
1 

BEHAVIORAL MULTI-CRITERIA DECISION 

ANALYSIS: THE TODIM METHOD WITH 

CRITERIA INTERACTIONS 
Annals of Operations Research, available online in March 2013 

 

Luiz Flavio Autran Monteiro Gomes*, Maria Augusta Soares Machado, 

Ibmec, Av. Presidente Wilson, 118, 11th floor, 20030-020, Rio de Janeiro, RJ, 
Brazil, 

+55.21.4503-4053 (phone), +55.21.4503-4168 (fax) 

autran@ibmecrj.br, mmachado@ibmecrj.br 

* Corresponding author. 
 

Xavier Ignacio González 

School of Engineering, University of Buenos Aires, Av. Las Heras 2414  Piso 1º. 

Departamento C1127AAR, Buenos Aires, Argentina,  

xavierign@gmail.com 

 

Luis Alberto Duncan Rangel 

UFF, EEIMVR, Av. dos Trabalhadores, 420, 27255-125, Vila Santa Cecília, Volta 
Redonda, RJ, Brazil 

duncan@metal.eeimvr.uff.br 
 

Abstract  

In this paper a multi-criteria decision aiding model is developed through the use of the Choquet 

integral. The proposed model is an extension of the TODIM method, which is based on nonlinear 

Cumulative Prospect Theory. The paper starts by reviewing the first steps of behavioral decision 

theory. A presentation of the TODIM method follows. The basic concepts of the Choquet integral 

as related to multi-criteria decision aiding are reviewed. It is also shown how the measures of 

dominance of the TODIM method can be rewritten through the application of the Choquet integral. 

From the ordering of decision criteria the fuzzy measures of criteria interactions  are computed, 

which leads to the ranking of alternatives. A case study on the forecasting of property values for 

rent in a Brazilian city illustrates the proposed model. Results obtained from the use of the 

Choquet integral are then compared against a previously made usage of the TODIM method. It is 

concluded that significant advantages exist derived from the use of the Choquet integral. The paper 

closes with recommendations for future research.  
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1. Introduction 

Many useful multi-criteria methods are available to practioners and researchers in 

decision aiding at present. These methods are based on different mathematical 

assumptions (Ehrgott, Figueira and Greco, 2010). A number of accomplishments 

have been achieved since the late 1970s and new developments and application 

fields are constantly emerging (Wallenius et al., 2008).  

Behavioral decision theory is considered to have formally begun with Ward 

Edwards in Psychological Bulletin article (Edwards, 1954), although it went 

through some major advances in the 1970s and 1980s. Eisenführ, Weber, and 

Langer (2010) have established behavioral decision theory as “The approach of 

reflecting on axiomatic frameworks in the domain of descriptive theories (…) 

geared towards our goal of decision support”. These three authors also point out 

that the Cumulative Prospect Theory by Tversky and Kahneman  (Tversky and 

Kahneman, 1992) is “currently the most prominent descriptive decision theory 

under uncertainty”. Again according to these three authors “the original Prospect 

Theory (OPT) from 1979 is only of historical importance today. However, to 

prevent possible misunderstandings, the cumulative version of Prospect Theory is 

commonly referred to as CPT” (Eisenführ, Weber and Langer, 2010).  

OPT was developed by Daniel Kahneman and Amos Tversky and first published 

in 1979 (Kahneman and Tversky, 1979). The term prospect referred to a lottery in 

the original formulation of that theory. A prospect (x1, p1; …; xn, pn) is a contract 

that yields outcome xi with probability pi, where p1 +…+ pn = 1. With prospect 

theory Kahneman and Tversky aimed to describe how people choose between 

probabilistic alternatives and evaluate potential losses and gains defined with 

respect to a reference point or status quo. Consequently two domains are 

identified, the domains of gains and the domain of losses. A number of 

experiments have allowed researchers to conclude that humans tend to show risk-

averse behavior in the domain of gains and a risk-seeking behavior in the domain 

of losses (Tversky and Kahneman, 1981; Kahneman and Tversky, 1982; 

Kahneman and Tversky, 1984; Tversky and Kahneman, 1986; Tversky and 

Kahneman, 1987; Quiggin, 1993).  

The difference between cumulative prospect theory and OPT is that weighting is 

applied to the cumulative probability distribution function, as in rank-dependent 
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expected utility theory, instead of being applied to the probabilities of individual 

outcomes. CPT is therefore a further development of prospect theory. CPT 

overcomes some clear limitations that OPT had and, due to its success as a 

descriptive theory of how people decide when facing risk, it is considered as 

having more accuracy than expected utility theory as a psychological theory of 

preferences under risk (Eisenführ, Weber and Langer, 2010). 

The earliest attempt to apply prospect theory to multi-criteria decision making 

lays in the work of Korhonen, Moskowitz and Wallenius (1990). Those authors 

were investigating choice behavior in interactive multi-criteria decision making. 

