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Abstract. I consider the sequential implementation of a target information structure. I
characterize the set of decision time distributions induced by all signal processes that
satisfy a per-period learning capacity constraint. I find that all decision time distri-
butions have the same expectation, and the maximal and minimal elements by mean-
preserving spread order are deterministic distribution and exponential distribution.
The result implies that when time preference is risk loving (e.g. standard or hyperbolic
discounting), Poisson signal is optimal since it induces the most risky exponential de-
cision time distribution. When time preference is risk neutral (e.g. constant delay
cost), all signal processes are equally optimal.
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1 Introduction

Consider a decision maker (DM) who is making a one-shot choice of action. The
payoff of each action depends on an unknown state of the world. The DM can design a
sequence of signal structures as her information source subject to a flow informative-
ness constraint. The informativeness of a signal structure is measured by a posterior
separable measure. The DM is impatient and discounts future payoffs. Here I want to
study a simple question: fix a target information structure, what is the optimal learn-
ing dynamics that implements this target information structure?

In Example 1, I solve this problem in a very simple setup. In the example, I con-
sider three simple dynamic signal structures: pure accumulation of information before
decision making, learning from a decisive signal arriving according to a Poisson pro-
cess and learning from observing a Gaussian signal. The example suggests that differ-
ent dynamic signal structures mainly differ in the induced decision time distribution.
Since the form of discounting function prescribes the risk attitude on the time dimen-
sion, the discounting function (or time preference) should be a key factor determining
the optimal dynamic signal structure.

Example 1. Consider a simple example with binary states x “ t0, 1u. Prior belief is
µ “ 0.5. Suppose the target information structure is full revelation (induces belief
0 or 1 each with 0.5 probability). I consider a model in continuous time. Let Hpµq “
1´4pµ´0.5q2, the flow information measure of belief process µt is Er´ d

dt Hpµtq
ˇ

ˇFts (the
uncertainty reduction speed, introduced in Zhong (2017)). Assume flow cost constraint
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c “ 1. DM has exponential discount function e´t. I normalize expected decision utility
from optimal action associated with full learning to be 1. The DM has three alternative
learning strategies:

1. Pure accumulation: the DM uses up all resources pushing her posterior beliefs to-
wards boundary. More precisely, at each prior µ, the strategy seeks posterior ν “

1´ µ with arrival probability p “ 1
4p1´2µq2

1. The DM makes decision once her pos-
terior arrives at 0 or 1.

By standard property of Poisson process, the DM’s posterior belief drifts towards 1
with speed 1

4p2µ´1q . Therefore, the dynamics of belief satisfies ODE:

#

9µ “ 1
4p2µ´1q

µp0q “ 0.5

It is easy to solve for µptq “ 1`
?

t
2 . As a result the DM’s decision time is deterministic

at t “ µ´1p1q “ 1. The expected utility from the pure accumulation strategy is
VA “ e´1 « 0.368.

2. Gaussian learning: the DM observes a Gaussian signal, whose drift is the true state
and variance is a control variable. By standard property of Gaussian learning, the
DM’s posterior belief follows a Brownian motion with zero drift. The flow variance
of posterior belief process satisfies information cost constraint Er´ d

dt Hpµtq
ˇ

ˇFts “

´1
2 σ2H2pµqdt ď cdt. Therefore, we can solve for σ2 “ 1

4 . Then value function is
characterized by the HJB:

Vpµq “
1
8

V2pµq

with boundary condition Vp0q “ Vp1q “ 1. There is an analytical solution to the
ODE:

Vpµq “
e2
?

2 ` e4
?

2x

1` e2
?

2
e´2

?
2x

ùñ VG “ Vp0.5q « 0.459

3. Poisson learning: the DM learns states perfectly with a Poisson rate λ. If no in-
formation arrives, her belief stays at prior. By flow informativeness constraint
Er´ d

dt Hpµtq
ˇ

ˇFts “ λpHpµtq ´
1
2 Hp1q ´ 1

2 Hp0qq ď cdt ùñ λ “ 1. The value function
is characterized by the HJB:

ρVP “ λp1´VPq

ùñ VP “ 0.5
1This can be calculated using cost of Poisson signals Er´dHpµqs “ pHpµq ´ Hpνqpdt` H1pµqpν´ µqqpdt ď cdt
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Clearly:

VP ą VG ą VA

Now we introduce the intuition why the values are ordered in this way. First, all
of the three strategies induce the same expected decision time 1. This is due to the
linearity of posterior separable information measure in compound experiments. The
measure of a signal structure that fully reveals state at prior 0.5 is exactly 1, and it must
equal the expected sum of all learning costs. Since in each continuing unit of time flow
cost 1 is spent, expected learning time must be 1. Therefore, what determines expected
decision utility is the dispersion of decision time distribution. Since discount function
e´t is a strictly convex function, a learning strategy that creates the most dispersed
decision time attains the highest expected utility. Now let us study the decision time
distribution induced by the three strategies:

1. Pure accumulation: t “ 1 with probability 1. The decision time is deterministic.

2. Gaussian learning: With Gaussian learning, to characterize the decision time, it is
equivalent to characterize the first passage time of a standard Brownian motion
with two absorbing barriers:

T “ min
"

t
ˇ

ˇ

ˇ

ˇ

1
2
`

1
2

Bt “ 0 or 1
*

Distribution of T can be solved by solving heat equation with two-sided boundary
solution at x “ 0, 1. There is no analytical solution (solution is only characterized
by series). Here I numerically simulate this process:

Figure 1: Belief distribution of Gaussian learning

Figure 1 depicts the evolution of distribution over posteriors over time. We can see
that at any cross-section, the distribution over posteriors is a Normal distribution
censored at two absorbing barriers 2. The normal part is becoming flatter over time
because learning leads to mean preserving spread of posterior beliefs.

2the distribution has point mass at 0, 1, represented by straight lines in figure. The relative height represents probability mass.
But the point mass part and Normal part doesn’t share same scale.
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3. Poisson learning: As is calculated, the Poisson signal has a fixed arrival frequency
λ “ 1. The stopping time distribution can be calculated easily:

Fptq “ 1´ e´t

Evolution of posterior beliefs is shown in Figure 2:

Figure 2: Belief distribution of Poisson learning

Figure 2 depicts the evolution of distribution over posteriors over time. At any
cross-section, distribution over posterior has three mass points at prior and two tar-
get posteriors. The mass on prior is decreasing over time (following an exponential
distribution) and the mass on posteriors is increasing over time.

