Understanding and Predicting Crime Rates Using

Statistical Methods

Carlos Espino, Xavier Gonzalez, Diego Llarrull, Woojin Kim

Contents
1 Introduction
2 Dataset

3 Analysis

December 15, 2015

3.1 Influencial Observation Detection . . . . . . . . . . . . . . . . . .

3.2 ANOVA models .

3.3 Confidence Interval for the Median . . . . . . . . . . . . . .. ...

3.4 Dependency Analysis with Predictive Models . . . . . . .. ... ... ... ... ...

3.5 Linear Analysis .
3.6 Lasso Analysis .

3.7 Non-linear Modeling . . . . . . . . . L

3.8 Residual Analysis

4 Conclusion

10
13
15
17

18



1 Introduction

Understanding the factors behind criminal behaviour is one of the most crucial tasks for preventing and
controlling future crime. In this report, we explore the potential factors affecting crime rates based on the
demographics and econometrics data gathered from 197 counties in North Carolina from 1981 to 1987. Using
various statistical methods and modeling techniques, we analyze and identify the most important factors and
metrics tied to crime rates. We also present a predictive model capable of estimating the crime rate with
under 20.4% error using the selected parameters.

2 Dataset

Predictor Description

county county identifier

year year from 1981 to 1987

crmrte crimes committed per person

prbarr ‘probability’ of arrest

prbconv ‘probability’ of conviction

prbpris ‘probability’ of prison sentence

avgsen average sentence, days

polpc police per capita

density people per square mile

taxpc tax revenue per capita

region one of ‘other’, ‘west’ or ‘central’

smsa, ‘yes’ or ‘no’ if in SMSA

pctmin percentage minority in 1980

weon weekly wage in construction

wtuc weekly wage in trns, util, commun

wtrd weekly wage in whole sales and retail trade
whir weekly wage in finance, insurance and real estate
wser weekly wage in service industry

wmfg weekly wage in manufacturing

wfed weekly wage of federal employees

wsta weekly wage of state employees

wloc weekly wage of local governments employees mix offence mix: face-to-face/other

pctymle percentage of young males

Table 1: Description of the predictors in the dataset

We analyzed the variables in the dataset starting with the target variable: crmrte, the crime rate. Along
this study, we will use this variable in different forms. We define a categorical value equal to one representing
high crime rate, when the value of the target variable is higher that its median value. We called this variable
crmrte_cat. Also, we will use the natural logarithm of the variable to adequately transform it to apply
different statisticals models to predict and describe the data. We assume that the target value depends on
the other variables. The behaviour of the target is represented with a boxplot, a softened histogram of the
variable, and a softened histogram of the logarithm of the variable.
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Besides the target variable, the dataset contains other 21 variables we used as predictors. Two of them have
categorical values. The region variable can have 3 possible values: other, west or central and the smsa
can have yes or no. The dataset also contains the year variable which can be considered as a time reference.
A short description of each variable can be found in the table above. Next, we plot some charts to explore
the behaviour of the variables and their relationships with the target.
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In the boxplots above, we can see that the variables that may have a predictive value with the target are
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variables prbarr, density, pctmin, wfed, wnfg and pctymle as they separate the population partially by
the value of the defined target variable. We explore the rest of the predictors by tracing them on the following
charts, starting with the variable year.
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From the above plot, we notice that there is no significant trend on the crime rate along the timeline being
considered. The other two variables with categorical values are region and smsa.
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In these two charts above we see the crime rate decrease when the variable region takes the value west and
when the smsa variable takes the value yes. Consequently, we continue to further explore the relationship
between these two categorical variables and the target variable by implementing ANOVA in the next section,
but first we analyze the variances and covariances between all predictors. We trace a paired graph with some
selected variables in order to explore the correlation between the variables.
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In the graphs above we show the correlation between the selected predictors and between the predictors and
the target. The highest value of correlation is between the target variable and density. Other high values
of correlation involve variables wmfg, wfed and density. We will later discuss whether these variables are
significant for modeling.

3 Analysis

3.1 Influencial Observation Detection

Just in order to identify influencial points, we run a linear model with all the continous variables as predictors.
Then, we calculated the cook distance of each observation and traced a plot. We detected the observations
that have a cook distance value greater than 0.5. This treshold value was calculated as the average of two
methods.
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Clearly, there are 5 points that are highly influential. These points, showed in the table below, have a value
greater than the treshold and they are consequently eliminated from the dataset. In a real context, this
analysis would lead to a deeper reaserch about the reasons under this high leverages.

