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We propose one of the first models of “product framing” and pricing. Product framing refers to the way

consumer choice is influenced by how the products are framed, or displayed. We present a model where a set

of products are displayed, or framed, into a set of virtual web pages. We assume that consumers consider

only products in the top pages, with different consumers willing to see different numbers of pages. Consumers

select a product, if any, from these pages following a general choice model. We show that the product framing

problem is NP-hard. We derive algorithms with guaranteed performance relative to an optimal algorithm

under reasonable assumptions. Our algorithms are fast and easy to implement.

We also present structural results and design algorithms for pricing under framing effects for the multi-

nomial logit model. We show that for profit maximization problems, at optimality, products are displayed

in descending order of their value gap and in ascending order of their markups.

1. Introduction

In this paper, we propose one of the first models of product framing and pricing. Framing refers to

the way in which the choice among available alternatives is influenced by how the alternatives are

framed, or displayed (Tversky and Kahneman 1986). For example, empirical works by Agarwal,

Hosanagar and Smith (2009) and Ghose and Yang (2009) in online advertising show that ads

that are placed higher on a webpage attract more clicks from consumers. Johnson, Moe, Fader,

Bellman and Lohse (2004) examine the average number of websites, sorted by product categories,

that are actively visited by households each month. They observe that in a typical search session,

consumers search from fewer than two stores. Their data show that 70% of CD shoppers, 70% of

book shoppers, and 42% of travel shoppers are loyal to just one site. Brynjolfsson, Dick, and Smith

(2010) find, in the context of a website that catalogs price and product information from multiple

retailers, that only 9% of users select offers that are listed beyond the first page. In related search

contexts, Baye, Gatti, Kattuman and Morgan (2009) have found that a consumer’s likelihood of

visiting a firm and purchasing from it is strongly related to the order in which the firm is listed

on a webpage by a search engine. They find that a firm receives about 17% fewer clicks for every

competitor listed above it on the screen, all other things being equal.
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This well-documented framing effect is a natural outcome of the cognitive burden of processing

larger and larger assortments. During online shopping, it is cognitively harder for a typical consumer

to visit sellers who are listed at the bottom of a web page, before or in addition to visiting those

who are listed at the top (Animesh, Viswanathan and Agarwal 2011). In the context of online

retailing, it has been observed that consumers’ attention to a display decreases exponentially with

the display’s distance to the top (Feng, Bhargava, and Pennock 2007). Thus, positioning a brand

or product at a top position on a listing can improve both consumer attention to the brand, and

consequently, consumer selection of the brand (Chandon, Hutchinson, Bradlow, and Young 2009).

1.1. Model Overview

Despite substantial evidence suggesting the impact of framing on consumers’ choice outcome, there

are very few models that have attempted to capture these effects. In this paper, we introduce one

of the first models for product framing and the first one for pricing that accounts explicitly for

these effects.

We base our model on the notion of consideration set. A consideration set is the set of products

over which a consumer will make utility comparisons before arriving at the final purchase decision.

Consideration sets have gained considerable acceptance since their introduction in the seminal

work of Howard and Sheth (1969). A widely used approach to modeling choice in psychology and

marketing is to assume that a consumer will first form a consideration set. Then she will choose

from among the alternatives in the set. Consideration sets explain, behaviorally, consumers’ limited

ability to process or acquire information (Manrai and Andrews 1998). Methodologically, it has

been shown that ignoring consideration sets may lead to biased parameter estimates (Chiang, Chib

and Narasimhan 1999), whereas including consideration sets improves the predictability of choice

models (Hauser and Gaskin 1984, Silk and Urban 1978). As an example, Hauser (1978) finds that

a disproportionate 78% of the explainable uncertainty in consumer choice can be accounted for by

consideration sets, whereas the Multinomial Logit Model (MNL) can only capture the remaining

22%.

We model the effect of framing on the formation of consideration sets as follows. Products are

organized into virtual pages. Each page can hold a finite number, say p, of products. A consumer

will examine only the first X pages, where X is a random variable that may be personalized to

the consumer’s profile. The consumer forms a consideration set consisting of only products in the

examined pages. From this consideration set, the consumer makes a choice according to a general

choice model. Thus, products that are placed in earlier pages are more likely to be considered, and

therefore purchased, than those that are placed in later pages.
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Given the behavior described above, we study two problems that are faced by an e-retailer who

is managing n different products in a particular product category. The retailer’s product framing

problem is how to determine an assortment and a distribution of the products in the assortment

into the different pages in order to maximize the expected revenue. The retailer’s joint pricing and

framing problem is to determine both the framing and pricing of the products in order to maximize

the expected revenue.

We further model location preference effects that come into play after the consideration sets have

been formed. Location preference works as follows. First, given that a certain page enters into a

consumer’s consideration set, products that are displayed higher on the page are more likely to be

chosen than those displayed lower on the same page, all other factors being equal. Second, given

that two different pages enter into a consumer’s consideration set, products that are listed in the

earlier page are more likely to be chosen than products that are listed in the later page, all other

factors being equal.

1.2. Results and Implications for Retailers

Our contributions in this paper are the followings:

• We propose one of the first models of framing effects. Our model allows for a general choice

model and a general framing structure.

• We prove that the product framing problem is NP-hard, even when there are only 2 pages and

the choice model is the MNL model.

• We propose fast, easy-to-implement algorithms with worst-case performance guarantees. The

ease and simplicity of the algorithms mean that they can be personalized on-line for each arriving

consumer.

• We show that an optimal joint pricing and framing solution for the MNL model has the follow-

ing properties: (i) Every page is fully filled with products until all the products are displayed. (ii)

All products on the same page have the same page-level markup (price minus cost), which increases

monotonically with the page index. (iii) Products with higher value gaps are displayed earlier. The

value gap of a product is the net utility when the product is sold at the unit wholesale cost. This

implies that more attractive products (i.e., those having higher value gaps and lower markups) are

displayed in earlier positions. This last finding is contrary to the findings of Arbatskaya (2007),

who argues that consumers with lower search costs will search longer and obtain better deals.

Our model also applies to brick-and-mortar retailers with a suitable interpretation of what

consumers are willing to look at. Some consumers would only look at the most prominent displays

(see Chandon, Hutchinson, Bradlow and Young 2009, Corstjens and Corstjens 2012), while others

may look at some aisles or the entire the store. In this context, our location-preference helps to
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model the values of having products at eye level and the value of end-of-aisle locations. Our pricing

results suggest that the most prominent displays should have the highest utility products at the

lowest markups.

2. Literature Review

2.1. Relation to Assortment Optimization

Our paper falls within the literature on assortment optimization. Assortment optimization began

with a stylized model introduced by van Ryzin and Mahajan (1999). They show that under the

MNL model, an optimal assortment consists of a certain number of highest-utility products when

the products are equally profitable. When the products’ prices are given exogenously and the choice

model is the MNL model, Talluri and van Ryzin (2004) prove that an optimal assortment includes

a certain number of products with the highest revenues.

The assortment optimization problem is easy to solve for the MNL model over a given considera-

tion set. Davis, Gallego and Topaloglu (2013) show that this problem can be formulated as a linear

program with totally unimodular constraints. Davis, Gallego and Topaloglu (2014) also propose

that under the nested logit (NL) model, the assortment optimization problem can be solved by

a linear program when the nest-dissimilarity parameters of the choice model are less than one,

and each consumer always makes a purchase within the selected nest. Relaxing either of these

assumptions renders the problem NP-hard.

The assortment optimization problem is NP-hard for general choice models. Indeed, Bront,

Mendes-Diaz and Vulcano (2009) show that under the mixed multinomial logit (MMNL) choice

model, the assortment optimization problem with a fixed number of mixtures is NP-hard. Desir and

Goyal (2013) show that this problem is even NP-hard to approximate within a factor of O(n1−ε),

for any fixed ε > 0. They give approximation schemes that tradeoff running time with solution

quality, but the running time for their approach grows exponentially with the number of mixtures.

Few papers have studied assortment optimization with location effects. Davis, Gallego and

Topaloglu (2013) model location effects by introducing location-dependent item weights to the

MNL model, but they do not model consideration sets. The resulting assortment optimization

problem reduces to a linear program with totally unimodular constraints.

Assortment optimization under consideration-set-based choice models have been studied by a

number of authors. One stream works with endogenous consideration sets that arise as a result of

search. Cachon (2005) shows that ignoring consumer search will lead to less assortment variety,

since in equilibrium, the seller needs a larger assortment to attract more consumers. Sahin and

Wang (2015) also study the assortment optimization problem with search costs. They assume

consumers are homogeneous, and their search sequences are predetermined by all the products’
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expected utilities that are known to the consumers before they search. Feldman and Topaloglu

(2015) study a model in which consumers choose products according to the MNL model, but

consumers of different types have different consideration sets, and the sets are fixed and nested.

They devise a fully polynomial-time approximation scheme for this problem.

To our knowledge, there are only two papers that model a framing-dependent formation of

consideration sets. Davis, Topaloglu and Williamson (2015) study a problem in which a firm must

sequentially add products to its assortment over time, thereby monotonically increasing consumers’

consideration sets. They provide an algorithm with constant relative performance. The decision

space for this problem is more constrained than ours and the application context is very specific.

Aouad and Segev (2016) consider a variant of our model, where the number of products that can

be displayed on each page is one, the choice model is the MNL model, and all products must be

displayed even if doing so is suboptimal.

2.2. Relation to Assortment Pricing

Our work is also related to assortment pricing. Hanson and Martin (1996) are among the first

to notice that the expected revenue function fails to be concave in pricing problems, even under

the MNL model. Song and Xue (2007) show that the expected revenue is concave with respect to

the market shares. Under the MNL model with uniform price-sensitivity parameter, the markup,

defined as price minus cost, has been shown to be constant across all products at optimality

(Anderson, de Palma and Thisse 1992, Hopp and Xu 2005, and Gallego and Stefanescu 2011).

By assuming that the price sensitivities of the products are constant within each nest and the

nest dissimilarity parameters are restricted to the unit interval, Li and Huh (2011) extend the

concavity result to the NL model. Gallego and Wang (2014) consider the general NL model with

product-differentiated price-sensitivity parameters and arbitrary nest coefficients. They find that

the adjusted nest-level markup is also constant across all the nests.

We extend the assortment pricing literature by modeling framing effects. Under the MNL profit-

maximization model, we find that the constant markup property holds at the page level. We also

show that optimal markups are higher for products having lower value gaps, which is contrary to

the findings of Arbatskaya (2007).

3. Product Framing Problem

Throughout this paper, we let [k] denote the set {1,2, . . . , k} for any positive integer k.

Consider n products. Product i has unit profit or revenue ri, i ∈ [n]. This interpretation allow

us to handle both profit optimization and revenue maximization problems in a single framework,

perhaps after the transformation ri← ri − ci where ci is the unit cost of product i. Products are
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organized into m virtual pages. Each page can hold up to p products. Potentially all of the products

may be offered, but offering all of the products is not a hard requirement. The consideration set of

a consumer is the set of all products in pages 1,2, . . . ,X, where X ∈ [m] is the random number of

pages that the consumer is willing to view. From this consideration set, the consumer purchases at

most one product according to a general choice model. Let λ(x) = P[X = x], and Λ(x) = P[X ≥ x]

for all x∈ [m].

We do not know the number of pages X that a consumer is willing to view when she arrives

into the system. We assume, however, that the distribution of X is known and is independent of

the framing of the products. Knowledge of X can be acquired from observing click data and by

computing the frequency of consumers who examine x ∈ [m] pages. By the law of large numbers,

these frequencies converge to the probability distribution of X. Although we will refer to a single

random variable X, it is easy to see that X can be personalized to heterogeneous consumer types

based on available information about the distribution of pages they are willing to see. Information

that may change the distribution of X includes, but is not limited to, prior purchases, zip code,

age, and gender.

We first assume that consumers choose according to a general choice model that is independent

of X. Later in Section 6, we will remove this assumption and show that under mild conditions we

can still design framing algorithms with provable performance guarantees.

The product framing problem is to distribute the n products among the m pages to maximize

the expected revenue that can be obtained from an arriving consumer. Our model does not impose

any hard constraints on whether a particular page should be fully filled, i.e., should contain exactly

p products. However, all the solutions generated by our algorithms have a desirable property that,

for any page x∈ [m] that is not empty, all the previous pages 1,2, . . . , x−1 are full. In other words,

our algorithms do not leave holes in the displayed pages.

The product framing problem can be formulated in terms of decision variables f ∈ {0,1}n×m,

where fix indicates whether product i ∈ [n] is displayed on page x ∈ [m]. Let P (i,S) denote the

purchase probability of product i when the consideration set is S ⊆ [n], with P (i,S) = 0 if i 6∈ S.

The formulation in terms of the variables fix is given by

V OPT = max
f∈{0,1}n×m

∑
x∈[m]

λ(x)
∑
i∈[n]

riP (i,{k ∈ [n] :
x∑
l=1

fkl = 1})

s.t.
∑
x∈[m]

fix ≤ 1, ∀i∈ [n]∑
i∈[n]

fix ≤ p, ∀x∈ [m]

fix ∈ {0,1}, ∀i∈ [n], x∈ [m].

(1)

Here V OPT is the expected revenue of an optimal framing algorithm OPT. For other sub-optimal

algorithms Π, we denote the expected revenue of Π as V Π.
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3.1. Hardness of the Framing Problem

We show that problem (1) is NP-hard even in the special case that m= 2 and the choice model is

the MNL model. We do this by reducing the well-known 2-PARTITION problem to a special case

of our model. The 2-PARTITION problem is defined as follows

Definition 1 (2-PARTITION). Given a set of n non-negative numbers w1,w2, . . . ,wn, deter-

mine whether there is a set S ⊆ [n] such that
∑

i∈S wi =
∑

i 6∈S wi.