The persistent patterns of intransitive choice behavior that were then revealed 

could be explained by using Tversky’s additive utility difference model (Tversky, 

1969) as well as Kahneman and Tversky’s prospect theory (Kahneman and 

Tversky, 1979). Korhonen, Moskowitz and Wallenius 1990 therefore presented an 

explanatory use of prospect theory, not a prescriptive one. The validation of that 

theory made by Korhonen, Moskowitz and Wallenius (1990) made use of linear 

piecewise marginal value functions, which means that these three authors used a 

linear approximation to prospect theory. Korhonen, Moskowitz and Wallenius 

(1990) have shown that Tversky’s (Tversky, 1969) additive difference model can 

indeed be regarded as a generalization of prospect theory to the multi-criteria 

context. 

Salminen and Wallenius (1993) tested linear prospect theory in a deterministic 

multi-criteria decision-making environment. These two authors then concluded 

that prospect theory was a reasonable model of choice for many individuals within 

the framework of their research.  

By making use of linear prospect theory Salminen (1991, 1992, 1994) proposed 

an interactive method for solving discrete deterministic multi-criteria decision 

problems and assumed prospect theoretical value functions for the decision 

makers. He then approximated the S-shaped value functions of prospect theory by 

piecewise linear marginal value functions. Salminen’s proposed procedure was 

therefore valid only for convex preferences. This author pointed out that the major 

problem in making OPT operational was how to find an individual reference 

alternative. He then proposed as alternative possibilities the current option, the use 

of aspiration levels and the ideal point, but concluded that there was no unique 

solution to that problem (Salminen 1991). 
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The TODIM method was formulated in the early 1990s and has been the object of 

a number of publications since then (Gomes and Rangel, 2009; Gomes and Lima, 

1992; Nobre, Trotta, and Gomes, 1999; Fa-dong et al, 2010; Moshkovich, Gomes 

and Mechitov, 2011). TODIM is the acronym for Interactive and Multicriteria 

Decision Making in Portuguese. 

The aim of this article is to show how criteria interactions can be determined in 

applications of the TODIM method. Korhonen and Wallenius’ belief that decision 

aiders can do a much better job if their models are founded on a solid behavioral 

foundation (Korhonen and Wallenius, 1996) is followed here. The nonlinear 

cumulative prospect theory-based TODIM method is presented. Computations of 

criteria interactions as fuzzy measures by applying the Choquet integral to 

TODIM are then introduced. A numerical example is provided. Conclusions with 

suggestions for future research close the article.  

 

2. Description of TODIM method 

2.1 Basics 

The TODIM method (an acronym in Portuguese of Interactive and Multicriteria 

Decision Making) is based on nonlinear CPT as the shape of its value function is 

the same as the gains/losses function of Cumulative Prospect Theory (Tversky 

and Kahneman, 1992). Here gains and losses are always established with respect 

to a reference point. In algorithmic form an application of TODIM would follow 

the steps below (all symbols are explained just after the mathematical formulae): 

Step 1: From the evaluation matrix of size m (criteria) versus n (alternatives) and 

criteria weights, compute values of Φc (Ai, Aj) by using equation (2) and making θ 

vary in [1,10]; 

Step 2: Compute values of δ (Ai, Aj) with equation (1); 

Step 3: Compute values of ξi with equation (3): those values lead to the ranking of 

alternatives. 

Mathematical expressions (1), (2) and (3) constitute the modeling underlying the 

use of the TODIM method: 
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where: 

δ (Ai, Aj) = measurement of dominance of alternative Ai over alternative Aj; 

n = the total number of alternatives; 

m = the total number of criteria; 

c = a generic criterion; 

wrc = trade-off rate (or trade-off weighting factor) between the reference criterion 

r and any other, generic criterion c. The subscript r identifies a reference criterion 

for the decision maker. That can be, for example, the criterion that the decision 

maker considers as the most important one. It is easy to see that any criterion can 

be chosen as the reference criterion and this particular choice does not influence 

the final results from the computations.  

Pic, Pjc = evaluations of alternatives i and j with respect to criterion c; 

θ  = attenuation factor of the losses; different choices of θ  lead to different shapes 

of the prospect theoretical value function in the negative quadrant;  

Φc(Ai, Aj) = contribution of criterion c to function δ(Ai, Aj), when comparing 

alternatives Ai and Aj. 

ξi = normalized global performance of alternative Ai, when compared against all 

other alternatives. 



7 

2.2 The CPT-based TODIM method  

2.2.1. Need of a risk aversion parameter 

The function Φc reproduces the value function of OPT and replicates the most 

relevant shape characteristics. That function fulfills the concavity for positive 

outcomes (convexity for negative outcomes) and second, it enlarges the 

perception of negative values for losses than positive values for gains, both value 

functions are steeper for negative outcomes than for positive ones. 

First, each shape characteristic of the value function models psychological 

processes: the concavity for gains describes a risk aversion attitude, the convexity 

describes a risk seeking attitude; secondly, the assumption that losses carry more 

weight than gains is represented by a steeper negative function side.  

Different kinds of decision makers can be understood in terms of their risk and 

loss attitude. Although the TODIM method does not deal with risk directly, the 

way the decision maker evaluates the outcomes of any decision can be expressed 

by their risk attitude: for instance, a cautious decision maker will undervalue a 

superior result more than a braver one. Apart from parameter θ, the attenuation 

factor of the losses, function Φc does not offer other parameters to delineate the 

behavior of diverse decision makers, therefore a generic formulation is proposed. 

