
Submitted to Management Science
manuscript

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Dynamic Optimization of Mobile Push Advertising
Campaigns

Xinshang Wang, Van-Anh Truong
Department of Industrial Engineering and Operations Research, Columbia University, New York, NY

{xw2230, vt2196}@columbia.edu

Shenghuo Zhu, Qiong Zhang
Alibaba Group, {shenghuo.zhu, qz.zhang}@alibaba-inc.com

We study a novel resource-allocation problem faced by Alibaba Group. In this problem, mobile “push mes-

sages” must be sent over the course of a day to hundreds of millions of users. Each message can be sent to

any number of users, and yields a reward when it generates a clickthrough, subject to a budget constraint

on the total reward over all users for the message. This budget represents the maximum amount that an

advertiser is willing to pay for clickthroughs for the message on a given day. Given users’ diverse preferences,

the problem aims to deliver the “right messages” to the “right users” to maximize ad revenues without

overwhelming each user with too many messages.

Due to the large size of the real application, we analyze algorithms for the above problem in an asymptotic

regime. We consider a novel scaling of the problem “size,” called big-data scaling. In this scaling, as the

problem size grows, the number of users, as well as their diversity, grow. The scaling captures the fact that

individual user information remains highly granular and distinctive even as the size of the user base increases.

We prove that solving the problem as a static assignment problem results in a regret of O(
√
t), where t

is the parameter scaling the problem. Furthermore, adding a single recourse opportunity, by sending push

messages in two cycles over the course of a day and making use of information observed in the first cycle

to adapt decisions in the second cycle, can reduce the regret to O(t1/4 log t). Finally, the difference in regret

between the static and dynamic strategy can be Ω(
√
t). Numerical experiments on three real data sets, each

containing several hundred million users, show that the latter strategy improves the regret of the former by

at least 10%-50%.

1

Author: Article Short Title
2 Article submitted to Management Science; manuscript no.

1. Introduction

Recent years have seen tremendous growth in the volume of sales taking place in mobile

commerce (m-commerce) markets. In these markets, customers visit online stores and

purchase products via mobile platforms, such as apps for iOS and Android systems. In

2015, more than US$200 billion in sales took place via a single mobile app developed

by Alibaba Group. Alibaba is an e-commerce company that provides a third-party plat-

form for business-to-customer and customer-to-customer markets, among many other ser-

vices. In China, the m-commerce market share of its mobile app, which has been installed

on several hundred million devices, is rapidly displacing traditional e-commerce markets

(Emarketer.com 2016).

Given the size of its user base, the mobile app of Alibaba Group, henceforth referred

to simply as the app, serves as a new channel for advertising and delivering personalized

recommendations. Owners of the app can choose to receive recommendations about prod-

ucts that are tailored to their interests. These recommendations are sent via mobile push

notifications. When a mobile push notification is sent to a user, a short message describing

the recommended product appears in the notification zone of the user’s mobile phone. The

user can either swipe the message away or click on the message to link to a new page

containing full details about the recommendation. We call the latter action a clickthrough.

Push messages are used to achieve two objectives. First, the messages are used to make

personalized recommendations about premium products selected from millions of online

stores at Alibaba Group. These recommendations prompt mobile users to visit and browse

products in the online markets, eventually generating more sales. Second, the messages

Author: Article Short Title
Article submitted to Management Science; manuscript no. 3

are designed to promote products for online stores that have applied to join advertising

campaigns organized by Alibaba Group. Such campaigns often aim at achieving a certain

impact on the user base, such as a desired number of clickthroughs that the campaign

messages need to attract. Retailers who want to advertise their products may offer to pay

for clickthroughs to their products.

Push messages are sent to hundreds of millions of mobile users every day (BusinessWire

2016). Given such a large user base, it is challenging to manage the delivery of the “right

messages” to the “right users” without overwhelming each user with too many messages.

In this paper, we model the problem faced by Alibaba Group of how to manage push

messages over a planning period. Without loss of generality, we take a period to be a day.

The problem is a novel resource-allocation problem. In this problem, there is a set of known

users, each owning a mobile device on which the app is installed. There is also a set of

distinct messages. Each message can be sent to any number of users, and yields a reward

when it generates a clickthrough, subject to a budget constraint on the total reward that

all the users can generate for the message. The budget represents the maximum amount

that an advertiser is willing to pay for clickthroughs to his product or website on a given

day. Since sending too many messages to the same user would have an adverse impact

on the user’s experience, each user must receive no more than one push message per day.

Over the course of a day, push messages can be sent sequentially to different users. Once

a message has been sent to a user, we can observe after some time whether the user clicks

on the message. The observed user actions can be used to update decisions about what

messages we want to send to subsequent users, so that we can make the most use of the

remaining budgets. We aim to maximize the total reward earned from all messages sent, by

adaptively determining the sequence of users to contact, together with their corresponding

messages. We do not consider any multi-day effect.

Author: Article Short Title
4 Article submitted to Management Science; manuscript no.

To achieve our goal, it is necessary to learn and calibrate the clickthrough probability

that we might expect from any given message-user pair. A typical method is to construct a

mapping p(x, y) between every vector of user features x and every vector of product features

y, and then fitting this mapping to historical information, as well as to data gathered in

experiments. At Alibaba, the construction and fitting of the mapping p(·, ·) is performed

as a separate data-mining and calibration problem. Accordingly, in this paper, we take the

view that the clickthrough probabilities will be provided as inputs to our model. Thus, we

will focus on the remaining optimization problem.

The following simple example illustrates our problem.

Example 1. There are two messages, A and B, to be sent out to two users X and Y

(see Figure 1). Each message can be sent to any of the two users, but each user should

receive exactly one message. For simplicity, we assume that each message has budget of

$1 and yields a reward of $1 when clicked. In other words, each message will exhaust all

of its budget on the first clickthrough. We assume that the clickthrough probabilities are

given by Figure 1.

Suppose that we send message B to both users X and Y. Then with probability 0.6×(1−

0.2), only X will click on message B, in which case we earn $1. With probability 0.6× 0.2,

both users will click on message B, but since message B has a budget of only $1, we only

earn $1 even though message B receives two clickthroughs.

The optimal strategy to maximize the expected total reward is to first send message

B to user Y. Then we observe whether Y clicks on B. If Y clicks on B (with probability

0.2), thereby exhausting the budget of message B, we next send message A to X. If Y does

not click on B, we next send message B to user X. The resulting total expected reward is

0.2× 0.4× $1 + 0.8× 0.6× $1 = $0.56. Note that the decision for user X is a dynamic one.

Which message X will receive depends on whether Y clicks on message B.

Author: Article Short Title
Article submitted to Management Science; manuscript no. 5

Figure 1

An interesting related question is how to adaptively find the optimal sequence of users

to contact, together with their corresponding messages. However, in practice, we cannot

implement a solution that makes an adaptive decision for every single user, simply because

it would take too long to observe the actions of all users one at a time. Users might not

immediately notice new push messages on their mobile devices. In practice, more than half

of all user actions (either clickthrough or dismissal) can be observed within 1 hour. Most

user actions can be observed within 3 hours. Furthermore, the clickthrough rate of users

who respond after 3 hours is negligible. Given such long response time, it is only practically

possible to send out messages in a small number of batches on each day. After sending out

each batch, we must wait for several hours to observe the feedback of users who were most

recently contacted. In this way, we must take advantage of a very small number of recourse

opportunities.

1.1. Overview of Algorithms and Contributions

We design an algorithm to determine how to send push messages in a small number of

cycles over the course of a day. The decisions for each cycle can be based on the observed

actions of all users contacted in previous cycles in the day. In the real application, it is

possible to send hundreds of millions of messages in a single cycle.

Due to the large size of the real application, we analyze algorithms in an asymptotic

regime. We consider a novel scaling of the problem “size,” called big-data scaling. In this

Author: Article Short Title
6 Article submitted to Management Science; manuscript no.

scaling, as the problem size grows, the number of users, as well as their diversity, as

characterized by the number of distinct profiles of user characteristics, both grow. We study

the regret of our algorithms, which captures the revenue loss of our algorithms relative to

an optimal algorithm, when the scale is large.

We analyze the performance of two algorithms for sending push messages. The first

algorithm, which we call the Static Algorithm, does not make dynamic decisions based on

user feedback, and essentially sends out all messages in one cycle. It represents a simple

attempt to tackle this problem without utilizing user feedback. We will show that the

Static Algorithm has asymptotic regret O(
√
t). Although this regret is diminishing in the

size t of the system, we show that it is possible to further reduce the regret.

To this end, we analyze a second algorithm, which we call the Reservation Algorithm.

The Reservation Algorithm sends out messages in two cycles. We prove that by making

use of only one additional cycle, the Reservation Algorithm is able to reduce the regret

to O(t1/4 log t). In other words, the regret of the Reservation Algorithm grows much more

slowly than that of the Static Algorithm as we scale up the system size t. Further, we prove

that the difference in regret between the Static Algorithm and the Reservation Algorithm

is Ω(
√
t).

Both of algorithms that we analyze make use of a solution to a linear program that

matches the expected number of clickthroughs with the budgets of the messages. Linear

programming has been used to design algorithms for various resource-allocation problems

because optimal solutions to linear programs are often useful guides for making allocation

decisions (Wang, Truong and Bank 2015). In our model, an assignment of users to messages

given by a static linear program performs the following basic tradeoff. If we send a message

to too many users, we might obtain more clickthroughs than are paid for by the budget

Author: Article Short Title
Article submitted to Management Science; manuscript no. 7

of that message. Thus, we waste the opportunity to have these users view other messages

and bring in rewards from other sources. In other words, we lose viewing opportunities.

On the other hand, if we send the message to too few viewers, we lose the opportunity of

generating more clickthroughs. Thus we lose potential rewards.

The Reservation Algorithm performs this tradeoff by using a re-solving heuristic. To

be more specific, the algorithm sends out messages in the first cycle based on an optimal

solution to a linear program. Then after observing the clickthroughs that each message

receives from the first batch of users contacted, the algorithm re-solves a linear program

that matches the remaining budgets of the messages to the remaining users.

We test the numerical performance of the above two algorithms by simulating them on

production data provided by Alibaba. The data contains three large batches of messages

that were sent to several hundred million users in three separate days in March 2016, along

with the clickthrough probabilities for all user-message pairs, which were estimated by

Alibaba. Our computational results show that by exploiting user feedback, the Reservation

Algorithm can reduce the regret of the Static Algorithm by at least 10%-50%. This result

suggests that the idea of dynamically optimizing the allocation of push messages is highly

promising.

2. Literature Review

Our problem is related to revenue-management problems, as it aims to maximize a total

expected reward that can be obtained by dynamically allocating demands (users) to

resources (messages). Traditional revenue-management problems focus on situations in

which demands arrive randomly and exogenously over time (Talluri and van Ryzin 2004).

In contrast, in our model we can control the demands, or the users to be contacted. How-

ever, our model limits the number of opportunities at which dynamic decisions can be

made.

Author: Article Short Title
8 Article submitted to Management Science; manuscript no.

Reiman and Wang (2008) first prove that for a network revenue-management problem,

re-solving a linear program can help to reduce the total regret to o(
√
t). Their algorithm,

which only re-solves the linear program once, cannot be applied to our model as they

require observing the system state at every point in time. Recall that in our model, we can

observe the action of users, or the consequences a decision, only a small number of times

due to the long response time needed to acquire user feedback.

Jasin and Kumar (2012) also study a network revenue-management problem for which

they propose an algorithm having constant regret that is independent of the system size

t. However, their algorithm requires resolving LP, and thus observing the system state,

infinitely many times as they scale up the system size t. As a result, their algorithm cannot

be easily adapted to our setting.

Agrawal, Wang and Ye (2009) and Jasin (2015) study online resource-allocation problems

in the asymptotic regime. However, in their model, the distribution of demand arrivals is

unknown and exogenous. Their algorithms either have regret that is at least O(
√
t), or

require resolving linear programs too many times and therefore, are impractical for our

setting.

Another stream of research that is related to our model is the stream of research on

ad allocation. Here, similar to our setting, the goal is to find a high-reward allocation

between customers and ads with given budgets. Examples include Jaillet and Lu (2014),

Manshadi, Vahideh, Gharan and Saberi (2012), Feldman, Mehta, Mirrokni and Muthukr-

ishnan (2009), and Haeupler, Mirrokni, and Zadimoghaddam (2011). These works focus

on finding allocation algorithms with constant bounded performance guarantees relative

to an offline algorithm, which knows all future information upfront. In those models, the

sequence of customer arrivals is exogenous, and in certain cases the algorithms do not have

Author: Article Short Title
Article submitted to Management Science; manuscript no. 9

full distributional information regarding future arrivals. As a result of the differences in

the modeling assumptions, they cannot be applied to our model to obtain a regret that is

smaller than O(
√
t).

We remark that our problem is different from models of online customer selection

(Elmachtoub and Levi 2016, 2015). In these models, although the decision maker has the

ability to select which customers to offer resources to, the sequence of customer arrivals is

still exogenous.

3. Model Formulation

We now formally state our model. There are m different messages and n users. Each

message can be sent to any number of users. We make the following main assumptions:

Clickthrough probabilities. If message j ∈ {1,2, ...,m} is sent to user i∈ {1,2, ..., n},

the user will click the message with known probability pij. All the pij’s are given as inputs.

