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Abstract. We study a fundamental model of resource allocation in which a finite amount
of service capacity must be allocated to a stream of jobs of different priorities arriving
randomly over time. Jobs incur costs and may also cancel while waiting for service. To
increase the rate of service, overtime capacity can be used at a cost. This model has
application in healthcare scheduling, server applications, make-to-order manufacturing
systems, general service systems, and green computing. We present an online algorithm
that minimizes the total cost due to waiting, cancellations and overtime capacity usage.
We prove that our scheduling algorithm has cost at most twice of an optimal offline
algorithm. This competitive ratio is the best possible for this class of problems. We also
provide extensive numerical experiments to test the performance of our algorithm and its
variants.
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1. Introduction
In many applications, a finite amount of a service re-
source must be allocated to a stream of jobs arriv-
ing randomly over time. Jobs are prioritized based on
certain criteria such as profitability or urgency. When
immediate service is not available, arriving jobs join
a priority queue to be served at a later time. While
waiting, jobs may cancel their requests and leave the
queue randomly. A cancellation is any job that expires or
leaves the systemwithout being processed. To increase
the rate of service, overtime resource can be used at a
higher cost. The system must dynamically determine
the service rate that minimizes the total cost due to
waiting, cancellations and overtime resource usage.
The above problem is central to many applica-

tions in operations research. For example, in health-
care facilities, jobs correspond to patient requests for
resources such as diagnostic devices and operating
rooms. Patients are often prioritized based on their
urgency and served in order of priority (Min and Yih
2010). Longer wait times, which result in lower quality
of care, are represented as a cost on the system. Time
is often slotted. With a limited number of time slots
available each day, only a certain number of patients
can be served on each day; the remaining patients must
join a waitlist (Denton et al. 2010, Ayvaz and Huh 2010,
Gerchak et al. 1996). Patients in the waitlist may ran-
domly cancel their requests, thus leaving the system.
Often, patients can be served using surge capacity or
overtime (Patrick et al. 2008) at an additional cost. The
scheduler must select the number of patients to serve
each day, using surge capacity or overtime as needed,

to minimize the total cost, including waiting costs, lost
revenue due to cancellations, and the cost of overtime
work.

Another application is network routing for server
applications. In this setting, jobs correspond to data
requests sent to server applications by local clients. To
process jobs, servers make use of computing resources
such as CPU and disk I/O. These finite resources limit
the rate of service. Arriving data requests that cannot
be immediately processed are stored in the memory.
If the wait time is too long, some data requests might
expire or lose the value of being processed, thus leav-
ing the queue. For instance, in some applications, data
requests are sent with time-outs and need not be pro-
cessed after their delay exceeds the time-out (Xiong
et al. 2008); in others, data contain information that
gradually loses value over time such as the location of
a mobile device. The priority of a data request is deter-
mined by its expiration date or the probability of expir-
ing. In the case of server congestion, data packages can
often be routed to remote (external) idle servers at a
cost of a propagation delay (Lin et al. 2012); such rout-
ing increases the service rate temporarily. The routing
decision needs to be dynamically made to reduce the
overall cost generated from data expiration, local con-
gestion, and processing delays due to data routing.

In many service systems, make-to-order manufac-
turing systems, retail stores, and call centers, jobs cor-
respond to customers arriving randomly over time.
Depending on the application, customers may be
served in order of their priorities. Backlogged custo-
mers may cancel their orders (Rubino andAta 2009,
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Blackburn 1972), resulting in lost sales and even
“reshelving” costs (Martin et al. 1992). In these settings,
the service rate canoftenbe increasedbyusingovertime
work (Dellaert and Melo 1998, Özdamar and Yazgaç
1997), on-call workers (Greenhouse 2012), or expedited
procurement of parts. These strategies have the effect of
temporarily increasing the service rate at an increased
variable cost. Themanager needs to dynamically deter-
mine the service policy to control the total system cost.
In the scaling of computer processing speed for min-

imizing energy usage (Bansal et al. 2009a, Yao et al.
1995), jobs correspond to sequences of CPU instruc-
tions that arrive randomly. Jobs are often prioritized
and processed in order of priority. With recent tech-
nologies, the processing speeds of CPUs can be dynam-
ically raised at the cost of a higher rate of power usage.
Such a speed-scaling technique often helps to save
more power than the simple strategy of turning off a
device during idle periods. The goal is to minimize the
sum of some measure of quality of service, such as job
completion time and total energy consumption (Bansal
et al. 2009a).