2.2.2. From trade-off weighting factor to CPT weighting function 

Corresponding to TODIM method equation (2), trade off weighting factors wrc are 

implemented differently to gains and losses domain when calculating function Φc.  

Let’s assume, for example, two specific alternatives i and j, and two specific 

criteria c and d, suppose that alternative i performs equally bad compared to 

alternative j for both criteria c and d. 

Pic – Pjc = Pid – Pjd = -M                                        (4) 

Consider also that criterion c is more important for the decision-maker than d. 

wc > wd                                                                  (5) 

It would be easy to prove that the contribution of criterion c is higher than that of 

criterion d to function δ (Ai, Ak) when comparing alternatives Ai and Aj. 
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The contribution of criterion c should be lower than that of criterion d, because 

both performances are negative and criterion c is more important than d. Having 

the same weighting factor formulation structure for gains and losses will prevent 

this effect to happen. 

2.2.3. An analogy to CPT 

CPT is a model for descriptive decisions under risk. As OPT, CPT treats gains and 

losses separately. Basically CPT considers: (i) the evaluation of possible 

outcomes relative to a certain reference point (often the status quo); (ii) different 

risk attitudes towards gains (i.e., outcomes above the reference point) and losses 

(i.e., outcomes below the reference point) and care generally more about potential 

losses than potential gains (loss aversion); and (iii) a tendency to overweight 

extreme, but unlikely events, but underweight "average" events.  

Suppose a gamble is composed of a + b + 1 monetary outcomes, x−a < …< x0 < 

…< xb, which occur with probabilities p−a, …, pb, respectively. Recall that 

outcomes are defined relative to a reference point, which serves as the zero point 

of the value scale. Hence, v measures the value of deviations from that reference 

point, i.e., gains and losses (Neilson and Stowe, 2002). The corresponding gamble 

can be denoted by the pair (x; p), where x = (x−a, …, xb) and p = (p−a,…, pb). The 

preference value of the gamble (x; p) is given by (7). 

V(x; p) = V+(x; p) + V−(x; p)                                           (7) 

In equation (7) V+ measures the contribution of gains and V− measures the 

contribution of losses. The two parts of the sum in (7) can be rewritten as in (8) 

and (9). 
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where π+ and π- are decision weights associated to positive and negative outcomes 

respectively. The function g (p) is a probability weighting function assumed to be 
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increasing with g (0) = 0 and g (1) = 1. As such it can be computed as in (10) and 

(11).  
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v (x) is a utility (or value) function assumed to be increasing with u(0) = 0 and it is 

formulated as in (12).  
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where: 

x = economic outcome relative to a reference point; it can also be understood as 

an evaluation of an alternative relative to another one; 

α  = curvature of the subjective value function for gains;  

β = curvature of the subjective value function for losses; 

λ = loss-aversion coefficient. 

According to CPT, v (x) is a utility (or value) function assumed to be increasing 

with u(0) = 0 and it is formulated as in (12).                                   

In regards to multi-criteria models based on CPT, an association can be made 

between the economic outcomes of the gambling and the evaluation of 

alternatives with respect to several criteria. Such association can also be made 

between outcome probabilities and the trade-off rate weighting factors. Here x = 

(x−a,…, xb) are the economic outcomes relative to a reference point and can also 

be understood as an evaluation of an alternative relative to another one. p = 

(p−a,…, pb) are the probabilities of each economic outcome and can be interpreted 

as the trade-off importance. For instance, let’s suppose that alternative i is 

evaluated with respect to alternative j, and that there are a+b+1 different criteria to 

evaluate such alternatives. Table 1 displays the CPT elements associated with the 

TODIM elements. 

Table 1:  Analogy between CPT and TODIM elements 

CPT elements Analogous TODIM elements 

Outcome Result Outcome Probability Criteria Result Evaluation Weighting 
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Index  of 

outcome 

Index alternative i 

compared to j 

factor 

a Neg. x-a p-a c Neg. Pci -Pcj wrc/(∑wrc) 

b Pos. Xb Pb d Pos. Pdi -Pdj wrd/(∑wrd) 

 

As the CPT outcome vector x = (x−a,…, xb), TODIM relative evaluation score 

differences  can be sorted low to high. For some criteria c, alternative j will 

perform better than i and the evaluation difference will be negative, i.e., Pci – Pcj < 

0. For some other criteria d, alternative i will show better evaluations than j and 

the evaluation differences will be positive, i.e., Pdi – Pdj > 0. The performance 

evaluation differences among a set of criteria can be sorted and written as x = (Pci-

Pcj,…, Pdi-Pdj). 

Besides the linkage between CPT outcomes and TODIM evaluation differences, 

we can assume that, as in CPT, for high positive and low negative prospects 

people tend to overweight the probabilities and for mid-level outcomes they tend 

to underweight probabilities. One can extend this assumption by considering that, 

in multicriteria decision making, for the highest and lowest evaluation differences 

the decision maker will overweight in a second stage a low criteria weighting 

factor (and he will underweight a similar evaluation between alternatives). In 

other words, the trade-off weighting factors of TODIM can be understood as 

probabilities that allow implementing the same formulation. 