Obviously, pure accumulation is always the worst since it has deterministic deci-
sion time. By comparing Figures 1 and 2, one can easily see the difference between
Gaussian learning and Poisson learning: Gaussian learning accumulates some infor-
mation that induces intermediate beliefs over time, while Poisson learning uses up all
resources to draw conclusive signals. It seems the Poisson learning induces higher
decision probability in the beginning and Gaussian learning induces higher decision
probability later on (when prior is more dispersed). Therefore, Poisson learning has
more dispersed decision time. We can verify this by plotting PDFs and integral of
CDFs:
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Figure 3: PDFs
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Figure 4: Integral of CDFs
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In figure Figures 3 and 4, the black curves represent Poisson learning, the red
curves represent Gaussian learning and the dashed lines represent pure accumula-
tion. It is not hard to see from Figure 4 that decision time of Poisson learning is in
fact a mean-preserving spread of that of Gaussian learning. So Poisson learning dom-
inates Gaussian learning for not only exponential discounting, but also any convex
discounting function.

In Example 1, I compare three kinds of dynamic learning strategies. These three
strategies are chosen to be representative. First, these three strategies are simple heuris-
tics that are very tractable. Second, these three strategies are also representative for
three kinds of learning frameworks widely used in literature:

• Pure accumulation has a flavor of rational inattention models. Like in Matejka &
McKay (2014), decision is made once and there is no dynamics. Even in dynamic
rational inattention model like Steiner et al. (2017), information is acquired in
one period, and there is no smooth of information. In this example, (decisive)
learning has neither time dispersion nor cross-sectional dispersion with pure ac-
cumulation.

• Gaussian learning itself is well studied in literature, for example Moscarini &
Smith (2001), Hébert & Woodford (2016). On the other hand, Gaussian learn-
ing is one kind of symmetric drift-diffusion model (Ratcliff & McKoon (2008)).
Gaussian learning captures the idea of gradual learning both over time and over
beliefs.

• Poisson learning relates to Wald’s problem (Wald (1947), Che & Mierendorff
(2016)). Poisson bandit is used as a building block for strategic experimentation
models (see a survey by Hörner & Skrzypacz (2016)). My example considers a
simplest stationary Poisson stopping strategy that stochastically reveals the true
state. Poisson learning is only gradual over time, but is lump sum in belief space.

Example 1 suggests a key trade-off to be studied: gradual accumulation of infor-
mation v.s. seeking decisive evidence. I want to learn how choice between gradual
accumulation and decisive evidence seeking determines decision time distribution. In
Section 2, I develop an information acquisition problem that imposes no restriction on
the specific form of information a decision maker can acquire. The DM can choose an
arbitrary random process as signals, and she observes signal realizations as her infor-
mation. There are two constraints on the signal process. First, flow informativeness
of the process is bounded. Second, the signal distribution conditional on stopping is
fixed. If the DM chooses to learn gradually, then she is able to accumulate sufficient
information before making any decision. After accumulating information, she can run
the target experiment successfully with very high probability and achieves close to
riskless decision time. On the contrary, if the DM chooses to only seek decisive sig-
nals, then they arrive only with low probabilities. So the corresponding decision time
is more risky.
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The main finding of this paper is that among all decision time distributions in-
duced by feasible and exhaustive3 learning strategies, the most dispersed decision
time distribution is induced by decisive Poisson learning–only decisive signals arrive
as Poisson process. Meanwhile, the least dispersed time distribution is induced by
pure accumulation, as I already show in Example 1.

The paper is structured as follows. Section 2 setups a general discrete time infor-
mation acquisition framework. Section 3 proves the main theorem. Section 4 extends
the result to a continuous time model. Section 6 concludes.

2 Setup of model

The model is in discrete time. Consider a decision maker who has a discount func-
tion ρt decreasing and convex (both weakly) in time t. limtÑ8

ř8
τ“t ρτ “ 0. There

is a finite state space X and action space A. Prior belief of the unknown payoff-
relevant state is µ P ∆pXq. The DM’s goal is to implement a signal structure that
induces distribution π P ∆2pXq over posterior beliefs4. By implementing a target sig-
nal structure, I mean conditional on stopping, the signal structure in current period
must be a sufficient statistics for the target information structure. The informative-
ness of signal structure is measured by a posterior separable function Ippi, νi|µq “
ř

pipHpµq ´ Hpνiqq. In each period, the DM can acquire information for no more than
c unit, i.e. E

“

Ippt
i , νt

i |µ
tq
‰

ď c. The optimization problem is:

sup
St,T

E rρT upA,X qs (1)

s.t.

$

’

&

’

%

I pSt;X |St´1, 1T ětq ď c

X Ñ St Ñ A conditional on T “ t

X Ñ St Ñ 1T ět

where T P ∆N, t P N. St´1 is defined as summary of past information pS1, . . . ,St´1q.
S0 ” c0 is assumed to be degenerate. The objective function in Equation (1) is straight
forward. The first constraint is the flow information cost constraint. The second con-
straint is the target information structure constraint. The remaining constraint is nat-
ural information process constraint.

Remark. This model is restrictive in design of information in the following sense: At
any instant in time, conditional on stop, the information acquired must be sufficient
for a time invariant A. Other than this restriction, DM can freely choose her learning
dynamics. This model does not necessarily cover Gaussian learning in general, but it
does in symmetric cases (i.e. target posterior distribution and H are symmetric around
prior µ).

I restrict learning dynamics in this way to abstract away from the fact that the opti-
mal target information structure itself is changing over time, which creates time vary-
ing incentive for search direction, search precision and search intensity (highlighted in
Zhong (2017)). In the current paper, I want to focus on the trade-off between gradual
information accumulation and decision evidence seeking.

3A feasible strategy is exhaustive if it is not leaving any capacity unused or acquiring unrelated information.
4I equivalent represent state and signal realization as random variables pX ,Aq.
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I assume that the DM follows suggestion of signal structure A in choosing action.
This is WLOG since given any signal structure, the induced optimal action itself forms
a Blackwell less informative signal structure. Therefore, the original learning strategy
is still statistically sufficient for the direct signal structure. So if we take the optimiza-
tion ofA also into account, it is WLOG to assumeA is a direct signal. Then the optimal
implementation of A still follows solution to our problem. The optimization of A is
studied in Section 5.1.

3 Solution

3.1 Relaxed problem

Let Ī “ IpA;X q and V˚ “ ErupA;X qs. Consider a relaxed problem which only
tracks average accumulated information measure I rather than the whole signal pro-
cess conditional on all histories:

sup
pt

8
ÿ

t“1

ρtp1´ Pt´1qptV˚ (2)

s.t.