For each user i, we call the vector pi = (pi1, pi2, ..., pim) consisting of clickthrough probabil-

ities for user i for all messages a user profile. We also call the set of all user profiles {pi}ni=1

a user pool.

User fatigue. To limit user fatigue, each of the n users must not receive more than one

message. As mentioned earlier, we only consider a single-day problem, so this assumption

is equivalent to requiring that no more than one message must be sent to each user per

day.

Reward and budget. Each message j ∈ {1,2, ...,m} has budget of cj · rj. We call cj

the capacity of message j. If message j receives k clickthroughs in total, then we earn a

reward of rj min(k, cj) from message j. In this way, we view messages as resources, and the

capacity of a resource is the number of clickthroughs that will just exhaust the budget.

Special message 1. Among the m messages, message 1 is a personalized recommen-

dation that recommends products selected from all online stores at Alibaba Group. We

Author: Article Short Title
10 Article submitted to Management Science; manuscript no.

assume that message 1 has infinite capacity because there is no limit as to how many

additional visits the online market can receive. The reward r1 can be interpreted as the

long-term expected marginal reward of a visit.

Other messages 2,3, ...,m correspond to campaigns and commercial ads, and have finite

capacity values.

In practice, most users prefer products recommended by message 1 over products in

other campaign and advertising messages. The reason is that we personalize this message

1 to every user by selecting his/her favorite products from millions of online stores at

Alibaba. It is unlikely that we cannot find a product from such a huge number of stores

that a user prefers over products in other messages (except on the infrequent occasions

that advertizers offer huge discounts for their products). We formally state these conditions

in the following assumption.

Assumption 1.

c1 =∞, pi1 ≥ pij ∀i= 1,2, ..., n, j = 1,2, ...,m.

According to this assumption, no user will ever receive message j if rj < r1, because instead

of sending message j, it is more beneficial to send message 1 that has a larger clickthrough

probability and a larger reward value. Therefore, we assume that rj ≥ r1 for all message

j ∈ {2,3, ...,m}. In other words, we assume that the marginal reward earned from campaign

and advertising messages is at least r1.

Number of cycles. The system can sequentially send messages to the n users in several

cycles throughout the day. At the beginning of each cycle, the system can observe the

clickthroughs in the previous cycle. Then the system sends messages to a subset of users

who have not received messages yet. The decision of which messages to be sent to which

Author: Article Short Title
Article submitted to Management Science; manuscript no. 11

users in each cycle can be adapted to the clickthroughs observed previously. An algorithm

can choose how many cycles to use. However, for the algorithm to be practically useful,

the number of cycles used should be small.

Objective. The objective is to maximize the expected total reward, where the expec-

tation is taken over random user responses (i.e., clicking or not). Mathematically, under a

policy Π, let IΠ
ij indicate whether user i clicks message j. The expected total reward V Π of

Π is

V Π = E[
m∑
j=1

rj min(

n∑
i=1

IΠ
ij , cj)].

4. Performance Measure

We want to compare the performance of our algorithms against that of an optimal algo-

rithm OPT . As discussed earlier, an algorithm is limited to using a few cycles if it is to be

practically useful. However, we relax this requirement for OPT , and allow OPT to take an

unlimited number of cycles. Then, OPT will never risk wasting opportunities by sending

out too many messages in a single cycle. Therefore, we must have

n∑
i=1

IOPTij ≤ cj, ∀j = 1,2, ...,m, w.p.1, (1)

And the objective value of OPT is

V OPT =
m∑
j=1

rj ·
n∑
i=1

E[min(IOPTij , cj)] =
m∑
j=1

rj ·
n∑
i=1

E[IOPTij]. (2)

We define the regret of an algorithm Π as the difference between V OPT and V Π.

V OPT −V Π =

m∑
j=1

rj ·
n∑
i=1

E[IOPTij]−E[

m∑
j=1

rj ·min(

n∑
i=1

IΠ
ij , cj)].

Author: Article Short Title
12 Article submitted to Management Science; manuscript no.

5. Linear-Programming Formulation and Upper Bound on OPT

It is difficult to directly analyze the optimal policy OPT due to its complex dynamic

properties. We are thus motivated to investigate an upper bound on V OPT that is compu-

tationally tractable. In this section, we show that V OPT can be bounded by the optimal

objective value of a linear program, which allocates users to messages once in an expected

sense. The algorithms we present in subsequent sections will also be based on an optimal

solution to the same linear program.

To this end, consider the following pairs of LP’s that are dual to each other:

Primal:

V LP = max
s∈Rn+m

n∑
i=1

m∑
j=1

rjsijpij

s.t.
n∑
i=1

sijpij ≤ cj, ∀j = 1,2, ...,m

m∑
j=1

sij = 1, ∀i= 1,2, ..., n

sij ≥ 0, ∀i, j.

(3)

Dual:

min
γ∈Rm, η∈Rn

m∑
j=1

cjγj +
n∑
i=1

ηi

s.t. ηi ≥ (rj − γj)pij, ∀i= 1,2, ..., n, j = 1,2, ...,m

γj ≥ 0, ∀j = 1,2, ...,m.

(4)

Both the primal and dual forms of the linear program have physical interpretations.

In the primal problem (3), the decision variable sij represents the fraction of user i to

be allocated to message j. For each message j, the linear program matches the expected

number of clickthroughs to the capacity cj. In the dual problem (4), the dual variable γj

corresponds to the primal constraint
∑n

i=1 sijpij ≤ cj, and ηi corresponds to
∑m

j=1 sij = 1.

Author: Article Short Title
Article submitted to Management Science; manuscript no. 13

Let s∗, γ∗, η∗ be a set of optimal dual variables. According to complementary slackness, if

s∗ij > 0, i.e., the optimal solution allocates user i to message j with positive probability, we

must have

j ∈ arg max
k=1,2,...,m

{(rk− γ∗k)pik}. (5)

If we view γ∗k as a cost incurred by every clickthrough of message k, then (rk−γ∗k)pik is the

expected profit of sending message k to user i. In other words, the dual problem implies

that every user is allocated a message that maximizes the expected profit in this sense.

The following theorem shows that the expected total reward of OPT can be bounded

by the above linear program.

Theorem 1.

V OPT ≤ V LP .

The Static Algorithm is a naive implementation of the LP solution. The algorithm sends

out all messages in a single cycle based on an optimal solution to the LP (3). The name

static comes from the fact that it does not adapt to user feedback.

Static Algorithm:

1. Solve the linear program (3). Let s∗ be an optimal solution.

2. In a single cycle, send message j to user i with probability s∗ij, for all i= 1,2, ..., n,

j = 1,2, ...,m.

We will use analyze the performance of the Static Algorithm in Section 14 and use that

as a basis for comparison when analyzing the performance of our Reservation Algorithm,

which we will describe in the next section.

6. The Reservation Algorithm

In this section we present the Reservation Algorithm, which refines the Static Algorithm

by adapting to user feedback. Specifically, the algorithm sends out messages in two cycles.

Author: Article Short Title
14 Article submitted to Management Science; manuscript no.

In the first cycle, it partially sends out messages based on s∗. This step is similar to the

Static Algorithm except that some users are reserved for the second cycle. Then based on

user feedback, the algorithm re-solves a linear program for the remainder of capacity and

users. In the second cycle, the algorithm sends messages according to an optimal solution

to this re-optimized linear program.

Core to the algorithm is the decision of which users should be reserved (i.e., should not

receive messages in the first cycle). Intuitively, if s∗ allocates user i to message j (i.e.,

s∗ij = 1) but we do not send user i any message in the first cycle, we are hoping that in

case message j has its budget exhausted in the first cycle, user i can be directed to some

other message having positive remaining budget. Thus, for each message j, we want to

reserve a certain number of users who are allocated to message j according to s∗, who also

have relatively high clickthrough probabilities for other messages. These users are good

candidates for redirection, in case the budget of message j becomes exhausted after the

first cycle.

The actual set of users reserved by the Reservation Algorithm is determined by a param-

eter ∆, which we call the reservation level. Given a problem instance, we can run the

algorithm using any value of ∆. The remaining capacity of each message that is unassigned

in the first cycle due to reservation will be roughly proportional to ∆. In theory, we will

show a way of choosing the parameter ∆ to ensure an upper bound on the regret of the

algorithm. In practice, we can tune ∆ to achieve the best empirical performance.

The Reservation Algorithm works as follows:

1. Solve the linear program (3) to find an optimal solution s∗ such that
∑n

i=1 ‖s∗i ‖0 ≤

n+m2, where ‖ · ‖0 stands for the number of non-zero elements in the vector. In other

words, the number of users who are simultaneously (fractionally) allocated to multiple

Author: Article Short Title
Article submitted to Management Science; manuscript no. 15

messages should be no more than m2. This condition is not required to implement this

algorithm in practice, but only to simplify the analysis. Our Proposition 1 guarantees that

one such s∗ always exists and can be easily found by adding some infinitesimally small

noise to the coefficients pij’s of the linear program.

2. For every pair of messages j, k ∈ {1,2, ...,m}, j 6= k, solve the following problem to

find a set Rjk that contains users who are intended for message j according to s∗, but who

will be now reserved for message k in the second cycle.

min
Rjk⊆{1,2,...,n}

∑
i∈Rjk

s∗ijpij

s.t. pikplj ≥ plkpij ∀i∈Rjk, l 6=Rjk

∑
i∈Rjk

s∗ijpij ≥min(∆,
n∑
i=1

s∗ijpij).

(6)

The first constraint of this optimization problem states that the users i ∈ Rjk selected

should be those having the largest ratios of pik/pij among all users. These users are deemed

the most promising to be reserved for message k. The second constraint states that either

Rjk is the set of all users, or the expected number of clickthroughs that message j is to

receive from the users in Rjk, according to the allocation s∗, is at least ∆. The objective

function keeps the expected number of clickthroughs that are reduced due to the reservation

as small as possible.

Note that for some user i and message j, it is possible to have i∈Rjk for many different

k’s, meaning that user i is suitable to be redirected to multiple different messages in the

second cycle. Furthermore, since the objective function keeps minimal the size of Rjk, we

must have ∑
i∈Rjk

s∗ijpij ≤∆ + 1. (7)

Author: Article Short Title
16 Article submitted to Management Science; manuscript no.

3. Send message j to user i in the first cycle with probability

x
(1)
ij ≡ s∗ij ·1(i 6∈

m⋃
k=1,k 6=j

Rjk). (8)

Note that the condition i ∈Rjk only indicates that the algorithm reserves the fraction s∗ij

of user i that is allocated to message j; if there is another fraction of user i allocated to

some other message, say j′, then user i may receive message j′ in the first cycle even if

i∈Rjk.

Compared to the Static Algorithm, this step reduces the expected number of click-

throughs that each message j will receive in the first cycle by

n∑
i=1

1(i∈
m⋃

k=1,k 6=j

Rjk)s∗ijpij ≤
m∑

k=1,k 6=j

∑
i∈Rjk

s∗ijpij ≤ (m− 1)(∆ + 1), (9)

where the last inequality follows from (7).

4. Let Dj be the actual number of clickthroughs that message j receives in the first

cycle. Solve the following linear program that allocates the residual demands to capacities.

max
xij ,i=1,2,...,n,j=1,2,...,m

n∑
i=1

m∑
j=1

rjxijpij

s.t.
n∑
i=1

xijpij ≤ (cj −Dj)
+, ∀j = 1,2, ...,m

m∑
j=1

xij = 1−
m∑
j=1

x
(1)
ij , ∀i= 1,2, ..., n

xij ≥ 0, ∀i, j.

(10)

5. Let x(2) be an optimal solution to (10). In the second cycle, for any user i∈ {1,2, ..., n}

who was not sent message in the first cycle, send message j to the user with probability

x
(2)
ij∑m

k=1 x
(2)
ik

.

The following proposition establishes the condition that
∑n

i=1 ‖s∗i ‖0 ≤ n+m2 as required

in the Reservation Algorithm.

Author: Article Short Title
Article submitted to Management Science; manuscript no. 17

Proposition 1. Consider the non-trivial case where r1 > 0 and ‖pi‖1 > 0 for every

i ∈ {1,2, ..., n}. If for any two users i, l ∈ {1,2, ..., n}, i 6= l, and any two messages j, k ∈

{1,2, ...,m}, j 6= k, we have pikplj 6= plkpij, then any optimal solution s∗ to the linear pro-

gram (3) must satisfy
∑n

i=1 ‖s∗i ‖0 ≤ n+m2.

The regret of the Reservation Algorithm clearly depends on the value of ∆. In the special

case of ∆ = 0, the algorithm does not reserve any users and thus reduces to the Static

Algorithm. The Reservation Algorithm chooses ∆ as

∆ =C ·
m∑
j=2

√
cj · log

m∑
j=2

cj, (11)

where C > 0 is any small constant that we can further tune to improve the performance of

the algorithm. Note that messages 2 to m have finite capacity values (see Section 3), so ∆

is finite.

7. Overview of Analysis of the Reservation Algorithm

In this section, we outline a way to bound the regret of the Reservation Algorithm. We

prove this result by analyzing the gap between the expected total reward of this algorithm

and the upper bound on the optimal total reward given by Theorem 1.

Recall that Dj is the random number of clickthroughs that message j receives in the

first cycle, which is a Poisson binomial random variable with mean E[Dj] =
∑n

i=1 x
(1)
ij pij.

