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Abstract. I consider the monopolistic pricing of informational good. A buyer’s will-
ingness to pay for information is from inferring the unknown payoffs of actions in
decision making. A monopolistic seller and the buyer each observes a private signal
about the payoffs. The seller’s signal is binary and she can commit to sell any statis-
tical experiment of her signal to the buyer. Assuming that buyer’s decision problem
involves rich actions, I characterize the profit maximizing menu. It contains a con-
tinuum of experiments, each containing different amount of information. I also find
a complementarity between buyer’s private information and information provision:
when buyer’s private signal is more informative, the optimal menu contains more in-
formative experiments.
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1 Introduction
When an individual is making decision involving unknown payoffs, he often has

the opportunity to acquire information to learn the payoffs. For example, an investor
is choosing from a set of assets, whose returns are unknown. The investor can learn
about the assets’ returns from multiple information sources: his own knowledge about
the market, advices from financial consultants, articles on The Wall Street Journal,
etc. Interestingly, the external information providers tend to offer increasingly richer
menus of personalized options of information. For example, The Wall Street Jour-
nal and Bloomberg Businessweek are providing pay-by-article services through on-
line platforms; the Amazon Web Services provides complicated pricing schedules for
its cloud services. Meanwhile, although the menu is rich, each options provided in the
menu are usually simple — in previous examples of journal articles and data services
they are often simple partial revelations of the complete information available from
the information provider.

In this paper, those rich but simple menus of informational goods are justified as
the revenue maximizing menus for the information seller, when the buyer has other
private information sources unknown to the seller. I model the buyer (he) of informa-
tion as a decision maker who is choosing from actions with unknown payoffs. The
buyer and the seller (she) each observes a private signal about the payoffs. The seller
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can costlessly produce any product that contains weakly less information than she
owns, i.e. any signal structure that depends on her own signal. The contents of the
signal structure is contractible. The buyer’s willingness to pay for information de-
pends on both the buyer’s private signal and the informational good. The seller’s
revenue maximization problem is formulated as a nonlinear pricing problem, where
the seller elicits buyer’s private signal using a menu of information-price pairs.

The nonlinear pricing problem has been extensively studied when seller is only de-
signing a one-dimensional “quantity” or “quality” of the good (Mirrlees (1971), Mussa
& Rosen (1978), Maskin & Riley (1984)). In contrast, this paper considers informational
good, whose dimensionality is infinite. Moreover, the space is not well-ordered — al-
though all buyer types agree that full revelation is the best and no information is the
worst, there is no consensus which of two generic signal structure is better among
buyers with different private signals.

I fully characterize the revenue-maximizing menu in the case that: 1) seller’s pri-
vate signal is binary 2) buyer’s decision problem involves a rich set of actions. I first
show that the revenue-maximizing menu contains only “simple” signal structures.
Each signal structure in the menu has only two possible realizations: one perfectly
reveals one of seller’s signal, and the other partially reveals the seller’s other signal.
Second, the optimal menu contains a continuum of signal structures. Since each signal
structure reveals one of the seller’s signal, the menu can be divided into two classes of
signal structures, each fully revealing one of the seller’s signal. All signal structures
in each class are ordered by Blackwell informativeness. In equilibrium, the buyer pur-
chases a signal structure that reveals the ex ante less likely signal (according to buyer’s
private belief), namely he purchases contradictory information. The more certain the
buyer is about the seller’s signal, the less information he purchases.

The profitability of a rich menu of signal structures can be seen by considering
the buyer’s willingness to pay for signal structures. Restrict the consideration to the
“simple” signal structures. Consider the “Diff-in-diff” of utility from two signal struc-
ture with different informativeness for two buyer types. Hypothetically assume that a
same action is optimally chosen when observing the partially revealing signal by both
buyer types with both signal structures. When this action involves few risk, i.e. the
payoffs of the action is almost the same as the counterfactual optimal action following
the other signal, the DID is almost zero. Otherwise when this action involves high risk,
the DID is large. This DID is in fact the amount of rent that can be extracted (locally)
from the type that values information more. Therefore, inducing the buyers with less
sure prior (interpreted as the “high type” in standard nonlinear pricing framework)
to purchase the signals that induces riskier action is relaxing the incentive compati-
bility constraint, comparing to a flat-price menu. In my setup where buyer’s decision
problem is rich, such effect generically exists and a rich menu is optimal.

In Section 5, I study the comparative statics when the buyer’s private signal be-
comes more informative. In this case, a buyer of a given private belief about seller’s in-
formation purchases a more informative signal structure under the new optimal menu.
This suggests that the monopolistic provision of information is complementary to the
private information the buyer owns.
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Related literatures
My paper is built on the literature studying nonlinear pricing. It differs from classi-

cal works including Mirrlees (1971), Mussa & Rosen (1978) and Maskin & Riley (1984)
in the generality of available contracts for the seller. As a nature property of infor-
mational goods, I allow the monopoly seller to include any Blackwell experiments in
the menu, instead of a one-dimensional quantity or quality. On the other hand, this
paper also differs from the set of papers studying mechanism design with fully gen-
eral space of contracts (e.g. Nöldeke & Samuelson (2018)). Utilizing special properties
of informational good, I am able to get full characterization of revenue maximizing
mechanism, as opposed to only existence results or partial characterizations in this
literature.

My paper is closely related to the literature on selling information. It focuses on
uncertainty about a payoff relevant state and heterogeneity in decision maker’s belief
(or equivalent buyer’s private signal). Horner & Skrzypacz (2011) focus on informa-
tion provider with private type (competent or not) and derived a gradual persuasion
rule as the optimal disclosure of private information. Bergemann & Bonatti (2013)
spent one section on optimal non-linear pricing mechanism for selling consumer level
matching value data. Eso & Szentes (2007) studied a model with seller controlling re-
lease of payoff relevant state. The seller can contract on the action of decision maker.
My approach is different in the modeling of the informational good. I embedded
the general definition of decision problem and information defined in Blackwell et al.
(1951) into a monopoly pricing problem.

The paper closest to mine is Bergemann et al. (2014), which also studies optimal
menu of Blackwell experiments. Bergemann et al. (2014) provide a partial character-
ization of the signal structures in the optimal menu in a general setup (general state
and action spaces), and a full characterization of the optimal menu with binary states
and actions. My paper complements theirs in providing the full characterization with
binary states and general action spaces. I show that when the action space is rich,
the revenue maximizing menu contains a very rich set of different signal structures, as
opposed to flat-pricing being optimal when action is binary in Bergemann et al. (2014).

There has been a large literature studying the value of information. Starting from
Blackwell et al. (1951), a general fair price is proved to be impossible to determine.
Cabrales et al. (2010) shows that the Entropy function can be used to order information
for a specific class of investment problem. Moscarini & Smith (2002) prices informa-
tion as an coefficient determining asymptotic value of repeated experiments. In my
approach, I fix the decision problem but allow general prior beliefs. Also I am trying
to find optimal monopoly prices instead of fair prices.

The rest of the paper is organized as follows: In Section 2, I set up the revenue max-
imization problem. In Section 3, I characterize the revenue maximizing menu of signal
structures. In Section 4, I introduce the methodology for solving the optimal menu. In
Section 5, I provide comparative statics on the distribution of buyer’s beliefs. In Sec-
tion 5, I provide numerical examples to visualize my results. I conclude in Section 6
Technical proofs omitted in the paper are provided in the Appendix.
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2 Setup
In this section, I set up a general model of nonlinear pricing of information.
Decision problem: The buyer of information is choosing an action a P A. The

payoff of each action upa, xq depends on a state x P X. The buyer and seller have
common prior belief of the state distribution πX P ∆pXq .

