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TRANSITIONAL DYNAMICS IN TWO-SECTOR MODELS
OF ENDOGENOUS GROWTH*

CaseYy B. MULLIGAN AND XAVIER SALA-I-MARTIN

We analyze the steady state and transitianal dynamics of twa-sector models of
endogenous growth. The neceszsary conditions for endogenous growth imply that
transitions depend only on a measure of the imbalance hetween the two sectors such.
as the ratio of the two capital stocks. We use the Time-Elimination method to
analyze the transitional dynamics. Three main economic forees drive the transition:
a Sclow effect, a consumption smoothing effect, and a relative wage effect. For
plausible parameterizations the consumption smoothing effect tends to dominate
the relative wage effect; transition from relatively low levels of physical capital is
accamplished through higher work effort rather than higher savings.

[. INTRODUCTION

The transitional dynamics of two-sector models of endogenous
growth are not well understood. Following the work of Lucas
[1988], much of the recent endogenous growth literature deals
with economies with two capital goods. One of the goods is usually
physical capital. The other one varies across models: human
capital, embodied and disembodied knowledge, public capital,
quality of products, number of varieties of products, and financial
capital are some examples of stock variables that are accumulated
through some investment process. The analysis in all these papers
is generally restricted to the steady state; it is always assumed that
all the variables in the economy grow at their long-run growth rate.

If there are initial imhalances among the different sectors,
however, there may be a transitional period where the relevant
variables do not behave as predicted by the steady-state analysis.
For instance, the initial ratio of capital stocks may not be the same
as the steady-state one because of some recent unusual event such
as a war or a large price shock. If, starting from a steady-state
position, a war destroys a large fraction of the physical capital stock
leaving human capital relatively unaffected, the economy will

*We thank Robert Barro, Jardi Gali, Kenneth Kletzer, Robert Lucas, Rodi
Manuelli, Danny Quah, Christopher Sims, Nancy Stokey, Visca el Barga, and
participants in the 1991 European Secience Foundation meeting seminar in Sitges
{Barcelona), and seminars at the National Bureau of Ecanomic Research, Boston
University, Brown University, University of Chicago, Federal Reserve Bank of New
York, New York University, Naorthwestern University, and Yale University for
comments. We are also grateful to an especially useful, yet anonymous, referee. This
gmtet;lial is based upon work that was financially supported by the National Science

aundation.

@ 1893 by the President and Fellows of Harvard College and the Maasachugetts Institute of
Technology.
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somehow have to get back to the steady-state proportions by
having larger (smaller) than steady-state growth rates for the
physical (human) capital stock. It is natural to ask how, if at all,
this happens. Due to its analytical difficulty, however, these
transitional dynamics are always left unexplained. This paper tries
to fill this gap in the literature hy studying them in detail. Even
though we shall be calling the two capital stocks “physical’’ and
“human,” our analysis applies to any of the two-sector models
mentioned above.

There are geveral important and interesting reasons to study
transitions. First, there is the question of whether there actually
are transitional dynamics in real time and, if there are, what they
look like. Second, the empirical implications of the transitional
paths may be different from the steady-state implications. The
exact predictions are needed if the models are to he tested with
actual data. Third, the transitional dynamics allow us to under-
stand the behavior of the model in the short run. If two-sector
models have rich short-run dynamics as well as positive and
endogenous steady-state growth rates, they can be used as inte-
grated theories of business cycles and growth.

The rest of the paper is organized as follows. In Section II we
present a general two-gector growth model with two capital goods.
The investment in one of the two capital stocks (physical capital) is
a perfect substitute for consumption, while the other (human
capital) is not. In Section III we characterize the solution. The next
section derives necessary conditions for the model to generate
positive steady-state growth rates (i.e., endogenous growth). Sec-
tion V summarizes the methodology used to analyze the transi-
tional dynamics (Mulligan [1991] discusses the Time-Elimination
method in more detail). Sections VI and VII examine the transition
of the Uzawa [1965] and Lucas [1988] model as well as general
two-sector models, respectively. The final section concludes, and a
short Appendix provides first-order conditions.

Throughout the paper we find a number of interesting results.
We highlight them as we go along.

II. A MobpEL oF HUMAN CAPITAL AND GROWTH

Ila. The Setup

We start by describing a general model of human capital and
growth. The model is general in that, for now, we do not restrict the
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parameters. It is not general, however, in that we make specific
agsumptions about funectional forms.

We assume that agents maximize a utility function of the
form,

=] t 1-8 ]_
M S e (“’()lfe) dt,

where ¢(t} is per capita consumption at time ¢, p is the subjective
rate of time preference, which includes population growth,! and
1/6 is the coeflicient that measures the (constant) intertemporal
elasticity of substitution. The only consumption good is measured
in units of final output. Final output is produced with two capital
goods that we call physical and human. Physical capital is assumed
to be forgone consumption. Human capital is produced in an
alternative sector (which we call the education or learning sector).
Households choose a consumption path, and the amount of human
and physical capital they use in each sector so as to maximize (1)
suhject to some accumulation constraints:

@) k() = fke(t)h(0)(0),A(®) = 8,k(E) — c(t)
(3) k(t) = e(k(6),h(OA@LEEN — 8,A0),

where £(0) > 0 and A{0)} > 0 are given, k() and A() are the net
accumulations of physical and human capital, respectively, and £
and e(} are the (flow) productions of final output {f stands for final)
and human capital (e stands for edueation). These two production
functions are assumed to exhibit constant returns to the sector-
specific capital stocks: A, and k&, are the effective amounts of human
and physical capital employed in the final output sector, and A, and
k, are the corresponding variables for the education sector.? We
also allow for the possibility of externalities from the average?
stacks of capital (B and &) in both sectors. The reason for these
externalities is that we want to allow for the production function to

1. Thatis, p = p* — n, where n is the exogenous rate of population growth and
p* is the pure rate of time preference.

2. Note that we are not allowing for nonreproducible inputs such as raw labor
ar land. The reason is that we shall end up eonstraining our analysis te maodels that
display endogenous growth, which limits the role for such inputs. Hence, in order to
sitnplify notation, we decided to negleet them altogether.

3. One could also assume that the externalities apply to the total (not average}
stock of physical or human capital. This alternative specification would generate
scale effects, for which there is little empirical evidence Externalities from the
aggregate level of investment in one of the two capital goods could also he
introduced, Chamley [1991] shows that, at least in the Lucas [1988] specification,
they vield the same results as externalities from the stocks.
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exhibit increasing (or decreasing) returns to scale, yet we want to
have a competitive solution. The modeling of increasing returns
through externalities is, after Romer [1986] and Lucas [1988],
common practice among endogenous growth theorists. These
externalities could be positive, negative, or zero; we have no
presumption over their sign.

Note that the key asymmetry between the two capital goods is
that the accumulation of one of them, k(t), is a perfect substitute
for consumption (that is, consumption subtracts from .(¢) and not
from A(#)). Hence, even though we are calling £ physical and A
human capital, technically speaking, the key distinction between
capital goods is whether their accumulation is a perfect substitute
for consumption or not. Some of the early two-sector neoclassical
models, such as Srinivasan [1964], Ryder [1969], Kurz [1968], or
Burmeister [1980, Chapter 6], assume that the production pro-
cesses for consumption and capital are essentially different. Their
models are slightly more complicated because they invalve an
additional control variable and an additional relative price. Our
simpler specification, however, seems a good place for us to start.*

The depreciation rates 8, and 3, are assumed to be constant
over time and may include population growth rates (because the
model is expressed in per capita terms).

We assume that the two production functions are Cobb-
Douglas with constant returns to the private inputs:

(4) £ = A (B e 8y} (RQ)™ k(t))
(5) e(.) = & (B ()PHR )% (R()P E(2)PF)
with

o ta, =1, B+ h=1

The parameters A and & in (4} and (5) are the levels of technology
in each sector. The terms inside the first parentheses are the
private capital stocks in each sector, with o, and @, heing the
private shares of human and physical capital in the output sector,
and B, and B, being the corresponding shares in the education

4, Another key difference with the early literature is that we shall restrict
ourselves to parameterizations that can generate endogenous grawth. As we will
argue in Section IV, this simplifies our problem even further.