To sum up, the CPT formulation to calculate the value of a gamble V(x; p), x = 

(x−a,…, xb) being relative to a reference point and p = (p−a,…, pb) as probabilities 

of the outcomes, can be adopted in association to the use of the TODIM method to 

calculate the value of an alternative i relative to a second alternative j V ij(x; p) 

whose performances according to a set of criteria are x = (Pci-Pcj,…, Pdi-Pdj) and 

the trade-off weighting factors are p = (wrc/(∑wrc),…, wrd/(∑wrd)). 

Equation (2) of TODIM can be rewritten as in (13).  

δ (Ai, Aj) = Vij(x; p)                                                 (13) 

such that x and p can be written as in (14). 

x = (Pci-Pcj,…, Pdi-Pdj) and p = (wrc/(∑wrc),…, wrd/(∑wrd))                     (14) 

The parametric formulation of the TODIM method is now completed with the 

following: α quantifies the curvature of the subjective value function for gains, β 

does for losses, and λ quantifies the loss aversion. For α, β < 1, the value function 
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exhibits risk aversion over gains and risk seeking over losses. Furthermore, if λ, 

the loss-aversion coefficient, is greater than one, individuals are more sensitive to 

losses than gains. By using non-linear regression the values of these three 

parameters of CPT were estimated as α=β=0.88 and λ=2.25. The values of γ and δ 

were estimated as 0.61 and 0.69 respectively (Neilson and Stowe, 2002). Other 

estimations from experimental data are present in the literature (Camerer and Ho, 

1994; Gonzalez and Wu, 1999). 

In essence, we just showed that the ratio wrc/(∑wrc) can be interpreted as a 

probability. This allows us to make full use of CPT, including its decision weights 

(Tversky and Kahneman, 1992). We can therefore say that the formulation of 

TODIM in terms of CPT is indeed a formulation in terms of the concept of 

capacity (Choquet, 1953; Grabisch and Labreuche, 2010). Here a capacity is a 

non-additive set function that generalizes the standard notion of probability. 

Capacities are also known under the name of fuzzy measures (Sugeno, 1974). It is 

shown in the coming section that, by relying on CPT, the TODIM method is 

indeed a multi-criteria formulation in terms of the concept of capacity (Choquet, 

1953).  

Besides the linkage between CPT outcomes and TODIM evaluation differences, 

we can assume that, as in CPT, for high positive and low negative prospects 

people tend to overweight the probabilities and for mid-level outcomes they tend 

to underweight probabilities. In analogy, in multicriteria decision making for the 

highest and lowest evaluation differences the decision maker will overweight in a 

second stage a low criteria weighting factor (and he will underweight a similar 

evaluation between alternatives). In other words, the trade-off weighting factors of 

TODIM can be understood as probabilities that allow implementing the same 

formulation. 

An important mathematical model that has been used for modeling interactions 

between criteria is the Choquet integral (Choquet, 1953). In decision theory, the 

Choquet integral is a way to measure the expected utility of an uncertain event 

(Gilboa & Schmeidler, 1992). The Choquet integral is indeed a generalization of 

the weighted arithmetic mean and has been extensively used since the last decade 

in Multiple Criteria Decision Aiding in modeling interactions between criteria 

(Grabisch, 1996; Grabisch, 2006; Grabisch & Labreuche, 2005; 2010). A critical 

analysis of the use of the Choquet integral for modeling interactions between 
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criteria was presented by Roy (2009) though. This author has pointed out that the 

generalization of the Choquet integral known as bipolar model (or model with bi-

capacities) should be utilized in order to capture some particular aspects of 

interactions between criteria.  

In the coming sections the basic notions of the Choquet integral are presented. It 

is then shown how interactions between criteria can be determined by applying 

the Choquet integral to the TODIM method.  

 

3. The Choquet integral 

3.1 The Choquet integral  

Given a finite and not empty set { }KS ...2,1=  and considering a family of subsets 
S2  of S, a fuzzy measure is a function ]1,0[2: →Sµ  such that: 

i. ( ) 0=φµ   and  ( ) 1=Sµ ; when ( ) 1=Sµ , this fuzzy measure is said to be 

normalized; 

ii. SBABAallforBA ∈⊂≤ ,,),()( µµ , given a function a : S →R , the Choquet 

integral in relation to the fuzzy measure µ is given by (15): 

{ }( ) { }[ ]∑
=

++−=
K

s
Ks aKaKsKsaI

1

)(),...1(,...)( µµµµ ,     (15) 

where as=a(s) and a1< a2<...< a K. 

If µ is additive, the Choquet integral is the expected value (or the weighted 

average), i.e., as in (16) and (17) (Dubois and Prade, 1986; 1989). 