$

’

&

’

%

p Ī ´ Itqpt ` pIt`1 ´ Itqp1´ ptq ď c

Pt “ Pt´1 ` p1´ Pt´1qpt

P0 “ 0, I1 “ 0

where pt P r0, 1s and It ě 0. 1 ´ Pt´1 is the surviving probability at period t, pt is
the conditional stop probability. It is the information measure of the whole path of
non-stopping signals up to period t.

The relaxed problem Equation (2) captures a key feature of posterior separable in-
formation measure: It is accumulated linearly overtime and the information measure
required to implement S is exactly the remaining information measure Ī´ It. It is more
relaxed than Equation (1) in the following sense: in Equation (1), the flow informative-
ness constraint is imposed on all histories of St´1 and 1T ďt. However, in Equation (2),
the first constraint is imposed only on average. pt can be interpreted as the expected
stopping probability and It’s as the expected accumulated informativeness.

Lemma 1. Value from solving Equation (1) is no larger than value from solving Equation (2)

Lemma 1 verifies the previous intuition. Now I first focus on solving Equation (2),
to provide some clue for solving the original problem Equation (1).

Theorem 1. pt ”
c
Ī solves Equation (2).

Theorem 1 states that the relaxed problem Equation (2) has a simple solution:
no information should ever be accumulated. It ” 0 and the optimal value equals
ř8

t“0 ρt

´

1´ c
Ī

¯t´1 c
Ī V˚. I prove Theorem 1 by approximating the convex discount

function ρt with finite summation of linear ones. For each linear discount function,
I prove by backward induction that choosing It ” 0 is optimal.
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3.2 Optimal learning dynamics

By Lemma 1 and Theorem 1, to solve Equation (1), it is sufficient to show that

8
ÿ

t“1

ρt

´

1´
c
Ī

¯t´1 c
Ī
V˚ (3)

is attainable by feasible strategy in Equation (1). Consider the following experimen-
tation strategy, A is observed with probability c

Ī in each period. If A is successfully
observed, the corresponding action is taken. If not, go to the next period and follow
the same strategy. Formally, St and T are defined as follows. Let s0, c0 R A be two
distinct degenerate signals.

St “

$

’

’

&

’

’

%

s0 with probability 1 if St´1 P A
Ť

ts0u

A with probability c
Ī if St´1 “ c0

c0 with probability 1´ c
Ī if St´1 “ c0

(4)

T “t if St P A

Then it is not hard to verify that:

• Objective function:

ErρT upA, Xqs

“

8
ÿ

t“1

ρtPpSt P AqErupA,X qs

“

8
ÿ

t“1

ρt

t´1
ź

τ“0

PpSτ “ c0|Sτ´1 “ c0qPpSt P A|St´1 “ c0qErupA,X qs

“

8
ÿ

t“1

ρt

´

1´
c
Ī

¯t c
Ī
V˚

• Capacity constraint:

IpSt;X |St´1, 1T ětq

“1St´1“c0 IpSt;X | tc0u , 1q ` 1St´1‰c0 Ips0;X |St´1, 0q

“1St´1“c0 pPpSt P AqIpA;X q ` PpSt “ c0qIpc0;X qq ` 1St´1‰c0 ¨ 0

“1St´1“c0 ¨
c
Ī
¨ Ī ď c

• Decision time distribution:

Pt “ PpT ď tq “ 1´
´

1´
c
Ī

¯t
(5)

I show that Equation (4) implements expected utility level Equation (3), hence solves
Equation (1). It is easy to see that Equation (4) induces expected decision time Ī

c . By
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Lemma 2, Ī
c is the lower bound of expected decision time for all feasible strategies. In

fact, the proof of Lemma 2 suggests that ErT s ą Ī
c only when there is some waste of

information: either capacity constraint c is not fully used, or St contains strictly more
information than A conditional on taking action.

Lemma 2. Let pSt, T q be information acquisition strategy satisfying constraints in Equa-
tion (1), then ErT s ě Ī

c .

I call an information acquisition strategy exhaustive if corresponding ErT s “ Ī
c .

The decision time distribution Pt induced by strategy Equation (4) is a exponential
distribution with parameter c

Ī . Equation (4) being the optimal strategy, independent
of choice of ρt implies that @ρt, @ information acquisition strategy p rSt, rT q:

Erρ
rT upA;X qs ď E rρT upA;X qs

ùñ Erρ
rT s ď ErρT s

Since ρt ranges over all positive decreasing convex functions, Pt as distribution over
time is second order stochastically dominated. Summarizing the analysis above, I get
Theorem 2.

Theorem 2. Equation (4) solves Equation (1). The decision time distribution of any feasible
and exhaustive information acquisition strategy second order stochastically dominates Pt.

3.3 Gradual learning v.s. decisive evidence

My analysis illustrates the gradual learning v.s. decisive evidence trade-off in the
flexible learning environment. The trade-off is: the speed of future learning depends
on how much information the DM has already possessed. Accumulating more in-
formation today speeds up future learning. So the DM is choosing between naively
learning just for today or learning for the future. If all resources are invested in seeking
decisive evidence, then signal arrives at a constant low probability, and the decision
time distribution is dispersed. If some resources are invested in information accumu-
lation, then learning will accelerate, at a cost of lower (or even zero) arrival rate of
decisive signals in the early stage. As a result the decision time is less dispersed.

Surprisingly, when the decision maker has convex discounting function, decisive
evidence seeking is optimal. The intuition behind this result is natural. Convex dis-
counting function means that the decision maker is risk loving towards decision time.
Seeking decisive evidence is the riskiest learning strategy one can take: it payoff quickly
with high probability, but if it fails, learning is very slow in future. In practice, evi-
dence seeking is a very natural learning strategies. A researcher tends to form a hy-
pothesis, then seeks evidence either confirms or contradicts the hypothesis. Usually
there is a clear target of what to prove (the hypothesis), and what kind of signals (data
from experiments) proves/contradicts the hypothesis. Running the research protocol
itself is usually more mechanical than the designing stage. What is common in natural
science is that the principal investigator designs the whole research plan. Then all ex-
periments, data collections and computations are run by doctoral students. PI usually
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diversifies over dozens of projects, so he can enjoy the expected payoff from this risky
project design.