Our model captures most, if not all, of these appli-
cations. Specifically, we consider a discrete-time plan-
ning horizon of T periods, where T is possibly infinite.
Jobs are categorized into n ranked groups, or priority
classes. Each class is associated with a waiting cost, a
cancellation probability, and a cancellation cost. Jobs
are either processed in the current period or are added
to a priority queue. In each period t, a number Ct of
jobs of any priority can be processed. Additional jobs
can be processed at an extra variable cost.
The above scheduling problem is difficult to analyze

in real applications due to the difficulty in forecast-
ing future information. On the demand side, future
arrivals are often class-dependent and time-dependent
(Huh et al. 2013), requiring an enormous amount of
data to estimate the joint distribution of demand for
multiple classes. For instance, a patient request often
leads to subsequent periodic requests, resulting in
the time correlation of demand. Also, in markets of
new products or services, demand is often driven by
intensive promotion campaigns, in which case future
demand depends on promotional and social factors
and is highly uncertain. On the supply side, processing
capacities are often subject to occasional failures such
as staff absenteeism, machine breakdown, (Federgruen
and So 1990) and server crashes, which can be very
hard to predict.

Even with access to accurate joint distributions of
future demand and supply, the computation of an opti-
mal scheduling policy is often intractable. When there
are t jobs in the system, it takes O(tn) space to store
all possible states in a given period. This difficulty is
referred to as the curse of dimensionality.

In view of these difficulties, we aim to develop near-
optimal scheduling policies that are robust to future
information and are easy to compute. In this paper,
we make no assumptions about the joint distribution
of future arrivals and capacities. Instead, we study an
online version of the problem. A problem is online if
at all points in time, exogenous future information is
completely unknown and the algorithm has to make
adaptive decisions based on past and current informa-
tion. In contrast, an offline algorithm knows all future
information up-front. Competitive analysis is the most
widely used method for evaluating online algorithms
(Borodin and El-Yaniv 1998). It considers the relative
performance between an online algorithm and an opti-
mal offline algorithm under the worst input instance.
The maximum ratio between the cost achieved under
the online algorithm and that under the optimal offline
algorithm is called the competitive ratio for that online
algorithm. An algorithm with a competitive ratio of α
is said to be α-competitive.
For the scheduling problem without cancellations,

we propose 2-competitive randomized and determinis-
tic online algorithms. For the scheduling problem with
cancellations, we relax the assumption of the online
problem by making the “offline” policy unaware of
which jobs will cancel, i.e., the random cancellation
events are exogenous to both the online and offline poli-
cies. Under this definition, we propose 2-competitive
online algorithms for themodelwith cancellations. Fur-
ther, we show that the competitive ratio of our deter-
ministic algorithm is the best that can be achieved.

Our proofs of the competitive ratios use a cost-
balancing approach in conjunction with the following
new ideas.

• We construct a novel distance function, which sum-
marizes in a single number the difference between
the history of the online algorithm OLN and the
optimal offline algorithm OFF. The distance function
φt(OLN,OFF) has a nice physical interpretation. At
any time t, if we immediately service φt(OLN,OFF)
additional jobs under the online algorithm, the remain-
ing jobs will have lower priorities than the current
remaining jobs under the offline algorithm. The dis-
tance function dynamically accounts for the difference
in the number of scheduled and canceled jobs between
the two algorithms.

• Depending on the sign of the distance function
in each period, we partition the periods in the plan-
ning horizon into two sets. We show that in each type
of period, one cost component of the online algorithm
is dominated by the corresponding component of the
offline algorithm. This result naturally leads to the
proof of the competitive ratios.

• For the model with cancellations, we use stochas-
tic coupling to compare the exogenous cancellation
events under the online and offline algorithms. When
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extended to the model with cancellations, our dis-
tance function incorporates the difference in the num-
ber of coupled cancellation events between the two
algorithms.

• For the model with cancellations, we propose a
new cost-accounting scheme, which transforms cancella-
tion costs into new waiting and overtime costs. This
transformation allows the algorithms for the model
without cancellations to be easily extended to capture
cancellation behaviors.

