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Abstract

In this paper a multi-criteria decision aiding mbdedeveloped through the use of the Choquet
integral. The proposed model is an extension oT@®IM method, which is based on nonlinear
Cumulative Prospect Theory. The paper starts bigwerg the first steps of behavioral decision
theory. A presentation of the TODIM method follow$e basic concepts of the Choquet integral
as related to multi-criteria decision aiding aréewed. It is also shown how the measures of
dominance of the TODIM method can be rewritten digtothe application of the Choquet integral.
From the ordering of decision criteria the fuzzyasgres of criteria interactions are computed,
which leads to the ranking of alternatives. A cstsely on the forecasting of property values for
rent in a Brazilian city illustrates the proposeddal. Results obtained from the use of the
Choquet integral are then compared against a prslyianade usage of the TODIM method. It is
concluded that significant advantages exist derfvaih the use of the Choquet integral. The paper

closes with recommendations for future research.
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1. Introduction

Many useful multi-criteria methods are availablgtactioners and researchers in
decision aiding at present. These methods are lmsdidferent mathematical
assumptions (Ehrgott, Figueira and Greco, 2010)udber of accomplishments
have been achieved since the late 1970s and neslop@vents and application
fields are constantly emerging (Wallenetsal, 2008).

Behavioral decision theory is considered to havenédly begun with Ward
Edwards in Psychological Bulletin article (Edwarti854), although it went
through some major advances in the 1970s and 1888mfuhr, Weber, and
Langer (2010) have established behavioral decibieary as “The approach of
reflecting on axiomatic frameworks in the domairdescriptive theories (...)
geared towards our goal of decision support”. Thiesse authors also point out
that the Cumulative Prospect Theory by Tverskyladneman (Tversky and
Kahneman, 1992) is “currently the most prominerstcdgtive decision theory
under uncertainty”. Again according to these ttaethors “the original Prospect
Theory (OPT) from 1979 is only of historical impamte today. However, to
prevent possible misunderstandings, the cumulagvsion of Prospect Theory is
commonly referred to as CPT” (Eisenfiuihr, Weber badger, 2010).

OPT was developed by Daniel Kahneman and Amos Kyensd first published
in 1979 (Kahneman and Tversky, 1979). The termpwcisreferred to a lottery in
the original formulation of that theory. A prospéxt, pi; -..; Xn, P IS @ contract
that yields outcome;xvith probability p, where p +...+ p, = 1. With prospect
theory Kahneman and Tversky aimed to describe henple choose between
probabilistic alternatives and evaluate potentiakés and gains defined with
respect to a reference point or status quo. Coesglguwo domains are
identified, the domains of gains and the domailos$es. A number of
experiments have allowed researchers to concluaténtimans tend to show risk-
averse behavior in the domain of gains and a eslkisag behavior in the domain
of losses (Tversky and Kahneman, 1981; Kahnemamaersky, 1982;
Kahneman and Tversky, 1984; Tversky and Kahnen@86;1Tversky and
Kahneman, 1987; Quiggin, 1993).

The difference between cumulative prospect thendy@PT is that weighting is

applied to the cumulative probability distributiumction, as in rank-dependent
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expected utility theory, instead of being appliedite probabilities of individual
outcomes. CPT is therefore a further developmeptadpect theory. CPT
overcomes some clear limitations that OPT had dne to its success as a
descriptive theory of how people decide when faciskj, it is considered as
having more accuracy than expected utility theara @sychological theory of
preferences under risk (Eisenfuhr, Weber and Lar§s0).

The earliest attempt to apply prospect theory tdtiroriteria decision making
lays in the work of Korhonen, Moskowitz and Wallesni(1990). Those authors
were investigating choice behavior in interactiveltircriteria decision making.
The persistent patterns of intransitive choice behahat were then revealed
could be explained by using Tversky’'s additiveitytidifference model (Tversky,
1969) as well as Kahneman and Tversky’s prospeciryh(Kahneman and
Tversky, 1979). Korhonen, Moskowitz and Walleni@9Q therefore presented an
explanatory use of prospect theory, not a preseemne. The validation of that
theory made by Korhonen, Moskowitz and Walleniu@9() made use of linear
piecewise marginal value functions, which meansttese three authors used a
linear approximation to prospect theory. Korhordnskowitz and Wallenius
(1990) have shown that Tversky’s (Tversky, 1969)itne difference model can
indeed be regarded as a generalization of prosipecty to the multi-criteria
context.

Salminen and Wallenius (1993) tested linear prasipeory in a deterministic
multi-criteria decision-making environment. Thea® tauthors then concluded
that prospect theory was a reasonable model otetor many individuals within
the framework of their research.