Our reduction works as follows. Starting with any instance of 2-PARTITION, we design an instance

of problem (1). We show that the solution to the continuous relaxation of this problem takes a

certain value if and only if there is a solution to the 2-PARTITION problem.

Theorem 1. Problem (1) is NP-hard even when there are two pages and all consumers follow the

same MNL model.

3.2. Upper Bound on the Optimal Revenue

Since the problem of finding an optimal framing solution is NP-hard, it is interesting to characterize

upper bounds on V OPT that are easy to compute. We now propose such an upper bound, which we

will use to establish approximation ratios of our framing algorithms.

Consider the following assortment optimization problem, which constrains the number of prod-

ucts in the assortment to be at most c.

G(c) = max
S⊆[n]

∑
i∈S

riP (i,S)

s.t. |S| ≤ c.
(2)

Define U(x)≡G(x · p), for all x ∈ [m], as the optimal expected revenue from consumers who see

x ∈ [m] pages. If we had the luxury of knowing the number of pages X upon the arrival of a

consumer, we would offer her an optimal assortment that yields expected revenue U(X), and earn

expected total revenue

E[U(X)] =
∑
x∈[m]

λ(x)U(x). (3)

The following result states that this E[U(X)] is an upper bound on the optimal expected revenue

V OPT.

Theorem 2. E[U(X)]≥ V OPT.

4. Approximation Algorithms for Product Framing

In this section, we propose framing algorithms having guaranteed constant performance ratios

relative to OPT. The performance guarantee we prove in this section is tight relative to the upper

bound (3), in the sense that our proofs exhibit ways to construct instances in which the bounds

are achieved by our algorithms.
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4.1. Assumptions for Analysis of Algorithms

For the purpose of proving theoretical performance guarantees, we make three innocuous assump-

tions:

Assumption A1 P (i,S)≥ P (i, T ) for all i∈ S and S ⊆ T ⊆ [n].

Assumption A2 In polynomial time, we can obtain a solution with expected revenue Ḡ(c) to

problem (2) such that Ḡ(c)≥ (1− ε)G(c) for some constant ε > 0.

Assumption A3 X has new better than used in expectation (NBUE) distribution.

We stress that the framing problem is still NP-hard under these three assumptions, because the

reduction in the proof of Theorem 1 incorporates all these assumptions.

Assumption A1 is very general as it holds for all random utility models. Davis, Topaloglu and

Williamson (2015) have shown that Assumption A1 leads to the following results, which we will

use in the analysis.

Lemma 1. (Davis et al. 2015) For any set S ⊆ [n] with |S| ≥ 2, there exists i∈ S such that∑
k∈S,k 6=i rkP (k,S \ {i})

|S| − 1
≥
∑

k∈S rkP (k,S)

|S|
.

Lemma 2. (Davis et al. 2015) U(x)/x is decreasing in x, for x∈ [m].

Lemma 1 means that it is always possible to raise the per-product revenue by removing one of

the products from an assortment. This is intuitive as we only need to remove the product k ∈ S

having the smallest contribution rkP (k,S). Lemma 2 is an analogous version of Lemma 1 at page

level, i.e., the optimal per-page revenue decreases as consumers consider more pages.

Assumption A2 states that we can solve the capacity-constrained problem (2) within a constant

approximation ratio. For the MNL and NL models, the capacity-constrained problem can be exactly

solved in polynomial time (ε= 0) (Gallego and Topaloglu 2014). For the Mixed Multinomial Logit

model with a constant number of mixtures, the capacity-constrained problem can be solved within

any constant error ε > 0 in polynomial time (Mittal and Schulz 2013, Desir and Goyal 2013). For

ease of exposition, in the rest of the paper we assume that ε= 0, but our algorithms and bounds can

be easily extended to the case of ε > 0 by replacing an optimal solution to (2) with an approximate

one, and scaling the corresponding bound by (1− ε).

Assumption A3 means that the additional expected number of pages that a consumer will see is

no more than the expected number of pages that she would like to see before the search. If we let

q(x) = E[X − x+ 1|X ≥ x] for all x ∈ [m], then Assumption A3 is equivalent to q(x)≤ q(1) for all

x∈ [m].
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4.2. NEST Algorithm

We first propose a family of algorithms, called NEST(y), which start by truncating the number of

pages to an arbitrary integer y, and selecting an optimal assortment, say S(y), for consumers who

view the first y pages. Then they select an assortment for the first y − 1 pages, say S(y − 1), by

looking only at the products in S(y). This procedure continues until the content of all the y pages

have been determined.

For all x∈ [m], let S(x)⊆ [n] denote the set of products to be displayed in the first x pages. Let

R(S) denote the expected revenue when S is the consideration set of a consumer.

NEST(y) Algorithm (for y ∈ [m]):

1. Solve the assortment optimization problem (2) with cardinality bound c= y · p. Set S(y) to

be the assortment solution.

2. For x= y− 1 down to 1, choose S(x)⊆ S(x+ 1) and |S(x)|= min(|S(x+ 1)|, x · p) such that

R(S(x))

|S(x)|
≥ R(S(x+ 1))

|S(x+ 1)|
. (4)

Lemma 1 ensures that we can always find such a set S(x). Note that if |S(x+ 1)| > x · p, then

|S(x)|= x · p, meaning that the first x pages are fully filled.

3. Leave pages y+ 1, y+ 2, . . . ,m blank. Hence, S(x) = S(y) for all x> y.

Now for any choice of y, there is a corresponding expected total revenue V NEST(y). We let NEST

be the algorithm that chooses the y that brings the highest expected revenue. That is,

V NEST = max
y∈[m]

V NEST(y).

4.3. Constant Approximation Ratio

We now show that NEST achieves at least 6/π2 ≈ 0.608 times the optimal expected revenue. First,

we derive lower bounds on V NEST(y).

Proposition 1. V NEST(y) ≥ U(y)

y
E[min(X,y)], for all y ∈ [m].

Consequently, as NEST chooses y to maximize the expected total revenue, we must have

V NEST = max
y∈[m]

V NEST(y) ≥max
y∈[m]

U(y)

y
E[min(X,y)].

We prove the performance guarantee of NEST by comparing this lower bound on V NEST against

the upper bound (3) on V OPT. The idea of the proof is to examine the worst-case structure of

maxy∈[m]
U(y)

y
E[min(X,y)] over all functions U(·) satisfying Lemma 2, and over all distributions

of X satisfying Assumption A3. For convenience we will scale U(·) without loss of generality so

E[U(X)] = 1. This leads to the following minmax problem:
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γ = min
U,Λ

max
x∈[m]

U(x)

x
E[min(X,x)]

s.t. 1 = Λ(1)≥Λ(2)≥ · · · ≥Λ(m)≥ 0,

Λ(x+ 1)×
m∑
y=1

Λ(y)≥
m∑

y=x+1

Λ(y), ∀x= 1,2, . . . ,m− 1,

U(x)≤U(x+ 1), ∀x= 1,2, . . . ,m− 1,

U(x)

x
≥ U(x+ 1)

x+ 1
, ∀x= 1,2, . . . ,m− 1,

E[U(x)] = 1,

U(x)≥ 0, ∀x∈ [m].

(5)

The first constraint ensures that Λ corresponds to a valid tail distribution. The second constraint

ensures that X has the NBUE property. The third and fourth constraints ensure that U(·) is

increasing and satisfies Lemma 2. The fifth constraint normalizes E[U(X)] to 1, and the last ensures

that U(·) is non-negative.

To solve this bound-revealing problem (5), we will first characterize the functions U(·) and Λ(·)

in the worst case. In the process of establishing the bounds, we will not use special notations, say

γ∗,U∗(·) or Λ∗(·), to denote an optimal solution to problem (5). This comes at a small cost of

ambiguity, but makes the exposition much cleaner.

The following proposition gives the worst-case structure for U(·). It states that, in the worst

case, E[min(X,x)]U(x)/x is constant for all x∈ [m].

Proposition 2. γ = U(x)

x
E[min(X,x)] for all x∈ [m].

For U(x) of the form given by Proposition 2, we next show how γ depends on the distribution

of X, by using the fact that E[U(X)] = 1.

Proposition 3. Let Y be a random variable that is independently and identically distributed as

X. Then Problem (5) can be equivalently re-formulated as

1

γ
=max

Λ
E

[
X

E[min(X,Y )|X]

]
s.t. 1 = Λ(1)≥Λ(2)≥ · · · ≥Λ(m)≥ 0,

Λ(x+ 1)×
m∑
y=1

Λ(y)≥
m∑

y=x+1

Λ(y), ∀x= 1,2, . . . ,m− 1.

(6)

We prove the performance guarantee of NEST by showing that E[ X
E[min(X,Y )|X]

]≤ π2/6 among all

non-negative, NBUE distributions of X.

Theorem 3. V NEST ≥ 6
π2
V OPT.
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In our analysis, we used an exponential distribution to achieve the bound for Problem (5). The

reader may wonder whether there is a discrete distribution over non-negative integers such that

the bound for Problem (5) is also tight. The following proposition asserts that this is indeed the

case.

Proposition 4. The performance ratio 6/π2 with respect to the upper bound (3) is attained when

m tends to infinity, X follows a geometric distribution with mean 1/(1−α), and α tends to 1 from

below.

4.4. Practical Improvement to the Algorithm

We can refine NEST(y) in various ways to improve its empirical performance. First, we can greedily

add products to pages beyond y. As long as the expected revenue of assortment S(x) is at least

U(y) for all x= y+ 1, y+ 2, . . . ,m, the lower bound given by Proposition 1 will still hold, and thus

the approximation ratio 6/π2 will still be valid. Second, in Step 2 of NEST(y), instead of looking

for a set S(x) that satisfies equation (4), we can find an optimal S(x) from S(x+ 1) by solving

max
S(x)⊆S(x+1)

∑
i∈S(x)

riP (i,S(x))

s.t. |S(x)|= min(|S(x+ 1)|, x · p).

This method is favorable when the choice model allows for efficient assortment optimization algo-

rithms.

We use NEST+(y) to denote the variant of NEST(y) resulting from the above modifications. We

let NEST+ be the algorithm that chooses y to maximize the expected revenue of NEST+(y). We

will test both NEST and NEST+ in our numerical experiments in Section 8.

Corollary 1. If the capacitated assortment problem (2) has a unique optimal solution for each

c, and all the optimal solutions for different c’s are nested, i.e., T (1)⊆ T (2)⊆ · · · ⊆ T (n), where

T (c) is the unique optimal assortment for G(c), then NEST+ returns an optimal solution to the

product framing problem.

5. Product Framing with Location Preferences

In online retailing, consumers may be more likely to choose products that are displayed at the

top among search results, since consumers tend to associate high valuation with products that are

displayed earlier (Chandon, Hutchinson, Bradlow, and Young 2009). In this section, we augment our

model to capture the phenomenon that a consumer is more likely to buy a product displayed earlier,

even if the consumer has determined her consideration set. We call this the location preference

effect.
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We model location preference by using the MNL choice model and introducing location-

dependent preference weights for all products. We use νixq to denote the preference weight of

product i∈ [n] when this product is displayed at location q ∈ [p] on page x∈ [m].

To capture the product framing decisions, we use f = {fixq : i∈ [n], x∈ [m], q ∈ [p]} ∈ {0,1}n×m×p

to denote the framing solution, where fixq = 1 if we offer product i at location q of page x; otherwise

fixq = 0. Under framing solution f , the expected revenue from consumers who view x pages is∑
i∈[n]

∑x

l=1

∑
q∈[p] filqνilqri

1 +
∑

i∈[n]

∑x

l=1

∑
q∈[p] filqνilq

.

Here, we have assumed without loss of generality that the preference weight for the no-purchase

option is 1.

Under the MNL choice model, the upper-bound problem (2) is formulated as

U(x) = max
f

∑
i∈[n]

∑
l∈[x]

∑
q∈[p] filqνilqri

1 +
∑

i∈[n]

∑
l∈[x]

∑
q∈[p] filqνilq

s.t.
∑
i∈[n]

filq ≤ 1 ∀l ∈ [x], q ∈ [p]∑
l∈[x]

∑
q∈[p]

filq ≤ 1 ∀i∈ [n]

filq ∈ {0,1}, ∀i∈ [n], l ∈ [x], q ∈ [p]

(7)

where the first set of constraints ensure that each product is offered in at most one location and the

second set of constraints ensure that each location is used by at most one product. The constraint

matrix is that of an assignment problem, which is totally unimodular (see Corollary 2.9 in Chapter

III.1 of Nemhauser and Wolsey 1988). With the linear fractional objective function, we know the

problem is easily solvable (see Davis, Gallego and Topaloglu 2013).

We prove the following generalization of Lemma 2:

Lemma 3. Suppose νixq ≤ νix′q′ for all i∈ [n], x,x′ ∈ [m] and q, q′ ∈ [p] such that x ·p+q > x′ ·p+q′,

i.e., the preference weight will decrease if the product is displayed in a later position. Then U(x)

x
≤

U(x′)
x′ for any x,x′ ∈ [m] and x> x′.

With Lemma 3 and the NBUE property (Assumption A3), it immediately follows that the 6
π2

performance bound still holds.

Corollary 2. Suppose νixq ≤ νix′q′ for all i∈ [n], x,x′ ∈ [m] and q, q′ ∈ [p] such that x ·p+ q > x′ ·

p+q′. Then all bounds proved in Sections 4 continue to hold for the model with location preference.



Author: Article Short Title 13

6. Product Framing with Type-Dependent Consumer Choice Models

In this section, we relax the requirement that the consumer choice model must be the same for all

the values of X. This relaxation allows us to use the number of pages viewed to differentiate keen

consumers, who like to explore more pages and have a stronger desire to buy, or picky consumers,

who like to look around but are less likely to make purchases.

To this end, we say that a consumer is of type x if she views x pages. We allow the choice

model to be type dependent. Accordingly, for a consumer of type x, we let Px(i,S) be the purchase

probability of product i in assortment S. We will show that under mild assumptions, we can still

design an algorithm to guarantee an expected revenue of 1/3 of the upper bound.

