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A novel alternative approach to support soybean seed variety selection decision is presented in this study.

The implementation of Robust Decision Making (RDM) is suitable for this purpose because it allows farmers

to deal with the deep uncertainty about the climate conditions and mitigate the risks of a low outcome. By

exploring the scenario space using machine learning technics, RDM suggests robust strategies, rather than

optimal, which are those strategies that perform acceptable well over a wide range of scenarios. This research

discusses in detail the procedure to implement said methodology. It starts describing the pre-processing of

the data, a clustering to group observations, and a Principal Components Analysis to improve the pattern

recognition. Then, varieties V41 and V187 are identified as possible candidates of robust strategies. Exploring

the space by classification tree algorithm, this study reveals possible vulnerabilities for the candidates in the

evaluated site: V41 returns low values of yield when average temperatures are low, and V187 is not a good

choice depending on the distribution of rainfalls. A mix that contains (i) 60% of V41, (ii) 30% of V98, and

(iii) 10% of V180 is identified as a possible robust strategy as it limits those risks detected.

Key words : Robust Decision Making, Decision Tree, Scenario Planning, Crop Mix Allocation, Farm

Planning, Clustering, Principal Component Analysis

1. Introduction

One major way in which decision-makers can adapt to a shifting context (e.g., climate conditions)

in agriculture is by changing the allocation of land among a set of viable activities (e.g., different

seed varieties), the same way an investor re-balances a stock portfolio as markets change. Tradi-
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tionally, the land allocation decision follows a predict-then-act process where the farmers require

an accurate, and increasingly precise, assessment of the future impacts of climate in order to

adapt successfully. See for instance Messina et al. (1999). Although deliberative decision support

mechanisms (e.g., optimization of an objective function or metric) have a strong tradition in agri-

cultural economics, they often have been dismissed as unrealistic as they do not model accurately

all uncertainties involved, see Rivera-Ferre and Ortega-Cerdà (2011).

In this study, a novel approach to address this difficulty is presented. Some ideas are taken

from robust decision-making methodology (RDM) introduced in Lempert (2003) to examine the

performance of different soybean variety allocation mixes over a range of plausible scenarios driven

by uncertainty about the future state of weather. In this way, strategies (e.g., combination of

varieties) that perform sufficiently well across a range of alternative futures can be identified even

without accurate and precise predictions of future climate.

Basically, RDM methodology characterizes uncertainty with multiple views of the future or

scenarios. It can also incorporate probabilistic information, but rejects the view that a single joint

probability distribution represents the best description of a deeply uncertain future. Second, RDM

uses a robustness rather than an optimality criterion to assess alternative policies. There exist

several definitions of robustness, but all incorporate some type of satisfying criterion. For instance,

a robust strategy can be defined as one that performs reasonably well compared to the alternatives

across a wide range of plausible future scenarios. Third, the RDM explores the vulnerabilities of

candidate strategies by a supervised machine learning algorithm providing additional insightful

information to the decision maker. That is, instead of just suggesting a recommended mix of

varieties, it advises farmers about the situations in which those recommendations will not perform

acceptable, and extends the recommendation to some feasible alternatives that mitigate those risks.

Although RDM was widely investigated in different decision problems such as reducing green-

house gas emissions -Lempert et al. (1996), water management issues -Groves et al. (2008)-, etc.,

there is no precedent in the literature of a work that implements RDM to farm planning decisions.
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Figure 1 Distribution of Yields for Varieties V41 and V98.

As an original idea, this paper introduces a correct implementation of the methodology with real

data tested in the industry.

The structure of this article continues with two main sections. Next section discusses how the

RDM was carried out to model a seed variety mix selection decision problem. The first quartile of

yield is purposed as an indicator of robustness, varieties V41 and V187 are selected as candidates,

vulnerabilities for both are identified and trade-off alternatives are evaluated. Then, section 3

provides further documentation about the assumptions and the construction of the dataset.