By making use of linear prospect theory Salminé&®(1 1992, 1994) proposed
an interactive method for solving discrete detersticy multi-criteria decision
problems and assumed prospect theoretical valuifuns for the decision
makers. He then approximated the S-shaped valuéidas of prospect theory by
piecewise linear marginal value functions. Salmis@mnoposed procedure was
therefore valid only for convex preferences. Thithar pointed out that the major
problem in making OPT operational was how to findradividual reference
alternative. He then proposed as alternative pibigigib the current option, the use
of aspiration levels and the ideal point, but cadeld that there was no unique

solution to that problem (Salminen 1991).



The TODIM method was formulated in the early 1980d has been the object of
a number of publications since then (Gomes and &8aB09; Gomes and Lima,
1992; Nobre, Trotta, and Gomes, 1999; Fa-dong, @04l0; Moshkovich, Gomes
and Mechitov, 2011). TODIM is the acronym fateractive and Multicriteria
Decision Makingn Portuguese.

The aim of this article is to show how criteriagrdgctions can be determined in
applications of the TODIM method. Korhonen and Wiailis’ belief that decision
aiders can do a much better job if their modeld@umaded on a solid behavioral
foundation (Korhonen and Wallenius, 1996) is fokalhere. The nonlinear
cumulative prospect theory-based TODIM method ésented. Computations of
criteria interactions as fuzzy measures by applifregChoquet integral to
TODIM are then introduced. A numerical examplersvided. Conclusions with

suggestions for future research close the article.

2. Description of TODIM method

2.1 Basics

The TODIM method (an acronym in Portuguese of adBve and Multicriteria
Decision Making) is based on nonlinear CPT as ltag@s of its value function is
the same as the gains/losses function of Cumul&tigsepect Theory (Tversky
and Kahneman, 1992). Here gains and losses argsafgtablished with respect
to a reference point. In algorithmic form an apgation of TODIM would follow
the steps below (all symbols are explained justrdfte mathematical formulae):
Step 1: From the evaluation matrix of sim€criteria)versusn (alternatives) and
criteria weights, compute values®f (A;, A) by using equation (2) and makiéy
vary in [1,10];

Step 2: Compute values 6f{A;, A) with equation (1);

Step 3: Compute values §fwith equation (3): those values lead to the ragkih
alternatives.

Mathematical expressions (1), (2) and (3) congtitieé modeling underlying the
use of the TODIM method:
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where:

O (A, A) = measurement of dominance of alternafivever alternative;

n = the total number of alternatives;

m = the total number of criteria;

C = a generic criterion;

W = trade-off rate (or trade-off weighting factogttveen the reference criterion
r and any other, generic criterionThe subscript identifies a reference criterion
for the decision maker. That can be, for example criterion that the decision
maker considers as the most important one. lt9g tasee that any criterion can
be chosen as the reference criterion and thiscpdati choice does not influence
the final results from the computations.

Pic, Pic = evaluations of alternativesndj with respect to criterion;

@ = attenuation factor of the losses; differentices of@ lead to different shapes
of the prospect theoretical value function in tlegative quadrant;

®(Ai, A)) = contribution of criteriort to functiondA;, A;), when comparing
alternativesh; andA.

& = normalized global performance of alternatdyewhen compared against all
other alternatives.



2.2 The CPT-based TODIM method

2.2.1. Need of a risk aversion parameter

The function®. reproduces the value function of OPT and replg#te most
relevant shape characteristics. That functionlfsilfhe concavity for positive
outcomes (convexity for negative outcomes) andrsgdb enlarges the
perception of negative values for losses than pesialues for gains, both value
functions are steeper for negative outcomes thapdsitive ones.

First, each shape characteristic of the value fanehodels psychological
processes: the concavity for gains describes axigksion attitude, the convexity
describes a risk seeking attitude; secondly, tearaption that losses carry more
weight than gains is represented by a steeperimedanction side.

Different kinds of decision makers can be undeidioderms of their risk and
loss attitude. Although the TODIM method does rexldvith risk directly, the
way the decision maker evaluates the outcomesyoflacision can be expressed
by their risk attitude: for instance, a cautiousisi®n maker will undervalue a
superior result more than a braver one. Apart fpamametep), the attenuation
factor of the losses, functiah, does not offer other parameters to delineate the

behavior of diverse decision makers, thereforereege formulation is proposed.

2.2.2. From trade-off weighting factor to CPT weighting function

Corresponding to TODIM method equation (2), tratfeveighting factorsw,. are
implemented differently to gains and losses domadien calculating functiom..
Let’'s assume, for example, two specific alternaivaend;j, and two specific
criteriac andd, suppose that alternativgperforms equally bad compared to
alternativg for both criteriac andd.