Within the endogenous growth Literature, Rebelo [1991] uses a two-sector
model similar to the one we propose here, hut he confines his analysis to the steady
state. Jones and Manuelli [1590] show conditions for endogenous growth in models
with N eapital goods, where all of them are produced with a single technology, which
is also used to praduce output. That is, F(K Ky, . .. Ky} =K + Kz + - -+ Ky +
C. Again, the transition is left unexplained.
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sector. The equalities o, + a; = 1 and B, + B, = 1 ensure that there
are constant returns to scale at the private level. At the social level,
however, there may be increasing, constant, or decreasing returns
depending on the signs of the externality parameters, og, o, B, Bs.

Iib. Point-in-Time Technologies and Point-in-Time Returns

At every point in time, the economywide stocks of capital, k(¢ )
and A(f), are given. Agents can generate a sector-specific capital,
ke(t), k.(t), hit), and h,(¢), combining the aggregate stocks and
effort® with what we call point-in-time technologies. Both humans
and machines are endowed with one unit of effort, which can he
allocated across the two sectors. Thus, if we define u(t) as the
human capital effort in the final output sector, and u(t) as the
physical eapital effort in the final output sector, then the correspond-
ing efforts in the learning sector are 1 — u(!) and 1 — wvi2),
respectively. The point-in-time technologies for the sector-specific
capital stocks are

(1) = u(e)/*h(e)
Re(t) = ultyvieh(t)
k() = (1 — u(@)P/Prpg)
ko(2) = (1 — v(t))Pe/Prie(r),

If the exponent on an effort variable is less than one, we say
that there are decreasing point-in-time returns in the production of
that capital stock. If the exponent in an effort variable is exactly
equal to one, we say that there are constant point-in-time returns.
In the case of constant point-in-time returns in all sectors, we can
think of u(¢) and v{£} as heing the fraction of aggregate human and
physical capital used in the final output sector at instant ¢ (and,
conversely, (1 — niz)} and (1 — u(£)) are the fractions used in the
education sector). With the sector-specific capital production func-
tions above, the capital accumulation equations become

2) k(E) = AR REDRODEREE - Sk(t) — c(t)

(6)

3 A = ¢U1 — u®)Ph@PH( — vE)Ph(E)*)
x B h(g) — §,h(2).
It is worth noticing at this point that our model includes, as a

particular case, that of Uzawa [1965] and Lucas [1988] where the

5. We use the word “effort" rather than “time’’ hecatige time could be configed
with the variable ¢ in our model.
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production function of human capital is assumed to use only
human capital. This assumption implies that all the physical
capital is employed in the output sector, and therefore, the share v
is trivially set to one at all points in time. Furthermore, Uzawa and
Lucas assume that the production of human capital exhibits
constant returns to human capital. That is, our model becomes the
Uzawa-Lucas model when the following restrictions are imposed
onthe parameters:a, =a, =0,B; =Bs =P, =B =0, 0, =ap =1 -
o, and B, = Pr = 1. Note that this specification implies constant
point-in-time returns in hoth sectors:

@ k= Aket(uh) 0k — gk — ¢
(3") k=& —wh — 8,k

III. FirsT-ORDER CONDITIONS, STATE-LIKE,
AND CONTROL-LIKE VARIABLES

Agents choose the paths for e(t), u(?), v(t), k(t), and A(£) so as
to maximige utility in (1) subject to (2') and (3'), taking &(0), R0},
k(2), and A(t} as given. The first-order conditions are well-known
and, therefore, are confined to the Appendix (see Sala-i-Martin
[1990] for details). To simplify notation, we define the following:

&k:ak-'-ak: (-I._;L=ah+0'."h,
By = Br + B Br = B + B
The variables with tildes are the elasticities for the social praduc-
tion function when an aggregate consistency condition is imposed.

They are the sum of the private elasticity and corresponding exter-
nality parameter.

(7)

IlIa. Optimal Relation Between uand v

The first-order condition ((A8) in the Appendix) is a relation
between the fraction of physical capital, v, and the fraction of
human capital, #, used in the final output:

ult)
{8) ulw(t)) = AT a0l —b) for all £,
where A = o,B,/(0,B,) is a positive constant. Notice that equation
(8) implies that when u = 1, thenv = 1; when u = 0, thenv = 0; and
the derivative of v with respect to « is positive for all « between zero
and one (v'(x) = 1/[A{1 — (1 — (1/A)uf?] > 0). Ifa./e, = Bu/Bs, A
is equal to one all the time, and therefore v is always equal to wu.
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That is, if the technology for producing final output is “similar’’ to
the production for producing human capital, then the fraction of
physical and human capital used in the production of final goods
will be the same. The relation between the growth rates is (¢} =
v () [1 — () (1 — A-H)].

The monatonic relation between u and v indicates that eco-
nomic agents never choose to increase human capital in one sector
and reduce physical capital in that same sector. In other words, we
can think about them deciding how much of their overall resources
to spend in either sector and not worry too much ahout the exact
resource (whether physical or human capital) spent since they will
both move together. In practice, this means that we can use either
one of them as a control variable, since the other one is immedi-
ately and uniquely determined by equation (8).

INTERESTING RESULT 1. The optimality conditions require that the
two effort variables be monotonically related. We can therefore
eliminate one of the control variables of the problem.

IIIb. Concave Produetion Possibility Frontiers

Consider the production possibilities facing a consumer at a
point in time—when the aggregate capital stocks are fixed. Given
h(t) and ki¢), agents can choose to produce a lot of education by
devating no effort to the final output sector. If 1 = 0 (condition (8)
says that the corresponding v is also zero), then DhBHERBAE B units
{a flow) of human capital are produced. Alternatively, agents can
choose to devote all their effort to the final output sector. Foru = 1
(v = 1 correspondingly), Ah®skehoske units (a flow) of physical
capital are produced. Intermediate values for u (and the correspond-
ing aoptimal choices of v) generate a production possibility frontier
(PPF). The coneavity of the PPF is determined by the parameters
a,, a,, B, B, The algebraic relation between concavity and these
parameters is quite complicated, but we can build intuition by
discussing some special examples.

ExaMpPLE 1. Constant Points-in-Time Returns and Identical Tech-
nologies.

Consider the case when there are no externalities and when
a, = o, o, = &, B, = Br and B, = P, so all technologies exhibit
constant point-in-time returns. Imagine also that e, = B, (recall
that we have been assuming that e, + «, = land f, + B, = 1 all
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along) so that the two sectors use the same production functions.
The PPF in this case is linear.$

ExaMpPLE 2. Constant Point-in-Time Returns and Different Tech-
nologies.

Suppose now that o, = oy, &, = a4, B, = By, and p, = B, so all
technologies exhibit constant point-in-time returns, but a; = By so
that the two sectors use different technologies. In this case the PPF
ig strictly concave.? Note that the Uzawa-Lucas model falls into
this category: it is a congtant point-in-time-returns model with a
strictly concave PPF due to different production functions for the
two sectors.

ExampLE 8. Decreasing Point-in-Time Returns.

Third, suppose that &, < 1 — @, and 8, = 1 — f,, with one
inequality strict. That is, suppose that there are decreasing point-
in-time returns somewhere® The PPF is in this case strictly
concave.,

INTERESTING RESULT 2. For the PPF to be strictly concave, it is
sufficient that the point-in-time technologies exhibit nonde-
creasing returns when the PPF’s in the two sectors are
different. If the production functions are the same, then we
require decreasing point-in-time returns somewhere. If the
production functions are the same in the two sectors and all
the point-in-time technologies exhibit constant returns, then
the PPF iz linear.

e Making our Model Stationary

After eliminating vt ), the rest of the first-order conditions and
accumulation constraints entail four nonlinear differential equa-

6. The linearity of the PPF depends on the expanents on &'s and v’s being the
same in {{) and in e() rather than on the fact that the exponents on » and h are the
same in both technologies. Fer instance, we ean get a linear PPF with decreasing
point-in-time returns in f, (i.e., &, < @), if there are offsetting increasing point-in-
time returns in ke(ie, e, > o) and the same is teue for A, and k.. Whether there are
externalities or not has nothing to with the concavity of the PPF.