Two elements in my framework are key to this result. First is the flexibility in de-
sign of signal process. In contrast to my framework, if one consider a dynamic infor-
mation acquisition problem with highly parametrized information process, then other
kind of trade-offs tied to the parametrization constraints might have first order effects.
For example, if one only allows Poisson learning or Gaussian learning, then the trade-
off of gradual learning and decisive evidence is directly assumed away. As a result the
choice among signal types (Che & Mierendorff (2016),Liang et al. (2017)) or the trade-
off between intensity and information cost (Moscarini & Smith (2001)) becomes first
order important. If one only allows DM to choose between to learn or not to learn in
each period, then the trade-off between exploration and exploitation becomes first or-
der. Meanwhile, in my framework, the DM can freely design the optimal signal type,
and the corresponding decision time. So the aforementioned trade-offs actually do not
exist, the trade-off between gradual learning and decisive evidence becomes central to
the analysis.

Second is the posterior separability assumption on information measure. Posterior
separability is equivalent to the linear additivity of compound signal structures (see
the discussion in Section 7.1 of Zhong (2017)). This assumption restricts the relative
price between gradual learning and evidence seeking. Any amount of informativeness
invested today to accumulate information transfers one-to-one to the amount of reduc-
tion of information cost tomorrow. Lemma 2 shows that the expected decision time is
identical for all feasible and exhaustive learning strategy. As a result the trade-off be-
tween gradual learning and decisive learning translates to choice of dispersion of de-
cision time distribution. If one assumes either sub-additivity or super-additivity in in-
formativeness measure, then choosing different learning strategies might also change
the expected decision time, which makes my key trade-off entangled with other ef-
fects.

4 Continuous time

In this section, I study a continuous time version of Equation (1). Let ρt : R` Ñ R`

be decreasing, convex and integrable discounting function. Let Fpµq “ supa Eµrupa, xqs.
Consider stochastic control problem:

sup
xµty,T

E rρτEπrFpµqss (6)

s.t.

$

’

’

&

’

’

%

E rµt`s|µts “ µt

´E
”

d
dt Hpµtq

ˇ

ˇ

ˇ
Ft

ı

ď cdt

µ0 “ µ, µt
ˇ

ˇ

τ“t „ π

where τ has continuous cdf and is measurable to µt. The objective function of Equa-
tion (6) is the same as that of Equation (1). In the stochastic control problem, the
decision maker chooses the optimal posterior belief process xµty and stopping time τ,
subject to 1) stopping time measurable to belief process. 2) belief process is a martin-
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gale. 3) flow increase in informativeness measure is bounded by c. 4) conditional on
stopping time, µt has distribution π.

Equation (6) is a continuous time extension of Equation (1). However, I haven’t
not formally specify how a stochastic process of posterior beliefs can be induced by
a stochastic information acquisition strategy. Equation (6) is constructed by taking
analog of Equation (1). Let V˚ “ EπrFpµqs. Then

Lemma 3. Value from solving Equation (6) is no larger than value from solving Equation (7).

V “ sup
pt

ż 8

0
ρt p1´ Ptq ptV˚dt (7)

s.t.

#

I0 “ 0, It ě 0, 9It ď c´ ptp Ī ´ Itq

P0 “ 0, 9Pt “ p1´ Ptqpt

where pt is positive integrable function.

Theorem 3. pt ”
c
Ī solves Equation (7).

Lemma 3 and Theorem 3 are exactly the continuous time analog of Lemma 1 and The-
orem 1. Lemma 3 states that Equation (7) is a relaxed problem of Equation (2). Theo-
rem 3 characterizes the solution of Equation (7): no information should ever be accu-
mulated. It ” 0 and the optimal value equals

ş8

0 ρte
´ c

I
t c

I
V˚dt. Theorem 3 is proved by

discreizing the continuous time problem and invoking the result of Theorem 1.

4.1 Implementation

By Lemma 3 and Theorem 3, to solve Equation (6), it is sufficient to show that:
ż 8

0
ρte´

c
Ī tdt

c
I
V˚

can be attained in Equation (6). Consider the following information acquisition strat-
egy. Let ν be a random variable with distribution π and define:

#

dµt “ pν´ µtq ¨ dNt

τ “ t if dNt=1
(8)

where Nt a standard Poisson counting processes with parameter c
Ī and independent

to ν. xµty is by definition a stationary compound Poisson process. The jump happens
when the Poisson signal arrives and belief jumps to posteriors according to distribu-
tion π. Once the jump occurs, decision is made immediately. It is easy to verify:

• Martingale property: Each dNt ´
c
Ī dt is martingale.

Erdµt|µts “Erpν´ µtq ¨ dNts

“Eπ rErpν´ µq ¨ dNt|νss

“Eπ

”

pν´ µq ¨ E
”

dNt ´
c
Ī
dt
ıı

` Eπ

”

pν´ µq ¨
c
Ī
dt
ı

“0

therefore, µt is a martingale. Second equality is law of iterated expectation. Third
equality is by martingale assumption of ν and dNt ´

c
Ī dt being martingale.
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• Capacity constraint: If dNt ě 1, then Er´dHpµtq|µts “ 0 ď c. If dNt ă 1, then by
Ito formula for jump process:

dHpµtq “pHpνq ´ Hpµqq ¨ dNt

ùñ Er´dHpµtq|µts “Eπ rE rpHpµtq ´ Hpνqq ¨ dNt|νss

“Eπ

”c
Ī
pHpµtq ´ Hpνqqdt

ı

“cdt

Second equality is law of iterated expectation. Third equality is martingale prop-
erty of dNt ´

c
Ī dt.

• Decision time distribution:

Pt “ 1´ e´
c
Ī t

Therefore, Equation (8) implements utility level
ş8

0 ρt
c
Ī e´

c
Ī tV˚dt.

Lemma 4. Let pµt, T q be information acquisition strategy satisfying constraints in Equa-
tion (6), then ErT s ě Ī

c .

As in the discrete case, I call an information acquisition strategy exhaustive if the corre-
sponding ErT s “ Ī

c . Since Equation (8) is optimal independent of choice of convex ρt,
previous analysis implies Theorem 4.

Theorem 4. Equation (8) solves Equation (6). The decision time distribution of any feasible
and exhaustive information acquisition strategy second order stochastically dominates Pt.