{ }( ) { }[ ] )(),...1(,... sKsKs µµµ =+− ,      (16) 

∑
=

K

s
sasaI

1

)]([)( µµ .        (17) 

Consider { }3,2,1=S , µ a fuzzy measure { } [ ]102 321 ,: ,, →µ  and a function 

( )1,3,2=b ; in order to calculate the Choquet integral of b, we have (18) and (19): 

{ }( ) { }[ ]∑
=

++−=
3

1

)(,...1,...)(
s

Ks bKbKsKsbI µµµµ
    (18) 

{ } { } { } { } 321 )3()]3(3,2([()]3,2()3,2,1([)( bbbbI µµµµµµ +−+−=
  (19) 

321 bbb << . 
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As b3< b2< b1, to calculate the Choquet integral we have to take a permutation 

{ } { }3,2,13,2,1: →n  so that n(1) = n1=1; n2 = 2 and n3 = 3 where 
321 nnn bbb ≤≤ ; 

therefore { }[ ] { }( ) { }( )[ ] { } 3(2,1,},,{)( 333232321 ×+×−+×−= nnnnnnnnnbI µµµµµµ . 

In general, given a function b: S → R we can always consider a permutation  

n: S → S so that nknn bbb ≤≤
21

, and we can write (20):  

{ }( ) { }[ ]∑
=

+ +−=
K

s
nKnKsKs Ks

anannnnaI
1

1 })({,...,...)( µµµµ
   (20) 

3.0)2()1( == µµ . 

Consider 2, Rba ∈ , so that 21 =a , 32 =a , 31 =b , and 12 =b ; we have  c = a + b = 

(5.4). The Choquet integral for the function a is: 

{ } { } =+−=+−= 2121 )2()]2(1[)2()]2()2,1([)( aaaaaI µµµµµµ

4.49.057.033.05]3.01[)2()]2(1[ 21 =+×=×+×−=+− aa µµ  

The Choquet integral for the function b is: 

{ } { } =+−=+−= 2121 )2()]2(1[)2()]2()2,1([)( bbbbbI µµµµµµ  

8.33.057.013.05]3.01[ =+×=×+×−  

Summing these Integrals (the sum of the Integrals of functions a and b) we have: 

2.88.34.4)()( =+=+ bIaI µµ  

The Choquet integral for the function c (an additive function) is given by: 

{ } { } =+−=+−= 2121 )2()]2(1[)2()]2()2,1([)( cccccI µµµµµµ

7.42.157.043.05]3.01[ =+×=×+×−  

Therefore, we have: )()()( baIbIaI +≠+ µµµ . 

4. The Choquet – extended TODIM Method 

From the classical formulation of TODIM we can compute the measure of relative 

dominance of each alternative Ai over another alternative Aj as show as equation 

(1): 

∑
=

∀Φ=
m

1c
c )A,(A        ),,(  )A,(A jiji ji AAδ      (1) 

Through considering the fuzzy measures µ of interactions between criteria we can 

obtain the overall value of each alternative with no need of normalization. This is 

accomplished by rewriting the equation above as equation (21):  

),()(),( jicji AAaIAA Φ= µδ        (21) 
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where a : S →R , and I  is the Choquet integral in relation to the fuzzy measure  µ. 

In order to illustrate, assume the following evaluation matrix as showed in Table 

2. 

Table 2: Evaluation matrix 

Criteria Alternatives 
A1 A2 . . . An 

C1 Ф(A1,C1) Ф(A2,C1) . . . Ф(An,C1) 
C2 Ф(A1,C2) Ф(A2,C2) . . . Ф(An,C2) 
. . . . . . . . . . . . . . . 
Cm Ф(A1,Cm) Ф(A2,Cm) . . . Ф(An,Cm) 

 

Suppose that criteria are ordered as follow: C1 > C2 > ... > Cm. We can now 

determine the fuzzy measures (i.e., the criteria interactions)  

as follows as equation (22): 

  1 ,;.....;
m

1j
j1,1121211 ∑

=
−− ==== jjjjj kkkk µµµµµµ     (22) 

where kj are constants. 

The evaluation matrix can now be rewritten as follows in Table 3: 

Table 3: Evaluation matrix with fuzzy measures 

Criteria Alternatives 
A1 A2 . . . An 

C1 µ1Ф(A1,C1) µ1Ф(A2,C1) . . . µ1Ф(An,C1) 
C2 µ12Ф(A1,C2) µ12Ф(A2,C2) . . . µ12Ф(An,C2) 
. . . . . . . . . . . . . . . 
Cm µm-1,mФ(A1,Cm) µm-1,m-1Ф(A1,Cm) . . . µm-1,m-1Ф(An,Cm) 

 

5. An application case study 

5.1. Problem definition 

The case study is a valuation of residential properties carried out by real estate 

agents in the city of Volta Redonda, Brazil. Fifteen properties in different 

neighborhoods were analyzed as alternatives and a total of eight evaluation 

criteria were identified. A detailed description of the alternatives and criteria can 

be found in Gomes and Rangel (2009). 

The initial weights assigned to the criteria used to evaluate the properties were 

defined by decision makers (i.e., the real estate agents), assigning a number 

between 1 and 5 to each criterion where 1 would mean ‘least important’ and 5 

would mean ‘most important’.  
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The alternatives are presented. 