7. Again, we should note that the concavity of the PPF depends on the fact that
the exponents on the effort variables, not the exponents of the capital stocks, are
different in the twa sectors.

8. With our Cabb-Douglas production funetions, deereasing point-in-time
returns impose another condition on the PPF. If the decreasing point-in-time
returns are in the physical capital sector, then the marginal rate of transformation
must be infinite at « = v = 0. If they are in the human capital sector, then (the
inverse of) the marginal rate of transformation must be zeroat & = v = 1. This exira
restriction is peculiar to Cobh-Douglas.
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tions (i,é,k,h) in four variables: two controls (¢ and u) and two
states (k and k). Our goal is to find the policy functions that relate
the two controls to the two states. Because we want to allow for the
possibility of positive steady-state growth rates, it will he conve-
nient to rewrite the first-order conditions in terms of ‘“unscaled”
variables (in other words, in terms of variables that remain
stationary when the levels of output and the capital stocks grow at
a positive rate forever). We do so by defining what Mulligan [1991]
calls state-like and control-like variables. State-like variables will
be transformations of state variables only, with the property that,
unlike the state variables A and &, they remain constant in the
steady state. In the present model we use the following two
state-like variables:

@ z(¢) = Rt h(E)En/ G 1)
(o 25(t) = R()h(g)Br= 1B,

Both z; and 2, are increasing in k and (if & < 1 and B, < 1)
decreasing in A. One way to think about them is the following:
2%~ {5 the output to capital ratio f (.)/k, when all the capital (both
physical and human) is employed in the final cutput sector, that is
when & = v = 1.2 So in some sense, 2{#~V is the ratio of potential
output to capital. Similarly, z* is the education output to human
capital ratio g(.)/h , when all the resources are employed in that
sector. Hence, 2 is the average potential output in the education
sector. It is interesting to note that, in the absence of externalities
(50 & = ay, Gy = oy, Py = Ps, and B, = B), both 2, and z, are equal
to the ratio of physical to human capital, 2/h.}9

It will also be convenient to define control-like variables as
transformations of control variahles that, unlike ¢(¢), do not grow
in the steady state. For most models, the ratio of consumption to
physical capital will work. Thus, we just need to define a as

(1L a(t) = ct)/r@).

The steady-state growth rate of the other control variable u
(and v) is zero so we can use it as the second control-like variable,

Our next step is to rewrite the dynamic system describing the
solution to our growth model using state-like and control-like

9. An overbar on f and g indicates potential output for that sector (defined as
the instantanecus flow of output that the economy could get if all the resources were
employed in that sector).

10. Recall that we assumed eonstant returns to scale to the private eapital
stocks, o + ap = land By + By = 1.
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variables only. To get the growth rates of the newly defined
state-like variables, take logarithms and time derivatives of (9) and
(10) and get

(12) Yo () = ) — G /(L — @Gy
(14) Yo = w®) — (1 — B/ Bvalt).

Rewrite the growth rate of work effort ((A9) in the Appendix)
in terms of control-like and state-like variables only:

efh(l —u) [(1 — o )uP, + o, (1 — Bl — ull/e,

18 = denominator
o O, + (&, ~ Batve + @, — Bplyn — (0 + 8
denominator ?
where
denominator

(1 - uwa, +up,/A
1-(1-AYY

= —u)t ((1 —a,) + ule, — B —

and e is defined in (3). Finally, the growth rate of the new
control-like variable a is given by

(18) Y2} = v, (8) — v, (),
where
(1n
wlt) = Azl(t)‘ik‘lu(f)““"lu(u(t])"‘”(akﬁuu(;) + oo, B[l — wld)}B, — 3, - p ,
and where
(18) (@) = Au@)o(u(t)y ez % — alf) — §,
(19) ya(t) = (1 — wul))P«(1 — U(u(t)))ﬁ”zg(ﬂé‘* =&

{equations (17) and (18) are found by dividing the constraints (4)
and (5} by & and A, respectively).

INTERESTING RESULT 3. The dynamic solution to our model can be
transformed into a system of four ordinary differential equa-
tions (2,(£), z.(t), w(t), alt)) with two control-like variables
(a(t) and u(2)) and two state-like variables (z,(¢) and z,(¢)) with
the property that, in the steady state 2,(2) = z,(¢} = ult) =
alt) = 0.
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Equations (12), (14), (15), and (16), plus the transversality
conditions (A6), and the initial conditions K(0) and H(0) descrihe
the transitional dynamics and the steady state of the model. The
next section characterizes the steady state. Section V studies the
transition.

IV. STEADY-STATE ANALYSIS

IVa. Necessary Conditions for Endogenous Growth

Define steady state (or constant growth path} as the state
where all the variables grow at a constant (possibly zero) rate.
Thus, we rule out paths with ever increasing growth rates, but we
allow for the possibility of zero steady-state growth rates. We also
allow for the possibility of different variables to grow at different
rates.

Define endogenous growth models as those sets of parameters
for which there exists, for some initial conditions, a constant
growth path solution.

Equation (17) says that, in the steady state, z is equal to a
bunch of constants. Hence, 2} is also constant, and v} (the
steady-state growth rate of z;) is zero. Equation (18) then says that
a* is equal to constants so v is equal to zero. This of course implies
that the steady-state growth rate of consumption is equal to that of
physical capital v¥ = v}. Equation (19), on the other hand, implies
that z% is also equal to a lot of constants so its value is constant and
therefore, v%, is equal to zero. That is, we see that, in fact, the
growth rate of the control-like and state-like variables is zero:

(20) v, =v,=vi=vi=0.

The steady-state condition v = v, = 0 means that (12) and
(14) form a homogeneous system of linear equations in v and v%:

(1 — avi — Gy

=10
(21) Bevi— (1 — By =0

*
A
%
h .

A necessary condition for it to have positive solutions for vy}
and +% is that the determinant of the system be zero. In other
words, a necessary condition for the model to display endogenous
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growth is'!
(22) (1 — &1 — By) = &, By

Note that this condition involves the elasticities of both capital
goods in both sacial production functions (each social elasticity in-
volves both the private elasticity and the externality parameter). In
particular, it is independent of the level of technologies (A and &),
the taste parameters (p and 8}, and the point-in-time technologies.

INTERESTING RESULT 4. If we want the two-sector madels to display
positive steady-state growth rates (endogenous growth), the
social capital shares of the two production functions must be
related according to condition (22).

IVb. Models That Satisfy Condition 22

Endogenous growth models must satisfy condition (22). We
now discuss some special cases of (22) in order to gain some
intuition regarding its economic significance,

a. If there are social constant returns to physical capital in the
final output sector (&, = 1), then we must have either the produc-
tion of education independent of physical capital (8, = 0) or the
final output sector independent of human capital (&, = 0). This
latter case corresponds to the linear Ak technology used hy Rehelo
[1991] or Romer [1986], where output is linear in 2 and indepen-
dent of human capital .}

b. If there are constant returns to human capital in the
education sector (B, = 1}, then we must have either the final
output sector depending on physical capital only (&, = 0) or the
education sector depending on human capital only (8, = 0). Notice
that this latter case corresponds to the Uzawa-Lucas production
function in equations (2'') and (3''). We should also realize that in
this case, there may be increasing, constant, or decreasing returns
to scale in the production of output since the conditions Br=1
and (#; = 0) impose no restrictions on &, or &,.