2. Criteria used to select the seed varieties

It can be easily assumed that farmers will set up their economic return as their major goal to

delineate the variety mix allocation decision. Although other components such as seed and man-

agerial cost, selling price, etc. should also be considered, yield is accepted as the main driver of the

economic gain given that those other components involved in the process are less uncertain, at least

for the proposes of this study. Once decided the seed variety to crop, or the mix of seed varieties,

the resulting yield will depend on the soil features and the weather conditions that governs the

soybean growing in each scenario.
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In figure 1, the density distribution of the yield of two relevant varieties -V41 and V98-, in

ton.ha-1, is illustrated. After pre-processing the data as described in following sections, this graph

shows the yields distribution among scenarios, where each scenario -combination of site and season-

is considered to have the same probability of occurrence. Indubitably, decision makers will prefer

those varieties with yield distributions with high mean values and low standard deviations, this

last as a measure of the risk.

2.1. First quartile as measure of preference

Alternatively to the mean and standard deviation, an indicator of performance can be expressed

in terms of avoiding losses instead of maximizing wins. An evaluation metric focused on the left

tail of the distribution may be more suitable for the assumption that a robust decision is the one

that returns a satisfactory outcome in as many scenarios as possible. Therefore, the lower bound

of the yield for the 75% best scenarios, given by the percentile 25% of the density distribution

could be a convenient criteria to asses the convenience of choosing each strategy. This metric of

risk is widely used in financial markets to estimate how much a set of investments might lose,

given normal market conditions. Usually, the threshold value used varies from 1 and 5% -Linsmeier

and Pearson (2000). In this study, the percentile value at 25% is fixed as a criteria, because the

same threshold value was set in Lempert et al. (2006), and also because a small survey conducted

by project members among real farmers in Argentina revealed similar preferences when they were

asked about their threshold between winning and losing. Of the two varieties in the figure 1, V41

would be preferred to V98 as the percentile 25% value of yield, or first quartile (1Q), is 60.7 vs.

59.7 ton.ha-1 respectively.

2.2. Selecting an initial robust strategy candidate

The RDM procedure requires the selection of initial robust strategy candidate to continue later

exploring its vulnerabilities. In a real context, this candidate could be chosen as the strategy

recommended by farmer’s usual decision method. In this study, the strategy -variety or mix of

varieties- with the highest value of 1Q is selected as initial candidate. The mix with the given
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percentages: 50% of variety 187, 50% of variety 41 is the strategy with the maximum value of

1Q of yield: 62.62 ton.ha-1. As a notation, strategies will be referred as X1VY1 X2VY2, where

X denotes the proportion of land and Y denotes the variety. Hence, the candidate is notated as

0.5V187 0.5V41. Once selected the initial strategy, its performance is explored among the set of

scenarios evaluated focusing on identifying vulnerabilities (i.e., characteristics of scenarios where

the candidate does not perform acceptable). In this study, the varieties V41 and V187 will be

explored individually. Although, very similar results can be obtained analyzing the performance of

strategy 0.5V187 0.5V41 as a mix.

2.3. Identification of vulnerabilities

The ideal robust strategy would have no vulnerabilities. Unfortunately, this is generally not the

case. This subsection explores the exposure to an unacceptable result of candidates, first V41 and

then V187. In this regard, the contexts that create unfavorable conditions and therefore lower

outcomes for these strategies need to be identified. This stage is often referred to in the literature as

”scenario discovery” -Bryant and Lempert (2010). Various data-mining algorithms can be used to

find combinations of parameters that are most strongly predictive of decision-relevant regions in a

dataset. After a series of operations applied to the data which include aggregation, Clustering, and

PCA, this study implements a classification tree algorithm -Breiman et al. (1984)- to discriminate

situations where initial candidate strategy V41 (and V187) has ”good” and ”bad” performance.

The usage of classification trees in RDM was explored in Lempert et al. (2008). An advantage of the

tree approach is that the sets of conditions that lead to a bad performance can be easily interpreted

and communicated to decision-makers. In the top-left graph in figure 2 the tree that classifies the

scenarios into ”good” or ”bad” depending on whether the yield of variety V41 is higher or lower than

the 1Q is depicted. Each scenario -combination of site and season- is characterized by a series of

features related to the soil and aggregated weather, together with principal components calculated.

Details about the considerations to run the tree and the operations performed is detailed in next

section. The tree obtained has only one split and two leafs and classifies the scenarios according to
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Figure 2 Selection of variety mix.

the value of 1st principal component calculated from the scenario weather data in the PCA analysis.