A1 – A house in an average location, with 290 m2 of constructed area, a high 

standard of finishing, in a good state of conservation, with one garage space, 6 

rooms, a swimming pool, barbecue and other attractions, without a security 

system. 

A2 – A house in a good location, with 180 m2 of constructed area, an average 

standard of finishing, in an average state of conservation, with one garage space, 4 

rooms, a backyard and terrace without a security system. 

A3 – A house in an average location, with 347 m2 of constructed area, a low 

standard of finishing, in an average state of conservation, two garage spaces, 5 

rooms, a large backyard, without a security system. 

A4 – A house in an average location, with 124 m2 of constructed area, an average 

standard of finishing, in a good state of conservation, two garage spaces, 5 rooms, 

a fruit orchard, a swimming pool and barbecue, without security system. 

A5 – A house in an excellent location, with 360 m2 of constructed area, a high 

standard of finishing, in a very good state of conservation, four garage spaces, 9 

rooms, a backyard and manned security boxes in the neighborhood streets. 

A6 – A house located between the periphery and the city center (periphery/average 

location) with 89 m2 of constructed area, an average standard of finishing, in a 

good state of conservation, with one garage space, 5 rooms, a backyard, without a 

security system. 

A7 – An apartment located in the periphery, with 85 m2 of constructed area, a low 

standard of finishing, in a bad state of conservation, one garage space, 4 rooms, a 

manned entrance hall with security. 

A8 – An apartment in an excellent location, with 80 m2 of constructed area, 

average standard of finishing, good state of conservation, with one garage space, 6 

rooms, manned entrance hall with security. 

A9 – An apartment located between the periphery and the city center 

(periphery/average location), with 121 m2 of constructed area, an average standard 

of finishing, in a good state of conservation, no garage space, 6 rooms, without a 

security system. 

A10 – A house located between the periphery and the city center  

(periphery/average location), with 120 m2 of constructed area, a low standard of 
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finishing, in a good state of conservation, with one garage space, 5 rooms, a large 

backyard, without a security system. 

A11 – A house in a good location, with 280 m2 of constructed area, an average 

standard of finishing, in an average state of conservation, with two garage spaces, 

7 rooms, with an additional security system. 

A12 – An apartment located in the periphery, with 90 m2 of constructed area, a low 

standard of finishing, in a bad state of conservation, one garage space, 5 rooms, 

without additional security. 

A13 – An apartment located in the periphery in an average location, with 160 m2 

of constructed area, a high standard of finishing, in a good state of conservation, 

two garage spaces, 6 rooms, with additional security features. 

A14 – An apartment in a good location, with 320 m2 of constructed area, high 

standard of finishing, in a good state of conservation, 2 garage spaces, 8 rooms, 

with in addition a security system. 

A15 – A house in a good location, with 180 m2 of constructed area, an average 

standard of finishing, in a very good state of conservation, one garage space, 6 

rooms, with in addition a security system. 

Table 4 shows a list and a description of criteria, with their assigned and 

normalized weights. Table 5 is the evaluation matrix.  

Table 4: Criteria weights 

Criterion Description Assigned weights Criteria weights 
C1 Localization 5 0.25 
C2 Construction area 3 0.15 
C3 Quality of construction 2 0.1 
C4 State of conservation 4 0.2 
C5 Number of garage spaces 1 0.05 
C6 Number of rooms 2 0.1 
C7 Attractions 1 0.05 
C8 Security 2 0.1 

 

Table 5: Evaluation matrix 

Alternative C1 C2 C3 C4 C5 C6 C7 C8 
A1 3 290 3 3 1 6 4 0 
A2 4 180 2 2 1 4 2 0 
A3 3 347 1 2 2 5 1 0 
A4 3 124 2 3 2 5 4 0 
A5 5 360 3 4 4 9 1 1 
A6 2 89 2 3 1 5 1 0 
A7 1 85 1 1 1 4 0 1 
A8 5 80 2 3 1 6 0 1 
A9 2 121 2 3 0 6 0 0 
A10 2 120 1 3 1 5 1 0 
A11 4 280 2 2 2 7 3 1 
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A12 1 90 1 1 1 5 2 0 
A13 2 160 3 3 2 6 1 1 
A14 3 320 3 3 2 8 2 1 
A15 4 180 2 4 1 6 1 1 

 

Computations are performed in 4 steps: 

Step 1: Fuzzification of the scales of criteria in order to become non dimensional. 

In this presentation fuzzy triangular membership functions with null amplitude 

and mode equal to the original scale are used. Those fuzzy triangular membership 

functions are written as equation (23) below:  

)0),;max(min(),,,(
cd

xd

bc

bx
dcbxf

−
−

−
−=     (23) 

where b, c, d are parameters. Parameters b and c locate the base of the triangle and 

parameter d locates the vertex.  