Private information: Buyer and seller observes private signal tB P TB and tS P TS.
tB and tS are jointly distributed according to a distribution πptS, tB|xq. I assume that
tS involves two realizations and is a sufficient statistic for tB with respect to x, namely
the seller of information knows more than the buyer about the payoff relevant state.

Signal structure: The seller can contract on the provision of a signal structure,
defined as a pair pS, gq. S is the set of signal realizations and gps|tsq : TS Ñ ∆pSq is
the conditional distribution of signal. A signal structure pS, gq reports seller’s private
signal tS with some noise. Notice that it is without loss of generality to assume that all
signal structures share the same signal set S. As a result each signal structure can be
represented by only g. Each contract specifies a pair pg, pq, the signal structure g and
corresponding price p.

Timing of the game: 0) Nature draws a state x according to πX. 1) Before any signal
is revealed, the seller specifies a menu of contracts

 

gj, pj
(

jPJ . (j is a not necessarily
countable general index) 2) The private signals tS and tB are realized according to π.
3) Buyer chooses an utility maximizing contract j based on his private signal tB. 4)
Signal s is realized according to gj, and buyer picks an optimal action based on both
tB and s.

The nonlinear pricing problem is formulated as a two-step optimization problem.
The first step is solving buyer’s optimal choice of contract given a menu. The second
step is solving the seller’s revenue maximizing menu.

2.1 Buyer’s problem
Given a signal structure gj and private signal tB, buyer’s optimal choice rule is a

function apsq : Sˆ TB Ñ A that maximize:

sup
aps,tBq

ż

upapsq, xqgjps|tSqπptS, tB|xqπXpxqds, tS, x

Define Upgj, tBq as:

Upgj|tBq “
supaps,tBq

ş

upapsq, xqgjps|tSqπptS, tB|xqπXpxqds, tS, x
ş

πptS, tB|xqπXpxqdtS, x

Upgj|tBq is the conditional utility from observing the signal structure gj. To capture
the outside optimal of observing no information, let gH be the null signal structure
and pH “ 0. Then, given a menu pgj, pjq, buyer’s optimal choice rule is a function
ιptBq : TB Ñ J

Ť

tHu that maximize:

sup
ιptBq

ż

`

UpgιptBq, tBq ´ pιptBq

˘

πptB|xqπXpxqdtB, x
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2.2 Seller’s problem
Given buyer’s optimal choice rule, the seller’s optimization problem is:

sup
pgj,pjq

ż

pιptBqπptB, xqπXpxqdtB, x (P)

s.t.

#

ιptBq P arg max
ş`

UpgιptBq, tBq ´ pιptBq

˘

πptB|xqπXpxqdtB, x

pH “ 0 and gH is null signal structure

2.3 A belief based representation
Since by assumption tS is a sufficient statistics for tB with respect to x, conditional

on knowing tS the information contained in tB is irrelevant. Therefore Probpx|s, tBq “

Probpx|tSqProbptS|s, tBq. Let rupa, tSq “
ş

upa, xqProbpx|tSq, then

Upgj, tBq “ sup
aps,tBq

ż

upaps, tBq, xqProbpx|s, tBqdx “ sup
aps,tBq

ż

rupaps, tBq, tSqProbptS|s, tBqdtS

Meanwhile, the seller’s objective function in Equation (P) is sup
pgj,pjq

ş

pιptBqProbptBqdtB,
and buyer’s objective function is maxι

ş

pUpgι, tBq ´ pιqProbptBqdtB. These two formula
don not explicitly involves state x.

The previous analysis suggests that in the formulation of Equation (P), in fact both
buyer and seller’s objective function does not explicitly involve state x once we use
ru to replace

ş

upa, xqProbpx|tSq. So the whole nonlinear pricing problem Equation (P)
can actually be reformulated as a problem where tS is directly the payoff relevant state.
Two buyer’s signals tB differs in term of buyer’s choice of menu only if they induce dif-
ferent beliefs about the distribution of tS. So buyer’s private signal can be equivalently
summarized as his private belief about seller’s signal. Here I represent an equivalent
belief based representation of the problem: Seller’s signal tS can be either h or l. Let µ

be buyer’s private belief of seller’s type being h. Let Vpµq “ supa Eµrrupa, tSqs. Given
each signal structure gj, buyer’s posterior belief observation signal realization s is

pµpµ, s, gjq “
gjps|hqµ

gjps|hqµ`gjps|lqp1´µq by Bayes rule. Then it is obvious that Vppµpµ, s, gjqq is the
maximal expected utility from choosing the optimal action conditional on observing
signal s and Es

“

Vppµpµ, s, gjqq
‰

“ Upgj, µq. Invoke the revelation principle, the nonlin-
ear pricing problem can be written as seller choosing direct mechanismM “

`

gµ, pµ

˘

to maximize:

max
M

ż 1

0
pµ f pµqdµ (1)

s.t. Es
“

V
`

µ̂pµ, s, gµq
˘‰

´ pµ ě Es
“

V
`

µ̂pµ, s, gµ1q
˘‰

´ pµ1 (IC)

Es
“

V
`

µ̂pµ, s, gµq
˘‰

´ pµ ě Vpµq (IR)

Equation (1) is formulated as a standard nonlinear pricing problem, except for that the
seller is choosing a signal distribution gµ for each buyer, as opposed to one dimen-
sional quantity or quality in the canonical models.

It is worth noticing that apart from the contract space, the type space is also non-
standard. Consider for example a fully revealing signal structure. The buyer with ex
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ante very imprecise signal has the highest willingness to pay for the signal structure.
Therefore, in the belief space r0, 1s, they types are nor linearly ordered. In this paper, I
overcome the difficulties brought by the infinite dimensional contract space and non-
ordered type space, by showing that 1) it is without loss of optimality to consider a
one-dimensional contract space (i.e. the “simple” signal structures). 2) the type space
can be divided into two subsets, on each of with types are linearly ordered.

3 Characterization of the Optimal Menu
3.1 The role of rich actions

In this section, I use a simple example to illustrate why a rich menu of signal struc-
tures can improve upon the flat-price strategy. First, consider the seller’s revenue
from selling the fully revealing signal structure at a flat price. The buyer’s utility
gain from this signal structure given private belief µ is coVpµq (coV is the upper con-
cave hull of V defined as in Kamenica & Gentzkow (2009)). Therefore, given price
p, all buyer types with coVpµq ´ Vpµq ě p purchases the signal. The revenue is
pˆ ProbpcoFpµq ´Vpµq ě pq. The optimal choice of price maximizes the revenue.

In Figure 1, I show an example with a symmetric V function (the black curve)
which is piecewise linear (there are three kinks, which represents 4 alternative actions).
The distribution F is uniform. To simplify the illustration, I only plot µ P r0.5, 1s as
everything is completely symmetric around 0.5. p is the optimal flat price for the
fully revealing signal structure. All buyer’s with belief within r1 ´ µ, µs purchases
this contract. The area of blue region in Figure 1 represents the optimal revenue from
flat-pricing.

p

μ
μ

V

Figure 1: Optimal flat-price

p p'

μμ'
μ

V

Figure 2: Discriminative pricing

Now consider including a small set of buyer types within rµ, µ1s by introducing a
second option. In this example, let the second option be a “simple” signal structure.
It reveals state l perfectly, and state h imperfectly. Consider the buyer with belief µ1.
The posterior belief induced by the fully revealing signal is 0 and the posterior belief
ν induced by the partially revealing signal is interior. The dashed line in Figure 2
show the linear combination of p0, Vp0qq and pν, Vpνqq. Standard analysis implies that
the utility of type µ1 from observing this signal structure is exactly the dashed line
evaluated at µ1. By the individual rationality of type µ1, the price of the second signal
structure is p1.