Define

Rx(S) =
∑
i∈S

riPx(i,S) (8)

to be the expected revenue from presenting assortment S to a consumer of type x, for all x∈ [m].

We will still use U(x) to denote the optimal revenue from the capacitated assortment problem

for consumers of type x, namely,

U(x) = max
S⊆[n]

Rx(S)

s.t.|S| ≤ x · p.
(9)

It is easy to verify that Theorem 2 is still valid, i.e., E[U(X)] is still an upper bound on the optimal

expected revenue, as we only need to replace P (·, ·) with Px(·, ·) in the proof of Theorem 2.

We make the following assumptions:

Assumption B1 Rx(S)≤Ry(S) for all x≤ y and S ⊆ [n] with |S| ≤ x · p.

Assumption B2 U(x)/x is decreasing in x, for x∈ [m].

Assumption B3 Same as Assumption A2.

Assumption B4 X has increasing failure rate (IFR).

Assumption B1 was implicitly true in previous sections as Rx(S) =Ry(S) when all consumers

follow the same choice model. The motivation behind Assumption B1 is as follows. When there

are keen consumers, who like to shop around and have a stronger desire to buy, we would expect

Px(i,S)≤ Py(i,S) for x< y, which leads to Assumption B1. When there is a mix of keen and picky

consumers, Px(i,S)≤ Py(i,S) may not hold, but Assumption B1 could still serve as a reasonable

approximation.

Assumption B2 is weaker than Assumption A1 in the previous section because, according to

Lemma 2, the former is a result of the latter.
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Assumption B4 is sufficient for Assumption A3 (Shaked and Shanthikuma 2007). It is equivalent

to h(x)≡ λ(x)

Λ(x)
increasing in x ∈ [m]. Assumption B4 means that the probability that a consumer

will view the next page is decreasing in the number of pages she has viewed.

To gauge the appropriateness of our algorithms in settings where our assumptions might not

hold, we perform computational experiments in these settings in Section 8.1.2. The experiments

indicate that our algorithms significantly outperform greedy heuristics even in settings where the

choice model changes drastically with x and the monotonicity of Rx(S) in x is violated.

6.1. Truncation (TRUNC) Algorithms

Under Assumptions B1 to B4, we propose a family of algorithms TRUNC(y), which simply optimize

for the set of products to be included in the first y pages, for y ∈ [m]. In other words, TRUNC(y)

truncates the number of pages to exactly y, and does not try to optimize for the placement of these

products within the y pages. The idea is to cater only to consumers who will view at least y pages.

TRUNC(y) Algorithm (for y ∈ [m]):

1. Same as Step 1 of NEST(y) (i.e., setting S(y) to be the assortment solution to problem (9)).

2. Use any heuristic to fill in the first y pages such that the set of all products in the first y

pages is S(y).

3. Leave pages y+ 1, y+ 2, . . . ,m blank.

Therefore, the only difference between TRUNC(y) and NEST(y) is that given a choice of y,

TRUNC(y) does not optimize the display in the first y pages.

Let TRUNC be the algorithm that chooses the y maximizing V TRUNC(y). We next show that

TRUNC achieves at least 1/3 of the optimal expected revenue.

The main idea of the proof is as follows. According to Assumption B1, we have U(x)≥U(y) for

all x≥ y. Therefore, U(y)Λ(y) is a lower bound on V TRUNC(y), because every consumer who views

x≥ y pages yields expected revenue U(x)≥ U(y). Consequently, max
y∈[m]

U(y)Λ(y) is a lower bound

on V TRUNC. We will minimize the quantity max
y∈[m]

U(y)Λ(y) over all IFR distributions of X and all

increasing functions U(·) satisfying Assumption B2. We will scale U(·) without loss of generality

so the upper bound E[U(X)] is normalized to 1. We will then show that the smallest value of

max
y∈[m]

U(y)Λ(y) is at least 1/3. Doing this is equivalent to proving the same lower bound on the
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following optimization problem:

γ = min
U,Λ

max
x∈[m]

U(x)Λ(x)

s.t. 1 = Λ(1)≥Λ(2)≥ · · · ≥Λ(m)≥ 0,

Λ(x+ 1)Λ(x− 1)≤Λ(x)2, ∀x= 2,3, . . . ,m− 1,

U(x)≤U(x+ 1), ∀x= 1,2, . . . ,m− 1,

U(x)

x
≥ U(x+ 1)

x+ 1
, ∀x= 1,2, . . . ,m− 1,

E[U(x)] = 1,

U(x)≥ 0, ∀x∈ [m].

(10)

All the constraints follow the same logic as those in Problem (5). Note that the third constraint

that U(·) be increasing is a necessary condition of Assumption B1.

The following theorem states our main result for TRUNC. Please refer to Appendix A.4 for the

detailed analysis.

Theorem 4. Under Assumptions B1, B2, B3, and B4, V TRUNC ≥ 1/3V OPT.

7. Joint Pricing and Framing Problem

In practice, retailers care not only about how to select and display the products, but also how to

price them to maximize the expected revenue. In this section, we consider the problem faced by

a retailer who is jointly framing and pricing all products. The framing policy still determines a

consumer’s consideration set, i.e., the set of products in the first several pages the consumer views.

But now the retailer also adopts a pricing policy that sets the price ri for each product i ∈ [n],

which influences consumers’ utility and thus influences the choice probability of the product.

We assume that the relationship between the pricing policy and consumers’ choice probabilities

is given by the MNL choice model. Specifically, we assume that the choice probability of a consumer

with consideration set S is

P (i,S) =

{
eui

1+
∑

k∈S e
uk
, i∈ S

0, otherwise,

where ui is consumers’ mean utility for product i. We assume that the mean utility of a product

scales linearly with its price: ui = ai− βri, for all i ∈ [n]. Here, ai is the price-independent quality

of product i, β > 0 is the price sensitivity parameter, and ri is the pricing decision. We use product

0 to refer to the outside alternative, and assume that u0 = 0. This formulation is commonly used

in the economics, marketing and psychology literature (Berry, Levinsohn and Pakes 1995; Fader

and Hardie 1996; Shugan 1980).

Next, in Section 7.1, we establish structural results of an optimal solution to the joint pricing

and framing problem. Based on these structural results, we propose an approximation algorithm

for this joint optimization problem in Section 7.2.
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7.1. Structural Results

We first consider the case where the framing policy is fixed and the only task is to find the optimal

prices to maximize revenues. More precisely, suppose we are given a fixed framing policy that

displays products S(x)⊆ [n] in the first x pages, for all x∈ [m]. The pricing problem is

max
r=(r1,r2,...,rn)

E[R(r|S(X))],

where

R(r|S)≡
∑
i∈S

riP (i,S)

is the expected revenue from a consumer with consideration set S, when (r1, . . . , rn) is the pricing

policy. We prove the following structural result.

Theorem 5. Assume that the framing policy is given. To maximize the expected revenue, all prod-

ucts in the same page should have the same price. That is, there are parameters θ1, . . . , θm such

that ri = θx for all products i displayed on page x. Moreover, we must have θ1 ≤ θ2 ≤ · · · ≤ θm.

This result extends the classical MNL pricing structure. It is known that the optimal pricing

strategy under the MNL revenue-optimization problem is to set the same price for all products

(Anderson, de Palma and Thisse 1992, Hopp and Xu 2005 and Gallego and Stefanescu 2011).

Theorem 5 states that, in our framing problem, this constant-price structure is preserved for

products in any fixed page.

The monotonicity of page-dependent prices θx can be explained as follows. In the classic MNL

pricing problem, if a consumer is willing to view more products, hence expanding her consideration

set, then an optimal pricing policy would charge her a higher price for every product. Our model

inherits this property in the sense that, if a consumer expands her consideration set by viewing

more pages, she will see new products having higher and higher prices.

This pricing structure is in sharp contrast to that in an oligopoly market (Arbatskaya 2007).

Arbatskaya (2007) studies a model in which multiple retailers compete to sell the same product.

They find that retailers in later positions of the list have to price lower in order to attract more

demand. Our model, however, considers the monopoly market, in which there is no need for the

single retailer to compete on prices.

As a result of Theorem 5, we can reduce the number of decision variables from n prices, one for

each product, to m prices (θ1, θ2, . . . , θm), one for each page. Let P (T,S) =
∑

i∈T P (i,S) denote the

probability that a consumer with consideration set S buys any product in T . The pricing problem

in terms of (θ1, θ2, . . . , θm) is
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max
θ=(θ1,θ2,...,θm)

E[R(θ|S(X))],

where

R(θ|S(x))≡
x∑
l=1

θlP
(
S(l) \S(l− 1), S(x)

)
is the expected revenue from a consumer who considers S(x) (we let S(0) = ∅).

The first order condition yields the system of equations

∂E[R(θ|S(X))]

∂θx
=

m∑
l=x

λ(l)P
(
S(x) \S(x− 1), S(l)

)(
1−βθx +βR(θ|S(l))

)
= 0 ∀x∈ [m],

which are equivalent to

θx =
1

β
+

∑m

l=x λ(l)P
(
S(x) \S(x− 1), S(l)

)
R(θ|S(l))∑m

l=x λ(l)P
(
S(x) \S(x− 1), S(l)

) , ∀x∈ [m].

In other words, the price for products listed on page x is a constant 1/β plus a weighted average

of the expected revenue from consumers who view page x.

In general, the expected revenue E[R(θ|S(X))] may not be jointly concave in the θ vector, as

illustrated in the following example.

Example 1. There are two products and two pages. Each page can hold at most one product.

Suppose that P[X = 1] = 56% and P[X = 2] = 44%. Product 1 has quality a1 = 4 and product 2

has a2 = 2. The price sensitivity is β = 1. Figure 1 shows the expected revenue E[R(θ|S(X))] as a

function of the two prices. We see that this function is not jointly concave.

Figure 1 Pricing example.

We now look into the joint pricing and framing problem. By the presumed utility structure, we

see that products are differentiated only by their quality parameters ai, i∈ [n].

Theorem 6. At optimality, each page is fully filled with products until all products are displayed.

The products are displayed in descending order of quality ai.
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In essence, Theorems 5 and 6 tell us that higher-quality products should be displayed first and

given lower prices, with the lowest price enjoyed by products in the first page that is seen by

everybody. One of the insights given by the two theorems is that lower-quality products should be

charged higher prices so as to steer consumers to higher-quality products.

7.1.1. Profit-Maximization Problem. The structural results we have proved so far can be

adapted to the profit-maximization problem, in which the expected profit from a consumer with

consideration set S is
∑

i∈S(ri− ci)P (i,S), where ci is the cost of product i.

We can solve this profit-maximization problem by change of variables: ai − βci = a′i, ri − ci =

r′i. The resulting formulation in terms of a′i and r′i is that of the revenue-maximization problem

(Gallego, Li and Beltran 2016). This naturally leads to the following result.

Corollary 3. For the profit-maximization problem, at optimality, products are displayed in

decreasing order of value gap, defined as ai− βci for all i ∈ [n]. Also, all products are priced with

page-dependent markups. That is, ri− ci = θx for all products i displayed on page x. Moreover, the

page-dependent markup θx increases with respect to the page index x.

7.1.2. Location Preference Effect. Another relevant question is how to incorporate the

location preference effect (see Section 5) into the joint pricing and framing problem. We can prove

the following structural result based on Theorems 5 and 6.

Corollary 4. Suppose that each product i ∈ [n] has mean utility ai +ωxq − βri when it is placed

at the q-th position on page x, where wxq is the add-on utility for position (x, q), for all x∈ [m] and

q ∈ [p]. Also suppose that ωxq ≤ ωx′q′ for all i ∈ [n], x,x′ ∈ [m] and q, q′ ∈ [p] such that x · p+ q >

x′ · p + q′. At optimality, each page is fully filled with products until all products are displayed.

The products are displayed in descending order of their quality ai. Moreover, all products on the

same page have the same price (for the revenue maximization problem) or the same markup (for

the profit optimization problem). The page-dependent price or markup increases with respect to the

page index.

7.2. Approximate Pricing Algorithm

In this section, we propose an efficient pricing heuristic, which we denote as NEST-P, that borrows

the idea from NEST, and prove that the heuristic also guarantees a performance ratio 6/π2. The

algorithm’s idea is to pick a number y of pages, find a price that maximizes the revenue from

consumers who view y pages, and set all products with this price.

NEST-P(y) Algorithm (for y ∈ [m]):

1. Display all products in decreasing order of their quality ai, i∈ [n]. Let S(x) denote the set of

products displayed in the first x pages, for all x∈ [m].
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2. For all products in S(y), solve an MNL pricing problem to maximize the expected revenue

from consumers who view y pages.

3. For x= y+ 1, . . . ,m, solve an MNL pricing problem to maximize the expected revenue from

consumers who view x pages, when the prices of products in S(x− 1) are fixed.

The first step of NEST-P(y) is essentially motivated by the structural result of Theorem 6. The

second and third steps are designed so that the solution of NEST-P(y) inherits all the structures

that we have proved for NEST(y). From Anderson, de Palma and Thisse (1992), we know that

after applying NEST-P(y), all products in the first y pages have the same price, and products in

the same page x= y+ 1, . . . ,m have the same price.

Let NEST-P be the algorithm that picks the y maximizing the expected total revenue of

NEST-P(y). We can easily derive the 6/π2 performance ratio of NEST-P by verifying that the same

lower bound in Proposition 1 continues to hold.

Theorem 7. For the joint pricing and framing problem, the expected revenue of NEST-P is at least

6
π2

times the optimal expected revenue.

8. Computational Experiments

In this section, we numerically test the performance of our framing and pricing algorithms, and

compare them to other simple heuristics.