5 Discussion

5.1 Optimal target signal structure

In this section, I solve for the optimal target signal structure in decision problem
Equation (6). Assume that ρt is differentiable. By Theorem 4, the optimization problem
can be written as:

sup
πP∆2pXq

ż 8

0
ρte

´ c
Hpµq´EπrHpνqs

tdt ¨
c ¨ EπrFpνqs

Hpµq ´ EπrHpνqs
(9)

s.t. Eπrνs “ µ

Define f pV1, V2q “
ş8

0 ρte
´ c

Hpµq´V1 t
dt ¨ c¨V2

Hpµq´V1 . Then it is not hard to verify that f pV1, V2q

is differentiable5 in V1, V2. Apply Theorem 2 of Zhong (2018), a necessary condition
for π˚ solving Equation (9) is:

π˚ P arg max
πP∆2pXq
Eπrνs“µ

Eπ

»

—

–

Fpνq `

ş8

0 p´ 9ρtq e
´ c

Hpµq´Eπ˚rHpνqs
t Eπ˚ rFpνqs

Hpµq´Eπ˚ rHpνqs
tdt

ş8

0 ρte
´ c

Hpµq´Eπ˚rHpνqs
t
dt

¨ Hpνq

fi

ffi

fl

5Differentiabiliy can be shown by definition, noticing that e
´ c

Hpµq´V1 t
¨ t is absolutely integrable.
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Notice that the objective function is the expectation of the linear combination of two
belief dependent functions. If we define:

gpxq “

ş8

0 p´ 9ρtq e´
c

Hpµq´x t t
Hpµq´x dt

ş8

0 ρte
´ c

Hpµq´x tdt

Then by the standard argument in Bayesian persuasion, π˚ can by characterized by
concavifying the gross value function F ` pg pEπ˚rHpνqsq ¨ Eπ˚rFpνqsqH. Moreover, by
Theorem 1 of Zhong (2018), there exists π˚ with support size 2 |X| solving Equation (9).
So I get the following characterization:

Proposition 1. There exists π˚ solving Equation (9) and |supppπ˚q| ď 2 |X|. Let λ “

gpEπ˚rHpνqsq ¨ Eπ˚rFpνqs, any such π˚ satisfies:

π˚ P arg max
πP∆2pXq
Eπrνs“µ

EπrFpνq ` λ ¨ Hpνqs

Suppose the discounting function is a standard exponential function: ρt “ e´ρd,
then gpxq “ ρ

c`ρpHpµq´xq . Notice that objective function:

Vpµq “
ż 8

0
e
´

ˆ

ρ` c
Hpµq´Eπ˚rHpνqs

˙

t c ¨ Eπ˚rFpνqs
Hpµq ´ Eπ˚rHpνqs

dt “
c ¨ Eπ˚rFpνqs

c` ρpHpµq ´ Eπ˚rHpνqsq

Therefore, optimality condition becomes:

π˚ P arg max
πP∆2pXq
Eπrνs“µ

Eπ

”

Fpνq `
ρ

c
VpµqHpνq

ı

(10)

Equation (10) is very similar to optimality condition derived in Zhong (2017), where
optimal posterior is solved from concavifying Vp¨q ` ρ

c VpµqHp¨q. The problem solved
in Zhong (2017) is the continuous time limit of Equation (1) without constraint on con-
stant target signal structure and exponential discounting. In both problems, ρ

c Vpµq is
adjusting the concavity of gross value function. Therefore, higher continuation value
corresponds to more concave gross value function and less informative signal struc-
ture. This suggests that the monotonicity in precision-frequency trade-off is extended
to our model as well. In Zhong (2017), the trade-off is illustrated as decrease in preci-
sion of target information structure at each decision time. In the current paper, target
information structure is forced to be constant over time. However, if I endogenize tar-
get information structure, then at more extreme prior beliefs associated with higher
decision value, less informative target information structure is optimal (and corre-
sponding expected waiting time is shorter).

6 Conclusion

In this paper, I characterize the decision time distributions that can be induced
by a dynamic information acquisition strategy, and study how time preference deter-
mines the optimal form of learning dynamics. No restriction is placed on the form of

13



information acquisition strategy, except for a fixed target signal structure and a flow
informativeness constraint.I find that all decision time distributions have the same ex-
pectation, and the maximal and minimal elements by mean-preserving spread order
are deterministic distribution and exponential distribution. The result implies that
when time preference is risk loving (e.g. standard or hyperbolic discounting), Poisson
signal is optimal since it induces the most risky exponential decision time distribution.
When time preference is risk neutral (e.g. constant delay cost), all signal processes are
equally optimal.
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A Omitted proofs

A.1 Proof for Lemma 1

Proof.
Step 1. Value from solving Equation (1) is no larger than value from solving Equation (11):

sup
St,T

E rρT upA,X qs (11)

s.t.

$

’

&

’

%

E
“

I pSt;X |St´1, 1T ětq
ˇ

ˇT ě t
‰

ď c

X Ñ St Ñ A conditional on T “ t

X Ñ St Ñ 1T ět

Equation (11) is more relaxed than Equation (1) in the first constraint. In Equation (1), the
flow cost constraint is imposed on each prior induced by previous information and decision
choice. Equation (11) only requires the average cost conditional on not having stopped yet
being bounded by c:

IpSt;X |St´1, 1T ětq ď c

ùñ E
“

I pSt;X |St´1, 1T ětq
ˇ

ˇT ě t
‰

ď E rc|T ě ts “ c

Therefore, any feasible strategy for Equation (1) is feasible for Equation (11). So Equa-
tion (11) is a more relaxed problem than Equation (1).

Step 2. Value from solving Equation (11) is no larger than value from solving Equation (2).
@ pSt, T q satisfying constraints in Equation (11), define:

$

’

&

’

%

It “ I pSt´1;X |T ě tq

pt “ PpT “ t|T ě tq

Pt “ PpT ď tq

Want to show that pIt, ptq is feasible and implements same utility in Equation (2) as pSt, T q in
Equation (11). First, consider the objective function:

E rρT upA;X qs

“

8
ÿ

t“0

PpT “ tqρtE rupA;X q|T “ ts

“

8
ÿ

t“0

PpT “ t|T ě tqPpT ě tqρtV˚

“

8
ÿ

t“0

ρtp1´ Pt´1qptV˚

Second, consider feasibility constraint:

c ěE
“

I pSt;X |St´1, 1T ětq
ˇ

ˇT ě t
‰

“PpT “ t|T ě tqE rIpSt;X |St´1, 1T ětq|T “ ts

`PpT ą t|T ě tqE rIpSt;X |St´1, 1T ětq|T ą tqs

“pt pIpSt, 1T ět;X |T “ tq ´ IpSt´1, 1T ět;X |T “ tqq

`p1´ ptq pIpSt, 1T ět;X |T ą tq ´ IpSt´1, 1T ět;X |T ą tqq
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“pt IpSt;X |T “ tq ` p1´ ptqIpSt;X |T ą tq

´ ppt IpSt´1, 1T ět;X |T “ tq ` p1´ ptqIpSt´1, 1T ět;X |T ą tqq

ěpt IpA;X q ` p1´ ptqIt`1 ´ IpSt´1, 1T ět;X |T ě tq

“pt Ī ` p1´ ptqIt`1 ´ It

First inequality is feasibility constraint. Fist equality is law of iterated expectation. Second
equality is chain rule from posterior separability. Third equality is rewriting terms. Noticing
that condition on T “ t` 1, 1T ďt is degenerate. Second inequality is from information pro-
cessing inequality and applying chain rule again. Last equality is by definition. It is easy to
verify by law of total probability that:

Pt “PpT ď tq “ PpT “ tq ` PpT ď t´ 1q

“PpT ě tqPpT “ t|T ě tq ` PpT ď t´ 1q

“p1´ Pt´1qpt ` Pt´1

Then we verify initial conditions:
#

I1 “ IpS0;X |T ě 1q “ 0

P0 “ PpT ď 0q “ 0

Q.E.D.