The second option is more attractive than the first one to some buyer types who
originally purchase the first option. For example, type µ gets zero surplus from the
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fully revealing signal structure, but strictly positive surplus from the second option.
So to make all buyer types who originally purchase option one still purchase option
one, the price of option one should be reduced to p1 ă p to give those buyer types
more surplus. To sum up, by introducing a second option and reducing the price of the
first option, the revenue gain is from including more buyer types (the area of orange
region in Figure 2), the revenue loss is from reducing the price for fully revealing signal
structure (the area of red region in Figure 2). Whether introducing the second option
improves revenue depends on the comparison of the areas of the two regions.

Now let us calculate the revenue gain and loss from introducing the second option.
A key term is the reduction in price p that makes buyer type µ indifferent between
the two options. Denote the fully revealing signal structure g f and the second signal
structure g1. The downward incentive compatibility constraint implies:

Upg f , µq´p1 ´Vpµq ě Upg1, µq ´ p1 ´Vpµq

ùñ p´ p1 ěp´ p1 ´
`

Upg f , µq ´Upg1, µq
˘

“Upg f , µq ´Vpµq ´Upg1, µ1q `Vpµ1q ´
`

Upg f , µq ´Upg1, µq
˘

“pVpµ1q ´Vpµqq ´
`

Upg1, µ1q ´Upg1, µq
˘

„

ˆ

V1pµq ´
B

Bµ
Upg1, µq

˙

dµ when dµ “ µ1 ´ µ Ñ 0

let aµ be the optimal choice of action when belief is µ. Then the value of V1pµq is
upaµ, rq ´ upaµ, lq. Now we calculate the value of B

BµUp0g1, µ. By construction of g1,
one of the signal reveals state l for sure. That is to say, there exists q s.t.:

#

g1ps0|lq “ q; g1ps1|lq “ 1´ q

g1ps0|rq “ 0; g1ps1|rq “ 1

Let a0, a1 be the corresponding optimal action observing signal s0 and s1. Then:

Upg1, µq “µupa1, rq ` p1´ µqpqupa0, lq ` p1´ qqupa1, lqq

ùñ
B

Bµ
Upg1, µq “upa1, rq ´ pqupa0, lq ` p1´ qqupa1, lqq

“pupa1, rq ` upa1, lqqp1´ qq

The last equality is by symmetry of the problem. To sum up:

dp „
`

upaµ, rq ´ upaµ, lq
˘

looooooooooomooooooooooon

riskiness of action aµ

´pupa1, rq ´ upa1, lqq
loooooooooomoooooooooon

riskiness of action a1

p1´ qq

The price change due to introduction of the second signal structure can be decomposed
into two terms. The first term captures the riskiness of the optimal action chosen at be-
lief µ — potential loss of utility when in the counterfactual state. The second negative
term is proportional to the riskiness of the optimal action when state r is surely true.
dp is smaller, namely the informational rent extracted from type µ is larger, when the
riskiness of the default no information action is smaller and the riskiness of the most
risky action is larger.
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It is possible that dp is sufficiently small that including the second option is prof-
itable. In fact, in the numerical example that generates Figures 1 and 2, the area
of the orange region is larger than the red region, namely flat-pricing is dominated
by a richer menu. This analysis also illustrates the characterization of Bergemann
et al. (2014)’s binary type-binary action model. When action is binary, the value of
pupaµ, rq´ upaµ, lqq is coupled with pupa1, rq´ upa1, lqqp1´ qq in a particular way (in fact
aµ “ a1, so dp “ qpupa1, rq ´ upa1, lqq). In this special case, the analysis in Bergemann
et al. (2014) proves that introducing more options is always suboptimal. However, as I
have illustrated, considering a more general decision problem for buyer of information
decouples the two terms determining the informational rent that can be extracted by
add a second signal structure. Therefore, a rich decision problem might lead to a rich
revenue maximizing menu being optimal. This intuition will be confirmed formally
in Theorem 1.

3.2 Assumptions
I need a series of technical assumptions to obtain a good form of solution.

Assumption 1. Distribution of buyer’s beliefs f pµq P Lr0, 1s satisfies @λ:

f pµqp1´ µq

λ` Fpµq ´ 1
decreasing with µ ą F´1

p1´ λq.

f pµqµ
λ` Fpµq ´ 1

decreasing with µ ă F´1
p1´ λq .

Assumption 1 is an analog of the standard monotonic likelihood ratio condition.
In this problem, since an uncertain belief gets most extra utility from information (a
“high type”), the type space is not linearly ordered. In stead, the willingness to pay for
information as a function of belief first increases then decreases. So the type space can
be divided into two intervals, on each of which the type is linearly ordered. Assump-
tion 1 modifies the standard monotonic likelihood ratio condition such that it operates
on each of the two ordered type regions properly.

Assumption 2.

1. Vpµq P Cp2qp0, 1q. There exists µ ă µ and λ ă λ in p0, 1q such that:

@µ P rµ, µs,

$

&

%

Vpµq `V1pµqp1´ µq `V2pµqµp1´µq2

1´µ̄ is strictly increasing

Vpµq ´V1pµqµ`V2pµqµ2p1´µq
µ is strictly decreasing

@λ P rλ, λs,

$

’

&

’

%

ˆ

1`
f pµqµ

λ̄`Fpµq´1

˙

pVpµq `V1pµqp1´ µqq `V2pµqµp1´µq2

1´µ is strictly increasing
´

1´ f pµ̄qp1´µ̄q
λ`Fpµ̄q´1

¯

pVpµq ´V1pµqµq `V2pµqµ2p1´µq
µ̄ is strictly decreasing

2. µ˚ and µ˚ are defined by f pµ̄˚qp1´µ̄˚q
λ`Fpµ̄˚q´1 “ 1 and

f pµ˚qµ˚

λ̄`Fpµ˚q´1 “ 1. Let π˚ be the profit earned

by seller using mechanism proposed in Theorem 1, then:

max
!

µ̄˚Vp1q ` p1´ µ̄˚qVp0q ´Vpµ̄˚q, µ˚Vp1q ` p1´ µ˚qVp0q ´Vpµ˚q
)

ă π˚
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Assumption 2 is a sufficient condition for the optimal mechanism to contain only
“simple” signal structures. The first part is an analog of two standard assumptions
widely used in nonlinear pricing: supermodularity condition and monotonic virtual value
condition. First of all, as I have discussed in Assumption 1, since the type space is di-
vided into two ordered subsets, each condition need to be defined on the two sets
separately in a symmetric way. The first set of monotonicity conditions states the stan-
dard supermodularity condition. The reason that I need them to be satisfied only on
µ P rµ, µs is that when µ is outside of the interval, supermodularity is implied by the
monotonic virtual value conditions. The second set of monotonicity conditions states
the standard monotonic virtual value condition. The equivalence will be clear when
I calculate the virtual value.

“

λ, λ
‰

is the region for possible locations of the (endoge-
nous) threshold where monotonicity of types switches. Finally, the second part is a
non-standard condition. It implies that choosing the threshold being too extreme (out-
side of rλ, λs) is dominated by the optimal mechanism proposed in Theorem 1.