Cooks.Dist

584  0.6037403
353  0.7179964
440  0.8217147
200 2.9935603
586  9.6199316

3.2 ANOVA models

In the first analysis, we model the mean of the target variable using a two-level factor. We aggregate all
values of region (west, central and other) into w and nw, whether they take value equal to west or not.
Running ANOVA, we obtain the following output:

#it Df Sum Sq Mean Sq F value Pr(>F)

## region_w_nw 1 0.02541 0.025408 98.97 <2e-16 *xx

## Residuals 623 0.15994 0.000257

## ——-

## Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The results show a very low p—value for the variable, which means that the model is accurate. The null
hypothesis (i.e., means are equal for both regions) is rejected. Then, we compare the means of the crime rate
between the west and other regions.

## nw \
## 0.03494763 0.01987887

Counsidering the above analysis, we can assume that the model can correctly fit the value of the mean in
each region: (west, other). The coefficients of the model can be extracted from the fit value retuned in the
package.

## (Intercept) region_w_nww
## 0.03494763 -0.01506876



The model is given by
Hermrte = 0.0347 — 0-01481{'region:’w’}

Now, we repeat the same analysis considering two factors. We alse include the other categorical variable:
smsa. We fit an ANOVA model and we get the following output:

#it Df Sum Sq Mean Sq F value Pr(>F)

## region_w_nw 1 0.02541 0.02541 154.4 <2e-16 *x*x*

## smsa 1 0.05761 0.05761 350.2 <2e-16 *x*x*

## Residuals 622 0.10233 0.00016

## —-—-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Again, we obtain a good p—value for each of the two variables, which means that both factors have a strong
relationship with the response variable. The null hypotesis (i.e., the means are equal) is rejected. The
coefficients in this case are:

## (Intercept) region_w_nww smsayes
## 0.03154125 -0.01329217 0.03399280

Besides the two categorical variables, we include in the analysis of the variance the interaction effect between
the two variables.

#Hit Df Sum Sq Mean Sq F value Pr(>F)

## region_w_nw 1 0.02541 0.02541 156.310 < 2e-16 **x*

## smsa 1 0.05761 0.05761 354.405 < 2e-16 **x*

## region_w_nw:smsa 1 0.00139 0.00139 8.553 0.00357 *x*

## Residuals 621 0.10094 0.00016

#it —-—-

## Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The p—values indicate that the two factors and the interaction between them are significant.

3.3 Confidence Interval for the Median

As discussed above, we defined a categorical target variable: high, if the value of the crime rate was higher
that the median, and low/normal otherwise. This was done in order to be able to run models that require
such variables, as we will see in the following sections. Therefore, it would be very useful to have confidence
intervals about the median. Computing the median value, we get:

## [1] 0.0284567

We can simply obtain a confidence interval around that value. Considering the binomial distribution with
n = 626 observations and a probability of 0.5, we want to obtain the k — th observation that returns the 98%,
the 95%, the 88% and the 81% of the probability by doing the following:

1 — 2 X ppinom (k,n = 626,p = 0.5)
the k — th values corresponding to those intervals are
## [1] 283 290 295 298

From the vector of sorted values for crmrte, we select the k — th elements of the vector and the n — k + 1
elements corresponding to the four confidence intervals:



signif.%  low.level up.level

0.99 0.0265877 0.0296451
0.95 0.0267532 0.0294232
0.88 0.0269621 0.0292244
0.81 0.0271005 0.0291268

A more sofisticated method to obtain the confidence interval for the median is the Wilcoxon Signed Rank
Test. As this test assumes symmetry of the variable’s distribution, we applied it to the logarithm of the target
variable, as discussed above. The results were then transformed to return the values to the original scale by
applying the exponential function to the intervals obtained.

signif.%  low.level up.level

0.99 0.0258289 0.0290536
0.95 0.0262102 0.0286561
0.88 0.0264442 0.0284015
0.81 0.0265839 0.0282435

The results are similar to the simpler sign test.