In all of our test problems, we assume that consumer choice is governed by the Multinomial

Logit Model. If the set of products S(x) is displayed in the first x pages, then conditional on a

consumer with X = x, she will buy product i∈ S(x) with probability

vi
v0 +

∑
i′∈S(x) vi′

.

By convention, we set v0 = 1 and vi = eai−βri , where ai is the product quality.

8.1. Results of Framing Algorithms

We randomly generate n = 300 products in each test case. Every ri is randomly drawn from a

log-normal distribution such that log ri
50

has mean 0 and variance 1. We set β = 1.02 and ai = ri+εi,

where εi ∈ [−0.3,0.3] is a noise added to the quality of product i.

We test three different distributions of X: geometric, uniform and Poisson. The distribution

is truncated to m = 20 pages, so that λ(20) = Λ(20). We further differentiate the test cases by

different values of p and E[X]. We report the result of each test case based on 1000 simulation

replicates.

We test the following algorithms:
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• NEST. Recall that NEST(y) leaves pages x> y empty.

• NEST+ (Section 4.4), which is designed to improve the empirical performance of NEST.

• A sorting heuristic SORT1, which first solves for S an assortment optimization problem with

capacity m · p, and then displays all products in S in increasing order of price.

• A sorting heuristic SORT2, which is similar to SORT1 but displays all products in S in decreas-

ing order of mean utility.

• A sorting heuristic SORT3, which is similar to SORT1 but displays all products i ∈ S in

decreasing order of rivi.

• A bottom-up greedy heuristic BU, which starts with the first page (x = 1) and sequentially

fills in products that would maximize the expected revenue for consumers who view x pages, for

x= 2, . . . ,m, such that this assortment includes all products in the first x− 1 pages.

• A top-down greedy heuristic TD, which starts by fitting all products into m pages. Then in the

k-th step, k= 1, . . . ,m−1, the heuristic finds an assortment that maximizes revenue for consumers

who view m− k pages, from products in the first m− k+ 1 pages.

Refer to Tables 1 to 3 for results of framing algorithms. We defer results of additional test

cases, in which X has different distributions, to Tables 11 to 16 in Appendix B. In general, SORT3

outperforms SORT1 and SORT2, and unsurprisingly NEST+ outperforms NEST. NEST+ dominates

all other heuristics SORT1, SORT2, SORT3, TD and BU in most test cases. The average optimality

gap of NEST+ is just 1.42% in the worst case, compared to 12.41% for SORT1, 12.25% for SORT2,

10.85% for SORT3, 10.81% for TD, and 3.51% for BU.

According to the numerical results, when both the number of products per page p and the

expected number of pages seen E[X] become large, algorithms such as NEST, NEST+, TD and

BU tend to achieve negligible optimality gaps. This can be explained as follows. As p increases,

U(y) would approach U(m) for any y ∈ [m], because consumers would be less likely to choose

the no-purchase option when there are more products in the consideration set. On the other

hand, E[min(X,y)]

y
tends to 1 as E[X] increases. Altogether, we can expect that the lower bound

U(y)E[min(X,y)]/y (see Proposition 1) tends to U(m), an upper bound on the expected revenue

from any consumer, as both p and E[X] increase. Consequently, as long as an algorithm tries to

optimize the assortment in the first y pages for some properly chosen y, the optimality gap of the

algorithm would be small in settings with large p and E[X].

8.1.1. Running Time Comparison. In Table 4, we report the running time of different

framing algorithms (implemented using C# on a 4Ghz CPU), when the test scenario is the same

as that of Table 2. The most time-consuming part of our algorithms is solving the cardinality

constrained assortment optimization problem (2). Table 5 summarizes the number of times that

each of the algorithms has to solve this assortment problem.
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Table 1 Performance of framing algorithms when E[X] = 2 and X follows a geometric distribution.

Avg gap
Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 SORT3 TD BU NEST NEST+ TD BU
1 2.44% 0.78% 12.41% 11.25% 10.85% 10.76% 0.79% 6.6 20.0 20.0 20.0
3 2.54% 1.24% 11.99% 6.19% 5.35% 6.51% 0.92% 16.8 60.0 60.0 60.0
9 1.40% 0.77% 5.49% 3.03% 2.09% 1.36% 0.57% 65.4 72.3 71.8 74.8
15 0.43% 0.33% 3.55% 2.34% 1.68% 0.38% 0.26% 71.0 71.7 71.5 72.9

Table 2 Performance of framing algorithms when E[X] = 4 and X follows a geometric distribution.

Avg gap
Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 SORT3 TD BU NEST NEST+ TD BU
1 3.12% 1.14% 7.65% 6.57% 6.15% 6.10% 2.02% 12.6 20.0 20.0 20.0
3 2.73% 1.42% 7.79% 4.26% 3.38% 3.37% 2.09% 41.5 60.0 59.9 60.0
9 0.66% 0.54% 3.34% 2.01% 1.56% 0.63% 0.87% 71.4 71.4 71.4 74.5
15 0.21% 0.16% 1.95% 1.38% 1.06% 0.18% 0.25% 71.5 71.7 71.8 73.0

Table 3 Performance of framing algorithms when E[X] = 8 and X follows a geometric distribution.

Avg gap
Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 SORT3 TD BU NEST NEST+ TD BU
1 2.73% 1.12% 4.28% 3.42% 3.20% 3.11% 3.35% 18.8 20.0 20.0 20.0
3 1.73% 1.08% 4.71% 2.68% 2.09% 1.67% 2.92% 59.6 60.0 59.9 60.0
9 0.30% 0.28% 1.82% 1.20% 0.94% 0.30% 0.82% 71.7 72.1 71.7 74.7
15 0.10% 0.08% 1.04% 0.72% 0.58% 0.08% 0.23% 71.6 71.6 71.1 72.8

Table 4 Average running time (milliseconds) of framing algorithms when E[X] = 4 and X follows a geometric

distribution.

p TRUNC NEST NEST+ SORT1 SORT2 SORT3 TD BU
1 7.1 7.3 16.6 < 1 < 1 < 1 < 1 9.1
3 7.0 7.7 19.5 < 1 < 1 < 1 1.3 8.2
9 6.9 8.4 18.7 < 1 < 1 < 1 < 1 2.9
15 7.3 8.4 16.3 < 1 < 1 < 1 < 1 1.6

Under the MNL choice model, we can solve (2) using a bisection method that iteratively finds

the optimal expected revenue. In each iteration, the bisection method first makes a guess R on the

optimal expected revenue (i.e., a guess on the optimal objective value of (2)), and then in O(n) time

the method looks for a subset of products i having the largest values of (ri−R)vi. These products

help decide whether R is larger or smaller than the optimal expected revenue (Rusmevichientong,

Shen and Shmoys 2010). The total time complexity of this bisection method is O(n logρ), where

logρ is the number of bisection iterations and is determined by the lengths of the initial and final
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search intervals. For instance, ρ can be

maxi∈[n] ri
maxi∈[n]

rivi
v0+vi

,

where maxi∈[n] ri and maxi∈[n]
rivi
v0+vi

are upper and lower bounds, respectively, on the optimal objec-

tive value of (2). (We obtain the O(n logρ) time complexity by using in each iteration a standard

O(n) algorithm for finding a subset of largest numbers; in practice, one may simply use a sorting

method in each iteration to find a subset of largest numbers, which results in O(n logn logρ) total

time complexity for the assortment optimization problem.)

Table 5 Number of times the cardinality-constrained assortment optimization problem needs to be solved.

TRUNC(y) TRUNC NEST(y) NEST NEST+(y) NEST+ SORT1, SORT2, SORT3 TD BU
1 m 1 m O(m) O(m2) 1 m m

The time complexity of NEST is m times that of NEST(y), because in our implementation, NEST

exhaustively computes NEST(y) for all y ∈ [m], and then picks the best y. In practice, one could

alternatively let NEST pick y= arg maxx∈[m]
U(x)

x
E[min(X,x)] (i.e., pick the y maximizing the lower

bound; see Proposition 1). In this way, NEST would keep the 6/π2 approximation ratio, and have

the same time complexity as NEST(y). The same argument applies to TRUNC and NEST+.

In general, the running time of NEST is better than that of NEST+ because it is faster to solve (4)

than the assortment optimization problem. Nevertheless, the time complexities of both NEST and

NEST+ scale linearly with n, because the time complexity of solving the assortment optimization

problem (2) scales linearly with n. Figure 2 illustrates how the average running time depends on

n.

Figure 2 The average running time of NEST and NEST+, when n takes values in {100,300,500,700,900}. Other

parameters are the same as those of Table 2.
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8.1.2. Picky Consumers. We investigate in this section whether our algorithms continue to

make good decisions in settings in which v0(x) increases linearly or exponentially in x. Specifically,

in the linear case, we set v0(x) = 1 + (x− 1)ω, for page index x ∈ [m]. In the exponential case, we

set v0(x) = e(x−1)ω, for page index x∈ [m]. We explore the range of values [0.2,2] for ω in the linear

case and [0.1,1] in the exponential case.

We can adapt NEST+ to this setting by choosing v0 = v0(y) in computing NEST+(y). In this way,

NEST+ inherits the structure of TRUNC. Since NEST+ is optimized for empirical performance, we

could expect that NEST+ outperforms TRUNC in this setting.

Tables 6 and 7 display the results in the linear and exponential case, respectively. The results

show that our leading algorithm NEST+ continues to have good performance in all cases. These

experiments indicate that our model serves as a good approximation of the more complex setting

where the choice model may change drastically with the consumer type. Thus, our model is a good

starting point for an investigation of framing decisions involving heterogeneous consumers.

Table 6 Performance of framing algorithms when choice probabilities depend on X. E[X] = 4; p = 3; X follows

a Poisson distribution; v0(i) = 1 + (i− 1)ω, where i is the page index.

Avg gap Max gap
ω TRUNC NEST+ SORT1 SORT2 SORT3 TD BU TRUNC NEST+ TD BU

0.2 1.01% 0.08% 7.34% 3.56% 2.44% 0.09% 0.44% 2.35% 0.54% 0.98% 2.76%
0.4 0.42% 0.02% 7.53% 3.71% 2.56% 0.02% 0.11% 1.20% 0.35% 0.21% 2.03%
0.6 0.18% 0.01% 7.33% 3.68% 2.59% 0.01% 0.03% 0.72% 0.08% 0.13% 0.48%
0.8 0.09% 0.00% 7.26% 3.56% 2.51% 0.00% 0.01% 0.39% 0.06% 0.07% 0.39%
1 0.05% 0.00% 6.82% 3.48% 2.46% 0.00% 0.00% 0.34% 0.05% 0.05% 0.19%

1.2 0.03% 0.00% 6.48% 3.40% 2.21% 0.00% 0.00% 0.22% 0.03% 0.04% 0.13%
1.4 0.02% 0.00% 6.19% 3.25% 2.07% 0.00% 0.00% 0.11% 0.03% 0.02% 0.05%
1.6 0.01% 0.00% 6.09% 3.18% 1.96% 0.00% 0.00% 0.08% 0.02% 0.02% 0.03%
1.8 0.01% 0.00% 5.92% 3.07% 1.80% 0.00% 0.00% 0.06% 0.02% 0.01% 0.09%
2 0.01% 0.00% 5.88% 3.03% 1.59% 0.00% 0.00% 0.05% 0.02% 0.01% 0.04%

8.2. Results of Joint Pricing and Framing Algorithms

In this section, we report test results of joint pricing and framing algorithms. We still choose n= 300

and m= 20. For product quality, we draw each ai from [50,70] uniformly at random, so that no

single product would have a much larger quality value compared to the rest. We test three different

algorithms: NEST-P, NEST-P(m) and NEST-P(1). Notice that NEST-P(m) and NEST-P(1) are

essentially top-down and bottom-up greedy heuristics, respectively.

Tables 8 to 10 summarize the test results of these algorithms. Please refer to Appendix B for

more numerical results, in which X is assumed to follow different distributions. Among all test
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Table 7 Performance of framing algorithms when choice probabilities depend on X. E[X] = 4; p = 3; X follows

a Poisson distribution; v0(i) = e(i−1)ω, where i is the page index.

Avg gap Max gap
ω TRUNC NEST+ SORT1 SORT2 SORT3 TD BU TRUNC NEST+ TD BU

0.1 0.35% 0.13% 7.16% 3.50% 2.51% 0.14% 0.67% 0.87% 0.95% 1.15% 3.61%
0.2 0.24% 0.02% 7.57% 3.89% 2.79% 0.37% 0.13% 0.51% 0.18% 1.90% 1.49%
0.3 0.77% 0.03% 7.84% 4.07% 3.05% 1.09% 0.03% 1.42% 0.17% 4.67% 0.44%
0.4 1.45% 0.07% 7.17% 3.89% 2.86% 0.94% 0.02% 2.72% 0.34% 5.28% 0.22%
0.5 2.03% 0.13% 6.37% 3.61% 2.31% 0.68% 0.04% 3.34% 0.58% 2.84% 0.19%
0.6 2.30% 0.14% 5.98% 3.35% 1.84% 0.45% 0.06% 3.93% 0.73% 2.74% 0.39%
0.7 2.40% 0.14% 6.25% 3.79% 1.73% 0.33% 0.06% 5.18% 1.06% 2.66% 0.45%
0.8 2.37% 0.14% 7.11% 4.79% 2.05% 0.23% 0.06% 4.61% 0.96% 1.61% 0.59%
0.9 2.12% 0.12% 8.77% 6.70% 2.39% 0.20% 0.06% 4.56% 1.11% 1.46% 0.52%
1 1.95% 0.12% 10.78% 8.72% 2.38% 0.14% 0.05% 4.25% 1.00% 1.15% 0.44%

cases, the largest optimality gap of NEST-P is only 0.40%, compared to 9.02% for NEST-P(m) and

0.87% for NEST-P(1).