Define δj to be the noise in Dj

δj ≡Dj −E[Dj] =Dj −
n∑
i=1

x
(1)
ij pij. (12)

Our analysis is based on the idea of viewing δj as a small perturbation to the capacity

cj. After the first cycle, the remaining capacity of message j is (cj −Dj)
+, which can be

written as

(cj −Dj)
+ = [(cj − δj)+−E[Dj]]

+.

Author: Article Short Title
18 Article submitted to Management Science; manuscript no.

Intuitively, we view (cj − δj)+ as the perturbed capacity of message j. Then the noise δj

arises from this random capacity (cj − δj)+.

The following is the perturbed linear program in which the capacity of message j is

perturbed by δ.

V LP (δ) = max
sij ,i=1,2,...,n,j=1,2,...,m

n∑
i=1

m∑
j=1

rjsijpij

s.t.

n∑
i=1

sijpij ≤ (cj − δj)+, ∀j = 1,2, ...,m

m∑
j=1

sij = 1, ∀i= 1,2, ..., n

sij ≥ 0, ∀i, j.

(13)

Note that V LP (δ) is a random variable as it is a function of the random noise δ. The

following lemma, which will later be used in the analysis, relates our Reservation Algorithm

to the perturbed linear program.

Lemma 1. If there exists an optimal solution s(δ) to the perturbed linear program (13)

such that s(δ)≥ x(1) component wise, then x(1) +x(2) must be an optimal solution to (13).

Let V RA be the expected total reward of the Reservation Algorithm. We bound the gap

between V RA and the upper bound V LP on the optimal reward by using V LP (δ) as an

intermediate value between the two, and by writing the gap as the sum of two smaller

gaps:

V LP −V RA = (V LP −E[V LP (δ)]) + (E[V LP (δ)]−V RA).

The first gap, namely V LP −E[V LP (δ)], depends on the way in which V LP (δ) behaves

as a function of δ. It is easy to check that V LP (δ) is concave for all δ ≤ c, and the first

derivatives of V LP (δ) with respect to δ are equal to the negative of dual variables associated

Author: Article Short Title
Article submitted to Management Science; manuscript no. 19

with capacity constraints of (13) (Bertsimas and Tsitsiklis 1997). Therefore, if the size of

δ is much smaller than c, we have from Jensen’s inequality that

E[V LP (δ)]≤ V LP (E[δ]) = V LP (0) = V LP .

The gap V LP −E[V LP (δ)] is small if the first derivatives of V LP (δ), or the dual variables

of the perturbed linear program, change smoothly in δ. We will prove in Theorem 2 of

Section 8 that if γ(c) is a vector of optimal dual variables to the linear program (3) when

the capacity vector is c and if ek is the unit basis vector with the k-th element being 1,

then provided that there exists a constant number γ̄ > 0 such that

|γj(c)− γj(c+αek)| ≤ γ̄ (14)

for all j, k ∈ {1,2, ...,m}, all α∈ [0,1] and for all c∈Rm
+ with c1 =∞, we have

V LP −E[V LP (δ)]≤m2(n+
√
n)γ̄.

The second gap, namely E[V LP (δ)] − V RA, is largely determined by the difference

between the assignments made by the Reservation Algorithm and the perturbed linear

program. We will show that when ‖δ‖1 is not too large compared to ∆, x(1) + x(2) will

be an optimal solution to the perturbed linear program. That is, the assignment made

by the Reservation Algorithm will be very close to the assignment for V LP (δ), and hence

the total expected reward of the Reservation Algorithm will be close to V LP (δ). We prove

a condition by which x(1) + x(2) is optimal for the perturbed linear program, by viewing

our model as a generalized network flow problem and by utilizing flow properties in the

generalized network. We will prove in Theorem 6 of Section 9 that

E[V LP (δ)]−V RA ≤
m∑
j=1

rj

[√
m∆ + 3m2 +nP (Ō) +

√
nP (Ō)

]
,

Author: Article Short Title
20 Article submitted to Management Science; manuscript no.

where O denote the event that
∑m

j=2 |δj|
rj
r1
≤∆.

Combining the bounds on the two gaps, we will obtain a bound on the regret of the

Reservation algorithm as

V LP −V RA ≤m2(n+
√
n)γ̄+

m∑
j=1

rj

[√
m∆ + 3m2 +nP (Ō) +

√
nP (Ō)

]
. (15)

Finally, in Section 10, we will show that this bound grows relatively slowly under an

appropriate asymptotic scaling of the problem. Part of this analysis involves showing that,

under reasonable assumptions, condition (14) holds when we reduce γ̄ while scaling up the

size of the problem.

8. Bound on the First Gap

In this section, we give a bound on the first of the two gaps described in Section 7, namely,

V LP −E[V LP (δ)].

Theorem 2. Let γ(c) be a vector of optimal dual variables to the linear program (3)

when the capacity vector is c. Let ek be a unit basis vector with the k-th element being 1.

If there exists a constant number γ̄ > 0 such that

|γj(c)− γj(c+αek)| ≤ γ̄ (16)

for all j, k ∈ {1,2, ...,m}, all α∈ [0,1] and for all c∈Rm
+ with c1 =∞, then we have

V LP −E[V LP (δ)]≤m2(n+
√
n)γ̄.

The intuition for the above result is that if the dual vector γ changes smoothly as a function

of the capacity c, then the difference in value between the two LP ’s can be bounded.

Author: Article Short Title
Article submitted to Management Science; manuscript no. 21

9. Bound on the Second Gap via Generalized Network Flows

In this section, we cast our static linear-programming formulation as a generalized network

flow problem (Wayne 1999). The generalized networks corresponding to the original and

the perturbed linear programs are the same, except that some of the edges have different

capacity values. Based on network-flow properties, we analyze how an optimal flow, or

equivalently, an optimal assignment given by the linear program (3), changes when the

capacity values are perturbed by δ. This analysis enables us to bound the second of the

two gaps described in Section 7, namely the difference E[V LP (δ)]−V RA.

As a main result of this section, we show that the resulting changes made to an optimal

assignment can be bounded by the size of δ. This result will lead to a condition by which

x(1) +x(2), which is the solution used by RA (with objective value V RA), is optimal for the

perturbed linear program (with objective value E[V LP (δ)]).

Figure 2 In a generalized flow network, every user i corresponds to a user node ui, and every message j

corresponds to a message node vj . T is the sink.

The network-flow problem we describe next specializes the generalized network-flow

problem (Wayne 1999) to a specific graph. There will be a few minor changes that we will

point out presently.

9.1. Construction of a generalized flow network

We now construct our generalized network-flow problem. In our flow network, there is a

set U of user nodes and a set V of message nodes. Each user i ∈ {1,2, ..., n} corresponds

Author: Article Short Title
22 Article submitted to Management Science; manuscript no.

to a user node ui ∈ U , and each message j ∈ {1,2, ...,m} corresponds to a message node

vj ∈ V . There is also a sink T . Every user node ui has an initial excess e(ui) = 1. The initial

excesses at all other nodes are 0. The unit initial excess at a user node ui means that there

is a single user i to be assigned to a message.

Figure 2 illustrates the set E of directed edges in the generalized network. From every

user node ui ∈U to every message node vj ∈ V , there is an edge (ui, vj)∈E having capacity

c(ui, vj) =∞. From every message node vi to the sink, there is an edge (vi, T)∈E having

capacity c(vj, T) = cj.

A generalized pseudo-flow is a function f :E→R+ that satisfies the capacity constraints

0≤ f(u, v)≤ c(u, v), ∀(u, v) ∈E. Note that according to Assumption 1, starting from any

user node ui ∈ U , there is always a path ui→ v1→ T having infinite capacity. Thus, it is

always possible to push all initial excesses at all user nodes to the sink.

In a generalized network-flow problem, flows might not be conserved along edges. Every

edge (u, v)∈E is associated with a gain factor µ(u, v). When a flow is sent along an edge

(u, v)∈E by a generalized pseudo-flow f , the size of the flow leaving from u is f(u, v), while

the size of the flow arriving at v is µ(u, v)f(u, v). In our problem, every edge (ui, vj) from

a user node ui to a message node vj has gain factor µ(ui, vj) = pij. In this way, the size of

a flow f(ui, vj) leaving ui represents the allocation sij in the linear program (3), while the

size of flow µ(ui, vj)f(ui, vj) = pijf(ui, vj) arriving at vj represents the expected number of

clickthroughs that message j receives from user i. Every edge (vj, T) from a message node

vj to the sink has gain factor µ(vj, T) = rj. In this way, the size of a flow f(vj, T) leaving

vj represents the total expected number of clickthroughs assigned to message j, while the

size of the flow µ(vj, T)f(vj, T) = rjf(vj, T) arriving at T represents the expected reward

earned from message j.

Author: Article Short Title
Article submitted to Management Science; manuscript no. 23

The excess of a node u (as opposed to the initial excess) is the difference between the

initial excess at u and the net outflow at u:

e(u)−
∑

(u,v)∈E

f(u, v) +
∑

(v,u)∈E

µ(v,u)f(v,u).

In this paper, we call a generalized pseudo-flow f a feasible flow if f has zero excess at

all nodes other than T . Consequently, every feasible flow corresponds to a feasible solution

to the linear program (3) in the following way

f(ui, vj) = sij, ∀i= 1,2, ..., n, j = 1,2, ...,m,

f(vj, T) =

n∑
i=1

sijpij, ∀j = 1,2, ...,m.

The objective of our generalized network-flow problem is to find a feasible flow that

maximizes the excess at the sink, which is by definition

e(T)−
∑

(T,v)∈E f(T, v) +
∑

(v,T)∈E µ(v,T)f(v,T)

= 0− 0 +
∑

(v,T)∈E µ(v,T)f(v,T)

=
∑

(v,T)∈E µ(v,T)f(v,T)

=
∑m

j=1 rjf(vj, T)

=
∑m

j=1 rj
∑n

i=1 sijpij. (17)

Thus, every optimal solution s∗ to (3) must correspond to an optimal flow f ∗.

For any generalized pseudo-flow f , the residual network with respect to f is the network

Gf = (U,V,T,Ef , cf , µ, e), where Ef is the set of directed edges in the residual network

defined as

Ef = {(u, v)∈E : f(u, v)< c(u, v)}∪ {(v,u) : (u, v)∈E,f(u, v)> 0},

Author: Article Short Title
24 Article submitted to Management Science; manuscript no.

and cf is the residual capacity defined for every edge in Ef in the following way. If (u, v)∈E,

then cf(u, v) = c(u, v)− f(u, v); otherwise, cf(u, v) = µ(v,u)f(v,u).

For every edge (u, v)∈Ef in the residual network, we further define its length as w(u, v) =

− logµ(u, v) if (u, v)∈E, and w(u, v) = logµ(v,u) if (u, v) 6∈E. By this definition, if a flow

is pushed in the residual network along a path d1→ d2→ · · · → dk such that the excesses

at all nodes are unchanged except at d1 and dk, then the size of the flow arriving at dk is

e−[w(d1,d2)+w(d2,d3)+···+w(dk−1,dk)] (18)

times the size of the flow leaving node d1 (for a more detailed discussion, see Wayne

(1999)). Therefore, the flow arriving at the last node of the path is larger (smaller) than

the flow leaving from the first node if the total length of the path w(d1, d2) +w(d2, d3) +

· · ·+w(dk−1, dk) is negative (positive). In particular, if the path is a cycle, i.e., d1 is the

same node as dk, then the flow returning to d1 is greater than the flow leaving d1 if and

only if the cycle is a negative cycle, i.e., the total length of the cycle is negative. In other

words, if we push a flow along a negative cycle, we can increase the excess at one node in

the cycle without changing the excesses at all other nodes.

Previous works have studied various types of augmentations for the generalized network

flow problem. Given a generalized pseudo-flow, an augmentation modifies flow values on

a certain subset of edges in the residual network, such that the resulting flow remains a

generalized pseudo-flow. Most often, an augmentation keeps the excesses of most nodes

unchanged. In this paper we focus on two types of augmentations: augmentation along

paths and along cycles. Here a cycle can be as well seen as a path that starts and ends

at the same node. Both types of augmentations aim at increasing the excess at the sink,

thereby increasing the objective value of the solution corresponding to the resulting flow

Author: Article Short Title
Article submitted to Management Science; manuscript no. 25

as we showed in (17). When an augmentation is performed along a path in the residual

network from node v to the sink T , a flow is pushed along the path such that the excess at

v is reduced, the excess at T is increased, and the excess at every other node is unchanged.

If v is itself the sink, and the augmentation is performed along a cycle that covers v = T ,

then the excess at v= T increases if and only if the cycle is a negative cycle (see (18)).

9.2. Properties of optimal flows in our generalized flow network

Based on special properties of our model, the following theorem strengthens a known result

(for example, see Wayne (1999)) that when a generalized pseudo-flow has no negative cycle

in the residual network and has zero excess at all nodes other than T , then the maximum

flow is attained.

Theorem 3. In our model, a feasible flow f is optimal if and only if there is no negative

cycle in the residual network Gf .

Proof. It has been proved that when a generalized pseudo-flow has zero excess at all

nodes other than T and has no negative cycle in the residual network, the flow is optimal

(for example, see Wayne (1999)). Thus, a feasible flow f with no negative cycles in Gf

must be optimal.