If the value of the 1st weather principal component, which is the component that captures most of

the variability of the weather data, is lower than -0.28, then the scenario is classified by the tree

as ”bad”. This component has a close relationship (high absolute value of coefficients) with the
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variables associated with the average of maximum and minimum temperatures within the period

between March the 1st and May the 31st. -see table 3 for details. When analyzing the training data

for strategy V41, the scenario discovery stage unveils the pattern followed by scenarios that cause

an unsatisfactory result. The decision outcome to assign 100% of land to V41 is jeopardized by

scenarios that have a low value of the 1st principal component of weather data. Therefore, this

classification implies that V41 has poor performance in cold years, mainly between March and

June, and variables related to rainfall, soil type, radiation seem to have less impact on the a low

performance.

2.4. Identification of hedging strategies

Last section discussed the range of conditions in which initial candidate V41 does not perform well

(e.g., when temperatures are low in average). This subsection aim to find alternative strategies

that provide hedges against scenarios in which strategy V41 is vulnerable. As a first step, the

classification tree grown before is used to classify all scenarios into ”good” or ”bad” categories.

That is, the entire set of scenarios is divided into two groups according to the predicted performance

of initial candidate V41 in each scenario. To explore hedging alternatives, the performances of

all strategies for the two subsets of scenarios divided by the classification tree are evaluated. In

one subset, all scenarios will exhibit the value of the 1st principal component of weather data

higher than -0.28; those will be labeled as ”good”. The other subset will be labeled as ”bad” and

scenarios there will be identified as their principal component value lower than -0.28. For each

strategy, the first quartile (1Q) of yield values are calculated considering separately ”good” and

”bad” scenarios. Then, these quartiles are used as coordinates in a plot of a subset of strategies

with highest yield values to form a preference frontier similar to a Pareto frontier. -Figure 2 in

the middle-left. Initial strategy 0.5V187 0.5V41 had the highest 1Q in all actual scenarios. Note,

however, that when calculating 1Q of yield separately for predicted ”good” and ”bad” scenarios,

strategy 0.5V187 0.5V41 has no longer the highest 1Q. Instead, strategy 0.1V180 0.9V187 shows

the highest 1Q for scenarios in which strategy V41 was predicted to have ”good” performance; that



Xavier Ignacio Gonzalez: Robust Decision Making in Soybean Seed Variety Selection
8 Article submitted to Syngenta Crop Challenge in Analytics Award

is, 0.1V180 0.9V187 is the highest point along the y-axis. Similarly, strategy V96 (lower right of

figure) has the highest 1Q of yield in ”bad” scenarios. An ideal alternative to strategy V41 would

have high values of yield under both ”good” and ”bad” scenarios. Such strategy would be preferred

over all other possible land allocations, as it would perform satisfactorily regardless of the scenario

that might occur. Unfortunately, the figure does not show an ideal strategy which would be located

in the higher right corner of the figure. Instead, the values delineate a ’preference frontier’ defined

by the higher right edge of a cloud of points (i.e., strategies). Strategies along the frontier dominate

other strategies: for a given yield in ”bad” scenarios (x-axis), strategies under the frontier have

lower (i.e., worse) yield.

In summary, alternative strategies were identified, all of which have satisfactory performance

under a broad range of future states of the world. That is, all strategies located along the frontier

represent robust alternatives among which a farmer may choose. The selection, however, will depend

on the decision-makers expectations about the future. If farmers expect a ”bad” scenario (i.e., cold

temperatures in March-May), they should chose allocation strategy V96. If the opposite conditions

are expected, strategy 0.1V180 0.5V187, at the other end of the frontier, seems the better choice.