After a number of studies on the joint transformation of all scales in non 

dimensional values it was decided that a triangular fuzzy membership function 

should be used. Therefore for all criteria the value of 0.067 was chosen as the 

highest value of the original scale. That number is equal to the inverse of the 

number of alternatives which is 15. For example, for C1 (Localization) the top 

value is equal to 5 and this value is associated to 0.067. All other values for that 

particular criterion are proportional to 0.067 in order to maintain the relative 

importance of readings in the original scale. The second highest value is 4 as it 

represents 80% of 5, i.e., 0.053. The third highest value is 3, corresponding to 

60% of that top value of 5, i.e., 0.040. By following this procedure one obtains 

0.027 for the fourth value and 0.013 for the fifth value for criterion C1.  Table 6 

shows the fuzzification of C1.  Exactly the same procedure was followed for all 

other criteria.  

Table  6 – Fuzification of the scale of criterion C1 

Original scale Fuzzified scale 
5 0.067 
4 0.053 
3 0.040 
2 0.027 
1 0.013 

 

Table 7 shows the evaluation matrix obtained after fuzzification. 

Table 7: The evaluation matrix can now be rewritten after accomplishing the fuzzification 

Alternative C1 C2 C3 C4 C5 C6 C7 C8 
A1 0.040 0.053 0.040 0.053 0.027 0.027 0.067 0.013 
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A2 0.053 0.040 0.040 0.040 0.027 0.007 0.040 0.013 
A3 0.040 0.067 0.016 0.040 0.040 0.013 0.027 0.013 
A4 0.040 0.027 0.040 0.053 0.040 0.013 0.067 0.013 
A5 0.067 0.067 0.053 0.067 0.067 0.067 0.027 0.067 
A6 0.027 0.013 0.040 0.053 0.027 0.013 0.027 0.013 
A7 0.013 0.013 0.016 0.027 0.027 0.007 0.013 0.067 
A8 0.067 0.013 0.040 0.053 0.027 0.027 0.013 0.067 
A9 0.027 0.027 0.040 0.053 0.013 0.027 0.013 0.013 
A10 0.027 0.027 0.016 0.053 0.027 0.013 0.027 0.013 
A11 0.053 0.053 0.040 0.040 0.040 0.040 0.053 0.067 
A12 0.013 0.013 0.016 0.027 0.027 0.013 0.040 0.013 
A13 0.027 0.040 0.040 0.053 0.040 0.027 0.027 0.067 
A14 0.040 0.067 0.053 0.053 0.040 0.053 0.040 0.067 
A15 0.053 0.040 0.053 0.067 0.027 0.027 0.027 0.067 

 

Step 2 - Determination of fuzzy measures 

Considering the order of criteria: 

C1 > C4 > C2 > C3 = C6 = C8 > C5 = C7 

We have the fuzzy measures to calculate the Choquet integral as: 

422342421141 9.0;49.0;84.0;25.0 µµµµµµµ ====  

23683685576885236836 ;;5.0; µµµµµµµµµµ ======  

where µij are fuzzy measures which are the weights for the different criteria group. 

We have taken the highest value for µ1 because criterion 1 is the most important 

one. The other values are proportional or equal following the criteria order. This 

weighting is performed in a way such that the sum of all measures is equal to 1.0.  

 

Step 3 - Computation of the Choquet integral 

Table 8 presents the computed values of the Choquet integral. 

Table 8: Computation of the Choquet integral 

Alternatives C1 C2 C3 C4 C5 C6 C7 C8 Choquet 
integral 

A1 0.010 0.006 0.004 0.011 0.001 0.003 0.003 0.001 0.041 
A2 0.013 0.005 0.004 0.008 0.001 0.001 0.002 0.001 0.036 
A3 0.010 0.008 0.002 0.008 0.002 0.001 0.001 0.001 0.034 
A4 0.010 0.003 0.004 0.011 0.002 0.001 0.003 0.001 0.037 
A5 0.017 0.008 0.006 0.013 0.003 0.007 0.001 0.007 0.063 
A6 0.007 0.002 0.004 0.011 0.001 0.001 0.001 0.001 0.029 
A7 0.003 0.002 0.002 0.005 0.001 0.001 0.001 0.007 0.022 
A8 0.017 0.002 0.004 0.011 0.001 0.003 0.001 0.007 0.046 
A9 0.007 0.003 0.004 0.011 0.001 0.003 0.001 0.001 0.031 
A10 0.007 0.003 0.002 0.011 0.001 0.001 0.001 0.001 0.028 
A11 0.013 0.006 0.004 0.008 0.002 0.004 0.003 0.007 0.049 
A12 0.003 0.002 0.002 0.005 0.001 0.001 0.002 0.001 0.018 
A13 0.007 0.005 0.004 0.011 0.002 0.003 0.001 0.007 0.040 
A14 0.010 0.008 0.006 0.011 0.002 0.006 0.002 0.007 0.052 
A15 0.010 0.000 0.010 0.010 0.000 0.000 0.000 0.010 0.050 
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Some of the computed values of the Choquet integral are shown in Table 9 as an 

example. 