2. Literature Review
Our work is related to several streams of literature,
including literature on appointment scheduling, make-
to-order systems, machine scheduling, rent-or-lease
problems, and other online algorithms in operations
management.

2.1. Appointment Scheduling
Our work is related to the literature on appoint-
ment scheduling, which has been studied intensively.
For comprehensive reviews of the broader area, see
Guerriero and Guido (2011), May et al. (2011), Cardoen
et al. (2010), and Gupta (2007). A large part of the lit-
erature considers intraday scheduling. In these prob-
lems, the number of patients to be served on each
day is given or is exogenous, and the task is to set
the sequence and the start time of each appointment
to control patient wait time and provider idle time.
Another part of the literature modelsmultiday schedul-
ing. In these problems, the allocation of patients to
days is dynamically controlled. Some of this literature
allows patients to be scheduled into future days at the
time of arrival. This paradigm is called advance schedul-
ing. See, for example, Truong (2014), Gocgun andGhate
(2012), and Patrick et al. (2008). In the rest of the multi-
day literature, an intermediate problem in which only
the number of patients to be scheduled to the current
period is determined, and the rest of the patients are
assumed to be added to a waitlist. This paradigm is
called allocation scheduling; see, for example, Huh et al.
(2013), Min and Yih (2010), Ayvaz and Huh (2010) and
Gerchak et al. (1996). So far, very few works have stud-
ied the optimal advance-scheduling policy. Recently,
Truong (2014) linked the solutions for the advance and
allocation scheduling problems by showing that for a
two-class model, their optimal scheduling polices are
equivalent. This result points to the importance of allo-
cation scheduling as a fundamental model.
Our model is an allocation-scheduling model. In

allocation scheduling, past works have used dynamic
programming to explore structural properties of the
optimal scheduling policy. When there are one or
two patient classes, the problem is easy to solve.
For multiclass problems, some structural results are

known, but there is no policy with performance guar-
antees. Gerchak et al. (1996) and Huh et al. (2013)
study scheduling problems with two patient classes.
Patients in the emergent class require same-day ser-
vice; patients in the elective class can wait. Gerchak
et al. (1996) show that the optimal scheduling policy
is not a cut-off policy; the optimal number of admis-
sions increases in the size of waitlist. Huh et al. (2013)
develop heuristics for a correlated and dynamic envi-
ronment. Min and Yih (2010) and Ayvaz and Huh
(2010) study the allocation-scheduling problem with
multiple elective patient classes. Min and Yih (2010)
develop bounds on the optimal number of admissions.
They show that priority-based discrimination results in
as much as a 30% difference in the optimal number of
admissions compared to an undiscriminated scheme.
Ayvaz and Huh (2010) analyze the structural proper-
ties of an optimal scheduling policy and study numer-
ical performance of a protect-constant heuristic. The
heuristics presented in these works do not come with
any performance guarantees. Moreover, for the static
policies that they propose, such as the protect-constant
policies, it is easy to search for the best protect-constant
levels only when the number of demand classes is
small. When the number of demand classes is large,
it is much harder to search for the best set of protect-
constant levels without additional structural proper-
ties. Thus, in multiclass settings, even heuristics with
good empirical performance are hard to find.

2.2. Make-to-Order Systems
The scheduling system we consider is related to make-
to-order manufacturing systems in that processing
capacity is used to service realized demand. These
make-to-order systems are usually modeled as queu-
ing systems. In the framework of queuing systems, ser-
vice times and inter-arrival times must be stationary,
independent andmost often, exponentially distributed
to ensure that the model is tractable. Our approach
differs from this literature in that we do not assume
any joint distribution on future arrivals and service
capacities. For reviews on admission control for make-
to-order queues, see Stidham (1985) and more recently,
Carr and Duenyas (2000). Blackburn (1972) studies the
optimal strategies for turning on or off a server subject
to reneging customers. Their work is related to ours in
that they consider the dynamic expansion of the ser-
vice rate. While they only consider one type of job, we
allow jobs to have multiple priorities, each with a dif-
ferent cancellation probability. Rubino and Ata (2009)
consider a related problem in which customers can be
outsourced and have chances to renege. They propose
a heuristic based on the solution to the problem in the
heavy-traffic regime.