To prove the other direction, suppose f is an optimal flow with a negative cycle in the

residual network. Then we can push a flow along the cycle to create a positive excess at

some user node u while keeping the excess at all other nodes unchanged. We then direct

this excess created at node u through the path u→ v1→ T that has infinite capacity. In

this way, we obtain a feasible flow with a larger size of excess at the sink, which proves

that the original flow f is not optimal. �

Now we consider the problem of how to modify an optimal flow when the capacity of

some message k ∈ {2, ...,m} is perturbed. Note that perturbing the capacity of message

Author: Article Short Title
26 Article submitted to Management Science; manuscript no.

1 has no impact as it has infinite capacity. We give algorithms that find an optimal flow

for the perturbed network by modifying a given optimal solution to the original network.

These algorithms are designed mainly for the purpose of providing structural results for

our model. The algorithms are not meant to be implemented. Rather, we use them to

argue certain facts about the way in which an optimal solution changes when the capacity

of some message k ∈ {2, ...,m} changes.

Let G= (U,V,T,E, c,µ, e) and Ḡ= (U,V,T,E, c̄, µ, e) be two generalized networks of our

model that differ by the capacity on a single edge (vk, T) for some given k ∈ {2, ...,m}.

Given an optimal flow f for the network G, the following algorithms find an optimal flow

for Ḡ by successively performing augmentations along shortest paths or negative cycles

in the residual network. We give a different algorithm depending on whether c̄(vk, T) is

greater than or less than c(vk, T).

Case 1. Algorithm for the case 0≤ c̄(vk, T)< c(vk, T):

1. Construct a generalized pseudo-flow f̄ for Ḡ as follows. Let

f̄(vk, T) = min(c̄(vk, T), f(vk, T)) (19)

for the edge (vk, T), and let f̄(u, v) = f(u, v) for all other edges (u, v) ∈ E. Since f is

optimal for G, there is no negative cycle in the residual network Gf according to Theorem

3. It is easy to see that there is also no negative cycle in the residual network Ḡf̄ because

according to (19), the edge set of Gf must contain the edge set of Ḡf̄ . Thus, if f̄ is feasible,

then f̄ is already an optimal flow for Ḡ.

Now suppose that f̄ is not feasible. It must be that the excess at node vk is positive.

2. Find a shortest path from vk to T in the residual network Ḡf̄ .

3. Perform an augmentation along the shortest path such that either the excess at node

vk reaches 0 or the residual capacity of one of the edges in the path is reduced to 0. Update

the residual network Ḡf̄ .

Author: Article Short Title
Article submitted to Management Science; manuscript no. 27

4. Stop if f̄ becomes feasible. Otherwise, go to step 2.

It is easy to check that there will be no negative cycle generated in the residual network

throughout the algorithm, because otherwise, the previous shortest path would have passed

though the negative cycle to further reduce the total length of the path. Furthermore,

the algorithm must terminate in a finite number of iterations because the shortest length

from vk to T in the residual network must be (weakly) increasing after each iteration, and

thus at most one augmentation can be performed along every possible path from vk to T .

Therefore, the algorithm outputs an optimal flow f̄ for Ḡ.

Case 2. Algorithm for the case c̄(vk, T)> c(vk, T).

1. Start with an initial flow f̄ = f . Suppose f̄ is not optimal for Ḡ. Then since f̄ is

feasible for Ḡ, there must exist some negative cycle in the residual network Ḡf̄ . Moreover,

all negative cycles in Ḡf̄ must include the edge (vk, T).

2. Find a simple cycle, i.e., a cycle that contains only distinct nodes, having the smallest

(negative) total length. This can be solved by finding a shortest path from T to vk.

3. Perform an augmentation along this shortest negative cycle to increase the excess at

T such that the residual capacity of one of the edges in the cycle is reduced to 0. Update

the residual network Ḡf̄ . After the augmentation, all negative cycles in Ḡf̄ , if there is any,

must still pass through (vk, T) because the augmentation is performed along the shortest

cycle.

4. Stop if there is no more negative cycles in Ḡf̄ . Otherwise, go to step 2.

The algorithm must terminate in a finite number of iterations because the length of the

shortest negative cycle must be (weakly) increasing after each iteration, and thus at most

one augmentation can be performed along each possible cycle in the residual network.

Therefore, this algorithm outputs an optimal flow f̄ for the network Ḡ, as f̄ is always

Author: Article Short Title
28 Article submitted to Management Science; manuscript no.

feasible throughout the algorithm and, by the end of the algorithm, there is no negative

cycle in the residual network.

The main structural property of our model that we want to prove is given by the following

theorem.

Theorem 4. For any two message nodes vj, vk ∈ V and vk 6= v1, when c(vk, T) changes

to c̄(vk, T) (with the capacity values of all other edges unchanged), the total size of aug-

menting flows leaving vj in the above algorithm is at most |c̄(vk, T)− c(vk, T)|rk/r1.

This result is driven by the fact that an optimal flow can be strictly improved by adding

an augmenting flow through v1, if the condition above does not hold, thus leading to a

contradiction.

9.3. Bounding the second gap

Now we consider how the optimal flow for the perturbed system relates to the assignment

made by the Reservation Algorithm.

When the capacity of each message k is perturbed by δk, we apply Theorem 4 to each

message k= 2,3, ...,m by setting c̄(vk, T) = (ck− δk)+ (message 1 has infinite capacity and

thus perturbing it has no impact). Then the total size of augmenting flows leaving every

message node vj due to the perturbation δ, summed over all m messages, is at most

m∑
k=2

|δk|rk/r1. (20)

The following theorem shows that if (20) is smaller than ∆, then the assignment x(1) +

x(2) of the Reservation Algorithm is optimal for the perturbed system. The proof relates

the Reservation Algorithm to the network-flow algorithms above, by showing that the

shortest augmenting paths or cycles will pass only through user nodes ui that have the

smallest ratios of pij/pik for some messages j, k. Such users are just the ones reserved by

Author: Article Short Title
Article submitted to Management Science; manuscript no. 29

the Reservation Algorithm. To be more specific, the length of the augmenting path or cycle

that goes through nodes vj→ ui→ vk is

w(vj, ui) +w(ui, vk) = log
pij
pik
.

Since the augmenting paths and cycles seek the shortest length, they will only pass through

user nodes i that have the smallest values of pij/pik. We will show that such users i

are reserved in the set Rjk. Thus augmenting flows will not affect the assignment x(1),

which leads to the conclusion that x(1) is compatible with the optimal assignment for the

perturbed system.

Theorem 5. If
∑m

j=2 |δj|
rj
r1
≤∆, then x(1) +x(2) is an optimal solution to the perturbed

linear program (13).

Next, the gap between the total expected reward V RA of the Reservation Algorithm

and the optimal objective value of the perturbed linear program is given by the following

theorem.

Theorem 6. Let O denote the event that
∑m

j=2 |δj|
rj
r1
≤∆. We have

E[V LP (δ)]−V RA ≤
m∑
j=1

rj

[√
m∆ + 3m2 +nP (Ō) +

√
nP (Ō)

]
,

where the expectation is taken with respect to δ, and Ō is the complement of O.

10. Performance Analysis in an Asymptotic Regime

Due to the huge number of users and large capacity values involved in the real problem,

we are interested in studying the regret in the asymptotic regime. That is, we will quantify

the rate at which the regret grows as we scale up the size of the system.

Author: Article Short Title
30 Article submitted to Management Science; manuscript no.

11. Big-Data scaling

Define a series of problems with increasing sizes as follows. In the problem of size t, for

t= 1,2, ...,∞, the number of users is n= t · n̄, and the capacity of message j is cj = t · c̄j,∀j =

1,2, ...,m, for some fixed c̄ and n̄. The number m of distinct messages and the reward rj

of each message j are fixed for all t. We require that Assumption 1 always holds.

A naive way of scaling n users is to replicate the same set of users t times. However, as

we increase the size of the user pool, we also increase its diversity. In reality, it is extremely

rare that two active users have identical profiles because the profiles are learned based

on users’ personal history. A user’s history includes, for example, the types of products

viewed, purchased and put in the shopping cart over the past 3, 7, 30 days, the operating

system of his or her mobile phone, and the type of products sent to the user via push

notification over the past several days. Given such high granularity of user histories, it is

unlikely that any two active users would have identical profiles. Thus, we can think of the

profiles of all n = tn̄ users as samples drawn from some continuous distribution. As we

scale up t, we are drawing more sample points from this continuous distribution. We called

this type of scaling big-data scaling.

Hitherto, we have viewed the user pools as fixed. From this point onwards, we will begin

to view user pools as random. Formally, let pti = (pti1, p
t
i2, ..., p

t
im) denote the (random) profile

of user i in the problem of size t. According to Assumption 1, pti takes values in the region

P = {y ∈ [0, p̄]m : y1 ≥ yj,∀j = 2,3, ...,m} (21)

for some constant p̄. By default, we take p̄= 1. All of our proofs extend to the case that

0< p̄ < 1.

Author: Article Short Title
Article submitted to Management Science; manuscript no. 31

Figure 3 A random sample of 10,000 user profiles, projected onto two coordinates.

Assumption 2 (Big-Data Scaling). Every pti is independently drawn from a contin-

uous distribution with density f(·) having domain P. Furthermore, the density f(·) has

upper and lower bounds

0< f ≤ f(y)≤ f̄ , ∀y ∈P.

This assumption can be justified by empirical evidence. We verified that in the real dataset,

less than 2% of active users have profiles that collide with those of other users. In Figure

3, we illustrate the density f(·) by plotting the estimated click-through probabilities for

more than 10,000 users randomly drawn from the real dataset.

Based on big-data scaling, we will analyze the rate at which the regret V OPT
t −V Π

t grows

as a function of the scaling parameter t. Here, V Π
t and V OPT

t denote the expected total

reward of the t-th problem under algorithms Π and OPT , respectively, conditional upon

the random user pools for problem t.

Note that as functions of the random user pools for the respective problems, {V Π
t }

and {V OPT
t } are sequences of random variables. Thus, our bound on the regret will be a

probabilistic bound. More precisely, in Theorem 8 of Section 13, we will show that with

probability 1, the regret V OPT
t −V RA

t of the Reservation Algorithm is O(t1/4 log t).

Author: Article Short Title
32 Article submitted to Management Science; manuscript no.

12. Implication on Smoothness of Big-Data Scaling

In this section, we show how big-data scaling leads to a smoothness property for the optimal

dual variables to (4). We will use this property to establish condition (14). This condition

will help us to prove our asymptotic bound on the regret of the Reservation Algorithm.

Let γ be a vector of dual variables for problem (4). This vector γ must satisfy several

conditions for it to be dual-optimal, as stated in the following lemma.

Lemma 2. If γ∗ is an optimal dual solution to (4), we must have

γ∗ ∈ G ≡ {γ ∈Rm : 0≤ γj ≤ rj − r1, ∀j = 1,2, ...,m}.

Proof. First, the assumption c1 =∞ implies that γ1 = 0.

Second, the assumption pij ≤ pi1,∀j = 2, ...,m, implies that we always have γj ≤ rj − r1.

This is because, according to (5), as long as γj is greater than rj − r1, no user will ever be

assigned to message j because it is always better to assign users to message 1:

γj ≥ rj − r1 =⇒ rj − γj ≤ r1 =⇒ pij(rj − γj)≤ pi1r1, ∀i= 1,2, ..., n.

In sum, the set of valid vectors of optimal dual variables γ is included in the region G.

�

Now for each problem of size t, let ct(γ) be a vector of capacity values for which γ is a

vector of optimal dual variables to the problem (4) (with c being replaced by ct(γ)). It is

easy to check that for any γ ∈ G, one such vector ct(γ) can always be found by allocating

users to messages j = 2,3, ...,m according to the rule (5), i.e.,

ctj(γ) =
n∑
i=1

ptij1[j = arg max
k

(rk− γk)ptik]

=
n∑
i=1

ptij1[(rj − γj)ptij − (rk− γk)ptik ≥ 0 ∀ k= 1, . . . ,m], ∀j = 2,3, ...,m.

Author: Article Short Title
Article submitted to Management Science; manuscript no. 33

Note that we have ignored the events that (rj−γj)ptij− (rk−γk)ptik = 0, i.e., a user can be

assigned to different messages without affecting dual feasibility, as these events occur with

probability 0 for a given γ.

Furthermore, we should set ct1(γ) =∞ according to Assumption 1. Constructed in this

way, ct(γ) is a random vector, as it is a function of pt1, . . . , p
t
n.

As a main result in this section, we will prove that with probability 1, for all sufficiently

large t’s, the total expected number of clickthroughs, conditional on the random pool of

users, moved from one message to another is at least 1 when γ changes to β or vice versa,

whenever γ,β ∈ G with ‖γ−β‖∞ ≥ t−3/4.

Theorem 7. There exists a finite positive random integer t0 such that, with probability

1, for all t > t0 and for any vectors of dual variables γ,β ∈ G with ‖γ−β‖∞ ≥ t−3/4,

m∑
j=2

|ctj(γ)− ctj(β)|> 1.

The proof of Theorem 7 relies on a geometric analysis of the space P of user profiles.

Let us define in P the sub-polytope

Aj(γ) = {p∈P | (rj − γj)pj − (rk− γk)pk ≥ 0 ∀k= 1, . . . ,m}.

Then for j = 2,3, ...,m, ctj(γ) can be expressed equivalently as

ctj(γ) =

n∑
i=1

ptij1[pti ∈Aj(γ)].

In other words, the capacity ctj(γ) of message j is the sum of clickthrough probabilities

contributed by users whose profiles fall inside the polytope Aj(γ).