Table 9: Example computation of the Choquet integral 

Alternative Criteria 
C1 - Localization C2 – Constructed Area  

A1 0.25 * 0.04 = 0.010 0.12 * 0.05 = 0.006 
A2 0.25 * 0.053 = 0.013 0.12 * 0.040 =0.005 

 

In other words, 010.004.0*25.0 =  is the product of the fuzzy measure of criteria 

1(0.25) by the fuzzified value of the utility for alternative A1 in relation of criteria 

C1. Similarly, 01300530250 ... =⋅  is the product of the fuzzy measure of criteria 

C1 (0.25) by the fuzzified value of the utility for alternative A2 in relation of 

criteria C1. 

The calculations of the Choquet integral are the sum of all the values obtained for 

each column of the matrix. 

For the alternative A1, we have: 

 

For the alternative A2, we have: 

 

and so on. 

Thus we obtain Table 10, with values of the Choquet integral for alternatives A1 

and A2. 

Table 10: Values of the Choquet integral for alternatives A1 and A2 

Criteria A1 A2 
C1 - Localization 0.010 0.013 
C2 - Constructed Area 0.006 0.005 
C3 - Quality of Construction 0.004 0.004 
C4 - State of Conservation 0.011 0.008 
C5 - Number of garage spaces 0.001 0.001 
C6 - Number of rooms 0.003 0.001 
C7 - Attractions 0.003 0.002 
C8 - Security 0.001 0.001 
Values of the Choquet integral 0.041 0.036 

 

Step 4 – Ranking of the alternatives 

With the values of the Choquet integral we obtain the ranking of the alternatives. 

This ranking is performed by ordering the obtained values of the Choquet integral.  

The ranking of the alternatives ordering is shown in Table 11. 

Table 11: Ranking of Alternatives and values of the Choquet integral 

041.0001.0003.0003.0001.0011.0004.0006.0010.0 =+++++++

036000100020001000100080004000500130 ......... =+++++++
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Alternative Values of the Choquet integral Ranking 
A1 0.041 6 
A2 0.036 9 
A3 0.034 10 
A4 0.037 8 
A5 0.063 1 
A6 0.029 12 
A7 0.022 14 
A8 0.046 5 
A9 0.031 11 
A10 0.028 13 
A11 0.049 4 
A12 0.018 15 
A13 0.040 7 
A14 0.052 2 
A15 0.050 3 

 

A comparative analysis of the results is performed by comparing the ranking 

deisplayed in Table 8 with these obtained by using the original TODIM method as 

in Gomes and Rangel (2009). Table 12 displays the two rankings. The Spearman 

coefficient of correlation between the two ranks was found equal to 0.9142. This 

indicates that these two ranks are indeed quite close. 

Table 12: Rankings from using Choquet and the original TODIM method 

Alternatives Choquet ranking TODIM ranking Comparison 
A1 6 5   
A2 9 10   
A3 10 9   
A4 8 7   
A5 1 1 Same 
A6 12 11   
A7 14 15   
A8 5 8   
A9 11 14   
A10 13 12   
A11 4 3   
A12 15 13   
A13 7 4   
A14 2 2 Same 
A15 3 6   

 

Sensitivity Analysis 

The sensitivity analysis was performed by modifying the fuzzy measures by 

increasing and decreasing their values, and recalculating the Choquet integral.  

The fuzzy measures used in the sensitivity analysis for the Choquet integral were: 

422314421141 835.0;93.0;693.0;21.0 µµµµµµµ ====  

85576885236836 ;75.0; µµµµµµµ ====  

The results from the sensitivity analysis are presented in Table 13. 
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Table 13: Comparing Choquet ranking and Todim ranking 

Alternatives Choquet’s initial ranking Choquet’s ranking after sensitivity analysis 
A1 6 6 
A2 9 8 
A3 10 9 
A4 8 7 
A5 1 1 
A6 12 11 
A7 14 13 
A8 5 5 
A9 11 10 
A10 13 12 
A11 4 3 
A12 15 14 
A13 7 6 
A14 2 2 
A15 3 4 

 

6. Conclusions and recommendations for future 

research 

The key conclusions from this case study are listed below:  

i. The use of the Choquet integral minimizes the calculations of  the 

TODIM method since it is unnecessary to normalize the raw data; 

ii.  Not only crisp values can be used but also interval data; this second 

situation would lead to using a fuzzy triangular number; 

iii.  By using the Choquet integral more complex additive models can be 

used that allow for taking dependencies between criteria into 

consideration. 

Suggestions for future research follow: 

i. Tackling situations where input data on preferences are either entirely 

unavailable or only partially available and the decision analyst still 

wants to use TODIM for providing a framework on which an analysis 

can be based.  This case can then be treated as in inverse problem and 

therefore approached by Monte Carlo simulation. This will lead to a 

SMAA-P method following Lahdelma and Salminen (2009); 

ii.  Extending the TODIM method to situations when input data are not 

only crisp, but also liable to be described by interval or by fuzzy 

numbers; 
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iii.  Using more complex additive models that allow for taking 

dependencies between criteria into consideration; 

iv. Making use of both Mamdani and Sugeno’s fuzzy inferential systems 

(Oliveira et al., 2007) in order to compare the obtained results against 

these computed by the Choquet-extended TODIM method. 
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