3.4 Dependency Analysis with Predictive Models
Continuing with the analysis we fitted a decision tree model. To do so, we considered the target variable
in the categorical format. The purpose of this model is to further explore the data and understand which

variables are relevant to the response.

density < 1.3

region = central,west

density < 0.64

192 35

low/norm

81 37 14 54

## Confusion Matrix and Statistics

##

## Reference

## Prediction low/normal high
##  low/normal 108 27
## high 12 88



##

#i# Accuracy : 0.834

## 95% CI : (0.7802, 0.8792)
## No Information Rate : 0.5106

#it P-Value [Acc > NIR] : < 2e-16

##

#it Kappa : 0.667

## Mcnemar's Test P-Value : 0.02497

##

## Sensitivity : 0.9000

## Specificity : 0.7652

## Pos Pred Value : 0.8000

## Neg Pred Value : 0.8800

## Prevalence : 0.5106

## Detection Rate : 0.4596

## Detection Prevalence : 0.5745

## Balanced Accuracy : 0.8326

##

## 'Positive' Class : low/normal
##

We get a testing accuracy of 83% and verify that the most relevant variables to the target are region and
density.

3.5 Linear Analysis

Additionally, we considered a standard linear regression model involving all predictors, as an alternative
means to view the significance of each predictor. Note that in this context, performing k-fold cross-validation
or bootstrapping isn’t necessary as we are only interested in significant predictors, hence we performed an
ordinary 80/20 splitting of the data into a training and a testing sets. We then run a simple linear fit will all
predictors, in order to analyse the significance levels of the parameters, provided that the linear test itself has
a significant R? value.

#t

## Call:

## Im(formula = crmrte ~ ., data = Crime_data[-test, ])
##

## Residuals:

## Min 1Q Median 3Q Max

## -0.037646 -0.005344 -0.000880 0.003851 0.068660

##

## Coefficients:

#it Estimate Std. Error t value Pr(>lt])

## (Intercept) 9.752e-02 3.364e-02 2.899 0.003916 **
## X -1.541e-04 8.400e-05 -1.835 0.067134 .
## county 4.889e-04 2.635e-04 1.855 0.064163 .
## year -1.311e-03 4.574e-04 -2.866 0.004338 *x*
## prbarr -3.038e-02 3.030e-03 -10.027 < 2e-16 **x
## prbconv -3.041e-03 4.090e-04 -7.436 4.83e-13 *x*x
## prbpris -1.002e-04 5.289e-03 -0.019 0.984888

## avgsen -6.643e-05 1.696e-04 -0.392 0.695478

## polpc 2.638e+00 1.839e-01 14.348 < 2e-16 **x*
## density 7.363e-03 6.737e-04 10.929 < 2e-16 *x*x
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## taxpc 6.050e-05 4.840e-05 1.250 0.211957

## regionother 5.576e-03 1.242e-03 4.489 8.96e-06 **x
## regionwest -1.634e-03 1.560e-03 -1.047 0.295497

## smsayes -3.922e-03 3.004e-03 -1.305 0.192390

## pctmin 1.003e-04 4.184e-05 2.398 0.016880 *
## wcon 5.094e-06 4.879e-06 1.044 0.297018

## wtuc 2.210e-07 1.582e-06  0.140 0.888942

## wtrd 2.656e-06 4.716e-06 0.563 0.573616

## wiir -1.865e-05 1.234e-05 -1.512 0.131201

## wser -1.752e-06 3.952e-06 -0.443 0.657605

## wmfg 3.271e-06 7.280e-06  0.449 0.653385

## wfed 4.331e-05 1.162e-05  3.727 0.000217 ***
## wsta 3.128e-06 1.245e-05 0.251 0.801661

## wloc 3.819e-05 2.224e-05 1.717 0.086584 .
## mix 1.676e-02 4.716e-03  3.553 0.000418 x**x
## pctymle 7.692e-02 1.978e-02  3.888 0.000115 **x
##H ——

## Signif. codes: O '**x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.009484 on 479 degrees of freedom
## Multiple R-squared: 0.742, Adjusted R-squared: 0.7286
## F-statistic: 55.12 on 25 and 479 DF, p-value: < 2.2e-16

as the R? value is sufficiently high (0.7420498), we decided to perform best subset selection on the set of
predictors. Although we are aware of the performance penalties of doing this for p = 23, the running times
were considerably short and hence we decided to stick to this approach. Finally, after getting all best subsets
with size k = 1...p, we analysed both training and testing errors by performing k-fold cross validation with
k = 10 and then getting the minimum errors on all iterations.