Consider two different vectors of dual variables γ,β ∈ G. If we change the dual variables

from γ to β, the users i who were assigned to message j under γ, but who are now moved

to other messages under β, must satisfy

pti ∈Aj(γ) \Aj(β).

Author: Article Short Title
34 Article submitted to Management Science; manuscript no.

For problem t, the total expected number of clickthroughs, conditional on the random pool

of users, moved away from message j is

n∑
i=1

ptij1[pti ∈Aj(γ) \Aj(β)]. (22)

It is easy to check that the expectation (over all randomly drawn user profiles) of (22) is

E

[
n∑
i=1

ptij1[pti ∈Aj(γ) \Aj(β)]

]
= nE

[
ptij1[pti ∈Aj(γ) \Aj(β)]

]
= n

∫
Aj(γ)\Aj(β)

xj ~dx.

The following lemma bounds the expected number of clickthroughs moved from one

message to another when γ changes to β.

Lemma 3. Given any two different vectors of dual variables γ,β ∈ G such that βl < γl

for some index l, we must have∫
A1(γ)\A1(β)

x1
~dx≥ 1

m+ 1

(
r1

rl− γl
− r1

rl−βl

) m∏
j=2,j 6=l

r1

rj − γj
.

For each message j = 2,3, ...,m, Define a number of increments ntj as

ntj ≡ b
rj

0.5t−3/4
c.

Define a discretization of the real line in ntj increments as follows. Let gtj0 = 0, and let

gtj1, ..., g
t
jnj

be such that gtjk = gtj,k−1 + 0.5t−3/4 for k= 1,2, ..., ntj.

Let ek denote the unit vector with the k-th element being one. Define regions Stjk ⊆

P, j = 2,3, ...,m,k= 1,2, ..., nj, in the user profile space as the difference between successive

polytopes A1(g
t
jk−1ej) and A1(g

t
jkej).

Stjk ≡A1(g
t
jkej) \A1(g

t
jk−1ej).

The sets Stjk, which we call cells, j = 1, . . . ,m, k= 1, . . . , ntj, t= 1,2, . . . are a way to divide

up the space of user profiles into countably many fixed regions.

The following lemma establishes that there is at least one cell Stlk in the difference of

polytopes A1(γ) \A1(β), for any pair of vectors γ and β in G such that γl ≥ βl + t−3/4.

Author: Article Short Title
Article submitted to Management Science; manuscript no. 35

Lemma 4. Fix t. For any two dual vectors γ,β ∈ G such that

γl ≥ βl + t−3/4

for some l ∈ {2,3, ...,m}, there must exist some k ∈ {1,2, ..., ntl} such that

Stlk ⊆A1(γ) \A1(β).

Lemma 5. Let E tlk denote the event that

r1

maxj=1,2,...,m rj
·

n∑
i=1

pti11[pti ∈ Stlk]> 1.

There exist constants C1 and t∗ such that

P (E tlk)≤ e
maxj=1,2,...,m rj

r1 ·
(

1− C1

t3/4

)tn̄
for all l= 2, . . . ,m, t≥ t∗, and k= 1, . . . , ntl.

13. Asymptotic Regret of the Reservation Algorithm

In this section we will bound the regret V LP
t −V RA

t in a probabilistic sense, in the big-data

scaling regime.

Recall that we choose the reservation level for a system of size t as (see (11))

∆(t)≡C ·
m∑
j=2

√
cj · log

m∑
j=2

cj =C ·
m∑
j=2

√
tc̄j · log

m∑
j=2

tc̄j. (23)

Here, C > 0 is fixed for all t. Recall that m is constant for all system size t, but n= t · n̄, and

cj = t · c̄j, ∀j = 1,2, ...,m. For the instance of size t, let V LP
t denote the optimal objective

value of the linear program (3), and let γt(c) be a vector of its optimal dual variables

when the capacity vector is c; let V RA
t denote the expected total reward of the Reservation

Algorithm for size t (conditional on the random pool of users); let δt be the noise defined

as in (12), and let Ot denote the event that
∑m

j=2 |δtj|
rj
r1
≤∆(t).

Theorem 8. Suppose that for each problem t, the reservation level used in RA is ∆(t).

Then the regret of RA is O(t1/4 log t) with probability 1.

Author: Article Short Title
36 Article submitted to Management Science; manuscript no.

14. Regret of the Static Algorithm

In this section, we analyze the regret of the Static Algorithm and compare it to that of

the Reservation Algorithm.

Under the Static Algorithm, the random number of clickthroughs that message j ∈

{1,2, ...,m} receives has mean

bj ≡
n∑
i=1

s∗ijpij ≤ cj (24)

and standard deviation

σj ≡

√√√√ n∑
i=1

s∗ijpij(1− s∗ijpij)≤
√
bj ≤
√
cj. (25)

Since σj is the size of noise in the random number of clickthroughs that message j

receives under this algorithm, we can expect that the regret of this algorithm grows as

O(σj) =O(
√
cj) =O(

√
t). The following theorem shows that O(

√
t) is an upper bound on

the regret of the Static Algorithm. Later, we will further show that O(
√
t) is a tight bound.

Theorem 9. The regret of the Static Algorithm is O(
√
t) almost surely.

Finally, we prove a lower bound on the performance of the Static Algorithm with respect

to V LP
t . This result provides a worst-case lower bound on V RA

t −V Static
t .

Theorem 10. There exist problem instances in which almost surely,

V RA
t −V Static

t = Ω(
√
t).

15. Numerical Studies

We test the performance of the Reservation Algorithm and the Static Algorithm by simu-

lating their total reward values using real data of clickthrough probabilities.

We use three different data-sets. Each data set contains a set of messages that were

sent to several hundred million users on a certain day in March 2016, and the estimated

clickthrough probabilities between all the users and messages for that day.

Author: Article Short Title
Article submitted to Management Science; manuscript no. 37

We implement the algorithms on a distributed computing system using the MapReduce

framework. The linear program used in the algorithms is solved by smoothing the dual

problem (4) and then using a descent method. We refer the reader to Zhong et al. (2015)

for a similar distributed algorithm for solving an LP. Problem (6) in the second step of

the Reservation Algorithm is solved by using a binary search to find an appropriate ratio

ω such that pik/pij ≥ ω for every i∈Rjk.

The expected total reward for both algorithms are simulated based on clickthrough

probabilities provided by Alibaba. We vary the reservation level ∆ used in the Reserva-

tion Algorithm over a range. For each test case, we report the relative regret of the two

algorithms as

α≡ V LP −V RA

V LP −V Static
.

Note that since

V LP −V RA

V LP −V Static
≥ V OPT −V RA

V OPT −V Static
,

the ratios we report overestimate the actual regret of the Reservation Algorithm compared

to that of the Static Algorithm. That is, if compared against V OPT instead of V LP , the

actual performance of the Reservation Algorithm will be better than the results reported.

Figure 4 summarizes our test results. The actual performance of the Reservation Algorithm

highly depends on the types of products sent out on each day. Among the 3 test cases, our

Reservation Algorithm improves the total regret of the Static Algorithm by at least 10%

and as much as 50%. Thus, implementing the Reservation Algorithm is very promising in

improving the overall benefit earned from this mobile-based recommendation system.

References

Agrawal, Shipra, Zizhuo Wang, Yinyu Ye. 2009. A dynamic near-optimal algorithm for online linear pro-

gramming. arXiv preprint arXiv:0911.2974 .

Author: Article Short Title
38 Article submitted to Management Science; manuscript no.

Figure 4 Regret of the Reservation Algorithm relative to the Static Algorithm under different values of ∆.

Bahmani, Bahman, Michael Kapralov. 2010. Improved bounds for online stochastic matching. Proceed-

ings of the 18th Annual European Conference on Algorithms: Part I . ESA’10, Springer-Verlag, Berlin,

Heidelberg, 170–181. URL http://dl.acm.org/citation.cfm?id=1888935.1888956.

Bertsimas, Dimitris, John Tsitsiklis. 1997. Introduction to Linear Optimization. 1st ed. Athena Scientific.

BusinessWire. 2016. Alibaba group announces june quarter 2016 results. http://www.businesswire.com/

news/home/20160811005428/en.

Elmachtoub, Adam N., Retsef Levi. 2015. From cost sharing mechanisms to online selection problems.

Mathematics of Operations Research 40(3) 542–557. doi:10.1287/moor.2014.0684. URL http://dx.

doi.org/10.1287/moor.2014.0684.

Elmachtoub, Adam N., Retsef Levi. 2016. Supply chain management with online customer selection. Opera-

tions Research 64(2) 458–473. doi:10.1287/opre.2015.1472. URL http://dx.doi.org/10.1287/opre.

2015.1472.

Emarketer.com. 2016. E-commerce turns into m-commerce in china. http://www.emarketer.com/Article/

Ecommerce-Turns-Mcommerce-China/1013736.

Feldman, Jon, Aranyak Mehta, Vahab Mirrokni, S. Muthukrishnan. 2009. Online stochastic matching:

Beating 1-1/e. Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer

Science. FOCS ’09, IEEE Computer Society, Washington, DC, USA, 117–126. doi:10.1109/FOCS.2009.

72. URL http://dx.doi.org/10.1109/FOCS.2009.72.

Author: Article Short Title
Article submitted to Management Science; manuscript no. 39

Haeupler, Bernhard, Vahab S. Mirrokni, Morteza Zadimoghaddam. 2011. Online stochastic weighted match-

ing: Improved approximation algorithms. Proceedings of the 7th International Conference on Internet

and Network Economics. WINE’11, Springer-Verlag, Berlin, Heidelberg, 170–181.

Jaillet, Patrick, Xin Lu. 2014. Online stochastic matching: New algorithms with better bounds. Mathematics

of Operations Research 39(3) 624–646. doi:10.1287/moor.2013.0621. URL http://dx.doi.org/10.

1287/moor.2013.0621.

Jasin, Stefanus. 2015. Performance of an lp-based control for revenue management with unknown demand

parameters. Operations Research 63(4) 909–915. doi:10.1287/opre.2015.1390. URL http://dx.doi.

org/10.1287/opre.2015.1390.

Jasin, Stefanus, Sunil Kumar. 2012. A re-solving heuristic with bounded revenue loss for network revenue

management with customer choice. Mathematics of Operations Research 37(2) 313–345. doi:10.1287/

moor.1120.0537. URL http://dx.doi.org/10.1287/moor.1120.0537.

Manshadi, Vahideh H., Shayan Oveis Gharan, Amin Saberi. 2012. Online stochastic matching: Online actions

based on offline statistics. Mathematics of Operations Research 37(4) 559–573. doi:10.1287/moor.1120.

0551. URL http://dx.doi.org/10.1287/moor.1120.0551.

Reiman, Martin I., Qiong Wang. 2008. An asymptotically optimal policy for a quantity-based network

revenue management problem. Mathematics of Operations Research 33(2) 257–282. doi:10.1287/moor.

1070.0288. URL http://dx.doi.org/10.1287/moor.1070.0288.

Talluri, Kalyan T., Garrett J. van Ryzin. 2004. The Theory and Practice of Revenue Management . Springer.

Wang, X., V. Truong, D. Bank. 2015. Online advance admission scheduling for services, with customer

preferences. Working paper.

Wayne, Kevin Daniel. 1999. Generalized maximum flow algorithms. Ph.D. thesis, Cornell University, Ithaca,

NY.

Zhong, Wenliang, Rong Jin, Cheng Yang, Xiaowei Yan, Qi Zhang, Qiang Li. 2015. Stock constrained

recommendation in tmall. Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining . KDD ’15, ACM, New York, NY, USA, 2287–2296. doi:

10.1145/2783258.2788565. URL http://doi.acm.org/10.1145/2783258.2788565.

Author: Article Short Title
40 Article submitted to Management Science; manuscript no.

16. Appendix

Proof of Theorem 1.

Proof. Define

JΠ
ij ≡


1, if Π sends message j to user i,

0, otherwise.

Then, the objective value (2) becomes

m∑
j=1

rj ·
n∑
i=1

E[JOPTij]pij, (26)

which is the same as the objective of the linear program (3) when E[JOPT
ij] is the decision

variable.

Taking expectation on both sides of (1), we get

n∑
i=1

E[IOPTij]≤ cj

=⇒
∑
i∈N

E[JOPTij] · pij ≤ cj, ∀j = 1,2, ...,m,

which is the first constraint of the linear program.

Moreover, the model requires
∑m

j=1 J
OPT
ij = 1, which gives the second constraint of the

LP.

In sum, E[JOPTij] satisfies all the constraints of the LP, and thus the optimal objective

value of the LP is an upper bound on (26). �

Proof of Proposition 1

Proof. Suppose there is a solution s∗ that violates the proposition, i.e.,
∑n

i=1 ‖s∗i ‖0 >

n+m2. Then there are more than m2 users who are simultaneously routed to more than

one message according to s∗. Since there are

(
m

2

)
< m2 unique ways to choose unique

pairs of messages, there must exist two users i, l ∈ {1,2, ..., n}, i 6= l, and two messages

j, k ∈ {1,2, ...,m}, j 6= k, such that s∗ij > 0, s∗ik > 0, s∗lj > 0, s∗lk > 0.