11. The sufficient conditions and the bounded uiility conditions will entail
further restrictions on the size of the parameters. They will require the economy to
be sufficiently productive so as to generate permanent growth but not so preductive
that there is no seareity. i} i}

12. However, note that when p, = 0 and 3, is different from one, then 2 is not
well defined.
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¢ If both capital stocks are used in both sectors (0 < &, &, B,
R, < 1) and there are social constant returns in one sector
(@, = 1 — &), then there must he constant returns in the other
sector (B = 1 — B X
_ d. If both capital stocks are used in both sectors (0 < Gy, a, Be,
By, < 1) and there are diminishing returns in one sector
{4, < 1 — &), then there must be exactly offsetting increasing
returns in the other one (f;, > 1 — B).

In terms of the Inada conditions, we know that a necessary and
sufficient condition for the one-capital-good model to display
endogenous growth is that the marginal product of capital be
sufficiently bounded away from zero [Jones and Manuelli, 1990].
Our analysis of the two-capital-goods models suggests that the
marginal product of either capital good on either sector can
approach zero as capital grows without bounds and still get
endogenous growth. Condition (22) indicates, however, that the
marginal product of at least one of the sectors must be bounded
away from zero as physical capital tends to infinity and human
capital grows at the corresponding optimal rate. That is, the
marginal product of a “broad measure of capital’ is bounded ahove
Zero.

IVe. One State-Like Variable

Conveniently, the necessary condition for endogenous growth
{22) imposes some restrictions on the relation between z, and z,.
Namely,

(23) 2, =2 = 2.

This condition means that any two-sector model that is to display
positive steady-state growth rates can be expressed in terms of only
one state-like predetermined variable, which we call z.

INTERESTING RESULT 5. The dynamic solution of any two-sector
model of endogenous growth of the class considered in this
paper can be written in terms of one state-like variable and two
control-like\ variahles.

The imposition of condition (22) is probahly the main differ-
ence hetween the early multisector neoclassical models (such as
Kurz [1968], Ryder [1967], Srinivasan [1964], or Burmeister
[1980, Chapter 6]) and ours: it allows us to reduce our analysis by
one dimension so our models are simpler.
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IVd. Steady-State Comparative Staties

The steady-state behavior of our two-sector growth models can
bhe analyzed numerically. Some particular parameterizations (such
as that of Uzawa and Lucas) allow for closed-form solutions for the
steady-state values of growth rates, effort variables, and so on. For
more general parameterizations, closed-form solutions are not
available.

In order to save space, in Tables I and II we report the signs of
the derivatives of the steady-state values of the effort variable, ©*,
the growth rate of output, v*, the consumption to capital ratio, a*,
and the state-like variable, z*, with respect to all of the parameters
of the model. We do that for two sets of parameters. Table I does it
for the Uzawa-Lucas case where the two capital stocks are used in
hoth sectors and the technologies are the same. The baseline
parameters used are reported in the notes to the table. A negative
sign in the first column, second row, suggests that an increase in
the level of technology in the human capital sector—b—Ileads to a
decrease in the steady-state level of effort. Table II reports the
signs of the same derivatives for the general model where both
capital goods are used in both sectors (see the notes to the table for
the exact parameters used). The key difference in the steady-state
behavior of the two models is that the level of technology in the
final output sector affects the steady-state growth rate of the
economy in the general model but not in the Uzawa-Lucas model.
Hence, the conclusion that only the technology in the human

TABLE I

EFFECT OF PARAMETRIC CHANGES ON STEADY-STATE VALUES: Uzawa-Lucas MODEL

LL* 1|I:k C!.* Z*
Baselineg 0.4583 0.0150 0.1750 79457
AA 0 i 0 +
Ad - + + -
Ad + - + +
Ap + - + +
Aay 0 0 - +
Aaj, + + + -
Acg + + + -

Notes. The tahle shaws the relation between changes in the parameters arrayed horizantally and the
steady-state values acrayed vertically. The haseline parametersare oy, = oy =, = 0.5, 8, = 0, fe = fu = 0, =
Bu=1lp=0048=2A4=1d=0125 =& =0050u0uw=Ff=[f=40
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TABLE II
GENERAL Two-SECTOR MODEL

u* .Y* a* ¥
Baseline 0.5658 0.0207 0.1504 10.121
AA - + + +
Ad - + + -
Ag + - + +
Ap + - + +
Any, - + — +
APy + + + -
Aag, + - — +
LYTY + - — +
AR, - - +
APy + - - +
Ag, + - - +
Awj + + + -
ABg + - - +

Motes. The haseline parametersare oy, = oy = 0.5, 2, =&, = 048,08, = 02,8, = 08,4, =018, =078, p =
004 8=2A=16¢=012 8 =8, = 0.05 o = o, = i, = B = 0. Also see the note to Tahle [

capital sector matters for growth is specific to the Uzawa-Lucas
madel where & is independent of &.

V. A METHODOLOGY TO STUDY TRANSITIONS:
THE TIME-ELIMINATION METHOD

Here we look at the two-sector growth models outside of the
steady state. The basis for our analysis is the Time-Elimination
methad. It provides us with a practical and efficient algorithm for
solving these models numerically. Time-Elimination is discussed in
detail in Mulligan [1991]. Judd [1990] considers numerical tech-
niques more generally. The idea is to exploit the recursiveness of
our problem, even though our solution procedure until now has
been the Maximum Principle of optimal control that applies to
nonrecursive as well as recursive problems.

Remember that our model is described by an optimal control
problem. We derived the Euler equations (A7) and (A8), which,
together with budget constraints (2) and (3"}, describe the solution
for the optimal control problem (1), (2'), and (3'). In the language
of dynamical systems, optimal e(t), u(t), vit), (), and ~{¢} are the
solutions to a boundary valie type system of ordinary differential
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equations in time. The system is (2'), (3"), (A7), and (A9), and the
boundary conditions are the Transversality Conditions deseribed
in the Appendix as well as the initial capital stocks 2(0) and ~{0}.

We shall distinguish houndary value systems of differential
equations from initial value systems. Initial value systems have
very special houndary conditions: namely, they take the form of a
set of values for all of the dependent variables at a single point. in
time. For example, our problem would be an initial value problem if
we replaced the transversality conditions with values for ¢(0} and
u{0).

We have a boundary value problem: two boundary conditions
apply at t = 0 and two others apply at ¢ = «, A standard numerical
method for studying boundary value problems is called shooting.
For example, this is the methodology employed by King and Rebelo
[1990] and Jorgenson and Jun [1990] to examine one-sector
growth models. As any practitioner of the shooting algorithm will
attest, boundary valie problems are much more difficult—both
conceptually and computationally—to solve than are initial value
problems.!3 In fact, the shooting method becomes unwieldy for
aystems of mare than two or three dimensions. One key advantage
of the Time-Elimination methad is that it transforms the boundary
value type problem described by (2'}, (3"}, (A7), (A9), and the TVC’s
into an initial value problem.

The Time-Elimination method is a four-step algorithm. First,
we transform our system (2'), (3°}, (A7), (A9) for which there exists
a constant growth path to one for which there exists a stationary
point or steady state. This is exactly what we did in Sections I1I and
IV: we defined state-like variables, z,(¢} and z,(¢}, and control-like
variables, a(t}, u(t), and v(t}. We found that the original Euler
equations can be expressed in terms of 2,(1), 25(t), a(t), u(t), and
u(t) only. An additional simplification was obtained in Section v
where we imposed a constant growth condition. That condition
required 2, to be equal to z; = z. All together, we succeeded in
transforming a system of differential equations fore, u, £, and hA—a
system for which there exists a constant growth path—into a
system of differential equations for ¢, u, and z for which there

13. On a more pragmatic level, computer math packages are much more likely
to include rautines that solve initial value problems than to include routines that
solve boundary value problems. We use MATLAB's ODE23 routine to salve initial
value problems. We can therefore worry about economics rather than numerjeal
mathematics {we believe that we have a comparative advantage in the former). See
Press et al. [1990] for a comparisan of initial value and boundary value problems.
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exists a stationary point. We now denote the resulting differential
equations {12}, (15}, and (16) as system (24):

a(t) = w(alé)u(t)z()
(24) ult) = wolalt)ult),z(4)
2(8) = wylalt),ult)2(8)),

where ; are complicated nonlinear functions.