Pc—PFc=PRda—Ra=-M (4)
Consider also that criterianis more important for the decision-maker tloan

We > Wy (5)

It would be easy to prove that the contributiortatferionc is higher than that of

criteriond to functiond (A, Ay) when comparing alternativég andA,.



(6)

The contribution of criterioe should be lower than that of criteridnbecause
both performances are negative and critecigmore important thad. Having
the same weighting factor formulation structuredgains and losses will prevent

this effect to happen.

2.2.3. An analogy to CPT

CPT is a model for descriptive decisions under. hskOPT, CPT treats gains and
losses separately. Basically CPT considers: (igtrsuation of possible
outcomes relative to a certain reference poine(othestatus qu (i) different

risk attitudes towards gains (i.e., outcomes allbgeeference point) and losses
(i.e., outcomes below the reference point) and garerally more about potential
losses than potential gains (loss aversion); and(iendency to overweight
extreme, but unlikely events, but underweight "aget' events.

Suppose a gamble is compose@efb + 1 monetary outcomes, < ...< % <

...< Xp, Which occur with probabilities_p ..., p,, respectively. Recall that
outcomes are defined relative to a reference pwinich serves as the zero point
of the value scale. Hence, v measures the valdewétions from that reference
point, i.e., gains and losses (Neilson and Stowé2® The corresponding gamble
can be denoted by the pair (x; p), where x5, (X., %) and p = (Pa..., ). The

preference value of the gamble (x; p) is givenBy (
V(x; p) = V'(x; p) + V(x; p) )(7

In equation (7) V measures the contribution of gains andweasures the
contribution of losses. The two parts of the surivincan be rewritten as in (8)
and (9).

V+(X; p):iﬂ+-v(xi):g+(pb)v(xb)+i|:g+[i pb—jj_g+(§ pb—jﬂv(xb—k) (8)

0

Vo(xp)= 2 vx) =97 (poa M) +kZb£[g(]Zk(; p_(a_,-)]-g(ki p_(a_j)ﬂv(x_(a_“) (9)

j=-a j=

wherett’ andTt are decision weights associated to positive agdtnge outcomes

respectively. The function g)is a probability weighting function assumed to be
8



increasing with g (0) =0 and g (1) = 1. As suctaih be computed as in (10) and
(11).

Sy = p”
9"(p) (o +0-p)) (10)

N p°
g (p) (p6+(1— p)d)g (11)

Vv (X) is a utility (or value) function assumed to bergmasing with u(0) = 0 and it is

formulated as in (12).

x7 if x=0

) = {(—A)(—x)/" if x<0

(12)
where:

X = economic outcome relative to a reference pdtimgn also be understood as
an evaluation of an alternative relative to anotires,

a = curvature of the subjective value functiondains;

B = curvature of the subjective value function fosdes;

A = loss-aversion coefficient.

According to CPTy (X) is a utility (or value) function assumed to bergasing
with u(0) = 0 and it is formulated as in (12).

In regards to multi-criteria models based on CRilassociation can be made
between the economic outcomes of the gambling leamé\valuation of
alternatives with respect to several criteria. Sas$ociation can also be made
between outcome probabilities and the trade-off vagighting factors. Here x =
(X-a,..-, Xp) are the economic outcomes relative to a referpogd and can also
be understood as an evaluation of an alternatiaéive to another one. p =
(p-a,-.., pp) are the probabilities of each economic outcontecam be interpreted
as the trade-off importance. For instance, letfgpgse that alternativas
evaluated with respect to alternatjyand that there aie+b+1 different criteria to
evaluate such alternatives. Table 1 displays the €@ments associated with the
TODIM elements.

Table 1: Analogy between CPT and TODIM elements

CPT elements Analogous TODIM elements
Outcome‘ Resulq OutcomF Probability Critetia Resfult [EAEEON Weighting




Index of Index alternative factor
outcome compared tg
a Neg. X Pa c Neg. Ri-Pg Wr/ (X Wrc)
Pos. % P d Pos. R Py Wid/ (X Wrd)

As the CPT outcome vector X x.4,..., Xp), TODIM relative evaluation score
differences can be sorted low to high. For sonteraic, alternativg will

perform better thanand the evaluation difference will be negative, R — P <
0. For some other criterd alternativa will show better evaluations thamand

the evaluation differences will be positive, iRy,— Ry > 0. The performance
evaluation differences among a set of criterialmasorted and written as x =P
Pejs ..., Pai-Paj).

Besides the linkage between CPT outcomes and TO&yEuation differences,
we can assume that, as in CPT, for high positivElew negative prospects
people tend to overweight the probabilities andnfida-level outcomes they tend
to underweight probabilities. One can extend teguaption by considering that,
in multicriteria decision making, for the highesiddowest evaluation differences
the decision maker will overweight in a second stagdow criteria weighting
factor (and he will underweight a similar evaluatietween alternatives). In
other words, the trade-off weighting factors of Tl can be understood as
probabilities that allow implementing the same falation.