Author: Article Short Title
Article submitted to Management Science; manuscript no. 41

Let γ∗ be the vector of optimal dual variables to (4) that correspond to the capacity

constraints. According to (5), we must have

(rj − γ∗j)pij = (rk− γ∗k)pik ≥ (r1− γ∗1)pi1 = r1pi1,

where the last step follows from the fact that c1 =∞ and thus γ∗1 = 0 (see Lemma 2).

Similarly, we have

(rj − γ∗j)plj = (rk− γ∗k)plk ≥ (r1− γ∗1)pl1 = r1pl1.

Combining the above two equations, we have

(rj − γ∗j)pij · (rk− γ∗k)plk = (rk− γ∗k)pik · (rj − γ∗j)plj

=⇒ (rj − γ∗j)(rk− γ∗k) · pijplk = (rk− γ∗k)(rj − γ∗j) · pikplj.

Then if pikplj 6= plkpij, we must have (rj − γ∗j)(rk− γ∗k) = 0. Thus, either rj − γ∗j = 0 or rk−

γ∗k = 0, which implies r1pi1 = r1pl1 = 0. According to Assumption 1, this implies that pi1 =

0⇒‖pi‖1 = 0. Therefore, we must have either r1 = 0 or ‖pi‖1 = 0, which is a contradiction.

�

Proof of Lemma 1

Proof. Suppose there exists an s(δ) such that s(δ) = x(1) + y and y≥ 0. We can equiv-

alently write the constraints of (13) as

n∑
i=1

sij(δ)pij ≤ (cj − δj)+

⇐⇒
n∑
i=1

yijpij ≤ (cj − δj)+−
n∑
i=1

x
(1)
ij pij

⇐⇒
n∑
i=1

yijpij ≤ (cj − δj −
n∑
i=1

x
(1)
ij pij)

+ (because y≥ 0)

⇐⇒
n∑
i=1

yijpij ≤ (cj −Dj)
+.

Author: Article Short Title
42 Article submitted to Management Science; manuscript no.

And
m∑
j=1

sij(δ) = 1⇐⇒
m∑
j=1

yij = 1−
m∑
j=1

x
(1)
ij .

Therefore, knowing that s(δ) = x(1) +y and y≥ 0, we can transform the problem of finding

y into the linear program (10). Thus, x(2) must be at least as good as y, from which it

follows that x(1) +x(2) is optimal for (13). �

Proof of Theorem 2

Proof. Fix δ. We want to find the difference between V LP = V LP (0) and V LP (δ) in

terms of the derivative of the function V LP (·). It is known that the Lagrangian multiplier

γj(c) is the marginal benefit of increasing the capacity cj of message j (Bertsimas and

Tsitsiklis 1997, p.155-156). Thus, for any u∈Rm such that u≤ c, the derivative of V LP (u)

with respect to uj is −γj(c−u).

Let c be the capacity vector given in the model. Define a vector δ(j) ∈Rm as

δ
(j)
i =


min(ci, δi), for i≤ j,

0, for i > j.

For each component j = 1,2, ...,m, we want to integrate the derivative of V LP (·) from

cj to (cj − δj)+ while keeping other components unchanged. This can be achieved by

integrating from vector c− δ(j−1) to c− δ(j) for each component j, which can be written as

V LP (δ) = V LP +

m∑
j=1

∫ |min(cj ,δj)|

0

−γj(c− δ(j−1)−xej)
δj
|δj|

dx.

According to (14), we must have ∀u∈Rm such that u≤ c,

|γj(c−u)− γj(c)| ≤ (‖u‖1 +m)γ̄, ∀j = 1,2, ...,m.

This gives us that if δj < 0 then∫ |min(cj ,δj)|

0

−γj(c− δ(j−1)−xej)
δj
|δj|

dx =

∫ −δj
0

γj(c− δ(j−1)−xej)dx

Author: Article Short Title
Article submitted to Management Science; manuscript no. 43

≥
∫ −δj

0

[
γj(c)− (‖δ(j−1) +xej‖1 +m)γ̄

]
dx

≥
∫ −δj

0

[γj(c)− (‖δ‖1 +m)γ̄]dx

= |δj| [γj(c)− (‖δ‖1 +m)γ̄] .

And if δj > 0 then

∫ |min(cj ,δj)|

0

−γj(c− δ(j−1)−xej)
δj
|δj|

dx =

∫ min(cj ,δj)

0

−γj(c− δ(j−1)−xej)dx

≥
∫ min(cj ,δj)

0

[
−γj(c)− (‖δ(j−1) +xej‖1 +m)γ̄

]
dx

≥
∫ min(cj ,δj)

0

[−γj(c)− (‖δ‖1 +m)γ̄]dx

= min(cj, δj) [−γj(c)− (‖δ‖1 +m)γ̄]

≥ δj [−γj(c)− (‖δ‖1 +m)γ̄] ,

where the last inequality follows from the fact that γj(c) and γ̄ are both non-negative.

In sum, we can write

∫ |min(cj ,δj)|

0

−γj(c− δ(j−1)−xej)
δj
|δj|

dx≥−δjγj(c)− |δj|(‖δ‖1 +m)γ̄

=⇒ V LP (δ)≥ V LP +

m∑
j=1

[−δjγj(c)−|δj|(‖δ‖1 +m)γ̄] = V LP −
m∑
j=1

δjγj(c)− (‖δ‖2
1 +m‖δ‖1)γ̄.

Since E[δ] = 0, we then have

V LP −E[V LP (δ)]≤
m∑
j=1

E[δj]γj(c) + (E[‖δ‖2
1] +mE[‖δ‖1])γ̄

= (E[‖δ‖2
1] +mE[‖δ‖1])γ̄.

Using Jensen’s inequality, we can obtain E[|δj|]≤
√
V ar(δj). Thus,

E[‖δ‖1] =

m∑
j=1

E[|δj|]

Author: Article Short Title
44 Article submitted to Management Science; manuscript no.

≤
m∑
j=1

√
V ar(δj)

=

m∑
j=1

√√√√ n∑
i=1

x
(1)
ij pij(1−x

(1)
ij pij)

≤ m
√
n.

Furthermore,

E[‖δ‖2
1] =

m∑
j=1

m∑
k=1

E[|δjδk|]

≤
m∑
j=1

m∑
k=1

1

2
E[δ2

j + δ2
k]

=

m∑
j=1

m∑
k=1

1

2
(V ar(δj) +V ar(δk))

=
m∑
j=1

m∑
k=1

1

2

(
n∑
i=1

x
(1)
ij pij(1−x

(1)
ij pij) +x

(1)
ik pik(1−x

(1)
ik pik)

)
≤ m2n.

Combining the above inequalities, we get

V LP −E[V LP (δ)]≤m2(n+
√
n)γ̄.

�

Proof of Theorem 4.

Since the bound stated in the theorem is additive and linear in |c(vk, T)− c̄(vk, T)|, it

suffices to prove the case that the gap |c(vk, T)− c̄(vk, T)| is very small. It is easy to see

that when |c(vk, T)− c̄(vk, T)| is small enough, the network flow algorithms will perform

no more than one augmentation. Thus, we only focus on the case where the algorithms

perform only one augmentation.

For Case 1, recall that 0≤ c̄(vk, T)< c(vk, T). Suppose initially f̄ is not optimal for Ḡ,

i.e., f̄(vk, T)< f(vk, T). In other words, some users are originally assigned to message k,

but now have to move to other messages due to the decrease in the capacity.

Author: Article Short Title
Article submitted to Management Science; manuscript no. 45

Suppose that the algorithm performs exactly one augmentation along a shortest path

from vk to T . Let θj be the size of the augmenting flow that leaves node vj, ∀vj ∈ V . We

need to show that ∀vj ∈ V ,

θj ≤ θk
rk
r1

.

This is clearly true when j = k, as our model requires rk ≥ r1 (see Section 3. Note that the

theorem holds even if we allow rk < r1, in which case changing the capacity of message k

will have no affect at all).

Suppose there is some l 6= k such that θl > θk
rk
r1

. Let ui be the user node preceding vl in

the augmenting path. Then the size of the augmenting flow passing through ui is θl/pil.

Let P be the part of the augmenting path from vk to ui. According to (18), we can obtain

the total length of P from the relative size of the augmenting flow at nodes vk and ui. The

total length of P is

log
θk

θl/pil
.

Consider the cycle P → v1→ T → vk that returns to vk. This cycle must exist in the residual

network because the edges (ui, v1) and (v1, T) always have infinite capacity, and the edge

(T, vk) exists in Gf since f(vk, T)> 0. The total length of the cycle is

log
θk

θl/pil
+w(ui, v1) +w(v1, T) +w(T, vk)

= log
θk

θl/pil
− log pi1− log r1 + log rk

= log

(
θk
θl
· rk
r1

· pil
pi1

)
≤ log

(
θk
θl
· rk
r1

)
(by Assumption 1)

<0.

In other words, the cycle is a negative cycle. According to Theorem 3, this contradicts the

fact that f is optimal for G. Thus, we must have θj ≤ θk rkr1 for every vj ∈ V .

Author: Article Short Title
46 Article submitted to Management Science; manuscript no.

For Case 2, recall that c̄(vk, T) > c(vk, T). Suppose initially f̄ = f is not optimal for

Ḡ. Recall that any negative cycle in the residual network Ḡf̄ must pass through (vk, T).

Again suppose there is exactly one augmentation performed by the algorithm and let θj

be the size of the augmenting flow that leaves node vj ∈ V . Similarly, we need to prove

that θj ≤ θk rkr1 , ∀j = 1,2, ...,m. The case of j = k is again trivially true as we only consider

the case rk ≥ r1.

Suppose there is some l 6= k such that θl > θk
rk
r1

. Let ui be the user node following vl in

the augmenting cycle. Then the size of the augmenting flow that passes through ui is θl/pil.

Furthermore, the size of the augmenting flow that leaves T is θkrk. Let P be the part of

the augmenting cycle from T to ui. According to (18), we can obtain the total length of P

from the relative size of the augmenting flow at T and ui. The total length of P is

log
θkrk
θl/pil

.

Consider the new cycle P → v1→ T which returns to T . This new cycle must exist in the

residual network because the edges (ui, v1) and (v1, T) have infinity capacity. The total

length of the new cycle is

log
θkrk
θl/pil

+w(ui, v1) +w(v1, T)

= log
θkrk
θl/pil

− log pi1− log r1

= log

(
θk
θl
· rk
r1

· pil
pi1

)
.

Similar to the previous argument, this total length is negative, because θl > θk
rk
r1

and

according to Assumption 1, pil ≤ pi1. In other words, this new cycle is also a negative cycle.

However, this new cycle does not pass through edge (vk, T), which forms a contradiction.

Thus, for Case 2 we also have θj ≤ θk rkr1 , ∀j = 1,2, ...,m. �

Author: Article Short Title
Article submitted to Management Science; manuscript no. 47

Proof of Theorem 5.

Starting with an optimal flow f for the unperturbed network, as defined by the optimal

solution s∗ to the LP (3), we apply the network-flow algorithms above to obtain an optimal

flow f̄ for the perturbed network, as defined by the solution of (13). According to Lemma

1, it suffices to show that if
∑m

j=2 |δj|
rj
r1
≤∆, we must have f̄(ui, vj) ≥ x(1)

ij for all ui ∈ U

and vj ∈ V .

By the definition (8) of x(1), we must have s∗ ≥ x(1) and thus initially f(ui, vj)≥ x(1)
ij for

all ui ∈U and vj ∈ V . Note that for any edge (ui, vj), the only way to reduce its flow value

is to send an augmenting flow that passes (vj, ui) in the residual graph. We claim that

if
∑m

j=2 |δj|
rj
r1
≤∆, no augmenting flow will ever pass through any edge (vj, ui) such that

x
(1)
ij > 0. This claim implies that for any x

(1)
ij > 0, the flow value on (ui, vj) can only increase

during the network flow algorithm, which proves that eventually f̄(ui, vj)≥ f(ui, vj)≥ x(1)
ij

for any x
(1)
ij > 0.

To see the claim, suppose that at some step during augmentation, the augmenting flow

passes through (vj, ui) for some vj ∈ V and ui ∈U . The node following ui in the augmenting

flow must be another message node vk ∈ V . The total length of vj→ ui→ vk is

w(vj, ui) +w(ui, vk) = log pij − log pik = log
pij
pik
.

Since the augmenting path or cycle has the shortest length, user i must have the smallest

value of plj/plk among all users l such that (vj, ul) exists in the residual network right

before the augmentation is performed. Recall that in the Reservation algorithm, we defined

a set Rjk of users l who have the smallest values of the ratio plj/plk. Therefore, if any user

in Rjk has a flow going to vj right before the augmentation is performed, we must have

i ∈ Rjk and thus x
(1)
ij = 0. When there is a tie in determining a user having the smallest

Author: Article Short Title
48 Article submitted to Management Science; manuscript no.

ratio, we assume without loss of generality that the network-flow algorithms first chooses

for augmentation a user from the set Rjk.

Initially, according to Step 2 of the Reservation algorithm, the total size of flow that

vj receives from the users in Rjk according to the solution s∗ is at least ∆ (or else all

users are in Rjk). Then if
∑m

j=2 |δj|
rj
r1
≤∆, we know by Theorem 4 that the total amount

of augmenting flows leaving vj is no more than ∆. Thus, the flows that vj receives from

users in Rjk can be reduced by at most ∆ throughout the network flow algorithms, which

implies that at any augmentation step of the network flow algorithms, at least one user in

Rjk has a flow going to vj. Combined with the argument above, this proves the claim. �

Proof of Theorem 6.