Our model is related to the work of Keskinocak
et al. (2001), who study single-server online scheduling
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problemswith lead-time quotation, with application to
make-to-order manufacturing systems. In their model,
jobs can be rejected upon arrival, and waiting costs are
incurred in each period before the jobs are finished.
The rejection of jobs is similar to the use of overtime
resource in our model. Our work can be seen as a mul-
tipriority, multiserver extension of their model, and
with further considerations for job reneging. We note
that in their model, a job may span multiple periods,
while in our model, every job can be finished in a sin-
gle period. However, our model easily accommodates
batched arrivals. A job that takes multiple periods to
finish can be modeled as a batched arrival.

2.3. Machine Scheduling
The class of machine and multiprocessor scheduling
problems share some characteristics with our work.
However, overtime usage and job cancellations are
not common in the machine-scheduling literature. In
a typical machine-scheduling problem, jobs must be
assigned to one or more machines to minimize a cho-
sen objective such as the make span, the total comple-
tion time, or the total waiting time. Our model resem-
bles a machine-scheduling problem in which (1) jobs
have unit processing times; (2) jobs can be rejected or
diverted after being released; (3) each job has a specific
release time, which is used to define a waiting cost;
and (4) jobs may cancel randomly. However, an online
version of this model has not been considered. We
refer the reader to Chen et al. (1998) and Megow et al.
(2006) for more detailed surveys of machine schedul-
ing. Among the existing literature, the most relevant
works include Noga and Seiden (2001) and Zhang
et al. (2009). Noga and Seiden (2001) consider an online
machine-scheduling problem where jobs have release
times and the objective is to minimize the total waiting
cost, but the service rate cannot be dynamically con-
trolled. Zhang et al. (2009) study a deterministic offline
scheduling problem where jobs can be rejected.

2.4. Ski-Rental Problem and Extensions
Our problem extends the classical ski-rental problem
first studiedbyKarlin et al. (1988). In thisproblem, a sin-
gle jobwaits tobeprocessed some time in the future, but
the exact date that the jobwill beprocessed is unknown.
A waiting cost of $1 is incurred in each period that the
job has to wait. The job can also be immediately pro-
cessed at an additional cost of $B at any time. The ski-
rental problem is online if the exact time that the jobwill
beprocessed is unknownand is chosenbyanadversary.
The optimal competitive ratio of the ski-rental problem
is 2 for deterministic algorithms (Karlin et al. 1988) and
e/(e − 1) for randomized algorithms (Karlin et al. 1990).
Many variants of the ski-rental problems have been
studied, including those with multiple renting options

(Fujiwara et al. 2011, Lotker et al. 2012), time-varying
rental cost (Bienkowski 2008), and decisions that assign
rented or bought capacity to edges in a network (Gupta
et al. 2007).

In a variation of the ski-rental problem closest to our
model, a computer system needs to decide whether to
execute a task immediately, incurring a high power-
consumption cost, or whether it should let the task
wait and pay a waiting cost per unit time. These prob-
lems are called speed-scaling problems. One group
of works considers the optimization problem of some
energy-related objective, subject to deadlines for job
completion (Yao et al. 1995; Chan et al. 2007; Bansal
et al. 2007a, 2009b, 2011). The first theoretical study
of such a model is given by Yao et al. (1995). They
show that an optimal offline algorithm for any convex
power function can be computed by a greedy method.
They also give an online algorithm with constant com-
petitive ratio when the power function is polynomial.
Another group of works considers energy usage and
job waiting time (Albers and Fujiwara 2007; Bansal
et al. 2007b, 2009a). Bansal et al. (2009a) propose an
online algorithm that minimizes the sum of fractional
waiting costs and energy usage for arbitrary power
functions. When there are no cancellations, our model
captures the trade-off in Bansal et al. (2009a). However,
Bansal et al. (2009a) and most works in speed scaling
consider continuous-time models. Our model captures
a discrete-time speed scaling problem in which pro-
cessing speeds can only be changed in discrete periods.
Cancellation behaviors are generally not considered in
the speed-scaling literature.