Remark. If underlying problem is symmetric ( f and V are both symmetry around 0.5),
then λ̄ “ λ “ 0.5 in Assumption 2, as the threshold belief where monotonicity of
types switches is 0.5. In this case, it is not hard to verify that only the supermodularity
conditions are sufficient for rest two.

3.3 Optimal menu
Theorem 1. The optimal mechanism solving Equation (1) involves signal structures each with
up to two signals. There exists λ P pλ, λ̄q and µ`, µ´ satisfying:

#

f pµ´qµ´ ` pλ` Fpµ´q ´ 1q “ 0

f pµ`qp1´ µ`q ´ pλ` Fpµ`q ´ 1q “ 0

• For µ P rµ´, µ`s, a signal structure fully revealing the state is sold at flat price.

• For µ P r0, µ´s, a signal structure fully revealing only state h is sold. The non-conclusive
signal induces posterior belief mintν, µu, where ν is defined by:

ˆ

1`
f pµqµ

λ` Fpµq ´ 1

˙

pVpνq ´Vp1q `V1pνqp1´ νqq `V2pνq
νp1´ νq2

1´ µ
“ 0

• For µ P rµ`, 1s, a signal structure fully revealing only l will be sold. The non-conclusive
signal induces posterior belief maxtµ1, µu, where µ1 is defined by:

ˆ

1´
f pµqp1´ µq

λ` Fpµq ´ 1

˙

pVpνq ´Vp0q ´V1pνqνq `V2pνq
ν2p1´ νq

µ
“ 0

Theorem 1 states that the revenue maximizing menu contains a rich set of simple
signal structures. The signal structures in the optimal menu is simple in that each of
them involves only two signal. One of the signal reveals one of the state perfectly,
while the other signal partially reveals another state. For buyer types with uncertain
prior belief, which values information a lot, the fully revealing signal structure is sold

9



to them at a flat price. The remaining buyer types are ordered by the distances of
their beliefs from the center region. Buyer with more uncertain prior belief purchases
a more informative signal structure. For those buyer types, if the prior belief is higher
on state h, then the buyer is assigned a signal structure fully revealing state l, and vice
versa. This means the optimal menu assigns signal structures that precisely contra-
dicts buyer’s private belief, and imprecisely confirms buyer’s private belief.

To illustrate the characterization in Theorem 1, I calculate a numerical example:

Example 1. Suppose the underlying decision problem is to choose actions from r0, 1s
to minimize a quadratic loss: upa, θq “ ´px ´ θq2 where θ “ t0, 1u. It can be equality
verified that Vpµq “ µ2 ´ µ. Let buyer’s private belief about seller’s private signal
distribute uniformly on r0, 1s. First, as I discussed in Assumption 2, symmetry of the
problem makes Assumptions 1 and 2 easy to verify. The condition in Theorem 1 that
characterizes optimal posterior induced by the non-conclusive signal in each signal
structure reduces to a linear function. When µ ą 0.5:

1` 2µ2
´ 3.5µ` p2µ´ 1qµ1 “ 0

The revenue maximizing menu is illustrated in 3:

0.2 0.4 0.6 0.8 1.0

-0.25

-0.20

-0.15

-0.10

-0.05

Figure 3: Optimal mechanism with quadratic utility and uniform distribution

The solid blue line is utility function on belief Vpµq. The dashed line is buyer’s
expected payoff from the decision problem given choosing the incentive compatible
signal structure-price pair from the optimal menu. The difference between dashed
line and solid black line is the price charged by the seller. For buyers with belief µ

roughly between 0.25 and 0.75, a fully revealing experiment is sold at flat price. For
buyers with more extreme beliefs, a continuum of partially revealing experiments is
sold. Buyers with even more extreme beliefs are excluded from the market.

4 Proof methodology
As is discussed, there are two main difficulties in solving Equation (1). First, the

type space is not linearly ordered. Second, the contract space is an infinite dimen-
sional space. In this section, I show that main methodology I use to overcome the two
difficulties and solve for the optimal menu.
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4.1 Simplification
In this section, I discuss how the dimensionality of space of contracts can be re-

duced. First of all, as a standard approach in nonlinear pricing, instead of solving
problem (1), I study a relaxed problem:

max
M

ż 1

0
ppµq f pµqdµ (2)

s.t.
B

Bsµ
Esµ

“

Vpµ̂pµ, sµqq
‰dsµ

dµ
“ p1pµq (IC1)

pp0q “ pp1q “ 0 (IR1)

Equation (2) relaxes the global incentive compatibility constraints and individual ra-
tionality constraints in Equation (1) to only local ones. Since at µ “ 0 and µ “ 1,
experiments are of no value to the decision maker, the price at these two beliefs must
be zero. Therefore IR1 is a necessary condition. By a standard envelope theorem ar-
gument, global IC constraint implies local IC constraint (IC1). Therefore, Lemma 1 is
quite straightforward:

Lemma 1. The solution of Equation (2) satisfying global IC and IR is a solution of Equa-
tion (2).

Given Lemma 1, my first task is to solve the relaxed problem (2) and then verify
the global IC and IR. From the relaxed problem Equation (2), IC1 can be rewritten by
integrating it:

ppµq “
ż µ

0

ˆ

d
dµ

Esµ

“

Vpµ̂, sµq
‰

´ Esµ

„

B

Bµ
Vpµ̂, sµq

˙

dµ

“Esµ

”

Vpµ̂, sµq

ı

´Vpµq ´
ż µ

0
Esµ

„

B

Bµ
pVpµ̂, sµq ´Vpµqq



dµ

Replace ppµq in the objective function:

max
M

ż 1

0
Esµ

”

Vpµ̂, sµq

ı

f pµqdµ´

ż 1

0
Esµ

„

B

Bµ
pVpµ̂, sµq ´Vpµqq



p1´ Fpµqqdµ (3)

s.t.
ż 1

0
Esµ

„

B

Bµ
pVpµ̂, sµq ´Vpµqq



dµ “ 0

Now let’s define the exact form of experiments in the menu. Let the set of possible
signals be S “ tsiu (i is general index). Each signal si realizes in state l with probability
qi and in state h with probability pi. Thus, when signal si is observed, posterior belief
µ̂psi, µq “

piµ
piµ`qip1´µq . The probability that signal si realizes is piµ` qip1´ µq from the

buyer with prior µ’s point of view. Equation (2) can be written as:

max
tpi,qiu

ż 1

0

˜

ÿ

i

ppiµ` qip1´ µqqVp
piµ

piµ` qip1´ µq
q ´Vpµq

¸

f pµqdµ (4)
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´

ż 1

0

B

Bµ

˜

ÿ

i

ppiµ` qip1´ µqqVp
piµ

piµ` qip1´ µq
q ´Vpµq

¸

p1´ Fpµqqdµ

s.t.
ż 1

0

B

Bµ

˜

ÿ

i

ppiµ` qip1´ µqqVp
piµ

piµ` qip1´ µq
q ´Vpµq

¸

dµ “ 0

ÿ

i

pi “
ÿ

i

qi “ 1

To simplify the problem in the dimensionality of contracts in the optimal menu, I
develop the following lemmas that shows that the optimal menu only includes a class
of experiment with very simple form.

Lemma 2. The optimal menu which solves Equation (4) includes experiments with up to three
signals, and up to one of them is partially informative.