Let D
(2)
j be the number of clickthroughs that message j receives in the second cycle. The

total expected reward of the Reservation Algorithm is

V RA =
m∑
j=1

rjE[min(cj,Dj +D
(2)
j)]

=
m∑
j=1

rjE[δj + min(cj − δj,Dj − δj +D
(2)
j)]

=
m∑
j=1

rjE[min(cj − δj,Dj − δj +D
(2)
j)]

=

m∑
j=1

rjE[min(cj − δj,E[Dj] +D
(2)
j)]

=

m∑
j=1

rjE[min(cj − δj,
n∑
i=1

x
(1)
ij pij +D

(2)
j)]. (27)

Here we interpret cj− δj as the perturbed capacity of message j, and
∑n

i=1 x
(1)
ij pij +D

(2)
j as

the ‘actual’ number of clickthroughs that message j receives in both two cycles. In other

words, we view δ as an exogenous noise that arises in the capacity values.

Author: Article Short Title
Article submitted to Management Science; manuscript no. 49

According to Theorem 5, x(1) +x(2) is an optimal solution to the perturbed linear program

conditional on O. Then the expected objective value of the perturbed linear program can

be written as

E[V LP (δ)] = E[V LP (δ)|O]P (O) + E[V LP (δ)|Ō]P (Ō)

= E[

m∑
j=1

rj

n∑
i=1

(x
(1)
ij +x

(2)
ij)pij|O]P (O) + E[V LP (δ)|Ō]P (Ō)

≤E[
m∑
j=1

rj

n∑
i=1

(x
(1)
ij +x

(2)
ij)pij|O]P (O) +n · max

j=1,2,...,m
rj ·P (Ō). (28)

Here the last inequality follows from the fact that n ·maxj=1,2,...,m rj is an upper bound on

the total reward value of any allocation.

Conditional on O, the constraint of the perturbed linear program gives

n∑
i=1

(x
(1)
ij +x

(2)
ij)pij ≤ (cj − δj)+,∀j = 1,2, ...,m.

This implies that, if
∑n

i=1 x
(1)
ij pij > 0, we must have cj > δj. On the other hand, if∑n

i=1 x
(1)
ij pij = 0, we must have Dj = 0 =⇒ δj = 0. In sum, conditional on the event O, we

always have cj ≥ δj, and thus

n∑
i=1

(x
(1)
ij +x

(2)
ij)pij ≤ cj − δj,∀j = 1,2, ...,m. (29)

Define

δ
(2)
j ≡D

(2)
j −

n∑
i=1

x
(2)
ij pij.

Combining (27) and (28), we get

E[V LP (δ)]−V RA

≤E[
m∑
j=1

rj

n∑
i=1

(x
(1)
ij +x

(2)
ij)pij|O]P (O) +n · max

j=1,2,...,m
rj ·P (Ō)

−
m∑
j=1

rjE[min(cj − δj,
n∑
i=1

x
(1)
ij pij +D

(2)
j)]

Author: Article Short Title
50 Article submitted to Management Science; manuscript no.

≤E[
m∑
j=1

rj

n∑
i=1

(x
(1)
ij +x

(2)
ij)pij|O]P (O) +n · max

j=1,2,...,m
rj ·P (Ō)

−
m∑
j=1

rjE[min(cj − δj,
n∑
i=1

x
(1)
ij pij +D

(2)
j)|O]P (O)

=
m∑
j=1

rjE[

n∑
i=1

(x
(1)
ij +x

(2)
ij)pij −min(cj − δj,

n∑
i=1

x
(1)
ij pij +D

(2)
j)|O]P (O) +n max

j=1,2,...,m
rjP (Ō)

=
m∑
j=1

rjE[

n∑
i=1

(x
(1)
ij +x

(2)
ij)pij −min(cj − δj,

n∑
i=1

(x
(1)
ij +x

(2)
ij)pij + δ

(2)
j)|O]P (O) +n max

j=1,2,...,m
rjP (Ō),

where δ
(2)
j =D

(2)
j −

∑n
i=1 x

(2)
ij pij. We apply the identity a−min(b, a+ c)≤max(0,−c) for

any a≤ b to the above equation and continue to deduce that

m∑
j=1

rjE[
n∑
i=1

(x
(1)
ij +x

(2)
ij)pij −min(cj − δj,

n∑
i=1

(x
(1)
ij +x

(2)
ij)pij + δ

(2)
j)|O]P (O) +n max

j=1,2,...,m
rjP (Ō)

≤
m∑
j=1

rjE[max(0,−δ(2)
j)|O]P (O) +n max

j=1,2,...,m
rjP (Ō) because of (29)

≤
m∑
j=1

rjE[max(0,−δ(2)
j)] +n max

j=1,2,...,m
rjP (Ō)

≤
m∑
j=1

rjE[|δ(2)
j |] +n max

j=1,2,...,m
rjP (Ō). (30)

For any user i who satisfies ‖s∗i ‖0 = 1, where s∗ is an optimal solution to the LP (3), we

must have either ‖x(1)
i ‖1 = 1 or ‖x(2)

i ‖1 = 1. That is, we know for sure in which cycle this

user will receive a message. Then according to the condition
∑n

i=1 ‖s∗i ‖0 ≤ n+m2 required

in Step 1 of the Reservation Algorithm, there are at most m2 users i that satisfy ‖s∗i ‖0 > 1.

This implies that at most m2 users i have 0 < ‖x(2)
i ‖1 < 1 (i.e., each of these users has

positive probabilities to both receive and not receive a message in the first cycle).

Let U (2) be the set of users who are sent messages in the second cycle. Then there are

at most m2 users who have positive probabilities to be either in or not in U (2). Thus,

E[|δ(2)
j |] =E[|D(2)

j −
n∑
i=1

x
(2)
ij pij|]

Author: Article Short Title
Article submitted to Management Science; manuscript no. 51

≤E[|D(2)
j −

∑
i∈U(2)

x
(2)
ij

‖x(2)
i ‖1

pij|] + E[|
∑
i∈U(2)

x
(2)
ij

‖x(2)
i ‖1

pij −
n∑
i=1

x
(2)
ij pij|] by the triangle inequality

≤E[|D(2)
j −

∑
i∈U(2)

x
(2)
ij

‖x(2)
i ‖1

pij|] +m2 since at most m2 users i have 0< ‖x(2)
i ‖1 < 1

≤

√√√√√E

D(2)
j −

∑
i∈U(2)

x
(2)
ij

‖x(2)
i ‖1

pij

2+m2 by Jensen’s inequality

=

√√√√√E

 ∑
i∈U(2)

x
(2)
ij

‖x(2)
i ‖1

pij

(
1−

x
(2)
ij

‖x(2)
i ‖1

pij

)+m2 by the variance of binary variables

≤

√√√√E

[
n∑
i=1

x
(2)
ij pij

(
1−x(2)

ij pij

)]
+ 2m2 since at most m2 users i have 0< ‖x(2)

i ‖1 < 1

≤

√√√√E

[
n∑
i=1

x
(2)
ij pij

]
+ 2m2. (31)

By Theorem 5, conditional on O,
∑n

i=1(x
(1)
ij +x

(2)
ij)pij and

∑n
i=1 s

∗
ijpij stand for the amount

of the capacity of message j allocated to users in the perturbed and original linear pro-

grams, respectively. In the generalized residual network, an increment in the expected

number of clickthroughs that message j receives corresponds to an augmenting flow that

passes through the edge (vj, T). According to Theorem 4, the total increase in the expected

number of clickthroughs that message j receives due to the perturbation δ must be no

more than
∑m

k=2 |δk|
rk
r1

. In other words, conditional on O,

E[

n∑
i=1

(x
(1)
ij +x

(2)
ij)pij −

n∑
i=1

s∗ijpij|O]≤
m∑
k=2

|δk|
rk
r1

≤∆, ∀j = 1,2, ...,m.

=⇒E[
n∑
i=1

x
(2)
ij pij|O]≤∆ + E[

n∑
i=1

s∗ijpij −
n∑
i=1

x
(1)
ij pij|O]

= ∆ + E[
n∑
i=1

s∗ijpij1(i∈
m⋃

k=1,k 6=j

Rjk)|O]

≤∆ + (m− 1)(∆ + 1)

=m∆ +m− 1,

Author: Article Short Title
52 Article submitted to Management Science; manuscript no.

where the last inequality follows from (9). From this, we can deduce that

E[
n∑
i=1

x
(2)
ij pij] ≤ E[

n∑
i=1

x
(2)
ij pij|O]P (O) +nP (Ō)

≤ m∆ +m− 1 +nP (Ō).

Combining this result with (30) and (31), we can deduce that

E[V LP (δ)]−V RA ≤
m∑
j=1

rj


√√√√E

[
n∑
i=1

x
(2)
ij pij

]
+ 2m2

+n max
j=1,2,...,m

rjP (Ō)

≤
m∑
j=1

rj

[√
m∆ +m− 1 +nP (Ō) + 2m2

]
+n max

j=1,2,...,m
rjP (Ō)

≤
m∑
j=1

rj

[√
m∆ + 3m2 +nP (Ō) +

√
nP (Ō)

]
.

�

Proof of Lemma 3.

Proof. We must have l 6= 1 because β1 = γ1 = 0.

Define a vector θ ∈ G to be θj = γj, ∀j 6= l, and θl = βl. Next, we will prove the lemma

by showing∫
A1(γ)\A1(β)

x1
~dx≥

∫
A1(γ)\A1(θ)

x1
~dx≥ 1

m+ 1

(
r1

rl− γl
− r1

rl−βl

) m∏
j=2,j 6=l

r1

rj − γj
.

Any x∈A1(θ) must satisfy

x1r1 ≥ xj(rj − θj), ∀j = 2,3, ...,m

=⇒ x1r1 ≥ xj(rj − γj), ∀j = 2,3, ...,m,

which implies that

A1(θ)⊆A1(γ). (32)

Furthermore, since γ and θ only differ by the l-th component, for any x∈A1(γ) \A1(θ)

we must have

x1r1 <xl(rl− θl) =⇒ x1r1 <xl(rl−βl),

Author: Article Short Title
Article submitted to Management Science; manuscript no. 53

which implies that

A1(γ) \A1(θ)⊆A1(γ) \A1(β). (33)

Then (32) and (33) give us

∫
A1(γ)\A1(β)

x1
~dx≥

∫
A1(γ)\A1(θ)

x1
~dx

=

∫
A1(γ)

x1
~dx−

∫
A1(θ)∩A1(γ)

x1
~dx

=

∫
A1(γ)

x1
~dx−

∫
A1(θ)

x1
~dx.

Recall that

Aj(γ) = {p∈P | (rj − γj)pj − (rk− γk)pk ≥ 0 ∀k= 1, . . . ,m}

and γ1 = 0. Therefore, the above integrals can be expressed in closed form as

∫
A1(γ)

x1
~dx=

∫ 1

0

x1

(∫ x1r1
r2−γ2

0

dx2

)(∫ x1r1
r3−γ3

0

dx3

)
· · ·

(∫ x1r1
rm−γm

0

dxm

)
dx1

=

∫ 1

0

x1

m∏
j=2

x1r1

rj − γj
dx1

=

∫ 1

0

xm1 dx1 ·
m∏
j=2

r1

rj − γj

=
1

m+ 1

m∏
j=2

r1

rj − γj
.

Thus,

∫
A1(γ)\A1(β)

x1
~dx≥ 1

m+ 1

m∏
j=2

r1

rj − γj
− 1

m+ 1

m∏
j=2

r1

rj − θj

=
1

m+ 1

(
r1

rl− γl
− r1

rl−βl

) m∏
j=2,j 6=l

r1

rj − γj
.

�

Proof of Lemma 4.

Author: Article Short Title
54 Article submitted to Management Science; manuscript no.

Proof. Since γl ≥ βl + t−3/4 and ntl ≤
rl

0.5t−3/4 , there must exist a k such that βl ≤ gtl,k−1 <

gtlk ≤ γl.

For any x ∈ A1(g
t
lkel), by definition we have x1r1 ≥ xl(rl − gtlk) and x1r1 ≥ xjrj for all

j 6= l, j = 2,3, ...,m, which gives

x1r1 ≥ xl(rl− gtlk)≥ xl(rl− γl)

and

x1r1 ≥ xjrj ≥ xj(rj − γj) ∀j 6= l, j = 2,3, ...,m.

This implies that x∈A1(γ). It follows that A1(g
t
lkel)⊆A1(γ).

Next, for any x ∈ A1(g
t
lkel) ∩ A1(β), we must have x1r1 ≥ xl(rl − βl) ≥ xl(rl − gtl,k−1)

and x1r1 ≥ xjrj for all j 6= l, j = 2,3, ...,m. This implies x ∈ A1(g
t
l,k−1el). It follows that

A1(g
t
lkel)∩A1(β)⊆A1(g

t
l,k−1el).

In sum, we conclude that A1(g
t
lkel) \A1(g

t
l,k−1el)⊆A1(γ) \A1(β).

�

Proof of Lemma 5.

Proof. Recall that

Stlk ≡A1(g
t
lkel) \A1(g

t
lk−1el).