2.5. Online Algorithms in Operations Management
Our online algorithms and their performance guar-
antees are related to many other approximation algo-
rithms developed in operations management. Approx-
imation algorithms have performance guarantees that
are relative to the optimal stochastic dynamic policy,
while online algorithms have performance guarantees
that are relative to an optimal offline algorithm. The
latter type of guarantee is much stronger. Moreover, to
use approximation algorithms, it is still necessary to
estimate the joint distribution of future arrivals. These
estimates can be very hard to make. In contrast, the
online algorithms we study do not have this require-
ment. Levi et al. (2005) propose a cost-balancing tech-
nique for inventory control problems. They prove that
this cost-balancing algorithm is a 2-approximation. The
cost-balancing technique is found to be very adaptable
and is applied in approximation algorithms for many
other supply-chain problems (see, for example, Levi
et al. 2008b, 2008a). Recently, Truong (2014) develops
an approximation algorithm for the stochastic inven-
tory control problem by using a look-ahead optimiza-
tion approach.
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Many online algorithms have been developed re-
cently for problems in operations management. Ball
and Queyranne (2009) consider an online version of
a revenue management problem. They show that the
simple protection-level policy gives the best possible
competitive ratio. The ratio depends on the level of
price discounts. Wagner (2010) considers the online
economic lot-sizing problem. They model the online
profit-maximizing problem as a min-max game and
provide conditions under which the competitive ratio
is bounded. Buchbinder et al. (2013) study an online
algorithm for a make-to-order variant of the joint-
replenishment problem for which they proved a com-
petitive ratio of three. Elmachtoub and Levi (2016)
study a general class of customer-selection problems
where decisions are made in two phases: In the first
phase, arriving customers with different configura-
tions are selected in an online manner. Then in the sec-
ond phase, the cost of the service system is generated
based on the set of selected customers. They develop
a framework of analysis for this class of problems and
apply it to various models.

The remainder of this paper is organized as follows.
In Section 3, we present our online algorithm for the
schedulingmodel without cancellations. In Section 3.7,
we generalize our results to the case that future costs
are discounted. In Section 3.8, we discuss lower bounds
on the competitive ratio and prove that our algorithm
is optimal. In Section 4, we extend the model and algo-
rithm to capture cancellations. Finally, in Section 5, we
report the numerical performance of our scheduling
policies.

3. Model of Allocation Scheduling
Without Cancellations

In this section, we focus on a basic model without can-
cellation. The planning horizon has T periods, indexed
from 1 to T, where T may be infinite. There are n
groups, or priority classes. Each class i is associated
with a waiting cost wi > 0, which is incurred when a
class i job stays in the waitlist for one period. Let the n
classes be ordered in decreasing order of priority. We
assume that thewaiting costs satisfy w1 >w2 > · · ·>wn .
The scheduling policies we present in the paper do not
depend on the total number n of classes, so n can be
arbitrarily large and the collection of waiting costs can
even approach a continuous distribution.
At the beginning of each period t, we observe the

vector st � (st1 , st2 , . . . , stn) representing the total num-
ber of jobs currently in the waitlist, where sti is the
number of jobs in class i. Then, we observe the regular
capacity Ct , which is the number of jobs, regardless of
priority, that can be processed by regular resource in
period t. Next we observe the number of new arrivals
δt � (δt1 , δt2 , . . . , δtn), where δti stands for the number

of arrivals of class i jobs.We have st , δt ∈�n
+
and Ct ∈�+,

where �+ is the set of all nonnegative integers. For an
online algorithm, Ct and δt are completely unknown
until period t, while for an offline algorithm the entire
sample path {(Ct , δt)}t�1,2,...,T is known at the beginning
of period 1.

After the new arrivals have occurred, the number
of jobs in system is represented by the vector st + δt .
From among the ‖st + δt ‖1 jobs in system, a scheduling
policy determines the number at ∈�+ of jobs to service
in period t. We restrict our attention to the class of
policies that serve some number of highest-priorities
jobs in each period. We will discuss the reason for this
restriction presently.

If at > Ct , we assume that the additional at −Ct jobs
will be served by overtime resource incurring a total
overtime cost of (at − Ct)p, where p is the cost of using
an overtime slot. If at 6 Ct , no overtime cost will be
incurred. Define dt ≡ (at − Ct)+ as the number of over-
time slots used in period t. We normalize all cost val-
ues such that p � 1. Then the total overtime cost in
period t is just dt . The objective is the undiscounted
total cost over a finite number T of periods, namely,
VΠT �

∑T
t�1(dΠt + WΠ

t ). We will discuss extensions to
discounted-cost models later.