The cross-validation estimate of the training error is 5.1449641 x 10~% and the cross-validation error is
4.280511 x 10~*. The actual training and test errors for this subset, on the original datasets, are 0.0012464
and 0.0014357, respectively. Both were obtained when using best subset with k = 8 predictors. The ratio
between testing and training errors is (1.1519269). Consequently, we can conclude that the predictors yielded
by the subset generated using best subset selection belong to a consistent model and, hence, can be used as a
basis for non linear models. Nevertheless, we decided to run a linear fit with these predictors in order to
check our conclusions:

##

## Call:

## 1m(formula = crmrte ~ prbarr + prbconv + polpc + density + as.factor(region) +
#it pctmin + wfed + pctymle, data = Crime)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.023988 -0.005533 -0.000721 0.003915 0.050795

##

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) 1.220e-02 3.593e-03 3.395 0.000729 **x
## prbarr -3.642e-02 3.080e-03 -11.823 < 2e-16 ***
## prbconv -5.182e-03 5.463e-04 -9.486 < 2e-16 ***
## polpc 2.630e+00 1.986e-01 13.243 < 2e-16 **x*
## density 6.867e-03 3.176e-04 21.623 < 2e-16 **x*
## as.factor(region)other 4.487e-03 9.724e-04 4.614 4.80e-06 *x*x
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## as.factor(region)west -3.067e-03 1.150e-03 -2.667 0.007855 *x*

## pctmin 1.443e-04 3.211e-05 4.494 8.36e-06 ***
## wfed 2.199e-05 6.868e-06  3.202 0.001433 *x*
## pctymle 6.235e-02 1.536e-02 4.058 5.58e-05 *x*x*
##H -

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#it

## Residual standard error: 0.008779 on 615 degrees of freedom
## Multiple R-squared: 0.7442, Adjusted R-squared: 0.7405
## F-statistic: 198.8 on 9 and 615 DF, p-value: < 2.2e-16

We can note that all coefficients are significant and the R?, as expected, was reduced but only marginally
(0.7442437 versus 0.7420498), which confirms that the model with this subset is indeed a good model.

Next, we proceeded to graphically analyse any nonlinearities between these predictors and the response, by
looking at all pairwise plots:
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It can be seen that the relationship between crmrte and prbrarr, prbconv and polpc, respectively, could
be better explained by applying a log to these predictors. Additionally, wfed and pctmin seem to have a
nonlinear relationship with the response, which makes them suitable as polynomial regression predictors.
Consequently, we run a new, nonlinear model with these modified predictors:

##

## Call:

## 1m(formula = crmrte ~ log(prbarr) + log(prbconv) + log(polpc) +
#Hit density + as.factor(region) + poly(pctmin, 4) + poly(wfed,
## 3) + pctymle, data = Crime_datal[-test, ])

##

12



## Residuals:

## Min 1Q Median 3Q Max

## -0.021877 -0.004627 -0.000597 0.003989 0.097203

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|tl)

## (Intercept) 0.0856338 0.0058694 14.590 < 2e-16 **x
## log(prbarr) -0.0157783 0.0012325 -12.802 < 2e-16 *x*x*
## log(prbconv) -0.0106568 0.0008499 -12.538 < 2e-16 ***
## log(polpc) 0.0138227 0.0008799 15.710 < 2e-16 **x
## density 0.0053045 0.0004291 12.363 < 2e-16 **¥x*
## as.factor(region)other 0.0038644 0.0011286 3.424 0.000669 *x*x*
## as.factor(region)west -0.0067882 0.0016100 -4.216 2.96e-05 ***
## poly(pctmin, 4)1 0.0604510 0.0145040 4.168 3.63e-05 **x*
## poly(pctmin, 4)2 0.0121701 0.0113810 1.069 0.285447