The intuition for proving lemma 2 is simple. I prove that conditional on existence
of at least two interior signals in an experiment, any two interior signals should induce
the same posterior belief to satisfy a first order condition. Interior signal is defined as
a signal which realizes with probability within p0, 1q at any state. Under this condi-
tion, the first order condition involving two interior signals includes no multiplier on
choice of conditional probability. Therefore, I can use the monotonicity of first order
condition to show that the two interior signals must be identical. Then Assumption 2
guarantees that for any µ P p0, 1q, this monotonicity holds. Therefore, the optimal
mechanism involves experiments with no more than three signals. And at most one of
the three signals is partially informative.

With Lemma 2, I can reduce the dimensionality of mechanism space to two (the
posterior associated with the interior signal and the probability of realization of this
signal). I further simplify this problem into a one-dimensional problem using the fol-
lowing lemma:

Lemma 3. The optimal mechanism which solves Equation (4) includes experiments with up
to two signals.

To prove Lemma 3, I assume for the purpose of contradiction the existence of two
fully revealing signals in an experiment. Then, I study the first order condition of an
interior signal. By studying the sign of first order condition in different regions, I con-
clude that the first order conditions associated with the two fully revealing signals can
not hold simultaneously. Therefore, I conclude that the optimal menu only includes
experiments with up two signals and at most one of them is partially revealing.

4.2 Solving the optimal mechanism
With Lemmas 1, 2 and 3, Equation (1) is simplified into a simple one-dimensional

mechanism design problem with single variate. Before proceeding to writing down
the reduced problem, I still want to determine what kind of experiments is sold to
what kind of consumer. To be specific, I want to know the region of buyer to which
experiments perfectly revealing l and experiments perfectly revealing h are sold.

Lemma 4. Let µ0 “ F´1p1´ λq,

12



• For µ P r0, µ0s, experiments revealing h are sold.

• For µ P rµ0, 1s, experiments revealing l are sold.

With lemma 4, I can write down the reduced problem with a mechanism sending
signals tH, Lu defined as following:

• For µ P rµ0, 1s, when θ “ l, ppLq “ q, ppHq “ 1´ q, when θ “ h, ppLq “ 0, ppHq “
1.

• For µ P r0, µ0s, when θ “ h, ppLq “ 1´ p, ppHq “ p, when θ “ l, ppLq “ 1, ppHq “
0.

I define ∆Vpµ, p, qq as the surplus of buyer type µ purchasing experiment with p, q
defined as before. Then the expression of ∆Vpµ, , qq is:

∆Vpµ, p, qq “

$

&

%

pµVp1q ` pµp1´ pq ` 1´ µqV
´

pµ
µp1´pq`1´µ

¯

´Vpµq if µ ă µ0

qp1´ µqVp0q ` pµ` p1´ qqp1´ µqqV
´

µ
µ`p1´qqp1´µq

¯

´Vpµq if µ ě µ0

Therefore the optimization problem for seller can be rewritten as:

max
ppµq,qpµq

ż µ0

0
∆Vpµ, ppµq, 1q f pµqdµ`

ż 1

µ0
∆Vpµ, 1, qpµqq f pµqdµ

`

ż µ0

0
p1´ Fpµqq

B

Bµ
∆Vpµ, ppµq, 1qdµ`

ż 1

µ0
p1´ Fpµqq

B

Bµ
∆Vpµ, 1, qpµqqdµ

s.t.
ż µ0

0

B

Bµ
∆Vpµ, ppµq, 1qdµ`

ż 1

µ0

B

Bµ
∆Vpµ, 1, qpµqqdµ “ 0

Let λ1 be Lagrangian multiplier on the constraint, then the optimality condition re-
quires λ1 exactly being λ defined in Theorem 1. The FOCs are:

ˆ

1´
p1´ µq f pµq
λ` Fpµq ´ 1

˙

`

Vpµ1q ´Vp0q ´ µ1V1pµ1q
˘

`V2pµ1q
µ2

1p1´ µ1q

µ
“ 0 (5)

ˆ

1`
µ f pµq

λ` Fpµq ´ 1

˙

pVpµ2q ´Vp1q ` p1´ µ2qV1pµ2qq `V2pµ2q
µ2p1´ µ2q

2

1´ µ
“ 0 (6)

µ1 is the induced belief when the other signal reveals l, µ2 is the induced belief when
the other signal reveals h.Then to establish uniqueness result, let’s study the two FOCs
more carefully. First define µ` and µ´:

#

f pµ´qµ´ ` pλ` Fpµ´q ´ 1q “ 0

f pµ`qp1´ µ`q ´ pλ` Fpµ`q ´ 1q “ 0

r0, 1s can be devided into four regions:
Region 1: µ P p0, µ´q

In this region, by Lemma 4 h is revealed. Therefore first order condition for p is char-
acterized by Equation (6). Since µ ă µ´, 1 ` µ f pµq

λ`Fpµq´1 ą 0. Therefore Equation (6)
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might have solution. Moreover, since µ can be set arbitrarily close to µ´, there exist a
positive mass of µ such that Equation (6) has solution.

Region 2: µ P rµ´, µ0s

In this region, I still use Equation (6). However, in this region 1` µ f pµq
λ`Fpµq´1 ď 0. There-

fore Equation (6) has no solution with µ2 ą 0. The only possibility that this FOC
might hold is when p “ 1 and induces a positive multiplier. So in this region, the fully
revealing experiment is sold.

Retion 3: µ P rµ0, µ`s

In this region, by Lemma 4 l is revealed. Therefore first order condition for q is char-
acterized by Equation (5). Since µ ď µ`, 1´ p1´µq f pµq

λ`Fpµq´1 ď 0. Therefore Equation (5) has
no solution with µ1 ă 1. The only possibility that FOC might hold is when q “ 1 and
induces a positive multiplier. So in this region, the fully revealing experiment is sold.

Region 4: µ P pµ`, 1q
In this region, by Lemma 4 l is revealed. Therefore FOC for q is characterized by Equa-
tion (5). Since µ ą µ`, 1´ µ f pµq

λ`Fpµq´1 ą 0, Equation (5) might have solution. Similar to
present argument, there exist a positive mass of µ such that Equation (5) has solution.

It’s necessary to verify the single crossing difference condition and monotonicity
condition to make local ICs sufficient for global ICs and IRs. Cross derivatives of ∆V
are:

B2

BµBp
∆V “ ´Vpµ2q `Vp1q ´V1pµ2qp1´ µ2q ´V2pµ2q

µ2p1´ µ2q
2

1´ µ
(7)

B2

BµBq
∆V “ Vpµ1q ´Vp0q ´V1pµ1qµ1 `V2pµ1q

µ2
1p1´ µ1q

µ
(8)

Equation (7) applies when µ ă µ0. According to Assumption 2, µ ă µ̄, therefore Equa-
tion (7) is monotonically decreasing. Meanwhile at µ2 “ 1, this term is 0. Therefore
this term is positive for any µ2 ă 1. That is to say, single crossing difference condition
implies an increasing ppµq when µ ă µ0. Equation (8) applies when µ ą µ0. Accord-
ing to Assumption 2, µ ą µ. Therefore Equation (8) is monotonically increasing. At
µ1 “ 0, this term is 0. Therefore this term should be negative at any µ1 ą 0. This is to
say, single crossing difference condition implies an decreasing qpµqwhen µ ą µ0.