Qur second step is to argue that the stationary point (a¢*,u* z%*)
of system (24) represents an optimal solution for our optimal
cantrol problem for some feasible initial conditions. This was
shown in the last section: the economy will exhibit constant growth
for some initial conditions £(0} and A(0).* Since some economies
will be characterized by the stationary point of (24), we focus on the
stahle manifold of that stationary point. By definition, the stable
manifold is the locus of points in the [a,u,2z] space which, when
allowed to evolve according to (24), asymptotically approach the
stationary point.1® Notice that since the stationary point satisfies
the Transversality Conditions, so do all economies that lie in the
stable manifold. Therefare, the stable manifold describes optimal
solutions to our optimal control problem.

Third, we appeal to the recursiveness of our problem to derive
an alternative representation of the stable manifold of (24).
Namely, we intend to represent the stable manifold—a locus of
points in the [a,u,2] space—by a pair of functions a(z) and u(z). Toe
do so, we begin by noticing that, in the absence of externalities,
solutions to our model are solutions to a social planning problem
and that the social planning problem can he represented by a
dynamic program. Solutions to that dynamic program can be
represented by policy functions a(z} and u(z). Since the stahle
manifold describes solutions and the policy functions describe
solutions, it must be that projections of the stable manifold into the
[a,z] and [i,z] planes are graphs of the poliey functions.

Once we allow for externalities, our problem cannot necessar-
ily be described by a social planner’s dynamic program. Neverthe-
less, we shall slightly abuse terminology and call projections of the

14. Of course, there will not be constant growth for all initial conditions &(0)
and A{0). That is why we are interested in transitional dynamies!

15. In the case where the stable manifold is one dimensional—as it will be in
aur prablems—it is informally referred to as the “stable arm.” We find it helpful to
think of our stable manifold as a human arm suspended in the [a,u,z] space with the
elbow at the point (e*,u*,2*}.
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stable manifold into the [a,z] and (,z] planes policy functions for
the control-like variables:

(26) alt) = alz(t)
u(t) = ulz(f)).
Note that the policy functions map values for the state-like vari-
able z into values for the control-like variables ¢ and u.
Using (25} and the chain rule of calculus, the transformed
equations of motion for z, ¢, and u (system (24)) can be manipu-
lated to compute slopes of the policy funetions:

oo @ B wla,u,2)
@@= 30 T @) Slau.2)
{26) i(t)

u'(z) = 0 = r(a,u,z) = £y(a,u,2).

The reader will notice at this point that the chain rule of caleulus
allows us to “eliminate time'’: the system of differential equations
in time (24) is used to derive a system of differential equations in z
{(26). The equations (26) yield the slope of the policy functions for
all values of (a,u,2) (except a*,u*z*), From step two we have same
boundary conditions for system (26): the stationary peint “‘sat-
isfies” the policy functions a(z) and u{z}:

a* = a(z*)

(27) w* = u(z*).

With one modification, (26)—(27) is an initial value type system
of ardinary differential equations. The required modification is to
specify the slopes of the palicy functions at the steady state (note
that at the steady state ¢ = &z = 2z = 0 s0 equations {26} cannot he
applied directly). There are two ways to find these slopes. The first
is to apply L'Hépital's rule to (26).% Alternatively, one can

16. L'Hépital's rule will yield three slopes: one corresponding to the stable
manifald and two corresponding to the unstable manifold. This is because both the
stable and unstable manifolds satisfy (26) and (27). One must therefore have same
intuition about the shape of these manifolds in order to choose the correct one of the
three slopes yielded by L'Hépital's rule. Once the correct steady-state slope Is
specified, (26) and (27) uniquely determine the stable manifold of the statiopary
paint of (24). Our “eigenvector” method for finding the steady-state slapes avoids
this canfusion.
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linearize (24) around the steady state and study the eigenvectors of
the matrix describing the linearized Version of the system.!” The
eigenvectors are tangent to the stable and unstable manifolds of
the nonlinear system at the steady state, and the eigenvalues can
be used to distinguish stable from unstable manifolds.’® We used
this “eigenvector’’ procedure to determine the slopes of our palicy
functions at the steady state.

The fourth step of the Time-Elimination algorithm consists of
using MATLAB’s subroutine ODE23 to solve the system of two
ordinary differential equations (26)—augmented with the steady-
state slopes computed above—subject to the “initial”’ values (27}.

Additionally, we may be interested in finding the time path for
2. This can he done by substituting the numerically computed
policy functions into (14} and (numerically) integrating with
respect to £.1° Most interesting economic questions, however, can
be answered from knowledge of the policy functions alone.

Two of the best features of the method used in this paper are
the speed at which the computer vomits the answers and the
simplicity of the programs needed: on an IBM 16 MHz 386X, we
usually can find policy functions for the problem (1) to (3) in less
than 30 seconds! We do not have the patience to try shooting, but
guess that shooting would take somewhere on the order of one
hour to solve the same models.

In summary, the Time-Elimination constitutes a very simple
numerical method for studying dynamic models. First, transform
the system of differential equations into one that has a stationary
point. Second, argue that the stationary point satisfies the transver-
sality conditions. Third is the Time-Elimination step: apply the
chain rule of calculus to construet a system of differential equa-
tions for policy functions rather than time paths. The stationary
point is the appropriate boundary condition. Finally, ask MATLAB
to solve this initial value type system of ordinary differential
equations for the policy functions. To our surprise, the most

17. The linearized {around a steady state) version of a nonlinear system is fully
described by a matrix that is the Jacobian of the nonlinear system evaluated at the
steady state.

18. The stable manifold theorem from the theory of dynamical systems
guarantees that the slope of the stable eigenvectar is exactly equal to the slope of the
stable manifold of the nonlinear system {24} at the steady state.

For example, suppose that for a particular parameterization the stable eigenvec-
tar of the Jacobian matrix of the right-hand side of (24) (evaluated at the steady
state) is (3,2,1). Then a'(z) and u'(z) evaluated at the steady state are 3 and 2,
respectively.

19. The integration of (10} subject to 2{0) is another initial value prablem.
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difficult part of the algorithm is computing the steady state
(a*,u*z*)! Once the steady state is known, computation of transi-
tional dynamics is handled quite easily by MATLAB.

The dynamics of our system are fully determined by one
state-like variable, z, and two control-like variables, # and a. The
evolution of the economy can be described by a phase diagram in
the [a,u,2] space. The stable arm (the models do turn out to be
saddle-path stable} will be a one-dimensional curve in a three-
dimensional space, a curve that goes through the steady state. The
stable arm can be represented by two ‘‘policy functions’ a(z) and
u(z): projections of the stable arm into the [x,z] two-dimensional
space and the [a,z] two-dimensional space.

VI. TRANSITIONAL DynamMIcs IN THE Uzawa-Lucas MopeL

We start by applying the methodology just described to study
the transition of the Uzawa-Lucas model. Recall that one of the
special features of this model is that the education sector uses
human capital as the only input of production. The two accumula-
tion constraints in this special case are (2"} and (3"):%¢

(2") k= ARek(uh)how — 8.k — ¢
(3" h =& - wh — §,h.

Via. Stability

From (9) and (10) the only state-like variable z for the
Uzawa-Lucas model without externalities is equal to the ratio of
the two capital stocks, £/h.2! Hence, in what follows, we use z and
k/h without distinetion. As part of the Time-Elimination method
just described, we need to compute the eigenvalues of the linearized
system around the steady state. We always find that there are one
negative and two positive eigenvalues so that the model is locally
saddle-path stable. This is true even when we include small positive
externalities in the final output sector so that it exhibits social
inereasing returns.

We then apply the time-elimination method, and we are able to
calculate the policy functions for any value of z hetween zero and
any (arbitrarily large) positive number. This means that the model

20. Although our pumerical method can be used to analyze models with
externalities, in this paper we cancentrate our simulations on madels with no
externalities. That is, from now on we set o, = 0.

91. This is not the case when there are externalities (see equation {9)}.
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18 globally saddie-path stable.?® Through independent research and
drastically different methodologies, Faig [1991] and Caballé and
Santos [1991] have arrived at the same conclusion.?3

INTERESTING RESULT 6. The Uzawa [1965]-Lucas [1988] model of
endogenous growth is glohally saddle-path stable, 24

VIb. Policy Functions

But interesting as they are, the stability properties of the
mode] are not our ultimate goal. We want to study the economie
forces that lead the economy from any arbitrary initial ratio z, to
the steady-state ratio z*. We are also interested in how some
economically interesting and observable variables (such as the
saving rate, the growth rates of output, consumption, and physical
and human capital, or the interest rate) hehave along such
transition, so we can compare the maodel with actual data.

The slopes of the two policy functions 1(z) and a(z) depend on
the relation between 8 and a,. For # > «,, the two functions are
downward slaping; and for 8 < a, the two are upward sloping. For
the knife-edge case of 8 = a,, the two policy functions are
horizontal.

We can give economic interpretations to these optimal choices
of u and a. Consider the situation where physical capital is
relatively scarce (so z = k/h is low). Because the system is stable,
z < z* should be associated with a positive growth rate of z, which
is given by the difference between the growth rates of k and A:

(28} v, = Az~ lyme — ofh — § — b(1 — u) — §,.

Imagine that ¢/k and u are constant (as is the case when 6 = o).
Low values of z are associated with high growth rates of 2, simply
because the average product of physical capital is high (as is the
case in the one-sector Solow maodel with constant saving rates, the
growth rates of k£ are high when % is low, simply because the

22, We never find a vertical asymptote in the policy functions either. Note that,
since the policy functions are unique-valued, this implies that the steady state is
unique. The policy funetions are unique-valued because the Hamiltonian is concave
in the choice variables.

23. Our methodology allows us to caleulate the speed at which the economy
converges to the steady state. In Mulligan and Sala-i-Martin [1992a, 1992b] we
show that, for very plausible parameterizations, the Uzawa-Lucas model entails
half-lives of 25 or mare years. Hence, transitions can be long and important.

24. This result comes from extensive experimentation with all kinds of
parameters and is not based on a formal proaf. Strictly speaking, Interesting Result
6 should say, ““We have not been able to find parameters for which the Uzawa-Lucas
madel was not globally saddle-path stable.
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average product of capital is high). This is what we call the average
product of capital or Solow effect.

A low value of z (that is, a relatively scarce stock of physical
capital) can also be raised through an increase in savings (a
decrease in a, the consumption to capital ratio) or through an
increase in the allocation, u, of the existing human capital to the
production of final output. Because agents like to smooth consump-
tion, they do not like the first choice. In fact, they dislike this
possibility more, the higher the value of 8. This is a wealith or
congumption smoothing effect. A low k/h ratio, on the other hand,
implies a low wage in the final output sector. This motivates agents
to go to the education sector.?’ That is, they do not like the
possibility of increasing z when z is low because the opportunity
cost of schooling is then low. This substitution or relative wage rate
effect is more important the larger the value of o, (the wage rate is
proportional to z* for a given value of u).

The final outcome depends on the relation between 8 and «,. If
# = oy, then the consumption smoothing and the relative wage
effects cancel out so the steady-state capital ratio z* is restored
through the high average product of physical capital or Solow
effect.? Other things held constant, higher values of 8 increase the
agent's willingness to smooth, which tends to raise the ratio of
consumption to physical capital, a. In other words, if & > «, then
the consumption smoothing effect dominates so @ and u are high
for low values of z. The policy functions are downward sloping.

A lower value of 6 leads people not to worry too much ahout
departures from a smooth path of consumption. They are ready to
inerease the stock of physical capital through higher savings. This
allows them to take advantage of the low wage situation hy
increasing the allocation of human capital to the education sector
with a corresponding reduction in work effort. In other words, if
8 < a, then the relative wage effect dominates so « and u are low
for low values of z.

INTERESTING RESULT 7. In the Uzawa-Lucas model, the transition
from low k/h ratios involves high or low work effort and

35. The wage differential cannot be reduced by reallocating physical capital
hetween the sectars because, for the Uzawa-Lucas model, physical capital is not
used in the A sector. .

26. This implies that A/k is constant at all pointg in time. If we call this
constant growth rate x, then we can write the production function of final output as
y = BEs{e), where B is a constant equal to Au=h, Note that this production
function resembles that of the neoclassical madel with productivity growing at an
exogenous constant rate x.
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consumption depending on the relative size of 8 and a;. If 8 >
oy, the wealth effect dominates, and physical capital is restored
through high work effort (and the two policy functions are
downward sloping in k/A). If 6 < «,, the substitution effect
dominates so physical capital is restored through low consump-
tion (and the two policy functions are upward sloping). If § =
oy, the two effects offset (and the two policy functions are flat).
The symmetric result applies for transitions from high k/h
ratios.

Vic. Transitional Behavior of Seme Interesting Variables

The Case when o, < 8. We think that, empirically, this is the
most relevant case: the share of physical capital in the final output
gector, ag, is a number between zero and one while the inverse of
the intertempaoral elasticity of substitution, 0, is often estimated to
be larger than one. Hence, we shall concentrate our numerical
simulations on the case when «;, < 0. The numerical simulations
use the following values for the rest of the parameters: § = 2, p =
0.04, o, = 0.5, §, = 3, = 0.05, and A = 1. Finally, we choase the
level of technology in the education sector, ¢ = 0.12, so as to get an
annual steady-state growth rate, v* = (1/8)(¢ — 8, — p) equal to
0.015. Note that these parameters imply a steady-state rate of
return of ¢ — §, = 0.07.

As we just argued, when a;, < 8 the two policy functions u(z)
and a(z} are downward sloping. They are depicted in the first two
panels of Figure 1. The horizontal axes in Figure [ measures the
distance hetween k/h and the steady-state value of (k/h)*. The
vertical line at zero correspands to the steady state. If we think of a
less developed country that starts with a relatively low stock of
human capital (z > z*}, then z falls over time, and u and c/k
inerease aver time. In other words, the country devotes a relatively
low but rising fraction of resources to consumption (e/k is low), but
spends a substantial but falling fraction of time in education (1 — u
is high}.2?

Dividing the budget constraint (2°) by %2 and using the policy
functions found above, we find the behavior of the growth rate of 4
along the transition. This growth rate (reflected in panel ii} of
Figure I) is downward sloping. Along a transition where z = k/h is
rising (that is, when z > 2*), the growth rate of physical capital will

27. Note that for low values of z, u > 1. At this peint, investment in human
capital is negative.
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be falling.?® Panels (iv) and (v} show that along the same transition
the growth rates of consumption and human capital are falling and
rising, respectively.

The relation between the growth rate of the final output and =z
can be U-shaped, and the minimum growth rate can accur either to
the left or to the right of the steady state. Holding constant the rest
of our benchmark parameters, the minimum oceurs at the steady
state when 8 = 3, to the right of the steady state when 8§ < 3, and to
the left of the steady state when > 3. That is, the imbalance effect
could have a symmetric effect on the growth rate, with higher
growth rates of output emerging if either & or A& is in relatively
short supply, or asymmetric, with growth riging with one type of
imbalance and falling with the other type in the neighborhood of
the steady state. The growth rate of output for 8 = 2 is depicted in
pane] (vi) of Figure I. It is a downward sloping function when it
goes through the steady state, but it becomes an increasing
function of z for larger values of z.

The concept of output we just discussed does not include the
production of human capital. We can construct a broad measure of
output by adding the production of human capital, multiplied by
the shadow price of human capital in units of goods (v/x =
(1 — a)(A/d)zer~ ). Full output is then given by

(29) Yol =y + (u/N)d(L — w)h.

Using this definition and the formula for the relative price v/), we
can compute the growth rate of this broad measure of output,
yytult =y, — @/u)(l — a)/(1 — a + au). This growth rate is depicted
in panel (vii). Unlike the narrow measure of output reported in
pane] (vi), this one is unambiguously downward sloping for all
relevant values of 2/A. Hence, transitions involving falling ratios of
k/h entail increasing growth rates of full output.

Conventional measures of national income account for some
positive fraction of the activity in the human capital sector (for
instance, the wages of professors are counted). Other parts of the
activity are excluded from the national accounts (the wages of the
students are usually not counted). The growth rate of measured
national income behaves somewhere between the growth rates
reparted in panels (v) and (vi). If we imagine that measured
national inecome includes 25 pereent of the education sector, then

28. Panel (iii} also displays a horizontal line at §,. The intersection hetween
thisline and v, shows the point where the inequality constraint & + 8k =z 0 would be
hinding.
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the growth rate of national income is a negative function of k/k
(panel (viii} displays the transition for this case).”®

The negative relation between the growth rate of output and z,
is an interesting implication of transition of the Uzawa-Lucas
model. It implies an asymmetric response to losses of physical and
human capital. For example, a country or region that loses a lot of
physical infrastructure in a war or natural disaster will recover
quickly. A country that loses a large fraction of the human eapital,
on the other hand, will suffer low growth rates along the transition
to the steady state.

For our benchmark parameters, the saving rate (defined as
s = 1 — c¢/y, where y the production of the final output sector) is
negatively related to £/k (not shown in the figure). Hence, consump-
tion is higher relative to output when %&/h is high. The behavior of
the saving rate depends a lot on the exact parameters of the model.
Everything else held constant, for sufficiently large values of 8, the
saving rate will be upward sloping. Furthermore, there is always a
value of 8 for which the saving rate along the transition is constant.
This value is given by

_ (p + ﬁk)ock
B akﬁk - (1 - O‘l;e)((b + ak - 8;1) :

(30} 9*

and the corresponding saving rate is
(31) s*=1—-1(8% — L), /0%

Note that, because the parameters &, §,, and p must satisfy
b > (3, + p), in order for the steady-state growth rate to be
positive, equation {30) implies that a; > 1/2 must hold if we want
8 =z 0. Note that a capital share larger than 1/2 is unlikely to be
satisfied if we interpret k as a strict measure of physical capital.

Finally, we construct and report the time paths for the growth
rates of an economy whose log of the initial k/4 ratio is about twice
its steady-state value. In panel (ix) we report the time path of the
growth rate of our narrow measure of output. The growth rate
starts at 1.7 percent, and it falls for about twelve years. It then
starts increasing, and it reaches its steady-state value in about 40
years. Panel (%) reports the time path for the growth rate of
measured output (which we assume to account for 25 percent of
human capital investment only). Note that the growth rate is

29. Elsewhere we have argued that 25 percent is a reasonable number
[Mulligan and Sala-i-Martin, 1992h],



TRANSITIONAL DYNAMICS IN TWO-SECTOR MODELS 765

actually negative for about ten years. The growth rate recovers
very slowly over time. It reaches its steady-state value in about 40
years. As we suggested above, therefore, an economy that loses a
substantial fraction of its human capital stock takes a long time to
recover.

The Case when o > 6. As we argued abave, this case entails
low willingness to smooth consumption and very low wages for low
values of z. The two policy functions are upward sloping. The
qualitative behavior of the rest of the variables is similar to the
previous case with two exceptions.®® First, the growth rate of
narrow output is no longer a U-shaped function of z, but instead it
Is an unambiguously decreasing funhction of z. Second, contrary to
the case when o, < 0, the growth rate of human capital is a
decreasing function of z. This means that a transition from high 2’s
will entail a rising growth rate of human capital.

The Case when o, = 4. This is the case when the consumption
smoothing effect and the wage effect exactly cancel so the policy
functions u{z) and a(z) are horizontal. As was the case with the
ap > 8, the qualitative behavior of the rest of the interesting
variables along the transition is very similar to the case when 8 <
oy, with two notable exceptions. The growth rate of narrow output
is an unambiguously decreasing function of z, and the growth rate
of human capital and the relative price are constant functions of z.

VII. TRANSITIONAL DYNAMICS IN THE GENERAL MODEL

Vila. Linear PPF’s ’

The Uzawa-Lucas model is a particular case where the educa-
tion sector does not use physical capital as an input of production.
We now want to analyze the transition of the more general model,
starting with the case when the production functions in the two
sectors are identical and all the point-in-time technologies exhihit
constant. returns to scale. As we showed in Section III, the PPF
associated with such a case is linear. The main finding here is that
the policy functions u(z) and a{z) are vertical lines at z*. Thus, if the
initial stock of physical capital is low relative to human capital so
that z < z*, then agents choose to invest (disinvest) at an infinite
rate in the physical (human) capital sector by setting v = & = ca.
This implies a discrete transformation of physical capital into

30. To economize on space, we do not repaort the figures corresponding to these
particular parameterizations.
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human capital. The opposite is true if z < z*. In either case, the
transition takes no real time.

The result of instantaneous transition (or ne transitional
dynamics) applies to any madel that yields a linear PPF regardless
of the values of o, and B,. Remember from Section III that
parameterizations that satisfy o, = 3, = 1 — o, = 1 — B, yvield
linear PPF's,

VIlb. Models with Strictly Concave PPF’s

In this section we study the stability properties of the general
model.3! We know from Section I1I that there are different ways to
get strictly concave PPF’s, One of them is to have different
productions in the two sectors. Another is to postulate diminishing
point-in-time returns in some of the technologies. One common
thing about them, however, is that the linearization of the dynamic
system (24) around the steady state always gives one negative and
two positive real eigenvalues. Hence, all the models are locally
saddle-path stable. Since we are able to calculate the policy
functions u(z) and a(z) for any value of z between zero and any
arbitrarily large positive number, the maodels are globally saddle-
path stable.

INTERESTING RESULT 8. If the point-in-time PPF of a two-sector
model of endogenous growth is linear, the model entails no
transition (i.e., the economy “‘jumps” to the steady state at
time zere). Thus, in erder to get transitions in real time, we
must have strictly concave PPF’s.

We now describe the form of the two policy funetions, wu{z) and
a(z), in the general two-sector model with a concave PPF. As was
the case for the Uzawa-Lucas model, the two policy functions are
downward sloping when 8 > 1, which we think is the most
plausible case.

An example of such policy functions is pictured in panels (i)
and (ii) of Figure II. They correspond to a case when the technolo-
gies in the two sectors are different and there are diminishing
point-in-time returns in all sectors. The exact parameters used are
reported in the notes to Table I1. Note that since «, < oy, a, < oy,
B, < Bs and P, < Ps, all technologies exhibit diminishing
point-in-time returns (see equation (6) and the subsequent. discus-
sion in Section II).

31. Again, we concentrate our simulations on models with no externalities.
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In the first two panels of Figure II, we note that both functions
are downward sloping. The function u(z) displays an inverse
S-shape, and it takes values strictly between zero and ane. The
reason is that we assumed decreasing point-in-time returns. In a
Cobb-Douglas framework such as ours, diminishing point-in-time
returns also imply infinite marginal products when u and v take
values of zero or one. Hence, it is never optimal for our economies
to devote none or all of the resources to the final output sector so u
always takes values between zero and one.?? This result, however,
does not hold in general. In particular, if we have constant
point-in-time returns in all sectors but the two technologies are
different (we know from Interesting Result 2 that the PPF in this
case is also strictly concave), then the policy function ux(z) is not
bounded by zero and one.

One of the key differences between this general model and the
Uzawa-Lucas model is that here the policy funetion for work effort,
u(z), is always downward sloping, even for low values of 8. In other
words, the relative wage effect cannot dominate in this model.
When z is low, the marginal product of physical capital in the
output sector is large so agents shift some of the physical capital to
that sector. This increases the wage rate (the marginal produet of
human capital in the final output sector) which leads agents to
shift human capital to that sector also. In the terminology used in
the previous section, the relative wage effect disappears, so low
levels of physical capital relative to human capital are associated
with high levels of activity in the final output sector.