To sum up, the CPT formulation to calculate theigalf a gamble V(x; p), X =
(X-a-.-, Xp) being relative to a reference point and p =,(p, p,) as probabilities
of the outcomes, can be adopted in associatidmetoge of the TODIM method to
calculate the value of an alternativeelative to a second alternatiy®;;(x; p)
whose performances according to a set of critegxa (Ri-Ps;, ..., Pi-Pg) and
the trade-off weighting factors are p =} W), ..., Wid/ (> Wiq)).

Equation (2) of TODIM can be rewritten as in (13).

J (A, A)) = Vi(x; p) (13)
such that x and p can be written as in (14).
X= (Pci'ch,---, Pdi'de) and pP= (m/(Zwrc),..., Wrd/(ZWrd)) (14)

The parametric formulation of the TODIM method @ncompleted with the
following: o quantifies the curvature of the subjective valuection for gainsp

does for losses, arddquantifies the loss aversion. Fgr3 < 1, the value function
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exhibits risk aversion over gains and risk seekingr losses. Furthermore Jif

the loss-aversion coefficient, is greater than ardiyiduals are more sensitive to
losses than gains. By using non-linear regress$ievalues of these three
parameters of CPT were estimatedia=0.88 and\=2.25. The values gf ands
were estimated as 0.61 and 0.69 respectively (bledsd Stowe, 2002). Other
estimations from experimental data are presertariterature (Camerer and Ho,
1994; Gonzalez and Wu, 1999).

In essence, we just showed that the rati(Ywv,c) can be interpreted as a
probability. This allows us to make full use of Cicluding its decision weights
(Tversky and Kahneman, 1992). We can thereforahsstythe formulation of
TODIM in terms of CPT is indeed a formulation imntes of the concept of
capacity (Choquet, 1953; Grabisch and LabreuchE)2®ere a capacity is a
non-additive set function that generalizes theddesh notion of probability.
Capacities are also known under the name of fuzzgsures (Sugeno, 1974). It is
shown in the coming section that, by relying on C®€& TODIM method is
indeed a multi-criteria formulation in terms of tb@ncept of capacity (Choquet,
1953).

Besides the linkage between CPT outcomes and TG&Euation differences,
we can assume that, as in CPT, for high positivElew negative prospects
people tend to overweight the probabilities andnfical-level outcomes they tend
to underweight probabilities. In analogy, in muitieria decision making for the
highest and lowest evaluation differences the datimaker will overweight in a
second stage a low criteria weighting factor (aedvill underweight a similar
evaluation between alternatives). In other workds ttade-off weighting factors of
TODIM can be understood as probabilities that alimplementing the same
formulation.

An important mathematical model that has been {mecthodeling interactions
between criteria is the Choquet integral (Choql@53). In decision theory, the
Choquet integral is a way to measure the expedtiy of an uncertain event
(Gilboa & Schmeidler, 1992). The Choquet integsahideed a generalization of
the weighted arithmetic mean and has been extdpsised since the last decade
in Multiple Criteria Decision Aiding in modeling tieractions between criteria
(Grabisch, 1996; Grabisch, 2006; Grabisch & Labiney2005; 2010). A critical

analysis of the use of the Choquet integral for etiod interactions between
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criteria was presented by Roy (2009) though. Thte@ has pointed out that the
generalization of the Choquet integral known a®lipmodel (or model with bi-
capacities) should be utilized in order to capsome particular aspects of
interactions between criteria.

In the coming sections the basic notions of thedqDlebintegral are presented. It
is then shown how interactions between criterialmadetermined by applying
the Choquet integral to the TODIM method.

3. The Choquet integral

3.1 The Choquet integral

Given a finite and not empty s&={12.K} and considering a family of subsets
2° of S, a fuzzy measure is a functigm: 2° — [01] such that:

i. u(@)=0 and w(S)=1; when u(S)=1, this fuzzy measure is said to be
normalized,;

i. u(A) < u(B), forall AL B,ABOS, given a function a : S5R , the Choquet

integral in relation to the fuzzy measurés given by (15):

|, (a) = i[,u({sK}) - u{s+1..Khla, + u(K)a, (15)

s=1
where ga(s) and & &<...< ag.
If uis additive, the Choquet integral is the expeei@de (or the weighted
average), i.e., as in (16) and (17) (Dubois andl®r&a986; 1989).