5 Comparative Statics
In this section, I do a comparative statics analysis by shifting the distribution of

buyer’s private types. From this point on, I make the following symmetry assumption:

Assumption 3. The environment is symmetric i.e.Vpµq “ Vp1´ µq, f pµq “ f p1´ µq.

Given assumption 3, the environment is symmetric. Therefore there always exists
a symmetric optimal menu. A symmetric menu implies λ “ 0.5. Therefore, the un-
known parameter λ is uniquely determined and I can define an order on distribution.

Definition 1. F “ t f | f P ∆r0, 1s, f pxq “ f p1´ xq, satisfying assumption 1u, @ f , g P F ,
F, G are corresponding CDF. We define f being more dispersed than g if for µ ă µ´g :

f pµq
0.5´ Fpµq

ě
gpµq

0.5´ Gpµq
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µ´g defined by solution of gpµq ` Gpµq ´ 0.5 “ 0.

Holding the decision problem fixed, when distribution of buyers become more dis-
persed, of course the buyers with more extreme beliefs become relatively more im-
portant. Thus seller has incentive to cut price and include more buyers to buy some
products. Let’s have a formal proof for this intuition. Since the problem is now to-
tally symmetric, I can only focus on µ P p0, 0.5q. By theorem 1, the interval of buyers to
whom the fully revealing experiment is sold is determined only by distribution. Given
distribution g, the end point µ´ is solution to:

1 “
gpµqµ

0.5´ Gpµq

Therefore, by definition of dispersive order, the equality might not hold at µ´ if f is
more dispersed than g. Also by monotonicity assumption on distribution, correspond-
ing µ´ must decreases.

The interval of buyers to whom at least a partially informative experiment is sold
is jointly determined by distribution and decision problem. Given distribution g, the
end point is solution to:

p1´
gpµqµ

0.5´ Gpµq
qpVpµq ´Vp1q `V1pµqp1´ µqq `V2pµqµp1´ µq “ 0

By definition of dispersive order, the equality might not hold at original point if f is
more dispersed than g. Assume that the end point is different from original one, I want
to argue that it must be smaller. If this is not the case, then µ1pµq as a function under
distribution f must cross µ1pµq under g at least once. However this is not possible
according to first order condition. Because at a same µ, changing distribution to a more
dispersed one only changes the coefficient before a strict negative term. Noticing that
here I didn’t prove continuity of mechanism. So a more strict treatment is needed in a
formal proof. To summarize, I have the following proposition.

Proposition 1. Given underlying decision problem V, when distribution of buyer’s belief
become more dispersed, the interval to which fully revealing experiment is sold is expanding.
µ´ decreases and µ` increases. The interval to which at least partially revealing experiment is
sold is expanding.

Combining Proposition 1 and the no crossing argument, I can easily derive the
following proposition:

Proposition 2. Given underlying decision problem V, when distribution of buyer’s belief
become more dispersed, any buyer holding a prior belief µ will be sold a Blackwell more infor-
mative experiment in optimal mechanism.

Proposition 2 states that when distribution of buyer’s belief become more dis-
persed, all buyer type are sold a better experiment which generates higher payoff

15



from the decision problem. I am also interested whether this higher payoff gener-
ates higher surplus for buyers. Let’s start by rewriting surplus for a specific buyer
∆VpEpµq, µq ´ ppµq. Local incentive compatibility constraint implies:

P1pµq “
B

BE
∆VpE, µq

d
dµ

Epµq

ñ
d

dµ
p∆VpEpµq, µq ´ Ppµqq “

B

Bµ
∆VpE, µq

ñ ∆VpE, µq ´ Ppµq “
ż µ

0
∆VµpE, νqdν

Let’s again focus only on µ P p0, 0.5q by symmetry. Now let ppµq be the probabil-
ity defining experiments for optimal mechanism under distribution g. Let’s p1pµq be
the corresponding mechanism under distribution f and f is more dispersed than g.
Therefore by Proposition 2 ppµq ď p1pµq. Then:

∆Vpppµq, µq ´ Ppµq “
ż µ

0
∆Vµpppµq, νqdν

“

ż µ

0

ż ppνq

0

B2

BµBp
∆Vpp, νqdpdν

ď

ż µ

0

ż p1pνq

0

B2

BµBp
∆Vpp, νqdpdν

“ ∆Vpp1
pµq, µq ´ Ppµq

The inequality is implied by single crossing different condition: B2

BµBp ∆Vpp, µq ą 0. To
sum up, I have the following proposition.

Proposition 3. Given underlying decision problem V, when distribution of buyer’s belief
become more dispersed, any buyer holding a belief µ will be weakly better off in optimal mech-
anism.

Example 2. Starting from the same setup in Example 1. Fix the same belief and mod-
ify distribution by rotating pdf of the uniform distribution around the critical points
defined as in Definition 1. It’s easy to verify that this rotation operation satisfies the
dispersive order. Then the resulting optimal mechanisms are depicted in Figure 4:

0.2 0.4 0.6 0.8 1.0

-0.25

-0.20

-0.15

-0.10

-0.05

Figure 4: Comparative statics
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I calculate 5 different levels of dispersiveness in this example. When the buyer’s
private belief distribution is most dispersed, the optimal menu is characterized by
the red curve. When the buyer’s private belief distribution is most condensed, the
optimal menu is characterized by the blue curve. It is clear that for any given buyer’s
private belief, the more dispersed the belief distribution is, the better signal structure
he purchases from the revenue maximizing menu (the upper red curve is higher than
the upper blue curve). Meanwhile, he gets more surplus from trading ( the lower red
curve is higher than the lower blue curve).

6 Conclusion
In this paper, I study the optimal nonlinear pricing of information in the envi-

ronment of selling information to a buyer whole is making a decision and observed
private signal about the payoffs. I focus on the case that the buyer’s decision problem
involves a rich set of different actions, and the seller’s information is binary. I show
that under some regularity conditions, the seller’s revenue maximizing menu contains
a rich set of “simple” signal structures. The “simple” signal structures each contains
only two signals, one of which perfect revealing a state. When the buyer’s private
belief is very uncertain, he purchases a fully revealing signal structure at a flat price.
When his private belief is more certain, he purchases a signal structure that perfectly
contradicts his prior belief. The more certain he is, the less informative signal structure
he purchases.

I also provide a comparative statics result on the dispersiveness of belief distribu-
tion. When the belief distribution becomes more dispersed, targeting least informed
seller types become less profitable so the seller include a wider interval of buyer types
into the menu and also provide the fully revealing experiment to a wider interval
of buyer types. All buyer types are offered a Blackwell more informative experiment.
Corresponding price decreases and buyer with a certain belief enjoys a higher surplus.
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A Proofs for Section 4
A.1 Proof of Lemma 2

Let’s assign λ as the Lagrangian multiplier on the integral constraint. Then let’s
replace some signal j using

ř

i pi “
ř

i qi “ 1. Thus the whole problem will be:

L “
ż 1

0

˜

ÿ

i

ppiµ` qip1´ µqqVp
piµ

piµ` qip1´ µq
q ´Vpµq

¸

f pµqdµ

`

ż 1

0

B

Bµ

˜

ÿ

i

ppiµ` qip1´ µqqVp
piµ

piµ` qip1´ µq
q ´Vpµq

¸

p1´ Fpµq ´ λqdµ

We take FOC for pi:

p f pµqµ` pλ` Fpµq ´ 1qq
`

Vpµiq `V1pµiqp1´ µiq
˘

` pλ` Fpµq ´ 1qV2pµiq
µip1´ µiq

2

1´ µ

“p f pµqµ` pλ` Fpµq ´ 1qq
`

Vpµjq `V1pµjqp1´ µjq
˘

` pλ` Fpµq ´ 1qV2pµjq
µjp1´ µjq

2

1´ µ
` γ`p ´ γ´p

Here γ`p is the multiplier for pj ď 0 and γ´p is the multiplier for pi ď 0. Similarly let’s
take FOC for qi, with multipliers defined in same way:

p f pµqp1´ µq ´ pλ` Fpµq ´ 1qq
`

Vpµiq ´V1pµiqµi
˘

´ pλ` Fpµq ´ 1qV2pµiq
µ2

i p1´ µiq

µ

“p f pµqp1´ µq ´ pλ` Fpµq ´ 1qq
`

Vpµjq `V1pµjqµj
˘

´ pλ` Fpµq ´ 1qV2pµjq
µ2

j p1´ µjq

µ
` γ`q ´ γ´q

Now let’s assume µj is an interior belief, i.e. pj, qj P p0, 1q. Thus if µi is also an interior
belief, for the mechanism to be optimal, I require FOCs to be held with γ`p “ γ´p “

γ`q “ γ´q “ 0. Thus, the resulting µi, µj is determined by function:

H1pµiq “ p f pµqµ` pλ´ Fpµq ´ 1qq
`

Vpµiq `V1pµiqp1´ µiq
˘

` pλ` Fpµq ´ 1qV2pµiq
µip1´ µiq

2

1´ µ

H2pµiq “ p f pµqp1´ µq ´ pλ´ Fpµq ´ 1qq
`

Vpµiq ´V1pµiqµi
˘

´ pλ` Fpµq ´ 1qV2pµiq
µ2

i p1´ µiq

µ

If both functions are monotonic on (0,1), then all interior µis must have the same value.
To investigate this, I divide r0, 1s into four regions and discuss µ case by case. Also I
use assumption 2 to restrict the value of λ.

Region 1:µ P rµ, F´1p1´ λqs

When µ P
”

µ, F´1p1´ λq
ı

:

f pµqp1´ µq ´ pλ` Fpµq ´ 1q ą ´pλ` Fpµq ´ 1q ě 0

By convexity of V:

Vpµiq ´V1pµiqµi weakly decreasing
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Then according to part one of assumption 2:

Vpµiq ´V1pµiqµi `V2pµiq
µ2

i p1´ µiq

µ

“

˜

Vpµiq ´V1pµiqµi `V2pµiq
µ2

i p1´ µiq

µ

¸

µ

µ
`

ˆ

1´
µ

µ

˙

pVpµiq ´V1pµiqµiq

strictly decreasing. Because both terms are decreasing and the coefficients are positive.
Thus:

H1pµiq “ f pµqp1´ µq pVpµiq ´V1pµiqµiq
loooooooooomoooooooooon

decreasing

`´pλ` Fpµq ´ 1q
looooooooomooooooooon

positive

˜

Vpµiq ´V1pµiqµi `V2pµiq
µ2

i p1´ µiq

µ

¸

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

decreasing

is strictly decreasing. Therefore, given µj being interior, when µ P rµ, F´1p1 ´ λqs,
interior µi must equal to µj.

Region 2:µ P rF´1p1´ λq, µ̄s

When µ P rF´1p1´ λq, µ̄s:

f pµqµ` pλ` Fpµq ´ 1q ą λ` Fpµq ´ 1

By convexity of V:

Vpµiq `V1pµiqp1´ µiqweakly increasing

Then according to part one of assumption 2:

Vpµiq `V1pµiqp1´ µiq `V2pµiq
µip1´ µiq

2

1´ µ

“

ˆ

Vpµiq `V1pµiqp1´ µiq `V2pµiq
µip1´ µiq

2

1´ µ̄

˙

1´ µ̄

1´ µ
`

µ̄´ µ

1´ µ
pVpµiq `V1pµiqp1´ µiqq

strictly increasing. From the same argument as before. Therefore:

H2pµiq “ f pµqp1´ µq pVpµiq `V1pµiqp1´ µiqq
loooooooooooooomoooooooooooooon

increasing

` pλ` Fpµq ´ 1q
looooooomooooooon

positive

ˆ

Vpµiq `V1pµiqp1´ µiq `V2pµiq
µip1´ µiq

2

1´ µ

˙

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

increasing

is strictly increasing. Therefore given µj being interior, when µ P
“

F´1p1´ λq, µ̄
‰

, inte-
rior µi must equal to µj.

Then let’s study µ close to 0 or 1. According to part three of assumption 2, by
optimality λ P pλ, λ̄q.
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Region 3:µ P p0, µs

Since λ ą λ, by part two of assumption 2:
ˆ

1`
f pµqµ

λ` Fpµq ´ 1

˙

pVpµiq `V1pµiqp1´ µiqq `V2pµiq
µip1´ µiq

2

1´ µ

“

˜

ˆ

1`
f pµqµ

λ` Fpµq ´ 1

˙

pVpµiq `V1pµiqp1´ µiqq `V2pµiq
µip1´ µiq

2

1´ µ

¸

1´ µ

1´ µ

`
µ´ µ

1´ µ

ˆ

1`
f pµqµ

λ` Fpµq ´ 1

˙

pVpµiq `V1pµiqp1´ µiqq

We know that the second term is weakly increasing (positive coefficient). Let’s deal
with the first term:

ˆ

1`
f pµqµ

λ` Fpµq ´ 1

˙

pVpµiq `V1pµiqp1´ µiqq `V2pµiq
µip1´ µiq

2

1´ µ

“

˜

1`
f pµqµ

λ̄` Fpµq ´ 1

¸

pVpµiq `V1pµiqp1´ µiqq `V2pµiq
µip1´ µiq

2

1´ µ

`

˜

f pµqµ
λ` Fpµq ´ 1

´
f pµqµ

λ̄` Fpµq ´ 1

¸

pVpµiq `V1pµiqp1´ µiqq

The first term is increasing according to assumption 2. The second term is increasing
because the coefficient is positive given λ ă λ̄ and µ ď µ. Noticing the term I in-
vestigated is H1pµiq times some constant coefficient. Therefore given µj being interior,
when µ P p0, µs, interior µi must equal to µj.

Region 4:µ P rµ̄, 1q
Since λ ă λ̄, by part two of assumption 2, I have:

ˆ

1´
f pµqp1´ µq

λ` Fpµq ´ 1

˙

pVpµiq ´V1pµiqµiq `V2pµiq
µ2

i p1´ µiq

µ

“

˜

ˆ

1´
f pµqp1´ µq

λ` Fpµq ´ 1

˙

pVpµiq ´V1pµiqµiq `V2pµiq
µ2

i p1´ µiq

µ̄

¸

µ̄

µ

`
µ´ µ̄

µ

ˆ

1´
f pµqp1´ µq

λ` Fpµq ´ 1

˙

pVpµiq ´V1pµiqµiq

We know that the second term is weakly decreasing (positive coefficient). Let’s deal
with the first term:

ˆ

1´
f pµqp1´ µq

λ` Fpµq ´ 1

˙

pVpµiq ´V1pµiqµiq `V2pµiq
µ2

i p1´ µiq

µ̄

“

ˆ

1´
f pµ̄qp1´ µ̄q

λ` Fpµ̄q ´ 1

˙

pVpµiq ´V1pµiqµiq `V2pµiq
µ2

i p1´ µiq

µ

´

ˆ

f pµqp1´ µq

λ` Fpµq ´ 1
´

f pµ̄qp1´ µ̄q

λ` Fpµ̄q ´ 1

˙

pVpµiq ´V1pµiqµiq

The first term is strictly decreasing according to assumption 2. The second term is
decreasing because the coefficient is positive given λ ą λ and µ ě µ̄. Noticing the
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term I investigated is H2pµiq times some constant coefficient. Therefore I can conclude
that given µj being interior, when µ P rµ̄, 1q, interior µi must equal to µj.