Inevitably, however, choice among strategies involves trade-offs. As frontier is traveled from left to

right, the yield of strategies decreases for ”good” scenarios while increases for ”bad” scenarios. To

select one strategy from the frontier, real decision makers may use their own sources of information

to predict how next scenario is going to be. Also, their final decision may depend on their own

experiences, knowledge, and their risk profile. Nevertheless, another way to pick a final decision

mix is by computing the odds or the likelihood to happen a ”good” or a ”bad” scenario, as in

Lempert et al. (2006). In this example, daily information in the evaluation dataset is available to

compute the first weather principal component for historical years and estimate the probability

for the evaluation site to have the weather component greater (or lower) than -0.28. In 3 out of

7 years considered (i.e., 2008, 2013 and 2014), the first principal component of weather data in

evaluation site determines that the scenario was labeled as ”bad”, which indicates low average
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temperatures. Therefore, the probability of ”bad” can be estimated as p(bad)=0.4285 for the

evaluation scenario. Consequently, the probability of ”good” is p(good)=1-p(bad)=0.5715. A red

dotted line in the mid-left plot in figure 2 represents a line with slope=-p(bad)/p(good). This line

determines the optimal mix that maximizes the expected value of the 1Q considering the odds for

”good” and ”bad” scenarios. Taking this likelihood into account, decision makers should select the

strategy 0.9V41 0.1V98. If farmers expect months between March and May to be a colder than

the historical series data -determined by variable COMP W 1-, this methodology suggests they

should try strategies with higher percentage of V98 and V96. Otherwise (i.e., March-May months

expected to be warmer or average), strategies abundant in V187 should better mitigate the risk of

a low outcome.

Once an alternative is evaluated, decision-maker could begin again exploring its vulnerabilities

and start the same procedure over. For example, strategy V96 may be a feasible option when cold

weather is expected. Also interesting will be to explore the conditions where the assignment of V96

is not a good choice. An iterative process may be convenient to evaluate many varieties or mix of

varieties.

2.5. Strategy V187 as an alternative initial candidate

Similarly to V41, the vulnerabilities of variety V187 can be studied by exploring the training data.

The classification by the tree in the top-right figure 2 indicates that this seed seems to have a low

yield when the consecutive days without precipitations are, in average, greater than 3.2 within

the month of July, August and September. This tree recognizes the pattern ”bad” scenarios as

the years with rainfalls not-well-uniformly distributed. Then, the scenarios can be divided again,

this time into ”good” and ”bad” according to the value of the defined variable that measures the

consecutive days without rainfalls. In the scatter plot in the mid-right figure, alternatives that

mitigate the risks when expected a ”bad” scenario can be found. The preference frontier indicates

that strategies rich in V98 and V41 should be preferred. The plot also shows that the trade-offs

are not very favorable to the strategies at the very right because the frontier is almost a vertical
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line. The slope in the line suggests that the 1Q value decreases rapidly for ”good” scenarios while

it does not increase in the same amount for ”bad” scenarios. Computing the odds of the average of

consecutive days in the evaluation site historical data, it can be verified that in years 2009, 2011,

and 2013 the average value of days without rainfalls in July-September were higher than 3.2 days,

therefore the probability of can be estimated as 3/7, p(bad)=0.4285. These odds generate a line

that intersects with the frontier in a point that represents strategy 0.1V180 0.5V41 0.4V98, which

seems to be a good compromise.

In summary, the yield of strategy V187 appears to be sensible to the distribution of rains.

When expected the historical patter of rains, the odds show that 0.1V180 0.5V41 0.4V98 may be

a suitable decision. When rains are expected to be more uniformly distributed than the historical

record, then V35 or V39 may better limit the possibilities of a low yield. Unfortunately, when the

distribution of precipitations is expected to be less homogeneous, there is no strategy that can

reduce the possibility of failure.

In essence, the two explorations of vulnerabilities of V41 and V187 produce similar results. They

both suggest as a compromise strategies with percentage of these seeds: V41 and V98. The strategy

recommended in the abstract was calculated as the average of two intersection points -the vertical

lines in below stacked plots-. Nevertheless, the intention of this methodology is not only to provide

a single point as a recommendation, but also to generate relevant knowledge to allow farmers to

take better decisions.

3. Methodology and theory

This study modeled the decision to select a strategy (i.e., variety or mix of varieties) considering

as possible scenario the conjunction of (i) site, with general climate features and soil features, and

(ii) season, with daily weather information corresponding to each historical year. Given a strategy,

the yield obtained will depend on the variables that define each scenario. Therefore, a dataset

was constructed to implement the methodology correspondingly. This dataset has the following

fields: (i) SCENARIO (Combination of SITE and SEASON) and its variables, (ii) VARIETY or variety
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mix, and (iii) yield -VARIETY YI-, or combined yield when the strategy is a mix, (iv) 22 distinctive

features related to the SITE, and (v) 58 features as aggregation of daily weather data linked to the

SITE-SEASON, as will be described below. This section details an extensive series of steps followed

to reach the conclusions presented.