[u{s,..K}) - u@s+1..KH] = u(s), (16)

L@ [u(9)]a, . (17)

s=1
Consides={123}, u a fuzzy measurgs: 2423 _ [01] and a function
b= (2,3,1); in order to calculate the Choquet integral oive,have (18) and (19):

1,00 = 3 [ufs.K}) = s+ 1. KT, + K, -

|, (0) =[x (123} - {23h1b, + ({23} - {3hIb, + £@3)b, (19)

b, <b, <b.
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As Is< by< by, to calculate the Choquet integral we have to tagermutation

n {123} 00 -{123} so that n(1) =¥1; rp = 2 and = 3 whereb, <b, <b,;

thereforel , (b) =[14n,, n,,ng} = gy, ne}]x 1+ [uelfn, o) - e} 2+ .} x3.
In general, given a function b:-S R we can always consider a permutation
n: S— Ssothab, <b, <b,, and we can write (20):
1@ = S ulfn,-nd) - dnsn oy, +andda,

s=1 (20)
H@)=pu@) =03,
Considern,b0R?, so tha, =2, a, =3, b, =3, andb, =1; we have c=a+b=
(5.4). The Choquet integral for the function a is:
(@) =[u{12) - u2h]a, + u(2)a, = [1- (2)]a, + u(da, =
1-u2)]a, + u(2)a, =[1-03]x5+03x3=07x5+09=44
The Choquet integral for the function b is:
1, (0) =[{1.2}) - (2D, + (2, =[1- u(2)]o, + (b, =
[1-03]x5+03%1=0.7%x5+03=38
Summing these Integrals (the sum of the Integriafsrectionsa andb) we have:
I, (@+1,(b)=44+38=82
The Choquet integral for the function ¢ (an additiunction) is given by:

1,© =[x {12}) - ud2hle, + u@c, =[1- u@)lc, + u(2)c, =
[1-03]x5+03x4=0.7x5+12=47

Therefore, we have; (a) +1 ,(b) #1 (a+b .)

4. The Choquet — extended TODIM Method

From the classical formulation of TODIM we can carntgthe measure of relative

dominance of each alternative @ver another alternative; &s show as equation
(1):
AALA)=D @ (AA),  OA,A) (1)

c=1
Through considering the fuzzy measutasf interactions between criteria we can
obtain the overall value of each alternative withneed of normalization. This is
accomplished by rewriting the equation above asiggu (21):
o(AA)=1,@P (A, A) (21)
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where a : S»R , and | is the Choquet integral in relationie fuzzy measure.
In order to illustrate, assume the following evéla matrix as showed in Table
2.

Table 2: Evaluation matrix

Criteria Alternatives
Al AZ Ce Aq
C D(AL,CY) D(A2CY) ce D(AnC)
C2 q)(Al!CZ) q)(AZ!CZ) L (I)(AHICZ)
Co B(ALCr) B(AsCr) o B(AnCr)

Suppose that criteria are ordered as follow>@, > ... > G,. We can now
determine the fuzzy measures (i.e., the criteti@aractions)

as follows as equation (22):
My =Ky = Koy g5 = kj:uj—lizkj/'lj =1 (22)
=1

where kare constants.

The evaluation matrix can now be rewritten as fefion Table 3:

Table 3: Evaluation matrix with fuzzy measures

Criteria Alternatives
A, Ao ... A
Cl ulcp(Aval) qu)(Az,Cl) P ul(I)(An,Cl)
G n1®P(ALC) n1®P(A2,C) s n12®(ALCy)
Cn Hm-l,rrcD(AlyCm) Hm-l,rr—lq)(AlyCm) Ce Hm—l,rr-ch(AnaCm)

5. An application case study

5.1. Problem definition

The case study is a valuation of residential progecarried out by real estate
agents in the city of Volta Redonda, Brazil. Fifiggoperties in different
neighborhoods were analyzed as alternatives aothlof eight evaluation
criteria were identified. A detailed descriptiontbé alternatives and criteria can
be found in Gomes and Rangel (2009).

The initial weights assigned to the criteria usedvaluate the properties were
defined by decision makers (i.e., the real estgémis), assigning a number
between 1 and 5 to each criterion where 1 wouldieast important’ and 5

would mean ‘most important’.
14



The alternatives are presented.

A1 — A house in an average location, with 29%afconstructed area, a high
standard of finishing, in a good state of conséovatwith one garage space, 6
rooms, a swimming pool, barbecue and other attnastiwithout a security
system.

A, — A house in a good location, with 186 of constructed area, an average
standard of finishing, in an average state of cosag®n, with one garage space, 4
rooms, a backyard and terrace without a securgtesy.

A3 — A house in an average location, with 347afconstructed area, a low
standard of finishing, in an average state of couadi®n, two garage spaces, 5
rooms, a large backyard, without a security system.