## poly(pctmin, 4)3 -0.0312023 0.0100986 -3.090 0.002117 *x*
## poly(pctmin, 4)4 -0.0141515 0.0099306 -1.425 0.154785

## poly(wfed, 3)1 0.0017264 0.0115936  0.149 0.881684

## poly(wfed, 3)2 -0.0054095 0.0096429 -0.561 0.575066

## poly(wfed, 3)3 -0.0096365 0.0091300 -1.055 0.291725

## pctymle 0.0093259 0.0183221  0.509 0.610983

##H ——-

## Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.008842 on 490 degrees of freedom
## Multiple R-squared: 0.7707, Adjusted R-squared: 0.7641
## F-statistic: 117.6 on 14 and 490 DF, p-value: < 2.2e-16

The lack of significance of the polynomials for wfed and the increase in R? suggests that this model could
possibly overfit. Hence, we removed the polynomials related to wfed, but kept the log predictors as they
have shown to be very significant. pctmin has a special behaviour, where we see that only the 3rd degree
polynomial is used and seems less significant that the linear approach. Consequently, we decided to remove
both the polynomial and the linear coefficients and re attach pctmin as a spline in Non-linear Modeling. This
updated model yielded a testing MSE of 6.3680458 x 10~%, and an R? value of 0.7706655.

Next, we analysed all possible interactions between all original predictors and plugged them to our previous
model, yielding two new models. The number of interactions that we added to them is 325 and the R? values
for each fit are 0.9885782 and 0.9896239, respectively. Consequently, we can affirm that both models are
seriously overfitting because the number of predictors has skyrocketed due to all interaction combinations.
Even though it is tempting to keep only those interactions with a relevant significance value, since the
removal of each of these predictors affects the overall model, we chose instead to refine it by using a Stepwise
Algorithm applying AIC to decide. The resulting fit has 235 coefficients, which means a reduction on the
number of predictors by 27.6923077%. We then proceeded to calculate both training MSE (2.0005836 x 10~%)
and testing MSE (0.0020185). Now that we obtained a complex model consisting of linear variables, log
variables and interaction variables, we will perform Lasso in order to remove all interaction terms that are
not significant, so that we arrive to a model easy to understand.

3.6 Lasso Analysis
With the resulting model from all our previous steps, we performed k-fold cross validation using Lasso, in

order to obtain the optimum value of A for our model. The plot showing the cross-validation error as A
increases is the following:
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We then chose a value of A\ within 1 standard deviation from the optimum value, as this is a commonly
established good practice.

Lasso yielded the following 13 non-zero predictors:

log(prbconv)
log(polpc)
poly(wfed, 3)1
prbarr

wfed
pctmin:county
polpc:regionother
density:regionother
density:pctmin
density:pctymle
pctmin:regionwest
regionwest:wsta
pctymle:regionwest

This means a reduction of 94% with respect to the number of predictors returned by stepwise AIC. However,
some of the interaction terms that appear involve predictors that were not in the original model (wsta,
pctymle, county, region, pctmin and density). Hence, we added these predictors (except pctmin which,
as mentioned beforme, will be added as a spline) to the model in order to provide the final predictor set
for this section. The testing MSE for this model is 6.263589 x 10~ and this error is 4.3626443% of the
testing MSE of our original model using best subset selection. Finally, we analysed the L1-norm between our
estimated responses and the true model, also called approrimation error, as:

1 n
2

i=1

Yi

which yielded a value of 0.2036028, which is more than reasonable since it’s below 30%. Consequently, the
final set obtained in this section, after performing linear, best subset selection, log, polynomial, stepwise AIC
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and Lasso yielded a model that will be used in the following sections for more complex fits that will derive in
our final model.

3.7 Non-linear Modeling

From both Linear Analysis and the pairs analysis in Dataset, we identified a predictor pctmin showin that
could benefit from a more flexible modeling using poylnomial regression and splines and improve the overall
prediction.

3.7.1 Linear Model

First we evaluated the regression model generated using only using a linear model between crmrte and
pctmin:

Linear model for crime rate vs. proportion of minorities
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Figure 1: Linear model for crime rate vs. proportion of minorities

This naive model results in a MSE of 3.173 x 10~* and a mean approximation error rate of 0.497 for the
testing set. From the plot, it is clear that the relationship between the crime rate and the proportion of
minorities in the area is not linear.