3.1. Data Pre-processioning

The file provided Training Dataset.xlsx was the skeleton of the data used for exploration and

training of the classification tree. First, 2103 records were discarded because they were considered

duplicates. Then, variables CLIMATE and SOIL CUBE were decomposed into 3 numerical variables

each and variable RM BAND was converted to a numeric variable. The missing values in CONUS PH

were replaced by values obtained as predictions from a linear regression with all other soil features

as predictors.

3.2. Scenario Data Construction

The unbalance in the database was an issue because many records with the same pair variety-

scenario may lead to a biased conclusions. To deal with that, those records were grouped together

to generate only one record for each variety-scenario pair. As the values of the variables that define

a scenario are the same, the median of the yields values in the scenario was assigned to the yield

field value in the new record.

3.3. Clustering of Sites

Taking into account that the site data is given in evaluation, to consider only the test records placed

in those sites that are very much alike the site provided as evaluation is more accurate to minimize

the uncertainty. This assumption drives a very cautious approach, as the sites where the actual

test occurred have almost identical attributes as the site evaluated, reducing the risk of unexpected

result. To select those sites, first, a k-means algorithm -Arrow et al. (1956)- was executed to group

the sites into clusters with similar characteristics. Then, only the records in which the weighted

euclidean distance between their site and the evaluation site is lower than a threshold were kept

for training. The weighted distance calculated compares the scaled values not only of Latitude
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Figure 3 Location of sites considered after clustering (green dots).

and Longitude, but also the difference between the values of all features related to the site, as, for

instance, irrigation and the soil type, etc. Just in this clustering, the features identifying the site

related to climate were excluded, as those variables were considered as uncertain and considered

in by the aggregation of daily data. Either the number of cluster (k) or the threshold distance

to identify the closest sites can play a role as parameters to tune the model. A higher value of

the threshold or a smaller value of k will allow take into account more diverse sites giving more

generality to the model. A map with the location of the sites similar to the evaluation site is showed

in figure 3.

3.4. Aggregation of daily data

The training data to explore the varieties performance is structured in a time frame with yearly

aggregation according to the season, from 2008 to 2014. Therefore, a series of operations was

required to incorporate the daily weather information available to a yearly aggregation. First, the

entire year was separated into 3 sub periods of time. According to Pedersen and Elbert (2004),
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Id Start Date End Date Description

t0 1-Mar 30-Apr Pre-Planting

t1 1-May 30-Jun Growing and development

t2 1-Jul 30-Sep Maturity

Table 1 Times to aggregate the daily data according to stages in soybean crop production.

the growth and development of soybean is within the 60 first days since the sowing planting date.

Also, in Pedersen (2006), the author suggests a optimum time to plant soybean in Iowa at May

the 1st. Hence, the year daily series is divided as showed in table 1.

The 3 periods of time involve: 60 days of pre-planting climate, 60 days of growing, starting from

the planting date 1-May, and 90 days of maturity. These periods detailed were used to aggregate

all daily data presented in the Training daily weather dataset. To aggregate the daily data,

a set of functions was applied to the data as described in table 2. Also, two new daily variables

were calculated: dwr, consecutive days without rain, and trange, as the difference between the

maximum and minimum temperatures.

For example, variable tmax.t0.mi is the minimum value of maximum temperature registered

in days between 1-May and 30-Jun. Also, dwr.t2.me is the average of consecutive days without

precipitation records in days between the months of July and September. As discussed in previous

section, the value of this variable has a significant importance to identify scenarios in which variety

V187 returns a poor yield.