A, — A house in an average location, with 1%afconstructed area, an average
standard of finishing, in a good state of conséovatwo garage spaces, 5 rooms,
a fruit orchard, a swimming pool and barbecue, aitrsecurity system.

As — A house in an excellent location, with 360 @hconstructed area, a high
standard of finishing, in a very good state of @maation, four garage spaces, 9
rooms, a backyard and manned security boxes indlghborhood streets.

As — A house located between the periphery and thiecenter (periphery/average
location) with 89 m of constructed area, an average standard of fimgsin a

good state of conservation, with one garage sgacmms, a backyard, without a
security system.

A7 — An apartment located in the periphery, with 85afnconstructed area, a low
standard of finishing, in a bad state of conseovatone garage space, 4 rooms, a
manned entrance hall with security.

As — An apartment in an excellent location, with 8bahconstructed area,
average standard of finishing, good state of caadi®n, with one garage space, 6
rooms, manned entrance hall with security.

Ag — An apartment located between the periphery badity center
(periphery/average location), with 12% of constructed area, an average standard
of finishing, in a good state of conservation, moage space, 6 rooms, without a
security system.

A10— A house located between the periphery and thiecenter

(periphery/average location), with 12 of constructed area, a low standard of
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finishing, in a good state of conservation, witle @arage space, 5 rooms, a large
backyard, without a security system.

A11 — A house in a good location, with 286 of constructed area, an average
standard of finishing, in an average state of couag®n, with two garage spaces,
7 rooms, with an additional security system.

A1, — An apartment located in the periphery, with Sofnconstructed area, a low
standard of finishing, in a bad state of conseovatone garage space, 5 rooms,
without additional security.

A13— An apartment located in the periphery in an agerocation, with 160

of constructed area, a high standard of finishimg good state of conservation,
two garage spaces, 6 rooms, with additional secfe#tures.

A14— An apartment in a good location, with 328 ah constructed area, high
standard of finishing, in a good state of conseova2 garage spaces, 8 rooms,
with in addition a security system.

A1s— A house in a good location, with 186 of constructed area, an average
standard of finishing, in a very good state of @wation, one garage space, 6
rooms, with in addition a security system.

Table 4 shows a list and a description of critesidh their assigned and

normalized weights. Table 5 is the evaluation matri

Table 4: Criteria weights

Criterion Description Assigned weights  Criteria glatis

C Localization 5 0.25

C, Construction area 3 0.15
C; Quality of construction 2 0.1

C, State of conservation 4 0.2

Cs Number of garage spaces 1 0.05
Cs Number of rooms 2 0.1

C, Attractions 1 0.05

Cs Security 2 0.1

Table 5: Evaluation matrix

Alternative G C G C, GCs GCs (o Cs
A 3 290 3 3 1 6 4 0
A, 4 180 2 2 1 4 2 0
Az 3 347 1 2 2 5 1 0
A, 3 124 2 3 2 5 4 0
As 5 360 3 4 4 9 1 1
Ag 2 89 2 3 1 5 1 0
A; 1 85 1 1 1 4 0 1
Asg 5 80 2 3 1 6 0 1
Ag 2 121 2 3 0 6 0 0
Aqg 2 120 1 3 1 5 1 0
Aq 4 280 2 2 2 7 3 1
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As 1 90 1 1 1 5 2 0
A 2 160 3 3 2 6 1 1
A 3 320 3 3 2 8 2 1
Aus 4 180 2 4 1 6 1 1

Computations are performed in 4 steps:

Step 1: Fuzzification of the scales of criteriander to become non dimensional.
In this presentation fuzzy triangular membershipctions with null amplitude
and mode equal to the original scale are used.elfuzzy triangular membership

functions are written as equation (23) below:
f (xbod) = max(mind=2: =) 0) (23)
c— -C

whereb, c, dare parameters. Parametem@ndc locate the base of the triangle and
parameted locates the vertex.

After a number of studies on the joint transformatdf all scales in non
dimensional values it was decided that a triangwizzy membership function
should be used. Therefore for all criteria the gadti0.067 was chosen as the
highest value of the original scale. That numbeqgsal to the inverse of the
number of alternatives which is 15. For example 3p(Localization) the top
value is equal to 5 and this value is associat&dd67. All other values for that
particular criterion are proportional to 0.067 mler to maintain the relative
importance of readings in the original scale. Téeosd highest value is 4 as it
represents 80% of 5, i.e., 0.053. The third higheakte is 3, corresponding to
60% of that top value of 5, i.e., 0.040. By follmgithis procedure one obtains
0.027 for the fourth value and 0.013 for the fitdue for criterion @ Table 6
shows the fuzzification of  Exactly the same procedure was followed for all

other criteria.