In all test scenarios, the average running time of NEST-P is less than two milliseconds, which is

much smaller compared to NEST and NEST+. This is mainly because the MNL pricing problem can

be reduced to a simple single-variable optimization problem. In particular, each time the common

price of an assortment is updated by a search procedure, it takes only O(1) time to re-compute

the expected revenue of the assortment (Anderson, de Palma and Thisse 1992, Hopp and Xu 2005,

Gallego and Stefanescu 2011).

Table 8 Performance of joint pricing and framing algorithms when E[X] = 2 and X follows a geometric

distribution.

Avg gap Max gap
p NEST-P NEST-P(m) NEST-P(1) NEST-P NEST-P(m) NEST-P(1)
1 0.15% 5.94% 0.15% 0.17% 9.02% 0.17%
3 0.11% 2.18% 0.13% 0.15% 3.84% 0.16%
9 0.07% 0.34% 0.09% 0.10% 0.81% 0.11%
15 0.03% 0.10% 0.04% 0.05% 0.27% 0.08%

Table 9 Performance of joint pricing and framing algorithms when E[X] = 4 and X follows a geometric

distribution.

Avg gap Max gap
p NEST-P NEST-P(m) NEST-P(1) NEST-P NEST-P(m) NEST-P(1)
1 0.24% 3.55% 0.36% 0.29% 5.16% 0.41%
3 0.17% 1.25% 0.27% 0.23% 2.36% 0.35%
9 0.06% 0.17% 0.13% 0.12% 0.45% 0.23%
15 0.03% 0.05% 0.06% 0.06% 0.13% 0.12%
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Table 10 Performance of joint pricing and framing algorithms when E[X] = 8 and X follows a geometric

distribution.

Avg gap Max gap
p NEST-P NEST-P(m) NEST-P(1) NEST-P NEST-P(m) NEST-P(1)
1 0.33% 2.01% 0.60% 0.40% 2.95% 0.70%
3 0.20% 0.67% 0.42% 0.28% 1.23% 0.55%
9 0.06% 0.09% 0.17% 0.13% 0.23% 0.27%
15 0.02% 0.03% 0.08% 0.05% 0.08% 0.15%

9. Conclusion and Future Work

In this work, we propose one of the first models of “framing effects” for pricing and assortment

optimization. We introduce a model in which a set of products must be organized sequentially into

a set of virtual pages and priced appropriately. Each consumers will only consider a random number

of pages, and will select an product, if any, from these pages following a general choice model. We

show that this product framing problem is NP-hard. We derive algorithms with guaranteed relative

performance. Our algorithms are fast and easy to implement. We also show new structural results

for pricing under framing effects. Directions for future research include to endogenize the number

of pages consumers are willing to see. In the context of dynamic search, it would be convenient to

allow for correlations between X and the choice model.
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Appendix A: Collection of Proofs

A.1. Proofs in Section 3

In order to prove Theorem 1, we define the following function f(·, ·) for a fixed integer d≥ 1:

f(l, θ)≡ 0.5
59(1− l−d

200d2
) + 34

(
l
d

+ θ
)

2− l−d
200d2

+ l
d

+ θ
+ 0.5

59(2− l−d
200d2

) + 34
(
l
d

+ θ
)

3− l−d
200d2

+ l
d

+ θ

for all l = 0,1, . . . ,2d and θ ∈ R. The idea of the proof is to design a special case of the framing

problem in which the expected revenue can be expressed using the f(·, ·) function. We first establish

some technical properties of the f(·, ·) function in Lemmas 4, 5 and 6.

Lemma 4. f(l,0) + 1
200d2

< f(d,0) for all l 6= d, l ∈ {0,1, ...,2d}.

Proof. Suppose l is relaxed to a non-negative continuous variable. Then the only solution for

∂f(l,0)

∂l
= 0 is

l=
−21d− 25000d3 + 25d2

(
−427 + 4

√
−441− 7350d+ 360000d2

)
7(3 + 25d)(−1 + 200d)

≥ 0.

It is easy to check that this is a local maximizer for f(l,0). Therefore, f(l,0) is quasi-concave in l

for l≥ 0.

Given that l can only take non-negative integral values, we can deduce that, as long as d≥ 1,

f(d,0)− f(d− 1,0) =
−49 + 9600d+ 5000d2

2(1− 200d+ 600d2)(1− 200d+ 800d2)
>

1

200d2
,

f(d,0)− f(d+ 1,0) =
−49 + 9600d+ 75000d2

2(−1 + 200d+ 600d2)(−1 + 200d+ 800d2)
>

1

200d2
.

Therefore, since f(l,0) has at most one local maximizer for l≥ 0, l= d must be the unique max-

imizer for f(l,0) when l is a non-negative integer. Consequently, the above two conditions ensure

that f(d,0)− f(l,0)> 1
200d2

for all non-negative integers l such that l 6= d.

�

Lemma 5. f(d, θ)< f(d,0) for all θ 6= 0, θ ∈ [−1,1].

Proof. Plugging l= d into the definition of f(l, θ), we obtain

f(d, θ) =
8

θ+ 4
− 4.5

θ+ 3
+ 34

=⇒ ∂f(d, θ)

∂θ
=

4.5

(θ+ 3)2
− 8

(θ+ 4)2
.

Given θ ∈ [−1,1], the unique solution of ∂f(d, θ)/∂θ= 0 is θ= 0. It is easy to check that θ= 0 is

a maximizer for f(d, θ). This prove that f(d, θ)< f(d,0) for all θ 6= 0 and θ ∈ [−1,1].

�
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Lemma 6. For all l 6= d, l ∈ {0,1, ...,2d}, and θ such that

|θ| ≤ 1

2f(d,0) + 34
· 1

200d2
,

we have f(l, θ)< f(d,0).

Proof. It is easy to verify that, as long as d≥ 1,

1

2f(d,0) + 34
· 1

200d2
≤ 0.5.

Given |θ| ≤ 1
2f(d,0)+34

· 1
200d2

≤ 0.5 and l ∈ {0,1, . . . ,2d} \ d, we can deduce that

f(l, θ) =0.5
59(1− l−d

200d2
) + 34

(
l
d

+ θ
)

2− l−d
200d2

+ l
d

+ θ
+ 0.5

59(2− l−d
200d2

) + 34
(
l
d

+ θ
)

3− l−d
200d2

+ l
d

+ θ

≤0.5
59(1− l−d

200d2
) + 34 l

d

2− l−d
200d2

+ l
d

+ θ
+ 0.5 · 34|θ|+ 0.5

59(2− l−d
200d2

) + 34 l
d

3− l−d
200d2

+ l
d

+ θ
+ 0.5 · 34|θ|

(because 2− l− d
200d2

+
l

d
+ θ≥ 1 and 3− l− d

200d2
+
l

d
+ θ≥ 1)

=0.5
59(1− l−d

200d2
) + 34 l

d

2− l−d
200d2

+ l
d

+ θ
+ 0.5

59(2− l−d
200d2

) + 34 l
d

3− l−d
200d2

+ l
d

+ θ
+ 34|θ|

≤0.5
59(1− l−d

200d2
) + 34 l

d

2− l−d
200d2

+ l
d

(
1 +

2|θ|
2− l−d

200d2
+ l

d

)
+ 0.5

59(2− l−d
200d2

) + 34 l
d

3− l−d
200d2

+ l
d

+ θ

(
1 +

2|θ|
3− l−d

200d2
+ l

d

)
+ 34|θ|

(because θ ∈ [−0.5,0.5])

≤0.5
59(1− l−d

200d2
) + 34 l

d

2− l−d
200d2

+ l
d

(1 + 2|θ|) + 0.5
59(2− l−d

200d2
) + 34 l

d

3− l−d
200d2

+ l
d

+ θ
(1 + 2|θ|) + 34|θ|

(because 2− l− d
200d2

+
l

d
+ θ≥ 1 and 3− l− d

200d2
+
l

d
+ θ≥ 1)

=f(l,0) + (2f(l,0) + 34)|θ|

≤f(l,0) + (2f(d,0) + 34)|θ| (by Lemma 4)

≤f(l,0) + (2f(d,0) + 34) · 1

2f(d,0) + 34
· 1

200d2

=f(l,0) +
1

200d2

<f(d,0) (by Lemma 4).

This completes the proof of the lemma.

�

Proof of Theorem 1.

Proof. Fix any instance of a 2-PARTITION problem with d numbers w1,w2, ...,wd. We reduce

this instance to a special case of our model with m = 2, p = 200d2 and n = 400d2 + 2d. The

attractiveness of the ‘no-purchase’ option is 1. The revenues and attractiveness of the n products

are as follows:
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• Each of the first d products corresponds to a number in the two-partition problem. For i=

1,2, ..., d, we set ri = 34 and νi =M + εwi, where ε is some small value that we will define shortly,

and M is determined by ε via

2d ·M + ε
d∑
i=1

wi = 2.

• For i= d+ 1, d+ 2, ...,2d, we set ri = 34 and νi =M .

• For i= 2d+ 1,2d+ 2, ...,3d, we set ri = 59 and νi = 2δ where

δ≡ 1

p
=

1

200d2
.

• For i= 3d+ 1,3d+ 2, ..., n, we set ri = 59 and νi = δ.

Given the special case constructed above, we argue that for an optimal framing solution, it is

critical to decide which of the first 2d products with revenue 34 should be offered on the first page.

We prove that the total expected revenue is a quasi-concave function of the total attractiveness of

the first 2d products offered on the first page. In particular, if the 2-PARTITION problem has a

solution, then we are able to recover that solution from the maximizer of the quasi-concave function

(i.e., the optimal solution of our model). Therefore, we can solve the 2-PARTITION problem by

optimizing the expected total revenue of our model.

We first observe the following structural properties of the special case of our model:

1. Since ri ≤ 59 for all i ∈ [n], the optimal expected revenue must be strictly less than 59 (due

to the no-purchase option). Thus, it is never optimal to leave any space in the two pages unfilled,

as there are plenty of products with revenue 59.

2. It is easy to check that it always improves revenue to greedily replace a product with revenue 59

and attractiveness δ by, if any, a spare product with revenue 59 and attractiveness 2δ. Furthermore,

whenever there is a product with revenue 59 and attractiveness δ on the first page and a product

with revenue 59 and attractiveness 2δ on the second page, it is better to greedily swap the two

products. Thus, products with revenue 59 and attractiveness 2δ should all be put on the first page.

3. Starting with an optimal solution, if we remove all the (at most 2d) products with revenue

34 from the first two pages, we end up with at least 2p− 2d products with revenue 59 remaining

in the two pages (among which only d products have attractiveness 2δ). Since 2p− 2d≈ 2p, it is

easy to check that the resulting expected revenue for consumers who view two pages is at least

59 · d · 2δ+ 59 · (2p− 2d) · δ
1 + d · 2δ+ (2p− 2d) · δ

≈ 39.33.

Thus, when we put those products with revenue 34 back into the solution, the expected revenue for

consumers who view two pages must be strictly greater than 34. This implies that in the optimal

solution, no product with revenue 34 should be put on the second page, because 34 is lower than

the expected revenue of the assortment consisting of products on the two pages.
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In summary, an optimal framing solution must (i) put some of the products with revenue 34 on

the first page, (ii) put all products with revenue 59 and attractiveness 2δ on the first page, and

(iii) fill in all other spots using products with revenue 59 and attractiveness δ.

In the rest of this proof, we will focus on framing solutions that satisfy the above conditions.

Then each framing solution can be characterized by a set S ⊆ {1,2, ...,2d} of products with revenue

34 that are put in the first page.

We set λ(1) = λ(2) = 0.5. The total expected revenue under decision S is

R(S) =λ(1)
34
∑

i∈S νi + 59 · 2δ · d+ 59 · δ · (p− |S| − d)

1 +
∑

i∈S νi + 2δ · d+ δ · (p− |S| − d)
+λ(2)

34
∑

i∈S νi + 59 · 2δ · d+ 59 · δ · (2p− |S| − d)

1 +
∑

i∈S νi + 2δ · d+ δ · (2p− |S| − d)

=0.5
59(1− (|S| − d)δ) + 34

∑
i∈S νi

2− (|S| − d)δ+
∑

i∈S νi
+ 0.5

59(2− (|S| − d)δ) + 34
∑

i∈S νi

3− (|S| − d)δ+
∑

i∈S νi
.

(11)

By definition of f(·, ·), we have

R(S) = f(|S|,
∑
i∈S

νi− |S|/d)

= f(|S|, |S|M − |S|/d+
∑

i∈S∩{1,2,...,d}

εwi)

= f(|S|, |S|
2− ε

∑d

i=1wi
2d

− |S|/d+ ε
∑

i∈S∩{1,2,...,d}

wi)

= f(|S|, ε

−|S|∑d

i=1wi
2d

+
∑

i∈S∩{1,2,...,d}

wi

).

We set

ε=
1

2
∑d

i=1wi
· 1

2f(d,0) + 34
· 1

200d2
.

Then, ∣∣∣∣∣∣ε
−|S|∑d

i=1wi
2d

+
∑

i∈S∩{1,2,...,d}

wi

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

2
∑d

i=1wi
· 1

2f(d,0) + 34
· 1

200d2

−|S|∑d

i=1wi
2d

+
∑

i∈S∩{1,2,...,d}

wi

∣∣∣∣∣∣
≤ 1

2
∑d

i=1wi
· 1

2f(d,0) + 34
· 1

200d2

 d∑
i=1

wi +
∑

i∈S∩{1,2,...,d}

wi


≤ 1

2f(d,0) + 34
· 1

200d2
.

By Lemmas 4, 5 and 6, we have

R(S) = f(|S|,
∑
i∈S

νi− |S|/d)

{
= f(d,0), if |S|= d,

∑
i∈S νi = 1

< f(d,0), otherwise.
(12)
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This implies that R(S) = f(d,0) if and only if |S|= d,
∑

i∈S νi = 1. Furthermore, if R(S) = f(d,0),

then S is an optimal solution to our model (not vice versa).

Let S∗ be an optimal solution to our model. Finally, we prove the theorem by showing that the

following two conditions are equivalent:

• R(S∗) = f(d,0), i.e., the optimal expected revenue of our model is f(d,0).

• The 2-PARTITION problem has a solution.

This equivalence helps reduce the framing problem to the 2-PARTITION problem as follows. If

we can solve the framing problem, then we can find the optimal expected revenue. If the optimal

expected revenue is f(d,0), then we can conclude that there is a solution to the 2-PARTITION

problem. If the optimal value is not f(d,0), then we can conclude that there is no solution to the

2-PARTITION problem.

To prove the equivalence, first suppose that the 2-PARTITION problem has a solution T ⊆
{1,2, ..., d} such that ∑

i∈T

wi =
1

2

d∑
i=1

wi.

We construct a solution S ⊂ {1,2, ...,2d} to our model as

S = T ∪{d+ 1, d+ 2, ...,2d− |T |}.

We can check that |S|= d and

∑
i∈S

νi = dM +
∑
i∈T

εwi = dM +
1

2
ε

d∑
i=1

wi = 1.

Therefore, according to (12), S is an optimal solution to our model that gives expected revenue

R(S) = f(d,0).

On the other hand, suppose S∗ is an optimal solution to our model andR(S∗) = f(d,0). According

to (12), we must have |S∗|= d and
∑

i∈S∗ νi = 1, which gives∑
i∈S

νi = 1

=⇒ |S|M +
∑

i∈S∩{1,2,...,d}

εwi = 1

=⇒ d
2− ε

∑d

i=1wi
2d

+
∑

i∈S∩{1,2,...,d}

εwi = 1

=⇒
∑

i∈S∩{1,2,...,d}

wi =
1

2

d∑
i=1

wi.

This proves that the 2-PARTITION problem has a solution.

�
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Proof of Theorem 2.

Proof. Suppose f∗ is an optimal solution to (1). We must have, for any x∈M,

U(x)≥
∑
i∈N

riP (i,{k ∈N :
x∑
l=1

f∗kl = 1})

=⇒
∑
x∈M

λ(x)U(x)≥ V OPT.

�

Proof of Corollary 1.

Proof. If we apply NEST+(m), then S(m) is the optimal solution to Problem (2) with cardi-

nality constraint m · p. Since the optimal assortments are nested, and S(x) is optimally selected

from S(x+ 1) for all x= 1,2, . . . ,m− 1, we must have R(S(x)) = U(x) for all x ∈ [m]. Therefore,

the expected revenue achieved by NEST+(m) is equal to the upper bound E[U(X)]. Consequently,

NEST+(m) (and thus NEST+) is optimal.

�

A.2. Proofs in Section 4

Proof of Proposition 1.

Proof. Fix any y ∈ [m]. Under algorithm NEST(y), let R̃(x) =R(S(x)) be the expected revenue

from a consumer who views x pages, for all x∈ [m]. According to (4), if |S(x)|= x · p, then

R̃(x)

x · p
=

R̃(x)

|S(x)|
≥ R̃(x+ 1)

|S(x+ 1)|
≥ R̃(x+ 1)

(x+ 1)p

=⇒ R̃(x)

x
≥ R̃(x+ 1)

x+ 1
.

If |S(x)|= |S(x+ 1)|, then we must have S(x) = S(x+ 1), and thus

R̃(x) = R̃(x+ 1) =⇒ R̃(x)

x
≥ R̃(x+ 1)

x+ 1
.

Consequently, for all x= 1,2, . . . , y− 1,

R̃(x)

x
≥ R̃(y)

y
=
U(y)

y
, (13)

where the equality is because S(y) is an optimal solution to problem (2), and thus R̃(y) is the

corresponding optimal expected revenue.
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Since all consumers who view x≥ y pages see the same assortment S(y) with expected revenue

U(y), we can obtain

V NEST(y) =
∑
x∈[m]

R̃(x)λ(x)

=

y−1∑
x=1

R̃(x)λ(x) +U(y)Λ(y)

≥U(y)

y

y−1∑
x=1

xλ(x) +U(y)Λ(y)

=
U(y)

y

[
y−1∑
x=1

xλ(x) + yΛ(y)

]

=
U(y)

y
E[min(X,y)],

(14)

where the inequality is by (13). �

Proof of Proposition 2.

Proof. For ease of notation, define g(x) = U(x)

x
E[min(X,x)]. We want to prove that g(x) is

constant for all x ∈ [m]. Suppose for a contradiction that there is a smallest x, x > 1, such that

g(x− 1) 6= g(x).

• First, consider the case when g(x− 1)< g(x). We can revise the function U(·) as follows. For

all y ∈ {1,2, . . . , x − 1}, we scale up U(y) such that U(y)← (1 + ε)U(y) for some ε > 0. For all

y ∈ {x,x+1, . . . ,m}, we scale down U(y) such that U(y)← (1−ε′)U(y) for some ε′ > 0. We properly

choose ε and ε′ to maintain g(x − 1) ≤ g(x) and E[U(X)] = 1. This revision keeps the solution

U(·) feasible because the only constraint that might be violated is U(x − 1) ≤ U(x). However,

g(x − 1) < g(x) implies U(x − 1) < U(x), as E[min(X,x−1)]

x−1
≥ E[min(X,x)]

x
. Therefore, the constraint

U(x− 1)≤U(x) will not be violated as long as ε and ε′ are small enough.

As a result, we can strictly decrease maxy∈[m] g(y), because we can strictly decrease g(y) at points

y= x,x+ 1, . . . ,m, and g(1) = g(2) = · · ·= g(x− 1)≤ g(x). This contradicts the condition that the

original U(·) is an optimal solution to (5), as we can strictly decrease the value of γ = maxy∈[m] g(y).

• Next, consider the case when g(x− 1)> g(x). We can revise the function U(·) as follows. Let

Y = {x,x+1, ..., z} denote the set of consecutive indices such that (recall that U(·) is non-decreasing

due to the constraints of (5))

—U(y) =U(x) for all y ∈Y;

— z =m or U(z)<U(z+ 1).

For indices y ∈ Y, we scale up U(y) such that U(y)← (1 + ε)U(y) for some ε > 0. For indices

y ∈ [m] \Y, we scale down U(y) such that U(y)← (1− ε′)U(y) for some ε′ > 0. We properly choose

the values of ε and ε′ such that E[U(X)] = 1 and g(x− 1)≥ g(x) are maintained.
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The only two constraints that could potentially be violated by this revision are U(x−1)

x−1
≥ U(x)

x

and U(z)≤ U(z+ 1) (if z <m). However, g(x− 1)> g(x) implies U(x−1)

x−1
> U(x)

x
, which means the

constraint U(x−1)

x−1
≥ U(x)

x
will not be violated as long as ε and ε′ are chosen small enough. Moreover,

if z <m, we have U(z)<U(z+ 1) before the revision by definition of Y. So again, as long as ε and

ε′ are chosen small enough, the constraint U(z)≤U(z+ 1) will not be violated.

Since this revision strictly decreases g(y) for all y ∈ [m]\Y, and g(y)≤ g(x−1) for all y ∈Y, the

revision strictly decreases maxy∈[m] g(y). Thus the optimality condition meets contradiction.

In sum, we have proved that the function g(x) = U(x)

x
E[min(X,x)] must be non-increasing and

non-decreasing.

�

Proof of Proposition 3.

Proof. By Proposition 2, U(x) = γ x
E[min(Y,x)]

, where Y has the same distribution as X. Then

1 = E[U(X)] = γ
∑
x∈[m]

x

E[min(Y,x)]
λ(x) = γ E

[
X

E[min(X,Y )|X]

]
.

The result follows after dividing both sides by γ. �

Before proving Theorem 3, we first establish an upper bound on E[ X
E[min(X,Y )|X]

] in Lemma 7 and

Corollaries 5 and 6.

Lemma 7. If Z is an exponential random variable with mean E[Z] = E[X], then E[g(X)]≤E[g(Z)]

for any increasing convex function g(·).

Proof. Let µ= E[Z] = E[X]. Let F̄X denote the complementary cumulative distribution func-

tion (CCDF) of X, and F̄Z denote the CCDF of Z. Proving this lemma is equivalent to proving∫∞
a
F̄X(v)dv ≤

∫∞
a
F̄Z(v)dv = µe−a/µ for any a≥ 0 (see Shaked and Shanthikumar 2007). Since X

has the NBUE property, we have E[X − t|X > t]≡
∫∞
t F̄X (v)dv

F̄X (t)
≤ µ for all t≥ 0, which gives

F̄X(t)∫∞
t
F̄X(v)dv

≥ 1

µ
.

Notice that the left hand side can be written as −dln
∫∞
t
F̄X(v)dv. We integrate both sides over

t∈ [0, a] to obtain

ln

∫ ∞
0

F̄X(v)dv− ln

∫ ∞
a

F̄X(v)dv≥ a

µ
.

Since ln
∫∞

0
F̄X(v)dv= lnE[X] = lnµ, the above reduces to the desired expression:∫ ∞

a

F̄X(v)dv≤ µe−a/µ =

∫ ∞
a

F̄Z(v)dv.

�



Author: Article Short Title 37

Corollary 5. If Z is an exponential random variable with mean E[Z] = E[X], then

E[min(X,x)]≥E[min(X,x)] for all x≥ 0.

Proof. Applying Lemma 7 to X and Z, we obtain E[(X − x)+] ≤ E[(Z − x)+]. Thus,

E[min(X,x)] = E[X]−E[(X −x)+]≥E[Z]−E[(Z −x)+] = E[min(Z,x)].

�

Corollary 6. If Y is independently and identically distributed as X, and W and Z are indepen-

dent exponential random variables with mean E[W ] = E[Z] = E[X], then

E [X/E[min(X,Y )|X]]≤E [W/E[min(Z,W )|W ]] .

Proof. Define h(x) = x/E[min(Z,x)].

By Corollary 5, we have for all x∈ [m],

x

E[min(Y,x)]
≤ x

E[min(Z,x)]
= h(x)

=⇒E

[
X

E[min(Y,X)|X]

]
≤E[h(X)].

Since h(x) is increasing convex, it follows from Lemma 7 that

E

[
X

E[min(Y,X)|X]

]
≤E[h(X)]≤E[h(W )] = E

[
W

E[min(Z,W )|W ]

]
.

�

Proof of Theorem 3.

Proof. By Proposition 3 and Corollary 6,

1

γ
= max

Λ
E

[
X

E[min(X,Y )|X]

]
≤E

[
W

E[min(Z,W )|W ]

]
,

where W and Z are independent exponential random variables with the same mean, say µ.

Since Z is exponential with mean µ, we have E[min(W,Z)|W ] = µ(1−exp(−W/µ)). Substituting

this expression into the denominator, we obtain

E

[
W

µ(1− exp(−W/µ))

]
=

∫ ∞
0

w/µ exp(−w/µ)

1− exp(−w/µ)
dw/µ=

∫ ∞
0

ue−u

1− e−u
du=

∞∑
x=1

1

x2
=
π2

6
,

where the first equality follows from the distribution of W , the second from the transformation

u=w/µ, the third equality is a well know result from calculus, and the last equality is an important

problem in number theory, posed by Mengoli in 1644. This problem remained open for 90 years

until Euler solved it in 1734 at the age of 28.

Therefore,
1

γ
≤E

[
W

E[min(Z,W )|W ]

]
=
π2

6
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=⇒ γ ≥ 6

π2
.

Since γ lower-bounds V NEST when the upper bound E[U(X)] on V OPT is normalized to 1, we

must have
V NEST

V OPT
≥ V NEST

E[U(X)]
≥ γ =

6

π2
.

�

Proof of Proposition 4.

Proof. Let X, Y be geometrically distributed with mean 1
1−α . That is, P[X = x] = P[Y = x] =

αx−1(1−α). Then we can write

E

[
X

E[min(X,Y )|X]

]
=

∞∑
y=1

αy−1(1−α)2y

1−αy
.

For α< 1, we have

∞∑
y=1

αy−1(1−α)2y

1−αy
= (1−α)2

∞∑
y=1

y

α

αy

1−αy

= (1−α)2

∞∑
y=1

y

α

∞∑
n=1

αyn

=
(1−α)2

α

∞∑
n=1

αn
∞∑
y=1

y(αn)y−1

=
(1−α)2

α

∞∑
n=1

αn
d

dαn
1

1−αn

=
(1−α)2

α

∞∑
n=1

αn
1

(1−αn)2

=
∞∑
n=1

αn−1 (1−α)2

(1−αn)2
.

The above series is an increasing function of α. It is maximized both locally and globally

at α = 1. To find the limit at α = 1, we use two applications of L’Hospital’s rule to obtain

limα→1

∑∞
n=1α

n−1 (1−α)2

(1−αn)2
=
∑∞

n=1
1
n2

= π2

6
. �

A.3. Proofs in Section 5

Proof of Lemma 3.

Proof. It is easy to see that the value of U(x) satisfies the following equation:

U(x) =
∑
i∈[n]

∑
l∈[x]

∑
q∈[p]

(ri−U(x))νilqf
∗
ilq,

where f∗ is a framing solution that corresponds to an optimal assortment for Problem (7). Any

suboptimal assortment yields the left hand side larger than the right hand side.
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For any x′ <x, from all the products offered in f∗, we can pick the x′× p products i having the

largest values of (ri−U(x))νilq. Let us denote this set of products by S. Then it must be true that∑
i∈S

∑
l∈[x]

∑
q∈[p]

(ri−U(x))νilqf
∗
ilq ≥ x′

U(x)

x
.

Let f ′ be the framing solution that keeps the positions of those products i∈ S that are already

in the first x′ pages, and moves all other products in S to the first x′ pages. The products in S

that are now displayed earlier have higher location preference weights. So we must have∑
i∈S

∑
l∈[x′]

∑
q∈[p]

(ri−U(x))νilqf
′
ilq ≥

∑
i∈S

∑
l∈[x]

∑
q∈[p]

(ri−U(x))νilqf
∗
ilq.