The wealth or consumption-smoothing effect, on the other
hand, still exists. In fact, we find that, for low enough values of 6,
the willingness to intertemporally substitute consumption over
time is so large that agents are willing to increase the low physical
capital stock by giving up consumption relative to capital. Low
values of & are therefore associated with upward sloping a(z} policy
functions. Hence, unlike the Uzawa-Lucas madel this maodel can
have upward slaping a{z) and, at the same time, downward-sloping
1(z) policy functions.

Vile. Transitional Behauvior of Some Interesting Variables

The transitional dynamics of some interesting variables is
presented in Figure II. As was the case in the Uzawa-Lucas

32. One implication is that the speed at which the economy converges to the
steady state is lower when diminishing point-in-time refurns are present.
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specification, the growth rates of physical capital, consumption,
and full output are downward sloping (panels (iii}, (v}, and (vii)).
The growth rate of human capital is upward sloping, as was the
case in the Uzawa-Lucas model (panel (iv)).

The main difference between this model and that of Uzawa
and Lucas is that the growth rate of final output (and therefore the
measured output where only a fraction of the human capital
investment is accounted for) is much more likely to display a
U-shape with a minimum ¢o the left of the steady state (panels (vi)
and (viii)}., The rest of the variables {and in particular the saving
rate) have the same qualitative features as the ones in Uzawa and
Lucas.

The time paths for the growth rate of narrow output and
measured output are reported in the last two panels of Figure II,
respectively. The paths reported correspond to an economy whose
initial log of k/h is about twice as large as its steady-state value.
Note that the growth rate of narrow output is enormous for the
first ten years. The steady-state growth rate is reached in about 25
years. The growth rate of our intermediate measure of output is 14
percent at year zero. It then increases to about 15 percent in the
next couple of years. It then falls smoothly toward its steady-state
value of 2 percent, which is reached in about 25 years.

VIII. CONCLUSIONS

In this paper we studied the transitional dynamics of two-
sector models of endogenous growth. Unlike the neoclassical
growth models, transitions in these types of models arise because
of imbalances in the stocks of capital in the two sectars, not because
the levels of capital are different from the steady state. This means
that the transitional dynamics can be analyzed in terms of a
variable which reflects imbalances. This is what we called the
state-like variable z, which in most parameterizations used in this
paper, corresponds to the ratio of the twa capital stocks, & /.

Since an economy's growth can be predicted by its sectorial
imbalance, growth regressions should include proxies for the
imbalance as an explanatory variable. In another paper [Mulligan
and Sala-i-Martin, 1992bh] we use data for U. 3. states and find that
the ratio of output to human capital is important in explaining
growth rates.

We found that if the point-in-time PPF is linear, the transition
takes no real time. On the other hand, if the point-in-time PPF is
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strictly concave, there is transition in real time. In this latter case,
the models are always globally saddle-path stable.3

The transition involves three effects. First, when physical
capital is relatively low, the average product of capital is high so the
ratio of physical to human capital grows rapidly (this effect is the
same as in the Solow model with a constant saving rate}. Second,
there is a substitution or relative wage effect that leads people to
reduce work effort when physical capital is relatively low (low
wages). And third, there is a wealth or consumption smoothing
effect that leads people to high consumption relative to physical
capital, when physical capital is low. We find that for plausible
intertemporal elasticities of substitution (8 = 1), the wealth effect
dominates so the transition entails downward-sloping policy func-
tions u{z} (the fraction of labor used in the final output sector) and
a(z) (the ratio of consumption to physical capital).

One important empirical implication of the transitions studied
in this paper is that the growth rate of the economy reacts in an
asymmetric way to losses of human and physical capital. Imagine
that a war or a natural disaster destroys a large fraction of the
inputs of the economy. The growth rate predicted by the models
depends on how large the loss of human capital is relative to
physical capital. The Uzawa-Lucas madel says that if the loss of
human capital is larger, then the growth rate will be very low for a
long period of time. If the loss of physical capital is larger, the
growth rate will be large so the economy will recover quickly.

Hirshleifer [1963] provides some empirical support for this
prediction. He analyzes several historical episodes where an econ-
omy suffered a large disaster of some sort. The cases of Japan and
Germany during and after the Second World War, Russia after the
Soviet Revolution, the black death in Europe, and the American
Civil War lead him to conclude: “The speed and success of recovery
in the observed historical instances have been due in large part to
the praportionally smaller destruction of population than of mate-
rial resources” [p. 121].

After centuries of being one of the world’s leading economies,
China suffered a long period of economic slowdown after the
Mongol invasion that destroyed a substantial fraction of the stock
of human capital. The asymmetrie adjustment to destruction of
physical as opposed to human eapital is further supported by other

33. The last two statements were found to be true in the absence of
externalities.
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historical examples. Melos and Babylon, for instance, failed to
recover bath in terms of size and in terms of economic prosperity
after losing a substantial fraction of the population while keeping
their physical infrastructure intact. The Roman city of Carthage
came back to life only after a century of desolation.

APPENDIX: FIRST-ORDER CONDITIONS FOR THE GENERAL MODEL

The first-order conditions te the general program with respect
toc, k, h, u, andu are, respectively,

(Al) e e =)
(A2) —\ = MAaghesretportaiy o — §,)

+ U(¢,Bkkﬂrl+séhﬂa+sé(1 — )Pl — p)P)
(A3)  —1 = MAES* vhay fon L iy duyoo)

+ U(GRPTPBLAPATITPA(L —1)Pu(1 — )P — By)

(Ad} N(ARrokhontehe grou=lpo)

= (kP PERBATEAG (1 — )P~ (1 — u)P)
(AB)  N(Ahettakpontohy e yool)

= U(¢kﬁk+ﬂ£h8a+ﬂi(1 - u)ﬁuﬁu(l — y)Pemly,

where the aggregate consistency conditions A = k and £ = £ have
been used.’* The two limiting transversality conditions are

(A6) %im AMpERE) =0 and Eim vi)htt) = 0.

We can substitute the ratio of shadow prices in (A4) into
equation (A2) to get an expression for the growth rate of the
shadow price of physical capital A/ x. Also, by taking logarithms and
derivatives of (Al}, we get the growth rate of consumption as a
function of A/ A. If we put the two together, we get an expression for
consumption growth:

(A7) w8
B AR Sy (o Bault) + o B[l — u()))/B, — 8, — p
a )
where v, is defined as the growth rate of consumption, vy, = é/e.

34. The representative agent has the representative or average amount of hath
types of capital goods. Hence, it must be the case that A = hand &k = %,
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To find a relation between the fraction of physical capital used
in the final output sector and the fraction of human capital used in
the final output sector hetween the shares of capital employed in
each sector (x and v), divide equation (A4) by equation (A5) and get

u{t)
{A8) viu(s)) = m for all ¢,

where A = o,pB,/{o,p ) i$ a constant. This is equation (8} in the text.
Now take logarithms and time derivatives of both sides of equation
{A4) and use (A8) to get a relation between the growth rate of the
relative shadow price of the two capital goods (v, — v,), the growth
rates of the two capital stocks and work effort (v, v, and v,), and
the level of work effort, #. We can also plug the relative shadow
price fram (A5} into (A3) to get a value for the growth rate of the
shadow price of human capital, v/v. Using these last two equations
and (A7), we get

efh{l — u} {1 — ap)uf, + a,(1 — B K1 — u)l/ay,

(A% v, = denominator
2 By, + (G — Budve + (&) — Buvn — (p + 8,
denominator !
where
deneminator

(1L — ula, + up,/A
1-(1L—- Ay

= (1 —w)! ((l —a,) + oy, — B —

and e is defined in (3) in the text. Equation (A9) corresponds to (14)
in the text.
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