Table 6 — Fuzification of the scale of criterion C

Original scale Fuzzified scale
0.067
0.053
0.040
0.027
0.013

RIN|W|~|lO1

Table 7 shows the evaluation matrix obtained dfterification.

Table 7: The evaluation matrix can now be rewrititer accomplishing the fuzzification

Alternative G C G Cy G GCs C, Cs
A 0.040 | 0.053| 0.040 0.053 0.027 0.027 0.067 0.013
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A, 0.053 | 0.040] 0.040 0.040 0.027 0.007 0.040 0.013
Az 0.040 | 0.067| 0.016 0.040 0.040 0.013 0.027 0.013
Ay 0.040 | 0.027] 0.040 0.053 0.040 0.013 0.067 0.013
As 0.067 | 0.067| 0.053 0.067Y 0.067 0.067 0.027 0.067
As 0.027 | 0.013] 0.040 0.053 0.027 0.013 0.027 0.013
A; 0.013| 0.013] 0.016 0.02Y 0.027 0.007 0.013 0.067
Asg 0.067 | 0.013] 0.040 0.053 0.027 0.027 0.013 0.067
Ag 0.027 | 0.027] 0.040 0.053 0.013 0.027 0.013 0.013
Aqg 0.027 | 0.027| 0.016 0.053 0.027 0.013 0.027 0.013
Ay 0.053 | 0.053] 0.040 0.040 0.040 0.040 0.053 0.067
A 0.013| 0.013] 0.016 0.02Y 0.027 0.013 0.040 0.013
A1z 0.027 | 0.040] 0.040 0.053 0.040 0.027 0.027 0.067
Ayq 0.040 | 0.067] 0.053 0.053 0.040 0.053 0.040 0.067
Ass 0.053 | 0.040] 0.053 0.067f 0.027 0.027 0.027 0.067

Step 2 - Determination of fuzzy measures

Considering the order of criteria:
C>G>G>G=G=G>G=G

We have the fuzzy measures to calculate the Chaopegfral as:

M =025 ph, =084 g = 049U, fyy = 09U,

Hss = Hog = Moz Hgs = OSfleg;  Hsy = Mes;  Mas = Meg = Mog

wherey; are fuzzy measures which are the weights for iffiereint criteria group.
We have taken the highest value figtbecause criterion 1 is the most important
one. The other values are proportional or equéiehg the criteria order. This

weighting is performed in a way such that the sdimllaneasures is equal to 1.0.

Step 3 - Computation of the Choquet integral
Table 8 presents the computed values of the Chaogjiegfral.

Table 8: Computation of the Choquet integral

Alternatives G (o G Cy GCs GCs C G Choquet
integral

A 0.010| 0.006 0.004 0.011 0.001 0.003 0.003 0)001 0410.
A, 0.013| 0.005 0.004 0.008 0.001 0.001 0.002 0,001 0360.
Az 0.010| 0.008 0.002 0.008 0.002 0.001 0.001 0)001 0340.
A,y 0.010| 0.003 0.004 0.011 0.002 0.001 0.003 0,001 037.
As 0.017| 0.008 0.006 0.013 0.003 0.007 0.001 0,007 0630.
Ae 0.007| 0.002 0.004 0.011 0.001 0.001 0.001 0,001 0290.
A, 0.003| 0.002 0.002 0.005 0.001 0.001 0.001 0,007 0220.
Ag 0.017| 0.002 0.004 0.011 0.001 0.003 0.001 0,007 0460.
Ag 0.007| 0.003 0.004 0.0112 0.001 0.003 0.001 0,001 0310.
Aqg 0.007| 0.003 0.002 0.012 0.001 0.001 0.001 0,001 0280.
Aiq 0.013| 0.006 0.004 0.008 0.002 0.004 0.003 0,007 0490.
Al 0.003| 0.002 0.002 0.005 0.001 0.001 0.002 0,001 0180.
Aia 0.007| 0.005 0.004 0.011 0.002 0.003 0.001 0,007 0400.
Aig 0.010| 0.008 0.006 0.011 0.002 0.006 0.002 0,007 0520.
Ais 0.010| 0.000 0.010 0.010 0.000 0.000 0.000 0,010 0500.

18



Some of the computed values of the Choquet integeathown in Table 9 as an

example.
Table 9: Example computation of the Choquet integra
Alternative Criteria
C, - Localization G — Constructed Area
Ay 0.25*0.04 =0.010 0.12 *0.05 = 0.006
A, 0.25 *0.053 = 0.013 0.12 * 0.040 =0.005

In other words,025*004 = 0010 is the product of the fuzzy measure of criteria
1(0.25) by the fuzzified value of the utility folt@rnative A in relation of criteria
C,. Similarly, 025[0.053=0.013is the product of the fuzzy measure of criteria
C; (0.25) by the fuzzified value of the utility folternative A in relation of
criteria G.