Let γ = gtlkel and β = gtlk−1el. Note that∫
A1(γ)\A1(β)

x1
~dx ≥ 1

m+ 1

(
r1

rl− γl
− r1

rl−βl

) m∏
j=2,j 6=l

r1

rj − γj

≥ 1

m+ 1

(
r1

rl− γl
− r1

rl− (γl− 0.5t−3/4)

) m∏
j=2,j 6=l

r1

rj − γj

=
1

m+ 1

(
r1

rl− γl
− r1

rl− γl + 0.5t−3/4

) m∏
j=2,j 6=l

r1

rj − γj

=
1

m+ 1

(
0.5r1t

−3/4

(rl− γl)(rl− γl + 0.5t−3/4)

) m∏
j=2,j 6=l

r1

rj − γj

Author: Article Short Title
Article submitted to Management Science; manuscript no. 55

≥ 1

m+ 1

(
0.5t−3/4

r1 + 0.5t−3/4

) m∏
j=2,j 6=l

r1

rj − γj

≥ 1

m+ 1

(
0.5t−3/4

r1 + 0.5t−3/4

)
=

1

m+ 1

(
1

2t3/4r1 + 1

)
≥ Ct−3/4

for all t≥ t∗, for some constant C and t∗. Above, the first inequality follows from Lemma

3; the second inequality from βl = γl− 0.5t−3/4; the third inequality from γl ≥ rl− r1; and

the fourth inequality from γj ≥ rj − r1 for all j > 1.

Next, using Chernoff’s bound, we have for all t≥ t∗,

P (
r1

maxj=1,2,...,m rj
·

n∑
i=1

pti11[pti ∈A1(γ) \A1(β)]≤ 1)

≤e
maxj=1,2,...,m rj

r1 ·
(
E[e−p

t
i11[pti∈A1(γ)\A1(β)]]

)n
.

Further, it is easy to check that for any x∈ [0,1], we have e−x ≤ 1− (1− e−1)x. Thus,

E[e−p
t
i11[pti∈A1(γ)\A1(β)]]≤E[1− (1− e−1)pti11[pti ∈A1(γ) \A1(β)]]

=1− (1− e−1)E[pti11[pti ∈A1(γ) \A1(β)]]

=1− (1− e−1)

∫
A1(γ)\A1(β)

x1f(~x) ~dx

≤1− (1− e−1)f

∫
A1(γ)\A1(β)

x1
~dx

≤1− (1− e−1)fCt−3/4.

It follows that

P (
r1

maxj=1,2,...,m rj
·

n∑
i=1

pti11[pti ∈A1(γ) \A1(β)]≤ 1)

≤e
maxj=1,2,...,m rj

r1 ·
(
1− (1− e−1)fCt−3/4

)n

Author: Article Short Title
56 Article submitted to Management Science; manuscript no.

=e
maxj=1,2,...,m rj

r1 ·
(
1− (1− e−1)fCt−3/4

)tn̄
=e

maxj=1,2,...,m rj
r1 ·

(
1− C1

t3/4

)tn̄
for C1 = (1− e−1)fC and for t≥ t∗.

�

Proof of Theorem 7.

Proof. We have shown in Theorem 4 that when γ changes to β, the expected number

of clickthroughs (22) (conditional on the random pool of users) leaving message j can be

bounded using the change in the capacity values as follows:

n∑
i=1

ptij1[pti ∈Aj(γ) \Aj(β)]≤
m∑
k=2

|ctk(γ)− ctk(β)|rk/r1.

Note that in the above bound we do not consider the change made to the capacity of

message 1, because message 1 has infinite capacity and thus any finite change made to this

capacity value has no impact on the assignment of users. The above bound leads to

m∑
j=2

|ctj(γ)− ctj(β)| ≥ r1

maxj=1,2,...,m rj
·

n∑
i=1

pti11[pti ∈A1(γ) \A1(β)]. (34)

Therefore, it suffices to show that with probability one,

r1

maxj=1,2,...,m rj
·

n∑
i=1

pti11[pti ∈A1(γ) \A1(β)]> 1

for all sufficiently large t and all γ,β ∈ G with γl ≥ βl + t−3/4 for some index l.

Based on Lemma 4, to prove the theorem, we just need to prove that there exists a finite

random number t0 such that E tjk holds for all t≥ t0, j = 2,3, ...,m, k = 1,2, ..., ntj. By the

Borel-Cantelli Lemma, it suffices to show that

∞∑
t=1

P

(
∩mj=2 ∩

ntj
k=1 E tjk

)
<∞.

Author: Article Short Title
Article submitted to Management Science; manuscript no. 57

Indeed,

P

(
∩mj=2 ∩

ntj
k=1 E tjk

)
= 1−P

(
∩mj=2 ∩

ntj
k=1 E

t
jk

)
≤ 1−

m∏
j=2

ntj∏
k=1

P
(
E tjk
)

(because the events E tjk’s are positively correlated)

= 1−
m∏
j=2

ntj∏
k=1

(1−P (E tjk))

≤ 1−
m∏
j=2

ntj∏
k=1

[
1− e

maxj=1,2,...,m rj
r1 ·

(
1−C1t

−3/4
)tn̄]

(by Lemma 5)

≤ 1−
[
1− e

maxj=1,2,...,m rj
r1 ·

(
1−C1t

−3/4
)tn̄]C2t3/4

for an appropriately defined constant C2. That the events E tjk’s are positively correlated

can be explained by the fact that E tjk’s are independent if the corresponding sets Stjk do

not overlap. On the other hand, they contain a common set of profiles if they do overlap.

We can check that when t→∞,

(
1−C1t

−3/4
)tn̄

= e−C1n̄t1/4+o(1)

=⇒
[
1− e

maxj=1,2,...,m rj
r1 ·

(
1−C1t

−3/4
)tn̄]C2t3/4

=

[
1− e

maxj=1,2,...,m rj
r1

eC1n̄t1/4+o(1)

]C2t3/4

= exp
(
−C2t

3/4 · e
maxj=1,2,...,m rj

r1 · e−C1n̄t1/4 + o(e−C1n̄t1/4)
)

= 1−C2t
3/4 · e

maxj=1,2,...,m rj
r1 · e−C1n̄t1/4 + o(e−C1n̄t1/4)

=⇒1−
[
1− e

maxj=1,2,...,m rj
r1 ·

(
1−C1t

−3/4
)tn̄]C2t3/4

=C2t
3/4 · e

maxj=1,2,...,m rj
r1 · e−C1n̄t1/4 + o(e−C1n̄t1/4).

Author: Article Short Title
58 Article submitted to Management Science; manuscript no.

This proves that
∞∑
t=1

P

(
∩mj=2 ∩

ntj
k=1 E tjk

)
<∞.

�

Proof of Theorem 8.

First, we claim that with probability 1, there exists a finite random integer t0 such that

for all t > t0, condition (14) holds when γ̄ is set to be γ̄t ≡ t−3/4 in the problem of size t.

Let t0 be the random variable in Theorem 7. Suppose (14) does not hold for some t > t0,

i.e., with positive probability, for some t > t0, we can find c, α, j, and k, such that

|γtj(c)− γtj(c+αek)|> t−3/4.

Then Theorem 7 implies that ‖c− (c+αek)‖1 > 1 =⇒‖αek‖1 > 1, which is a contradiction.

Therefore, (14) holds for t > t0 when γ̄t = t−3/4. It follows that Theorem 2 holds with

probability 1 for t > t0. Let Ut ≡ σ(pt1, p
t
2, ..., p

t
n) denote the random user pool for problem

t. Then the regret (15) of the algorithm becomes, for t > t0,

V LP
t −V RA

t ≤
m∑
j=1

rj

[√
m∆(t) + 3m2 +nP (Ōt|Ut) +

√
nP (Ōt|Ut)

]
+m2(n+

√
n)t−3/4.

Since

∆(t) =C ·
m∑
j=2

√
tc̄j · log

m∑
j=2

tc̄j =O(
√
t log t),

we have
m∑
j=1

rj
√
m∆(t) =O(t1/4 log t).

Furthermore,

m2(n+
√
n)t−3/4 =O(t1/4).

Define

V ar(δtj|Ut)≡E[(δtj)
2|Ut]− (E[δtj|Ut])2

Author: Article Short Title
Article submitted to Management Science; manuscript no. 59

as the variance of δtj given Ut as input. According to the central limit theorem, when the

standard deviation of δtj becomes large, δtj/
√
V ar(δtj|Ut) approaches a standard normal

distribution. Furthermore, since

V ar(δtj|Ut) =
n∑
i=1

pijx
(1)
ij (1− pijx(1)

ij)≤
n∑
i=1

pijx
(1)
ij ≤ cj = c̄jt,

we must have, according to the central limit theorem,

P

(|δtj|√
c̄jt

> C̄ log t

∣∣∣∣Ut)=O(P (|Zt|> C̄ log t))

for any constant C̄ > 0 and for a sequence Z1,Z2,Z3, ... of i.i.d. standard normal random

variables. It is easy to check that

P (|Zt|> C̄ log t) = 2 · 1√
2π

∫ ∞
C̄ log t

e−x
2/2dx

<
2√
2π

∫ ∞
C̄ log t

x

C̄ log t
e−x

2/2dx

=
2√
2π

1

C̄ log t
e−(C̄ log t)2/2

= o(1/t),

from which we can deduce that

P

(|δtj|√
c̄jt

> C̄ log t

∣∣∣∣Ut)= o(1/t)

=⇒ P

(|δtj|√
c̄jt
· rj
r1

>
rj
r1

C̄ log t

∣∣∣∣Ut)= o(1/t)

=⇒ P

(
m∑
j=2

|δtj|√
c̄jt

rj
r1

>

m∑
j=2

rj
r1

C̄ log t

∣∣∣∣Ut
)
≤

m∑
j=2

P

(|δtj|√
c̄jt
· rj
r1

>
rj
r1

C̄ log t

∣∣∣∣Ut)= o(1/t)

=⇒ P

(
m∑
j=2

|δtj|
rj
r1

>

(
max

j=2,...,m

√
c̄j

) m∑
j=2

rj
r1

C̄
√
t log t

∣∣∣∣Ut
)

= o(1/t).

Then by choosing an appropriate value of C̄, we can easily obtain(
max

j=2,...,m

√
c̄j

) m∑
j=2

rj
r1

C̄
√
t log t= ∆(t),

Author: Article Short Title
60 Article submitted to Management Science; manuscript no.

and hence,

P (Ōt|Ut) = P (

m∑
j=2

|δtj|
rj
r1

>∆(t)|Ut) = o(1/t).

Thus, nP (Ōt|Ut) = tn̄P (Ōt|Ut) = o(1).

In sum, V LP
t − V RA

t =O(t1/4 log t) with probability 1. This proves the theorem because

V LP
t is an upper bound on V OPT

t . �

Proof of Theorem 9.

We first focus on the analysis of a single problem of size t and suppress t in notation.

Fix the set of user profiles. Let V Static be the expected total reward of the static algorithm.

We have

V OPT −V Static ≤ V LP −V Static

=
m∑
j=1

rj[bj −E[min(cj,
n∑
i=1

IStaticij)]]

=
m∑
j=2

rj[bj −E[min(cj,
n∑
i=1

IStaticij)]]

=
m∑
j=2

rjE[max(bj − cj, bj −
n∑
i=1

IStaticij)]]

≤
m∑
j=2

rjE[max(0, bj −
n∑
i=1

IStaticij)]]

=
m∑
j=2

rjE[|bj −
n∑
i=1

IStaticij |]

≤
m∑
j=2

rjσj

≤
m∑
j=2

rj
√
cj.

In the asymptotic regime, since cj = t · c̄j, we have almost surely,

V OPT
t −V Static

t ≤
m∑
j=2

rj
√
cj =O(

√
t).

�

Proof of Theorem 10.

Author: Article Short Title
Article submitted to Management Science; manuscript no. 61

Proof. Again let Ut denote the random user pool for problem t. Fix some message

j ∈ {2,3, ...,m}. Conditional on Ut, let Kt be the number of clickthroughs that message j

receives under the Static Algorithm.

Assume that p̄ = 0.5 in (21), i.e., all clickthrough probabilities are less than 0.5. Also

assume that the capacity of each message j ≥ 2 is fully allocated to users by the linear

program (3) almost surely for all t. This condition can be ensured by having small capacities

for all messages j ≥ 2. Then we have for all large t, E[Kt|Ut] = c̄jt. It is easy to see that we

must have, conditional upon the random user pools,

V LP
t −V Static

t ≥ rjE[max(0, c̄jt−Kt)|Ut] = rjE[max(0,E[Kt]−Kt)|Ut]

with probability 1 for each t. Furthermore, let V ar(Kt|Ut) = E[K2
t |Ut]− (E[Kt|Ut])2 denote

the variance of Kt given input Ut. We must have

√
V ar(Kt|Ut) =

√√√√ n∑
i=1

s∗ijpij(1− s∗ijpij)≥

√√√√ n∑
i=1

s∗ijpij0.5 =
√

E[Kt|Ut]0.5 =
√
c̄jt0.5 = Ω(

√
t).

When t is large, Kt/
√
V ar(Kt|Ut) approaches a normal random variable with standard

deviation 1 almost surely. Thus, we must have almost surely

E[max(0,E[Kt]−Kt)|Ut] = Ω(
√
V ar(Kt|Ut)) = Ω(

√
t)

=⇒ V LP
t −V Static

t = Ω(
√
t).

In the proof of Theorem 8, we have proved V LP
t − V RA

t = o(
√
t). This leads to V RA

t −

V Static
t = Ω(

√
t).

�

