'-\mu}{\mu'-\mu_1}\overline{V}(\mu_1) \ge \frac{\rho}{c}\overline{V}(\mu)I(\mu_1,\mu'|\mu) + \overline{V}(\mu) + \frac{\varepsilon}{2c}I(\mu',\mu_1|\mu).$

Equivalence

Proof.

• \overline{V} is unimprovable. Suppose $c \frac{\overline{V}(\mu') - \overline{V}(\mu) - D\overline{V}(\mu,\mu')(\mu'-\mu)}{H(\mu) - H(\mu') + H'(\mu)(\mu'-\mu)} \ge \rho V(\mu) + \varepsilon.$

- Then by definition of
$$D\overline{V}$$
, $\exists \mu_1$ on other side of μ .
 $c \frac{\overline{V}(\mu') - \overline{V}(\mu) - \frac{\overline{V}(\mu_1) - \overline{V}(\mu)}{\mu_1 - \mu} (\mu' - \mu)}{H(\mu) - H(\mu') + \frac{H(\mu_1) - H(\mu)}{\mu_1 - \mu} (\mu' - \mu)} \geq \rho \overline{V}(\mu) + \frac{\varepsilon}{2}.$

- Rearrange terms: $\frac{\mu-\mu_1}{\mu'-\mu_1}\overline{V}(\mu') + \frac{\mu'-\mu}{\mu'-\mu_1}\overline{V}(\mu_1) \ge \frac{\rho}{c}\overline{V}(\mu)I(\mu_1,\mu'|\mu) + \overline{V}(\mu) + \frac{\varepsilon}{2c}I(\mu',\mu_1|\mu).$

- Pick
$$\mu_1$$
 close enough to μ :
 $e^{-\frac{\rho}{c}I(\mu_1,\mu'|\mu)}\left(\frac{\mu-\mu_1}{\mu'-\mu_1}\overline{V}(\mu')+\frac{\mu'-\mu}{\mu'-\mu_1}\overline{V}(\mu_1)\right)\geq\overline{V}(\mu)+\frac{\varepsilon}{4c}I(\mu',\mu_1|\mu)$

Equivalence

Proof.

- \overline{V} is unimprovable. Suppose $c \frac{\overline{V}(\mu') \overline{V}(\mu) D\overline{V}(\mu,\mu')(\mu'-\mu)}{H(\mu) H(\mu') + H'(\mu)(\mu'-\mu)} \ge \rho V(\mu) + \varepsilon.$
 - Then by definition of $D\overline{V}$, $\exists \mu_1$ on other side of μ . $c \frac{\overline{V}(\mu') - \overline{V}(\mu) - \frac{\overline{V}(\mu_1) - \overline{V}(\mu)}{\mu_1 - \mu}}{H(\mu) - H(\mu') + \frac{H(\mu_1) - H(\mu)}{\mu_1 - \mu}} \ge \rho \overline{V}(\mu) + \frac{\varepsilon}{2}.$
 - Rearrange terms: $\frac{\mu-\mu_1}{\mu'-\mu_1}\overline{V}(\mu') + \frac{\mu'-\mu}{\mu'-\mu_1}\overline{V}(\mu_1) \ge \frac{\rho}{c}\overline{V}(\mu)I(\mu_1,\mu'|\mu) + \overline{V}(\mu) + \frac{\varepsilon}{2c}I(\mu',\mu_1|\mu).$
 - Pick μ_1 close enough to μ : $e^{-\frac{\rho}{c}I(\mu_1,\mu'|\mu)} \left(\frac{\mu-\mu_1}{\mu'-\mu_1}\overline{V}(\mu') + \frac{\mu'-\mu}{\mu'-\mu_1}\overline{V}(\mu_1)\right) \ge \overline{V}(\mu) + \frac{\varepsilon}{4c}I(\mu',\mu_1|\mu)$
 - This can be replicated in a $d_{t_n} = \frac{l(\mu_1, \mu' \mid \mu)}{c^{2n}}$ problem. Then $V_{d_{t_n}}$ will be improvable. Therefore $\overline{V} \ge V$.

Equivalence

Proof.

- \overline{V} is unimprovable. Suppose $c \frac{\overline{V}(\mu') \overline{V}(\mu) D\overline{V}(\mu,\mu')(\mu'-\mu)}{H(\mu) H(\mu') + H'(\mu)(\mu'-\mu)} \ge \rho V(\mu) + \varepsilon.$
 - Then by definition of $D\overline{V}$, $\exists \mu_1$ on other side of μ . $c \frac{\overline{V}(\mu') - \overline{V}(\mu) - \frac{\overline{V}(\mu_1) - \overline{V}(\mu)}{\mu_1 - \mu} (\mu' - \mu)}{H(\mu) - H(\mu') + \frac{H(\mu_1) - H(\mu)}{\mu_1 - \mu} (\mu' - \mu)} \ge \rho \overline{V}(\mu) + \frac{\varepsilon}{2}.$
 - Rearrange terms: $\frac{\mu-\mu_1}{\mu'-\mu_1}\overline{V}(\mu') + \frac{\mu'-\mu}{\mu'-\mu_1}\overline{V}(\mu_1) \ge \frac{\rho}{c}\overline{V}(\mu)I(\mu_1,\mu'|\mu) + \overline{V}(\mu) + \frac{\varepsilon}{2c}I(\mu',\mu_1|\mu).$
 - Pick μ_1 close enough to μ : $e^{-\frac{\rho}{c}I(\mu_1,\mu'|\mu)} \left(\frac{\mu-\mu_1}{\mu'-\mu_1}\overline{V}(\mu') + \frac{\mu'-\mu}{\mu'-\mu_1}\overline{V}(\mu_1)\right) \ge \overline{V}(\mu) + \frac{\varepsilon}{4c}I(\mu',\mu_1|\mu)$
 - This can be replicated in a $dt_n = \frac{l(\mu_1, \mu' \mid \mu)}{c2^n}$ problem. Then V_{dt_n} will be improvable. Therefore $\overline{V} \ge V$.
- Suppose V
 (μ)>V(μ), then ∀dt>0 small enough, V_{dt}(μ)≥V(μ)+ε. Then V will be improvable.

Construction of $V(\mu)$

• Step 1: Construct μ^* .

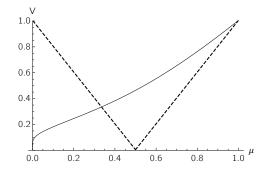
Construction of $V(\mu)$

• Step 1: Construct μ^* .

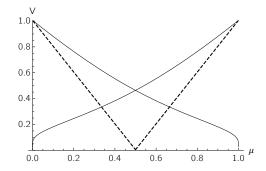
– By assumption, searching $\nu < \mu^*$ and $\nu > \mu^*$ give same utility at μ^* . V is minimized at μ^*

- Step 1: Construct μ^* .
 - By assumption, searching $\nu\!<\!\mu^*$ and $\nu\!>\!\mu^*$ give same utility at $\mu^*.~V$ is minimized at μ^*
 - Calculate utility from searching $\nu > \mu^*$ (while assuming V'=0).

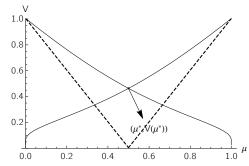
- Step 1: Construct μ^* .
 - By assumption, searching $\nu\!<\!\mu^*$ and $\nu\!>\!\!\mu^*$ give same utility at $\mu^*.$ V is minimized at μ^*
 - Calculate utility from searching $\nu > \mu^*$ (while assuming V'=0).



- Step 1: Construct μ^* .
 - By assumption, searching $\nu < \mu^*$ and $\nu > \mu^*$ give same utility at μ^* . V is minimized at μ^*
 - Calculate utility from searching $\nu > \mu^*$ (while assuming V'=0).
 - Calculate utility from searching $\nu < \mu^*$.



- Step 1: Construct μ^* .
 - By assumption, searching $\nu < \mu^*$ and $\nu > \mu^*$ give same utility at μ^* . V is minimized at μ^*
 - Calculate utility from searching $\nu > \mu^*$ (while assuming V'=0).
 - Calculate utility from searching $\nu < \mu^*$.
 - Unique intersection determines μ^* and $V(\mu^*)$.



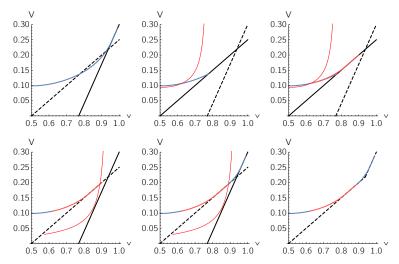
- Step 2: Construct $V(\mu)$.
 - Take $\mu^*, V(\mu^*), V'(\mu^*)=0$ as starting point.
 - At μ^* +d μ , take V'=0 and maximize V.
 - At μ^* +2d μ , take $V' = \frac{V(\mu^* + d\mu) V(\mu^*)}{d\mu}$ and maximize V.
 - Continue this process (with d $\mu \rightarrow 0$). V determined by ODE.

Multiple actions

• Step 3: Update value function by adding more actions.

Multiple actions

• Step 3: Update value function by adding more actions.



General cost structure

Construction of the special cost

Primitives:

-
$$F(\mu) = \max\{1-2\mu, 2\mu-1\}; \rho = \overline{l} = 1.$$

- $H(\mu) = -\mu \log(\mu) - (1-\mu) \log(1-\mu)$ —Entropy function.

• Suppose Gaussian learning is optimal:

$$V(\mu) = \frac{V''(\mu)}{J_{\nu\nu}'(\mu,\mu)} = -\frac{V''(\mu)}{H''(\mu)}$$

$$\iff V(\mu) = C_1 G_{2,2}^{2,0} \begin{pmatrix} 1+(-1)^{\frac{2}{3}}, 1-(-1)^{\frac{2}{3}} \\ 0,1 \end{pmatrix} - C_2 \mu_2 F_1 \left(1-(-1)^{\frac{1}{3}}, 1+(-1)^{\frac{2}{3}}; 2; \mu\right)$$

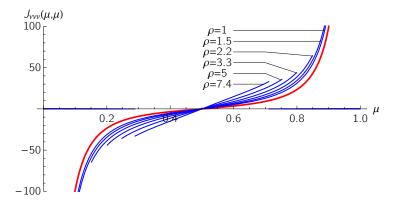
- Apply smooth pasting to pin down C_1, C_2 .

- Optimality of Gaussian learning implies: $V(\mu) \ge \frac{V(\nu) V(\mu) V'(\mu)(\nu \mu)}{J(\mu, \nu)}$, $\forall \nu$.
- Define $J_0(\mu,\nu) = \frac{V(\nu) V(\mu) V'(\mu)(\nu \mu)}{V(\mu)}$.
 - 1. $J_{0\nu\nu}(\mu,\mu) = -H''(\mu)$. J_0 satisfies Assumption 3.
 - 2. If J_0 is the cost function, then all strategies are equally optimal.

General cost structure

Construction of the special cost

- Compare $J(\mu,\nu)$ and $J_0(\mu,\nu)$.
 - Gaussian learning supported by J only if: $J(\mu,\nu)-J_0(\mu,\nu)=o((\nu-\mu)^3)$.

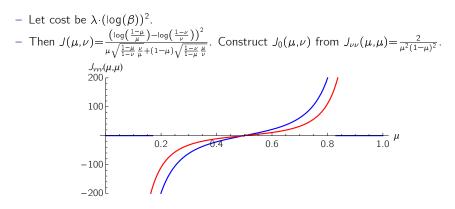


General cost structure

Construction of the special cost

• Suppose the cost depends only on the information structure:

$$\mathbf{P} = \begin{array}{c|c} I & r \\ \hline s_1 & 1 - \lambda \sqrt{\beta} dt & 1 - \frac{\lambda}{\sqrt{\beta}} dt \\ s_2 & \lambda \sqrt{\beta} dt & \frac{\lambda}{\sqrt{\beta}} dt \end{array}$$



Deterministic decision time

- Learning stratgy with:
 - Deterministic decision time
 - Constant flow cost

Back