3.7.2 Polynomial Model

Next, we obtained a degree-4 polynomial function for a smooth fit over the pctmin data:
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Degree-4 polynomial model for crime rate vs. proportion of minorities
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Figure 2: Degree-4 polynomial model for crime rate vs. proportion of minorities

This fit resulted in a MSE of 2.484 x 10~% and a mean approximation error rate of 0.3931. The model was
improved by reducing the bias of the model.

3.7.3 Splines

We further attempt to reduce the bias, introducing a more flexible piecewise polynomial by using knots. With
a cubic spline, the fitted curves and their first and second derivatives are constrained to be continuous at the
knots. As splines often lead to high variance at the outer ranges of the predictors, we fit a natural cubic
spline, which forces the function to be linear at the boundary. ns() function was used to generate natural
cubic knots with 8 degrees of freedom, with matrix of basis functions for splines and knots at 5.6%, 10.1%,
18%, 25.4%, 33%, 38.3%, and 45.4% of pctmin.
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Natural cubic splines model for crime rate vs. proportion of minorities

0.100

0.075

0.050

Crimes committed per person

0.025

0.000

40
Proportion of minority in 1980 (%)

Figure 3: Natural cubic splines model for crime rate vs. proportion of minorities

Consequently, we see a modest improvement in the MSE (2.34 x 10~%) and the mean approximation error
(0.386).

We also attempted to fit a smoothing spline with a value of A\ chosen using cross-validation. This resulted in
a model very similar to the polynomial fit and failed to improve the mean testing error.

3.7.4 Combined models

Combining the predictors from the previous section with just the linear pctmin results in a MSE of 6.158 x 10~°
and a mean approximation error of 0.2018.

Finally, we included the splined version of pctmin predictor alongside the selected predictors, which resulted
in a slight improvement in the MSE to 6.02 x 10~° and the mean approximation error to 0.204.

3.8 Residual Analysis

To perform the residual analysis on our final project, we produced the following plot:
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We observe the following:

e First, we notice that the residual variance is homoscedastic from the Residual vs Fitted and the Scale-
Location plots , this means that it is constant. However the residuals are slighlty lower with smaller
and larger values of the response variable. Additionally, you can see that the mean of the residuals is 0.

e The Normal Q-Q Plot shows that the quantiles of the standardized residuals versus the quantiles of
a standard normal are similiar, and meet the line reference almost perfectly except for the extreme
points. This indicates that our residuals follow the normality hypothesis.

e The Residual vs Leverage Plot exhibits that one of the residuals is highly leveraged and has a large
Cook’s distance, this corresponds to an observation which is both influential and an outlier. The rest of
the residuals have a more regular behaviour.

4 Conclusion

In this project, we wanted to apply methods and knowledge learned in the class to a real-world data. Using
crime rate data in North Carolina from 1981 to 1987, we aimed to build a robust model that could be used
predict the crime rate and understand some of the underlying factors behind the crime rate. Toward this
goal, we followed a methodology that consists in a series of steps, each of this corresponding to a statistical
learning topic covered along the semester.

First, we indentified our target variable and explored their median value. We examined the predictors and
their relationship with the response. Then, we noticed which variables were significant and correlated. We
detected influential observations and removed them accordingly. After cleaning the dataset, we run an
ANOVA model and a decision tree algorithm to confirm their interdependece.
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We created a linear regression model containing all the predictors, performed best subset selection to determine
the best combination of predictors to use for our predictive model. We further removed more predictors using
lasso regression, which yielded 13 non-zero predictors. During this analysis, we also identified a predictor
with a non-linear relationship that could benefit from a polynomial/splines modeling instead. Finally, we
arrive at a predictive model that includes the predictors from the shrinkage analysis and the splines of the
non-linear predictor. The progression of the mean squared errors is shown below:

model trainingMSE  testingMSE
linear+best subset 0.0012464 0.0014357
linear+interactions (stepwise selection) 0.0002001 0.0020185
linear—+interactions (LASSO) 0.0000414 0.0000626
lasso results + splines 0.0000393 0.0000602

Some of the variables identified through the methods include the percentage of minorities in the area (pctmin),
interactions with population density (density) and region (region), weekly federal wages (wfed), as well as
the probability of arrest (prbarr) and conviction (prbconv). Considering there were many more variables
included in the dataset that one would assume to be related to incidence of crime, our model identified several
statistically relevant predictors that might warrant a closer look in relation to crime rates.
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