Also, since U(x′) is the optimal expected revenue of an assortment displayed in the first x′ pages,

we must have

U(x′)≥
∑
i∈S

∑
l∈[x′]

∑
q∈[p]

(ri−U(x′))νilqf
′
ilq.

Finally, we have U(x′) ≤ U(x) because U(x′) corresponds to a more constrained assortment

optimization problem.

Altogether, we can obtain

U(x′)≥
∑
i∈S

∑
l∈[x′]

∑
q∈[p]

(ri−U(x′))νilqf
′
ilq

≥
∑
i∈S

∑
l∈[x′]

∑
q∈[p]

(ri−U(x))νilqf
′
ilq

≥
∑
i∈S

∑
l∈[x]

∑
q∈[p]

(ri−U(x))νilqf
∗
ilq

≥ x′U(x)

x
,

which completes the proof.

�

A.4. Proofs in Section 6

In this section, we prove Theorem 4 by characterizing the structure of an optimal solution to (10).

Let (U,Λ) denote an optimal solution to (10). Without loss of generality, suppose that Λ(x)> 0

for all x∈ [m] (if this does not hold, we can reduce the value of m so that Λ(m)> 0).

Define g(x)≡ xΛ(x), h(x)≡ λ(x)/Λ(x) for all x∈ [m] (thus h(x) is the failure rate). Also define

y≡maxarg max
x∈[m]

U(x)Λ(x).

We first establish some elementary results concerning the function g(x), which turns out to play

an important role in the analysis.



40 Author: Article Short Title

Lemma 8. If X has an IFR distribution, then g(x) is weakly unimodal. Furthermore,

maxarg max
x∈[m]

g(x) = min{x∈ [m] : h(x)> 1/(x+ 1)}.

Proof. By Assumption B4 and definition of h(·), we have h(1)≤ · · · ≤ h(m) = 1. Since 1/(x+1)

is decreasing, there must exist some z ∈ [m] such that

h(x)≤ 1/(x+ 1), ∀x= 1, . . . , z− 1,

h(x)> 1/(x+ 1), ∀x= z, . . . ,m.

A little algebra shows that g(x)≤ g(x+1) if and only if h(x)≤ 1/(x+1), for all x= 1,2, . . . ,m−1.

Therefore, we must have

g(x)≤ g(x+ 1), ∀x= 1, . . . , z− 1,

g(x)> g(x+ 1), ∀x= z, . . . ,m− 1,

which proves that g(·) is weakly unimodal. It immediately follows that z = min{x ∈ [m] : h(x) >

1/(x+ 1)} is the largest maximizer of g(·).

�

Next, we show the structure of an optimal solution to Problem (10) in Propositions 5, 6 and 7.

Proposition 5. U(x)

x
= U(y)

y
for all x= y, . . . ,m.

Proof. We first prove the first statement. Recall that Assumption B2 states U(x−1)

x−1
≥ U(x)

x
for

all x = y + 1, . . . ,m. If there is any z ∈ {y + 1, . . . ,m} such that U(z−1)

z−1
> U(z)

z
(i.e., inequality is

strict), we can revise U(·) as follows:

• U(x)← (1 + ε1)U(x) for all x= z, . . . ,m,

• U(x)← (1− ε2)U(x) for all x= 1,2, . . . , z− 1,

where ε1 > 0 and ε2 > 0 are small values such that all constraints of (10) are still satisfied.

Since y was the original largest maximizer of the objective U(x)Λ(x) of (10), and we have reduced

U(x) for all x∈ [y]⊆ [z− 1], the revised U(·) function gives a smaller objective value of (10). This

contradicts the fact that U(·) is an optimal solution. Therefore, we must have U(x−1)

x−1
= U(x)

x
for all

x= y+ 1, . . . ,m.

�

Lemma 9. y= maxarg maxx∈[m] g(x).

Proof. Since y is the largest maximizer of U(x)Λ(x), we have U(x)Λ(x) < U(y)Λ(y) for all

x> y, and U(x)Λ(x)≤U(y)Λ(y) for all x< y.
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For all x< y, we combine U(x)Λ(x)≤U(y)Λ(y) and Assumption B2 to obtain xΛ(x)≤ yΛ(y). For

all x> y, we combine U(x)Λ(x)<U(y)Λ(y) and Proposition 5 to obtain xΛ(x)< yΛ(y). Therefore,

y is the largest maximizer of g(x) over x∈ [m].

�

Proposition 6. U(x)Λ(x) =U(y)Λ(y) for all x= 1, . . . , y.

Proof. Since y is the largest maximizer of U(x)Λ(x), we have U(x)Λ(x) ≤ U(y)Λ(y) for all

x= 1, . . . , y.

Suppose for a contradiction that the proposition does not hold. Then let z be the smallest

x ∈ {1, . . . , y} such that U(x)Λ(x) < U(y)Λ(y). Since U(z)Λ(z) < U(y)Λ(y) and Λ(z) ≥ Λ(y) ≥ 0,

we must have U(z)<U(y). Consider the following two cases depending on the value of z:

• If z = 1, then we could scale up U(1) and scale down U(x) for all x= 2, . . . ,m, while keeping

U(x) increasing in x and E[U(X)] = 1. This reduces maxx∈[m]U(x)Λ(x), which contradicts the

optimality of Problem (10).

• Suppose z > 1. We now argue that U(z)/z = U(z − 1)/(z − 1). Otherwise, we could scale up

U(z) and scale down U(x) for all x 6= z, without violating any constraints of Problem (10), and

again get a contradiction. Since z is the smallest x such that U(x)Λ(x)<U(y)Λ(y), we must have

U(z− 1)Λ(z− 1)>U(z)Λ(z). Altogether, we obtain

U(z− 1)Λ(z− 1)>U(z)Λ(z) = zU(z− 1)/(z− 1) ·Λ(z)

=⇒ g(z− 1)> g(z).

Because z ≤ y and y = maxarg maxx∈[m] g(x) (by Lemma 9), g(z − 1)> g(z) contradicts the uni-

modality of g(·) given by Lemma 8.

Altogether, we have proved by contradiction that U(z)Λ(z) =U(y)Λ(y).

�

Proposition 7. h(x) = h(y) for all x= y, . . . ,m− 1.

Proof. This proposition implies that Λ(x+ 1)Λ(x− 1) = Λ(x)2 for all x= y, . . . ,m− 1. If not,

there is a z such that Λ(z+ 1)Λ(z− 1)<Λ(z)2, and we can increase Λ(z+ 1), . . . ,Λ(m) by a small

amount while maintaining the IFR property. This adjustment does not affect maxx∈[m]U(x)Λ(x)

because y ≤ z is its largest maximizer. However, this adjustment has the effect of increasing

E[U(X)]. To maintain E[U(X)] = 1 we would need to scale down the entire U(·) and in the process

reduce maxx∈[m]U(x)Λ(x), again contradicting the optimality of Problem (10).

�

Proof of Theorem 4.
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Proof. Let θ = h(y) and recall from Proposition 7 that h(x) = θ for all x= y, . . . ,m− 1. This

implies that X− (y−1)|X ≥ y takes value in {1,2, ...,m−y+1} and follows a truncated geometric

distribution with success rate θ. Therefore, we have E[X|X ≥ y] = y− 1 + E[X − (y− 1)|X ≥ y]≤

y− 1 + 1/θ.

Consequently,

1 = E[U(X)] =

y−1∑
x=1

U(x)λ(x) +
m∑
x=y

U(x)λ(x)

=

y−1∑
x=1

U(y)Λ(y)

Λ(x)
λ(x) +

m∑
x=y

U(x)λ(x) (by Proposition 6)

=

y−1∑
x=1

U(y)Λ(y)

Λ(x)
λ(x) +

m∑
x=y

xU(y)

y
λ(x) (by Proposition 5)

=U(y)Λ(y)

[
y−1∑
x=1

h(x) +
1

y

m∑
x=y

x
λ(x)

Λ(y)

]

≤U(y)Λ(y)

[
y−1∑
x=1

h(y− 1) +
1

y

m∑
x=y

x
λ(x)

Λ(y)

]
(by Assumption B4)

=U(y)Λ(y)

[
(y− 1)h(y− 1) +

1

y
E[X|X >y− 1]

]
≤U(y)Λ(y)

[
(y− 1)h(y− 1) +

1

y
(y− 1 + 1/θ)

]
.

From Lemma 8 and Lemma 9, we know that y = min{x ∈ [m] : h(x)> 1/(x+ 1)}. It follows that

θ= h(y)> 1/(y+ 1) and h(y− 1)≤ 1/y. Substituting back into the above expression, we obtain

1 = E[U(X)]≤U(y)Λ(y)

[
(y− 1)h(y− 1) +

1

y
(y− 1 + 1/θ)

]
≤U(y)Λ(y)

[
(y− 1)/y+

1

y
(y− 1 + y+ 1)

]
≤U(y)Λ(y) · 3.

=⇒U(y)Λ(y)≥ 1/3.

This proves the theorem because U(y)Λ(y) is the optimal objective value of Problem (10).

�
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A.5. Proofs in Section 7

Proof of Theorem 5.

Proof. Given the framing decision S(x), ∀x∈ [m], we maximize solely over prices. That is, we

want to compute

max
r=(r1,...,rn)

m∑
x=1

λ(x)R(r|S(x)) =
m∑
x=1

λ(x)
∑
i∈S(x)

riP
(
i,S(x)

)
,

where R(r|S(x)) is the expected revenue from consumers with consideration set S(x), and

P
(
i,S(x)

)
= exp(ai−βri)

1+
∑

k∈S(x) exp(ak−βrk)
is the probability of choosing product i if i ∈ S(x). Taking the

partial derivative of P
(
i,S(x)

)
with respect to ri and rk, respectively, we have

∂P
(
i,S(x)

)
∂ri

= βP
(
i,S(x)

)(
P
(
i,S(x)

)
− 1
)
,

∂P
(
i,S(x)

)
∂rk

= βP
(
i,S(x)

)
P
(
k,S(x)

)
.

Taking the first order derivative of the expected revenue R(r|S(x)) with respect to ri, we obtain

∂R(r|S(x))

∂ri
= P

(
i,S(x)

)
+ ri

∂P
(
i,S(x)

)
∂ri

+
∑
k 6=i

rk
∂P
(
k,S(x)

)
∂ri

= βP
(
i,S(x)

)
{ 1

β
+
∑
k∈S(x)

rkP
(
k,S(x)

)
− ri}

= βP
(
i,S(x)

)
{ 1

β
+R(r|S(x))− ri}.

Let x(i) denote the page index where product i is displayed (let x(i) =m+ 1 if product i is not

displayed in any of the m pages). Taking partial derivative of the total expected revenue with

respect to ri, we obtain

∂E[R(r|S(X))]

∂ri
= β

m∑
l=x(i)

λ(l)P
(
i,S(l)

)
{ 1

β
+R(r|S(l))− ri}. (15)

Setting the partial derivative to zero, we obtain

m∑
l=x(i)

λ(l)P
(
i,S(l)

)
{ 1

β
+R(r|S(l))}=

m∑
l=x(i)

λ(l)P
(
i,S(l)

)
ri. (16)

Notice that equation (16) is satisfied either when P
(
i,S(l)

)
= 0, ∀l ∈ [m], (i.e., when ri = +∞,

meaning product i is priced out of the market); or when

ri =

∑m

l=x(i) λ(l)P
(
i,S(l)

)
{ 1
β

+R(r|S(l))}∑m

l=x(i) λ(l)P
(
i,S(l)

) . (17)

Products with infinite prices can be equivalently viewed as they are not displayed at all. Thus,

without loss of generality, we can assume that all the displayed products (i.e., all products in S(m))
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have finite prices. On the other hand, it is easy to check that in equation (17), the right hand side

is the same for all i and k such that x(i) = x(k). Thus, for every finitely priced product i, there

must be a page-level invariant price θx(i) such that ri = θx(i) at optimality.

For the monotonicity of the page-level prices, notice that equation (17) tells us that the price is

a weighted average of 1
β

+R(r|S(l)), where R(r|S(l)), the expected revenue from consumers with

consideration set S(l), must be non-decreasing in l. To see this, suppose for a contradiction that

R(r|S(l−1))>R(r|S(l)) for some l. This could only be because we set prices too low for products

in page l. Then we would just raise the prices of products in page l, and therefore increase the

expected revenue from consumers with consideration set S(l). Moreover, the expected revenue from

consumers who view l+ 1, . . . ,m pages can also be increased due to the unimodality of R(r|S(l))

with respect to each of the price values (Gallego, Li and Beltran 2016). Consequently, at optimality,

R(r|S(l)) must be non-decreasing in l.

�

Proof of Theorem 6.

Proof. Suppose that the framing solution S(x), for all x∈ [m], is fixed. Given the quality vector

a= (a1, ..., an), we define r(a) and R(a) as an optimal pricing vector and its corresponding total

expected revenue, respectively:

R(a)≡
m∑
x=1

λ(x)R(r(a)|S(x)) = max
r=(r1,...,rn)

m∑
x=1

λ(x)R(r|S(x)).