A.2 Proof of Theorem 1

Proof. First, assume ρt “ max
 

0, T´t
T

(

. We show that the statement in Theorem 1 is correct
with assumed ρt. Since ρt “ 0 when t ě T, Equation (2) is finite horizon. So we can apply
backward induction. Define:

VtpIq “ sup
pτ

T
ÿ

τ“t

T´ τ

T
p1´ Pτ´1qpτV˚

s.t.

$

’

&

’

%

p Ī ´ Iτqpτ ` pIτ`1 ´ Iτqp1´ pτq ď c

Pτ “ Pτ´1 ` p1´ Pτ´1qpτ

Pt´1 “ 0, It “ I

Then Vt solves functional equation:

VtpIq “ sup
p

T´ t
T

pV˚ ` p1´ pqVt`1pI1q (12)

s.t. p Ī ´ Iqp` pI1 ´ Iqp1´ pq ď c

I conjecture that for I ě 0:

rVtpIq “

$

’

’

’

&

’

’

’

%

T´ t
T

c` I
Ī

V˚ `
ˆ

1´
c` I

Ī

˙ T
ÿ

τ“t`1

T´ τ

T
V˚

c
Ī

´

1´
c
Ī

¯τ´t´1
when

c` I
Ī

ă 1

T´ t
T

V˚ when
c` I

Ī
ě 1

(13)

solves Equation (12). This is clearly true for t “ T ´ 1. Since when t “ T ´ 1, Vt`1 ”

0 so there is no utility gain from accumulating I. Now we prove the conjecture by
backward induction on t. Suppose the conjecture is true for t. Consider solving Vt´1

from Equation (12).
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• Case 1: Ī ď c ` I. Then choosing p “ 1 gives utility T´τ
T V˚ immediately, thus

optimal and VtpIq “ T´t
T V˚ “ rVtpIq.

• Case 1: Ī ą c` I. Consider the one-step optimization problem choosing I1:

VtpIq “ sup
I1ě0

T ´ t
T

c` I ´ I1

Ī ´ I1
V˚ `

Ī ´ I ´ c
Ī ´ I1

rVt`1pI1q

When I1 ď Ī ´ c, the objective function is:

T ´ t
T

c` I ´ I1

Ī ´ I1
V˚ `

Ī ´ I ´ c
Ī ´ I1

T ´ t´ 1
T

V˚

ùñ FOC : ´
1
T

Ī ´ I ´ c
p Ī ´ I1q2

V˚ ď 0

When I1 ą Ī ´ c, the objective function is:

T´ t
T

c` I ´ I1

Ī ´ I1
V˚ `

Ī ´ I ´ c
Ī ´ I1

˜

T´ t´ 1
T

c` I1

Ī
V˚ `

ˆ

1´
c` I1

Ī

˙ T
ÿ

τ“t`2

T´ τ

T
V˚

c
Ī

´

1´
c
Ī

¯τ´t´2
¸

ùñ FOC : ´
´

1´
c
Ī

¯T´t´1 Ī ´ I ´ c
Tp Ī ´ I1q2

V˚ ă 0

To sum up, decreasing I1 is always utility improving. So optimal I1 “ 0 and
optimal solution of Equation (12) is

VtpIq “
T´ t

T
c` I

Ī
V˚ `

ˆ

1´
c` I

Ī

˙

˜

T´ t´ 1
T

c
Ī
V˚ `

´

1´
c
Ī

¯

T
ÿ

τ“t`2

T´ τ

T
V˚

c
Ī

´

1´
c
Ī

¯τ´t´2
¸

“
T´ t

T
c` I

Ī
V˚ `

ˆ

1´
c` I

Ī

˙ T
ÿ

τ“t`1

T´ τ

T
V˚

c
Ī

´

1´
c
Ī

¯τ´t´1

“rVtpIq

Therefore, rVtpIq solves Equation (12). So with ρt defined by max
 

0, T´t
T
(

, Equation (2)
is solved by strategy It ” 0 (i.e. pt “

c
Ī ) and optimal utility is rV1p0q.

Now, consider a general convex ρt. We want to show that pt “
c
Ī is still optimal

strategy for Equation (2). By definition limtÑ8
ř

τět ρτ “ 0, so @ε there exists T s.t
ř

těT ρt ă ε. Pick T to be an even number. Now define ρt
τ recursively:

• ρT
τ “ max tρT ` pτ ´ TqpρT ´ ρT´1q, 0u. Define pρT

τ “ ρτ ´ ρT
τ when τ ď T and

pρT
τ “ 0 otherwise. It is not hard to verify that pρT

τ is convex in τ and pρT
τ “ 0 @τ ě

T ´ 1.

• ρT´2
τ “ max

 

pρT
T´2 ` pτ ´ T ` 2qppρT

T´2 ´ pρT
T´3q, 0

(

. Define pρT´2
τ “ pρT

τ ´ ρT´2
τ . It is

not hard to verify that pρT´2
τ is convex in τ and pρT´2

τ “ 0 @τ ě T ´ 3.

• ¨ ¨ ¨

• ρT´2k
τ “ max

!

pρT´2k`2
T´2k ` pτ ´ T ` 2kq

´

pρT´2k`2
T´2k ´ pρT´2k`2

T´2k´1

¯

, 0
)

. Define pρT´2k
τ “

pρT´2k`2
τ ´ ρT´2k

τ .