3.5. Principal components analysis

Besides dimension reduction, another application of principal component analysis -Hotelling (1933)-

is to data pre-processing. In this case, the goal is not to deal with multiple features but rather to

transform the data set in order to allow subsequent pattern recognition algorithms to be applied

successfully. -Bishop (2006). This study applied PCA to generate the projections to permit the

classification tree to categorize the observations accurately. After defining the new variables and

aggregating the daily data, the features were divided into two groups: features related to the site,
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Variable name function provided/calculated

Day length dayl mean provided

Precipitation prcp mean provided

Consecutive days without rain dwr mean, max calculated

Shortwave radiation srad mean, max, min provided

Snow water equivalent swe mean, max provided

Maximum air temperature tmax mean, max, min provided

Minimum air temperature tmin mean, max, min provided

Temperature range (tmax-tmin) trange mean, max, min calculated

Water vapor pressure vp mean, max provided

Table 2 Variables generated and functions applied to aggregate daily weather.

and features related to the climate conditions. PCA was applied to the scaled dataset considering

each subset of features separately. The components generated were appended as new columns to

the training dataset; 20 components related to the site and 58 components related to the weather

data.

The table 3 shows the highest coefficients, in absolute value, to calculate the first and second

components given the values or the variables. The first principal component, in any PCA, is the one

that captures most of the variability of the data. Therefore, the coefficients of the fist component

indicate that the variability of the weather information is defined primarily by the average of

maximum and minimum temperatures. Also, the value of the first component COMP W 1 was the

main driver to identify scenarios that leads to a poor performance of variety V41. The second

component, showed just for illustration, has relation with the range of temperatures, rather that

their average values, and with the level of rainfalls. The original features, plus the defined variables,

plus the 78 principal components appended, plus the keys: variety and scenario, generate a dataset

used to train the supervised algorithm. This dataset contains each variety individually. To consider

mix of varieties as possible strategies new records need to be generated.
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Variable COMP W 1 COMP W 2

prcp.t0.me 0.200

prcp.t1.me 0.184

prcp.t2.me -0.223

tmax.t0.me 0.225

tmax.t1.me 0.230

tmax.t2.me 0.189

tmax.t1.ma 0.213

tmax.t2.ma 0.209

tmax.t0.mi 0.212

tmax.t2.mi 0.250

tmin.t0.me 0.233

tmin.t1.me 0.211

tmin.t0.ma -0.184

tmin.t0.mi 0.210

trange.t0.me -0.194

trange.t2.me 0.196

trange.t0.mi -0.218

vp.t0.me 0.221

vp.t1.me 0.189

Table 3 Coefficients of the two first principal components of weather data.

Only coefficients with absolute values higher than 0.18 are showed.

3.6. Strategy generation as variety combination

To generate possible strategies as a mix of varieties, new test cases were created. Given a particular

scenario -combination of site and season-, more than one variety could be tested. In that case, a

strategy consisting in a mix of those varieties can be produced. The scenario data can be copied
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straightforward, the strategy receives a name according to the mix (i.e., 0.5V41 0.5V98), and the

yield of the mix is calculated as a linear combination of the yields of each variety. For simplicity,

only increments of 10% were considered to define the mix in the land assignment and a maximum

of 5 different varieties to be assigned to a land.

3.7. Classification tree

Once performed the operations previously described, the training dataset is ready to evaluate the

varieties and all the variety mixes generated. To start the exploration, the methodology begins

with a candidate. In this study, V41 and V187 were analyzed. Starting from V41, scenarios can be

labeled depending whether the value of the yield of this strategy is lower or higher than its first

quartile (i.e., lower than 60.7 ton.ha-1) Labeling manually the scenarios into ”good” and ”bad”, a

categorical target variable can be defined to permit the using of a classification tree to recognize

which are the patterns that leads to a ”bad” performance. The tree algorithm will explore all the

feature space with more than 150 features describing the land and the weather and discover what

are the patterns that have those scenarios labeled as bad. The resulting trees are depicted in the

top-left tree in figure 2 (top-right for V187). The set of parameter values used to run the algorithm

and the simplicity of the tree -only one split with two leafs guarantee that the overfiting is avoided.

4. Supplementary materials

The script implemented was coded in R. Some relevant packages used were: rpart, to fit the

classification tree -Therneau et al. (2015); cluster, to implement the k-means cluster analysis

-Maechler et al. (2015); ggmap, to trace the site colored map -Kahle and Wickham (2013).

A full version of the script that implements this study can be downloaded at https://github.

com/xavierign/Syngenta.
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