Now, we characterize how R(a) changes with respect to the quality values ai. Recall that we use

x(i) to denote the page where product i is displayed. According to the envelope theorem,

∂R(a)

∂ai
=

m∑
l=x(i)

λ(l)
∂R(r(a)|S(l))

∂ai

=
m∑

l=x(i)

λ(l){ri(a)−R
(
r(a)|S(l)

)
}P
(
i,S(l)

)
. (18)

Since r(a) must satisfy the first-order condition given by (17), i.e.,
∑m

l=x(i) λ(l)P
(
i,S(l)

)
ri(a) =∑m

l=x(i) λ(l)P
(
i,S(l)

)
{ 1
β

+R
(
r(a)|S(l)

)
}, we have

∂R(a)

∂ai
=

m∑
l=x(i)

λ(l){ri(a)−R
(
r(a)|S(l)

)
}P
(
i,S(l)

)
=

1

β

m∑
l=x(i)

λ(l)P
(
i,S(l)

)
≥ 0. (19)

Thus, the total expected revenue increases in the quality of any displayed product. Since removing

a product is equivalent to reducing its quality to negative infinity, it is never beneficial to remove
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any product from the m pages. Furthermore, if any product i that is not displayed has a higher

quality value than a displayed product k, we can replace product k with product i to increase

the total expected revenue. Altogether, an optimal policy will either display all the products, or

display the p ·m products having the highest quality values.

To prove that products should be displayed in decreasing order of quality, suppose for a contra-

diction that there is a product k displayed on page x and a product i displayed on page x+ 1 such

that ak <ai.

Consider two cases:

1. ak − βrk(a)< ai− βri(a). By Theorem 5, we have rk(a)≤ ri(a), since product k is displayed

prior to product i. We modify the solution by switching the positions of these two products without

changing their prices. This only affects the expected revenue from consumers who view x pages. For

these consumers, product k is replace with a product having higher expected utility and a higher

price, so the expected revenue from them must increase. Therefore, the modification increases the

total expected revenue, leading to a contradiction.

2. ak−βrk(a)≥ ai−βri(a). We must have P (k,S(l))≥ P (i,S(l)) for all l= x+ 1, . . . ,m. Thus,

∂R(a)

∂ak
=

1

β

m∑
l=x

λ(l)P
(
k,S(l)

)
≥ 1

β

m∑
l=x+1

λ(l)P
(
i,S(l)

)
=
∂R(a)

∂ai
.

This says that we can improve the total expected revenue R(a) by simultaneously increasing ak

and decreasing ai. After such modification, ak−βrk(a)≥ ai−βri(a) still holds and thus the above

inequality still holds. Consequently, we can keep increasing ak and decreasing ai until the quality

values of the two products are switched. This only increases the total expected revenue, again

leading to a contradiction.

Altogether, we have proved that the quality values of products in any page x should be at least

those of products in page x+ 1.

�

Proof of Corollary 4.

Proof. Given that the framing policy is fixed, the common price property can be proved using

the same argument as in Theorem 5.

As for the ordering of product quality, we can slightly modify the proof of Theorem 6 as follows.

Suppose for a contradiction there is a product i displayed at position (x, q) and a product i′

displayed at position (x′, q′) such that ai <ai′ and x · p+ q < x′ · p+ q′. Consider two cases:

1. ai+ωxq−βri <ai′+ωx′q′−βri′ . Since position (x, q) is earlier than (x′, q′), we have wxq ≥wx′q′ ,

so ai +ωxq−βri <ai′ +ωx′q′ −βri′ ≤ ai′ +ωxq−βri′ . If we switch the positions of the two products

without changing their prices, consumers who view x, . . . , x′ − 1 pages will see a product having
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higher expected utility (increased from ai +ωxq−βri to ai′ +ωxq−βri′) and a higher price. Thus,

the expected revenue from those consumers will increase, while the expected revenue from all other

consumers will not change. Therefore, the total expected revenue will increase after the switching.

2. ai + ωxq − βri ≥ ai′ + ωx′q′ − βri′ . Conceptually, we can apply the same argument as in the

proof of Theorem 6 by viewing ai +wxq and ai′ +wx′q′ as the new quality of products i and i′,

respectively. We simultaneously increase ai and reduce ai′ until the quality values are switched.

Such modification only improves the total expected revenue.

Altogether, we have shown by contradiction that an optimal policy would always display all

products in decreasing order of quality, even with the location preference effect.

�

Proof of Theorem 7.

Proof. From Theorem 6, we know that an optimal joint framing and pricing solution always

displays all products in decreasing order of quality, until all pages are full or all products are

displayed. Fix the framing policy, and let S(x) denote the set of all products in the first x ∈ [m]

pages. Let r∗ = (r∗1 , . . . , r
∗
n) denote the optimal pricing vector. We want to show that

V NEST-P ≥ 6

π2

∑
x∈[m]

λ(x)R(r∗|S(x)).

We can naturally re-define

U(x) = max
r=(r1,...,rn)

R(r|S(x)) (20)

as an upper bound on R(r∗|S(x)).

It then suffices to show V NEST-P ≥ 6
π2

∑
x∈[m] λ(x)U(x). To this end, it remains to verify that (i)

the lower bound in Proposition 1 holds for NEST-P(y), and (ii) all the constraints in (5) regarding

U(x) are still satisfied. Let rNEST-P(y) denote the pricing vector set by NEST-P(y).

• We first argue that the lower bound in Proposition 1 still holds. For consumers who view y

pages, we have precisely R(rNEST-P(y)|S(y)) =U(y) by definition of NEST-P(y). For consumers who

view x< y pages, since all products in the first y pages have the same price and products on earlier

pages have higher quality, we must have

R(rNEST-P(y)|S(x))≥ x

y
R(rNEST-P(y)|S(y)) =

x

y
U(y). (21)

From Gallego, Li and Beltran (2016), we know that the price of products set by NEST-P(y) in

pages x= y+1, . . . ,m increases in x, as the sum of quality of all products considered by consumers

increases in x. Therefore, R(rNEST-P(y)|S(x)) increases in x. Consequently, R(rNEST-P(y)|S(x)) ≥

R(rNEST-P(y)|S(y)) =U(y) for all x≥ y.
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Altogether,

V NEST-P(y) =
∑
x∈[m]

λ(x)R(rNEST-P(y)|S(x))

≥
y∑
x=1

λ(x)
x

y
U(y) +

m∑
x=y+1

U(y)

=
U(y)

y
E[min(X,y)].

• Next we verify that all the constraints in (5) regarding U(·) are still satisfied. Clearly U(x)

is increasing in x. Also, after solving the upper bound problem (20), the expected revenue of the

assortment consisting of products in the first x−1 pages must be at least x−1
x
U(x), because all the

products have the same price and products in the first x− 1 pages have higher quality values. It

follows that U(x− 1)≥ x−1
x
U(x). Thus U(x)/x is decreasing in x.

Altogether, Problem (5) still serves as a bound-revealing problem if we normalize E[U(X)] = 1.

So the approximation ratio of NEST-P is at least 6/π2.

�

Appendix B: Additional Tables

Table 11 Performance of framing algorithms when E[X] = 2 and X follows a uniform distribution.

Avg gap
Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 SORT3 TD BU NEST NEST+ TD BU
1 0.56% 0.43% 12.28% 10.76% 10.89% 10.81% 0.71% 3.0 20.0 20.0 20.0
3 0.81% 0.69% 11.22% 5.97% 4.62% 5.94% 0.87% 9.0 60.0 60.0 60.0
9 0.60% 0.57% 5.45% 3.10% 2.29% 0.94% 0.63% 27.0 71.8 72.0 74.8
15 0.31% 0.24% 3.27% 2.37% 1.86% 0.24% 0.39% 45.0 71.9 71.4 73.3

Table 12 Performance of framing algorithms when E[X] = 4 and X follows a uniform distribution.

Avg gap
Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 SORT3 TD BU NEST NEST+ TD BU
1 1.22% 0.66% 7.27% 6.07% 5.34% 5.29% 1.93% 6.9 20.0 20.0 20.0
3 1.21% 0.93% 6.96% 3.88% 2.91% 2.50% 2.20% 20.7 60.0 60.0 60.0
9 0.37% 0.35% 2.63% 1.80% 1.46% 0.34% 1.01% 62.9 71.8 71.5 74.4
15 0.12% 0.09% 1.33% 0.95% 0.76% 0.09% 0.25% 72.0 71.9 71.8 72.7
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Table 13 Performance of framing algorithms when E[X] = 8 and X follows a uniform distribution.

Avg gap
Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 SORT3 TD BU NEST NEST+ TD BU
1 1.38% 0.78% 3.53% 2.72% 2.47% 2.28% 3.49% 14.6 20.0 20.0 20.0
3 0.97% 0.79% 3.80% 2.36% 1.90% 0.95% 3.30% 44.7 60.0 60.0 60.0
9 0.16% 0.15% 1.13% 0.78% 0.63% 0.15% 0.88% 71.5 71.8 71.6 74.8
15 0.05% 0.04% 0.59% 0.43% 0.35% 0.04% 0.19% 71.8 71.8 71.5 73.0

Table 14 Performance of framing algorithms when E[X] = 2 and X follows a Poisson distribution.

Avg gap
Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 SORT3 TD BU NEST NEST+ TD BU
1 1.45% 0.51% 12.20% 11.02% 10.57% 10.41% 0.72% 5.2 20.0 20.0 20.0
3 1.55% 0.88% 11.53% 5.82% 4.83% 5.86% 0.93% 14.2 60.0 60.0 60.0
9 0.98% 0.66% 5.24% 3.08% 2.27% 1.08% 0.69% 58.7 71.9 71.6 74.9
15 0.34% 0.26% 3.36% 2.33% 1.85% 0.30% 0.32% 72.0 71.5 71.6 73.3

Table 15 Performance of framing algorithms when E[X] = 4 and X follows a Poisson distribution.

Avg gap
Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 SORT3 TD BU NEST NEST+ TD BU
1 1.13% 0.48% 7.32% 5.79% 5.56% 5.62% 1.81% 8.9 20.0 20.0 20.0
3 1.03% 0.62% 6.81% 3.49% 2.50% 2.23% 2.23% 27.5 60.0 60.0 60.0
9 0.21% 0.19% 2.61% 1.98% 1.65% 0.19% 1.17% 71.5 71.9 71.9 74.6
15 0.05% 0.04% 1.05% 0.82% 0.75% 0.04% 0.30% 71.9 71.5 71.6 73.1

Table 16 Performance of framing algorithms when E[X] = 8 and X follows a Poisson distribution.

Avg gap
Avg number of
displayed products

p NEST NEST+ SORT1 SORT2 SORT3 TD BU NEST NEST+ TD BU
1 0.67% 0.29% 3.22% 2.33% 2.03% 1.76% 3.37% 14.7 20.0 20.0 20.0
3 0.37% 0.25% 3.38% 2.29% 1.83% 0.40% 3.51% 55.1 60.0 60.0 60.0
9 0.01% 0.01% 0.44% 0.38% 0.35% 0.01% 0.86% 71.5 71.8 71.9 74.4
15 0.00% 0.00% 0.07% 0.05% 0.05% 0.00% 0.15% 72.1 71.7 71.9 72.4

Table 17 Performance of joint pricing and framing algorithms when E[X] = 2 and X follows a uniform

distribution.

Avg gap Max gap
p NEST-P NEST-P(m) NEST-P(1) NEST-P NEST-P(m) NEST-P(1)
1 0.14% 4.95% 0.16% 0.17% 7.34% 0.19%
3 0.11% 1.77% 0.14% 0.15% 3.06% 0.17%
9 0.06% 0.25% 0.08% 0.11% 0.60% 0.12%
15 0.03% 0.07% 0.04% 0.06% 0.18% 0.08%
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Table 18 Performance of joint pricing and framing algorithms when E[X] = 4 and X follows a uniform

distribution.

Avg gap Max gap
p NEST-P NEST-P(m) NEST-P(1) NEST-P NEST-P(m) NEST-P(1)
1 0.21% 2.62% 0.41% 0.26% 3.83% 0.47%
3 0.15% 0.83% 0.32% 0.21% 1.72% 0.41%
9 0.05% 0.11% 0.15% 0.10% 0.21% 0.24%
15 0.02% 0.03% 0.07% 0.05% 0.08% 0.15%

Table 19 Performance of joint pricing and framing algorithms when E[X] = 8 and X follows a uniform

distribution.

Avg gap Max gap
p NEST-P NEST-P(m) NEST-P(1) NEST-P NEST-P(m) NEST-P(1)
1 0.27% 1.28% 0.69% 0.35% 1.87% 0.80%
3 0.16% 0.40% 0.49% 0.23% 0.85% 0.61%
9 0.04% 0.05% 0.20% 0.08% 0.10% 0.31%
15 0.01% 0.01% 0.09% 0.03% 0.04% 0.17%

Table 20 Performance of joint pricing and framing algorithms when E[X] = 2 and X follows a Poisson

distribution.

Avg gap Max gap
p NEST-P NEST-P(m) NEST-P(1) NEST-P NEST-P(m) NEST-P(1)
1 0.16% 5.27% 0.16% 0.18% 7.99% 0.18%
3 0.12% 1.87% 0.13% 0.17% 3.36% 0.16%
9 0.06% 0.27% 0.07% 0.11% 0.64% 0.12%
15 0.03% 0.07% 0.04% 0.07% 0.18% 0.09%

Table 21 Performance of joint pricing and framing algorithms when E[X] = 4 and X follows a Poisson

distribution.

Avg gap Max gap
p NEST-P NEST-P(m) NEST-P(1) NEST-P NEST-P(m) NEST-P(1)
1 0.12% 2.04% 0.42% 0.15% 3.27% 0.49%
3 0.08% 0.58% 0.33% 0.11% 1.10% 0.41%
9 0.03% 0.06% 0.17% 0.06% 0.12% 0.28%
15 0.01% 0.01% 0.08% 0.03% 0.03% 0.16%

Table 22 Performance of joint pricing and framing algorithms when E[X] = 8 and X follows a Poisson

distribution.

Avg gap Max gap
p NEST-P NEST-P(m) NEST-P(1) NEST-P NEST-P(m) NEST-P(1)
1 0.06% 0.45% 0.74% 0.08% 0.73% 0.87%
3 0.02% 0.09% 0.54% 0.05% 0.21% 0.68%
9 0.00% 0.00% 0.22% 0.01% 0.01% 0.35%
15 0.00% 0.00% 0.10% 0.00% 0.00% 0.22%