18



@p1t satisfying constraints in Equation (2) and corresponding P1t :

8
ÿ

t“1

ρtp1´ P1t´1qp
1
tV
˚

“

8
ÿ

t“1

¨

˝

rT{2s
ÿ

k“1

ρT´2k
t `

¨

˝ρt ´

rT{2s
ÿ

k“1

ρT´2k
t

˛

‚

˛

‚p1´ P1t´1qp
1
tV
˚

ă

rT{2s
ÿ

k“1

8
ÿ

t“1

ρT´2k
t p1´ P1t´1qp

1
tV
˚
` εV˚

ď

rT{2s
ÿ

k“1

8
ÿ

t“1

ρT´2k
t p1´ Pt´1qptV˚ ` εV˚

ď

8
ÿ

t“1

ρtp1´ Pt´1qptV˚ ` εV˚

First inequality is from
ř

těT ρt ă ε. Second inequality is from optimality of pt in last
part. Last inequality is from

ř

těT ρt ě 0. Therefore, by taking ε Ñ 0, we showed that:

8
ÿ

t“1

ρtp1´ P1t´1qp
1
tV
˚
ď

8
ÿ

t“1

ρtp1´ Pt´1qptV˚

Q.E.D.

A.3 Proof of Lemma 2

Proof. First of all, redefine rSt s.t.

rSt “

#

St conditional on T ě t

s0 conditional on T ă t

where equality is defined as signal distribution conditional on X and T being identical. It is
not hard to verify that rSt, T still satisfies constraints in Equation (1):

• If T ă t, Ip rSt;X | rSt´1, 1T ětq “ 0 since rSt is degenerate. If T ě t, then T ě t ´ 1 so
Ip rSt;X | rSt´1, 1T ětq “ IpSt;X |St´1, 1T ětq ď c.

• Conditional on T “ t, rSt “ St so X Ñ rSt Ñ A.

• If rSt “ s0, then T ă t for sure, so 1T ět is independent to X . If rSt ‰ s0, then T ě t for
sure, so 1T ět is independent to X .

So replacing S with rS we still get a feasible strategy and induced decision time distribution T
is unchanged. From now on, we assume WLOG that St ” s0 when T ă t. I only discuss the
case ErT s ă 8. If ErT s “ 8 then Lemma 2 is automatically true.

ErT s “
8
ÿ

t“1

PpT “ tq ¨ t “
8
ÿ

t“1

PpT “ tq
t
ÿ

τ“1

1 “
8
ÿ

τ“1

8
ÿ

t“τ

PpT “ tq

“

8
ÿ

t“1

PpT ě tq “
1
c

8
ÿ

t“0

PpT ě tq ¨ c
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ě
1
c

8
ÿ

t“1

PpT ě tqE
“

IpSt;X |St´1, 1T ětq
ˇ

ˇT ě t
‰

“
1
c

8
ÿ

t“1

`

PpT ě tqE
“

IpSt;X |St´1, 1T ětq
ˇ

ˇT ě t
‰

` PpT ă tqE
“

IpSt;X |St´1, 1T ětq
ˇ

ˇT ă t
‰˘

“
1
c

8
ÿ

t“1

E rIpSt;X |St´1, 1T ětqs “
1
c

8
ÿ

t“1

pIpSt;X q ´ IpSt´1;X qq

“
1
c

˜

lim
tÑ8

IpSt;X q ` lim
τÑ8

8
ÿ

t“τ

IpSt;X q ´ IpSt´1;X q
¸

ě
1
c

lim
τÑ8

τ
ÿ

t“1

PpT “ tqE
“

IpSt;X |T “ tq
ˇ

ˇT “ t
‰

ě
1
c

lim
τÑ8

τ
ÿ

t“1

PpT “ tqIpA;X q

“
IpA;X q

c

Third line is from flow informativeness constraint. Forth line is from St
ˇ

ˇ

T ăt ” s0. Fifth and
sixth line is from chain rule of posterior separable information measure. Seventh line is from
information process inequality and law of interated expectation. Second last line is from infor-
mation processing constraint. Q.E.D.

A.4 Proof of Lemma 3

Proof. Take any strategy pµt, T q feasible in Equation (6). Define
#

Pt “ PpT ď tq

It “ E
“

Hpµq ´ Hpµtq
ˇ

ˇT ą t
‰ (14)

Now we prove that Equation (14) is a feasible strategy in Equation (7) and implements same
value. First, since H is concave, then It ě 0. Since µ0 “ µ, I0 “ 0. Since µt|T “t “ π and µ0 “ µ,
then P0 “ 0. Now we verify 9It ď c´ ptp Ī ´ Itq

ErHpµt`dtq|T ą ts “´ Hpµq ´ ErHpµt`dtq|T ą t` dtsPpT ą t` dt|T ą tq

´ErHpµt`dtq|T P pt, t` dtssPpT P pt` dts|T ą tq

ùñ It`dt “Hpµq ´
1´ Pt

1´ Pt`dt

ˆ

ErHpµt`dtq|T ą ts ´
Pt`dt ´ Pt

1´ Pt
ErHpµt`dtq|T P pt, t` dtss

˙

ùñ It`dt ´ It “ErHpµtq|T ą ts ´
1´ Pt

1´ Pt`dt

ˆ

ErHpµt`dtq|T ą ts ´
Pt`dt ´ Pt

1´ Pt
ErHpµt`dtq|T P pt, t` dtss

˙

“
1´ Pt`dt

1´ Pt
pE rHpµtq ´ Hpµt`dtq|T ą tsq

´
1´ Pt`dt

1´ Pt

Pt`dt ´ Pt

1´ Pt
ppErHpµq ´ Hpµt`dtq|T P pt, t` dtssq ´ ErHpµq ´ Hpµtq|T ą tsq

´

ˆ

Pt`dt ´ Pt

1´ Pt

˙2

ErHpµtq|T ą ts

ùñ dIt “E r´dHpµtq|T ą ts ´
dPt

1´ Pt
pEπ rHpµq ´ Hpνqs ´ Itq

ùñ 9It ďc´
9Pt

1´ Pt
p Ī ´ Itq
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First equality is law of iterated expectation. Second, third and forth equalities are rearranging
terms. Fifth equality is from taking dt Ñ 0. Inequality is from ErdHpµtq|µts ď ddt.

Finally, deifne pt “
9Pt

1´Pt
. Then

ErρT s “
ż 8

0
ρtdPt “

ż 8

0
ρtp1´ Ptqptdt

To sum up, for any feasible strategy in Equation (6), there exists an feasible strategy in Equa-
tion (7) attaining same value. So the statement in Lemma 3 is true. Q.E.D.

A.5 proof of Theorem 3

Proof. It is easy to verify that pt ”
c
Ī is feasible in Equation (7) and the objective function is

exactly
ş8

0 ρte´
c
Ī t c

Ī dt. Therefore, it is sufficient to show that V ď
ş8

0 ρte´
c
Ī t c

Ī dt. Pick any pt

satisfying constraints in Equation (7). Now since pt and ρt are integrable, @ε ą 0, there exists T
s.t.