To sum up, I’ve proved that signals inducing interior beliefs must induce the same
belief. Thus the only possibility is boundary beliefs i.e. the case where pi, qi “ 0, 1.
First, it’s straight forward from the existence of another interior signal, pi, qi “ 1 is
impossible. Because that will drive all other signals to inducing extreme beliefs. There
I only need to discuss case where pi, qi “ 0.

When pi “ 0, µi “ 0. When qi “ 0, µi “ 1. Therefore, assuming there exists
an signal inducing interior belief, the possible experiment satisfying optimality must
only induce one interior belief and up to two extreme beliefs. Assuming there doesn’t
exist an signal inducing interior belief, then the only possibility is that the experiment
induces two extreme beliefs.

To sum up, optimal mechanism solving problem (4) includes experiments with up
to one partially informative signal. We proved lemma 2.

A.2 Proof of Lemma 3
Let’s still utilize the FOCs derived in the proof of lemma 2. They can be written as:

H1pµiq “ H1pµjq ` γ`p ´ γ´p

H2pµiq “ H2pµjq ` γ`q ´ γ´q

I want to show that one of the three signals will never appear in optimal mechanism.
To investigate this, I divide r0, 1s into four regions and discuss µ case by case. Given a
λ, let’s first define µ´, µ0, µ` as:

$

’

’

&

’

’

%

f pµ´qµ´ ` pλ` Fpµ´q ´ 1q “ 0

f pµ`qp1´ µ`q ´ pλ` Fpµ`q ´ 1q “ 0

λ` Fpµ0q ´ 1 “ 0

By assumption part three of 2, µ ă µ´ ă µ` ă µ̄.
Region 1:µ P p0, µ´q

We assume that there exists an interior signal inducing µj

• If µi “ 1, then FOC implies:

p f pµqµ` λ` Fpµq ´ 1q
loooooooooooooomoooooooooooooon

negative

Vp1q “ H1pµjq

• If µi “ 0, then FOC implies:

p f pµqµ` λ` Fpµq ´ 1q
loooooooooooooomoooooooooooooon

negative

pVp0q `V1p0qq “ H1pµjq ´ γ´p

• If both of them are true, then:

p f pµqµ` λ` Fpµq ´ 1q
loooooooooooooomoooooooooooooon

negative

pVp0q `V1p0q ´Vp1qq
looooooooooooomooooooooooooon

negative

“ ´γ´p
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This is impossible. This is saying that when µ P p0, µ´q, there will be up to two
signals in optimal mechanism.

Region 2:µ P pµ`, 1q
We assume that there exists and interior signal inducing µj:

• If µi “ 1, then FOC implies:

p f pµqp1´ µq ´ pλ` Fpµq ´ 1qpVp1q ´V1p1qq “ H2pµjq ´ γ´q

• If µi “ 0, then FOC implies:

pFpµqp1´ µq ´ pλ` Fpµq ´ 1qqVp0q “ H2pµjq

• If both of them are true, then:

pFpµqp1´ µq ´ pµ` Fpµq ´ 1qq
looooooooooooooooooomooooooooooooooooooon

negative

Vp1q ´V1p1q ´Vp0q
loooooooooooomoooooooooooon

negative

“ ´γ´q

This is impossible. This is saying that when µ P pµ`, 1q there will be up to two
signals in optimal mechanism.

Region 3:µ P rµ´, µ0s

In this region:

f pµqp1´ µq ´ pλ` Fpµq ´ 1q ąě pλ` Fpµq ´ 1q ě 0

Consider:

G2pµiq “ Vpµiq ´V1pµiqµi ´Vp0q `V2pµiq
µip1´ µiq

2

1´ µ

By assumption 2,G2 is decreasing. It’s also easy to see that G2p0q “ 0. Thus G2pµiq ă 0
for µi ą 0.

We assume that there exists two fully informative signals inducing µ1 “ 0, µ2 “ 1
and now let’s consider the FOC of choosing an interior signal µ3. By µ1 “ 0, µ2 “ 1,
p1 ą 0, q1 “ 0, p2 “ 0, q2 ą 0. Thus, increasing qi when using µi as reference will not
trigger shadow costs. Choose µ1 as reference, by FOC:

H2pµiq “ H2p0q

However this is not possible for µ3 ą 0. Because:

H2pµiq ´ H2p0q “ ´pλ` Fpµq ´ 1qG2pµiq ` f pµqp1´ µqpVpµiq ´V1pµiqµi ´Vp0qq ă 0

Thus when there are two fully informative signals, the optimal mechanism only in-
cludes perfect experiment for µ P rµ´, µ0s.

Region 4:µ P rµ0, µ`s

In the region:

f pµqµ` pλ` Fpµq ´ 1q ě λ` Fpµq ´ 1 ě 0
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Consider:

G1pµiq “ H1pµiq ´ H1p1q “ Vpµiq `V1pµiqp1´ µiq ´Vp1q `V2pµiq
µ2

i p1´ µiq

µ

By assumption 2, G1 is increasing. It’s also easy to see that G1p1q “ 0. Thus G1pµiq ă 0
for µi ă 1.

We assume that there exists two fully informative signals. Now let’s consider the
FOC for choosing an interior signal inducing µi. Similar to the previous argument,
increasing pi when using µ2 as reference will not trigger a shadow cost.

H1pµiq “ H1p1q

However this is not possible for µi ă 1. Because:

H1pµiq ´ H1pqq “ pλ` Fpµq ´ 1qG1pµiq ` FpµqµpVpµiq `V1pµiqp1´ µiq ´Vp1qq ă 0

Thus when there are two fully informative signals, the optimal mechanism only in-
cludes perfect experiment for µ P rµ0, µ`s.

A.3 Proof of lemma 4
The only point at which experiment switches type is a point assigned with a fully

revealing experiment. Then by monotonicity of mechanism, there are only two possi-
ble patterns. Either experiments revealing 0 are sold to low prior buyers, or are sold
to high prior buyers.

However, in the proof of lemma 3, when µ P rµ´, µ0s, optimal experiment with an
interior signal can not reveal l. When µ P rµ0, µ`s, optimal experiment with interior
signal can not reveal h. Thus if experiments assigned to these two region are not fully
revealing, then experiments revealing l will be assigned to buyers with higher µ and
vice versa.

Now the only undetermined case is when µ P rµ´, µ`s, only fully revealing exper-
iments are sold. Let’s look at the single crossing difference condition on qi when the
other signal reveals l:

B2

BµBqi

ˆ

pµ` qip1´ µqqvp
µ

µ` qip1´ µq
q ` p1´ qiqp1´ µqVp0q ´Vpµq

˙

“Vpµiq ´Vp0q ´V1pµiqµi `V2pµiq
µ2

i p1´ µiq

µ

From assumption 2, for µ ą µ, the SCD is negative. Thus, it can not be the case that
experiments fully revealing l is sold to buyers with µ ă µ0 and increase to a fully
revealing experiment.

A same argument can be made for for the SCD of pi and we can conclude that
lemma 4 is true.
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