The calculations of the Choquet integral are thra sfiall the values obtained for
each column of the matrix.

For the alternative A we have:

0010+ 0006+ 0004+ 0011+ 0001+ 0003+ 0003+ 0001= 0041

For the alternative A we have:

0.013+ 0.005+ 0.004+ 0.008+ 0.001+0.001+0.002+ 0.001= 0.036

and so on.

Thus we obtain Table 10, with values of the Chodgpiegral for alternatives A
and A.

Table 10: Values of the Choquet integral for ali¢ives A and A

Criteria A A,

C, - Localization 0.010/ 0.013
C, - Constructed Area 0.006 0.005
C; - Quality of Construction 0.004 0.004
C, - State of Conservation 0.011  0.008
Cs - Number of garage spaces 0.001 0.001
Cs - Number of rooms 0.003 0.001L
C; - Attractions 0.003] 0.002
Cg - Security 0.001| 0.001
Values of the Choquet integral 0.041 0.086

Step 4 — Ranking of the alternatives

With the values of the Choquet integral we obtamranking of the alternatives.
This ranking is performed by ordering the obtaimatlies of the Choquet integral.
The ranking of the alternatives ordering is showiable 11.

Table 11: Ranking of Alternatives and values of @mquet integral
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Alternative | Values of the Choquet integral Ranking
Ay 0.041 6
A, 0.036 9
Az 0.034 10
Ay 0.037 8
As 0.063 1
Ag 0.029 12
A; 0.022 14
Ag 0.046 5
Ag 0.031 11
Agg 0.028 13
Ay 0.049 4
Ag 0.018 15
Az 0.040 7
Ay 0.052 2
Ass 0.050 3

A comparative analysis of the results is performog@omparing the ranking
deisplayed in Table 8 with these obtained by uiiegoriginal TODIM method as
in Gomes and Rangel (2009). Table 12 displayswerankings. The Spearman
coefficient of correlation between the two ranksv@und equal to 0.9142. This
indicates that these two ranks are indeed quitgeclo

Table 12: Rankings from using Choquet and the maigf ODIM method

Alternatives Choquet ranking TODIM ranking  Comparis
Ag 6 5 O
A, 9 10 O
Az 10 9 O
A, 8 7 O
As 1 1 Same
As 12 11 O
A; 14 15 O
Ag 5 8 O
Ao 11 14 O
A1 13 12 O
All 4 3 |:|
A 15 13 O
A1z 7 4 O
Aqs 2 2 Same
Ais 3 6 O

Sensitivity Analysis
The sensitivity analysis was performed by modifyihg fuzzy measures by
increasing and decreasing their values, and reledgileg the Choquet integral.

The fuzzy measures used in the sensitivity anafgsighe Choquet integral were:
My = 021 p4, = 0693uy; 1y, = 09315 13 = 08351,
Has = Heg = Hoz; Hgs = 0.75Ueg; sy = Hgs

The results from the sensitivity analysis are pneesgtin Table 13.
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Table 13: Comparing Choquet ranking and Todim nagki

Alternatives| Choquet’s initial ranking Choquet'siking after sensitivity analysis|
Ay 6 6
A, 9 8
As 10 9
Ay 8 7
As 1 1
As 12 11
A; 14 13
Asg 5 5
Ag 11 10
Ao 13 12
A 4 3
A 15 14
Az 7 6
Ay 2 2
Ass 3 4

6. Conclusions and recommendations for future

research

The key conclusions from this case study are libeddw:

The use of the Choquet integral minimizes the datmns of the
TODIM method since it is unnecessary to normaleeraw data;
Not only crisp values can be used but also intestasd; this second
situation would lead to using a fuzzy triangulamer;

By using the Choquet integral more complex addithadels can be
used that allow for taking dependencies betwedar@iinto

consideration.

Suggestions for future research follow:

Tackling situations where input data on prefererareseither entirely
unavailable or only partially available and theidien analyst still
wants to use TODIM for providing a framework on elan analysis
can be based. This case can then be treatedragse problem and
therefore approached by Monte Carlo simulationsTill lead to a
SMAA-P method following Lahdelma and Salminen (2009
Extending the TODIM method to situations when ingata are not
only crisp, but also liable to be described by or by fuzzy

numbers;
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ii. Using more complex additive models that allow kihg
dependencies between criteria into consideration;

iv. Making use of both Mamdani and Sugeno’s fuzzy iriidal systems
(Oliveiraet al, 2007) in order to compare the obtained res\gjssrest

these computed by the Choquet-extended TODIM method
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