ż 8

0
ρtp1´ Ptqptdt ď

ż T

0
ρtp1´ Ptqptdt` ε

Then there exists dt ą 0 s.t.:

ż T

0
ρtp1´ Ptqptdt ď

rT{dts
ÿ

k“1

ρkdt

ż pk`1qdt

kdt
p1´ Pτqpτdτ` ε

“

rT{dts
ÿ

k“1

ρkdt

ż pk`1qdt

kdt
e´

şτ
0 psds pτdτ` ε

“

rT{dts
ÿ

k“1

ρkdt

´

e´
şkdt

0 pτdτ ´ e´
şpk`1qdt

0 pτdτ
¯

` ε

“

rT{dts
ÿ

k“1

ρkdte´
şkdt

0 pτdτ
´

1´ e´
şpk`1qdt

kdt pτdτ
¯

` ε

“

rT{dts
ÿ

k“1

ρkdtPkdt

´

1´ e´
şpk`1qdt

kdt pτdτ
¯

` ε

Now consider the following sequence:
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

pρk “ ρk¨dt

ppk “ 1´ e´
şpk`1qdt

kdt pτdτ

pPk´1 “ Pkdt

pIk “ Ikdt

pc “ cdt

We verify that:
#

p Ī ´ pIkqppk ` ppIk`1 ´
pIkqp1´ ppkq ď pc

pPk “ pPk´1 ` p1´ pPk´1qppk

• Solve ODE defining Pt, we get Pt “ 1´ e´
şt

0 pτdτ. Apply this to calculate pPk ´ pPk´1 “

Ppk`1qdt ´ Pkdt “ p1´ Pkdtq
´

1´ e´
şpk`1qdt

kdt pτdτ
¯

“ p1´ pPk´1qppk.
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• Solve ODE defining It, we get:

It “

ż t

0
e
şt

τ psdspc´ Ī pτqdτ

ùñ Ipk`1qdt ´ Ikdt “

ż pk`1qdt

0
e
şpk`1qdt

τ psdspc´ Ī pτqdτ´

ż kdt

0
e
şkdt

τ psdspc´ Ī pτqdτ

“

ż pk`1qdt

kdt
e
şkdt

τ psdspc´ Ī pτqdτ`
´

e
şpk`1qdt

kdt psds ´ 1
¯

ż pk`1qdt

0
e
şt

τ psdspc´ Ī pτqdτ

“

´

e
şpk`1qdt

kdt psds ´ 1
¯

Ikdt ` e
şpk`1qdt

kdt psds
ż pk`1qdt

kdt
e
şkdt

τ psdspc´ Ī pτqdτ

ùñ ∆pIkp1´ ppkq “
´

1´ e´
şpk`1qdt

kdt psds
¯

pIk ` c
ż pk`1qdt

kdt
e
şkdt

τ psdsdτ´ Ī
ż pk`1qdt

kdt
e
şkdt

τ psds pτdτ

“ppk

´

pIk ´ Ī
¯

` c
ż pk`1qdt

kdt
e
şkdt

τ psdsdτ´ Ī

˜

ż pk`1qdt

kdt
e
şkdt

τ psds pτdτ´ ppk

¸

First, since when τ P rkdt, pk` 1qdts,
şkdt

τ psds ď 0,
şpk`1qdt

kdt e
şkdt

τ psdsdτ ď dt. Then
we consider

ż pk`1qdt

kdt
e
şkdt

τ psds pτdτ ´ ppk

“

ż pk`1qdt

kdt
e
şkdt

τ psds pτdτ ´ 1` e´
şpk`1qdt

kdt psds

Let

Hpt, t1q “
ż t1

t
e
şt

τ psds pτdτ ´ 1` e´
şt1

t psds

ùñ
BHpt, t1q
Bt1

“0&Hpt, tq “ 0

ùñ Hpt, t1q ”0

Therefore, to sum up:

∆pIkp1´ ppkq ` ppkp Ī ´ pIkq ď pc

We have checked that ppk, pPk, pIk is feasible in problem Equation (2) with parameter pρk and pc.
Then by Theorem 1:

rT{dts
ÿ

k“1

pρk

´

1´ pPk´1

¯

ppk ď

8
ÿ

k“1

pρt

ˆ

Ī ´ pc
Ī

˙k´1
pc
Ī

ùñ

ż 8

0
ρtp1´ Ptqptdt ď

8
ÿ

k“1

pρt

ˆ

Ī ´ pc
Ī

˙k´1
pc
Ī
` 2ε

“

8
ÿ

k“1

ρkdt

´

1´
c
Ī

dt
¯k c

Ī
dt` ε

Since logp1´ xq ď ´x,
´

1´ cdt
Ī

¯k
ď e´

c
Ī kdt Then:

ż 8

0
ρtp1´ Ptqptdt ď

8
ÿ

k“1

ρkdte´
c
Ī kdt c

Ī
dt` 2ε
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On the other hand, since ρte´
c
Ī t is integrable, there exists dt sufficiently small that:

8
ÿ

k“1

ρkdte´
c
Ī kdt c

Ī
dt ď

ż 8

t“0
ρte´

c
Ī tdt` ε

ùñ

ż 8

0
ρtp1´ Ptqptdt ď

ż 8

0
ρte´

c
Ī tdt` 3ε

Let ε Ñ 0, then we showed that:

V ď

ż 8

0
ρte´

c
Ī tdt

Q.E.D.

A.6 Proof of Lemma 4

Proof. Similar to discussion in proof of Lemma 2, I only prove for ErT s ă 8. Let:
#

Pt “ PpT ď tq

It “ E rHpµq ´ Hpµtq|T ą ts

Then be proof of Lemma 3:

dIt “ Er´dHpµtq|T ą ts ´
dPt

1´ Pt

`

Ī ´ It
˘

(15)

Consider ErT s:

ErT s “ 1
c

ż 8

0
p1´ Ptqcdt

ě
1
c

ż 8

0
p1´ PtqEr´dHpµtq|T ą ts

“
1
c

ˆ
ż 8

0
p1´ PtqdIt `

ż 8

0
p Ī ´ ItqdPt

˙

“
Ī
c
`

ż 8

0
pp1´ PtqdIt ` Itdp1´ Ptqq

“
Ī
c
` Itp1´ Ptq

ˇ

ˇ

8

0

“
Ī
c

Inequality is flow informativeness constraint. Second equality is by Equation (15). Forth equal-
ity is by intergral by part. Q.E.D.
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