It is intuitive that once the number at is decided, it
is optimal to serve the at jobs with the highest priori-
ties. This property is proved in Ayvaz and Huh (2010)
and Min and Yih (2010) for optimal stochastic policies.
The same result holds here. However, we do not repeat
the proof.

Because we only consider policies that schedule
some number of highest priority jobs in each period,
two scheduling policies differ only in the timing and
number of jobs drawn from the waitlist. We introduce
the following operator that extracts a certain number
of jobs with the highest priorities from a given system
state st ∈ �n

+
.

Definition 1. For a vector x ∈ �n
+
and a nonnegative

integer k, we define h(x , k) ∈ �n
+
as the vector that con-

tains the k jobs with the highest priorities in x. Let
hi(x , k) be the ith element of h(x , k). Let h(x , k) � 0 for
k < 0, and h(x , k)� x for k > ‖x‖1.
Since the wi’s are decreasing in i, we have for 0 6 k
6 ‖x‖1, 

hi(x , k)� xi , for i < i∗ ,
hi(x , k)� 0, for i > i∗ ,
hi∗(x , k)� k −∑i∗−1

i�1 xi , otherwise,

where i∗ � min{ j |∑ j
i�1 xi > k}.

Using this operator, we can write the number of jobs
remaining in the waitlist at the end of period t as

ft � st + δt − h(st + δt , dt +Ct).
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Next, the waiting cost incurred in period t can be
written as

Wt � f τt w ,

where τ is the transpose operator. In the next period,
the initial state of the system is st+1 � ft .
For each policy Π, we add a superscript Π to all the

state and decision variables that result from Π. If Π is
an online algorithm, the decision dΠt does not depend
on any information to be realized later than period t.
When we present our online algorithm in Section 3.1,
the objective is the undiscounted total cost over a finite
number T of periods, namely, VΠT �

∑T
t�1(dΠt +WΠ

t ). We
will show that our online algorithm gives a total cost
which is at most two times the total cost under an opti-
mal offline algorithm for any sample path {(Ct , δt)}t . In
Section 3.7 we further show that the same result holds
in discounted, finite, and infinite-horizon settings.

3.1. Online Algorithm and Summary of Main Ideas
First, we will present an online algorithm for the allo-
cation-scheduling problem without cancellations. We
will sketch the main ideas that go into the proof that
this algorithm is 2-competitive.
Define an online algorithm OLN as follows. In each

period t, OLN balances the total cumulative waiting
cost and total cumulative overtime cost by minimizing
the maximum of the two. Mathematically, let W(d) �
(sOLN

t + δt − h(sOLN
t + δt , d + Ct))τw be the waiting cost

to be incurred in period t if d overtime slots are used
in t. Then dOLN

t is determined by (recall that the unit
overtime cost is p � 1)

dOLN
t �argmin

d
max

( t−1∑
i�1

dOLN
i +d ,

t−1∑
i�1

WOLN
i +W(d)

)
. (1)

The idea of OLN is to keep these two cumulative costs
as closely matched to each other as possible.
We will prove that OLN has a competitive ratio of 2.

The proof is based on a new concept of a distance func-
tion, which summarizes the difference in state between
two policies in any period by a scalar. The distance
function is an analytical tool. We will show that the dis-
tance function between an online policy OLN and an
optimal offline policy OFF separates the horizon into
consecutive intervals, depending on its value. Type-A
intervals, where the distance is 0, are single-period.
Type-B intervals, where the distance is positive, may
be multiperiod. We will show that in a type-A interval,
the waiting cost of OLN is bounded by that of OFF. In
a type-B interval, the cumulative overtime cost of OLN
is bounded by that of OFF. By balancing the waiting
and overtime cost, OLN ensures that the larger of its
two costs in each interval is bounded by a cost of OFF.

3.2. Dominance Relationship Between
Two Policies

First we define a dominance relationship and prove
some of its implications. A dominance relation is a par-
tial order between two system states such that one state
is smaller than the other, if the jobs in that state have
lower priorities than in the other state. This dominance
relation allows us to compare system states, thereby
arriving at a bound on costs.

Definition 2. For two vectors x , x′ ∈ �n
+
, we say x is

dominated by x′ and write x � x′ if

l∑
i�1

xi 6
l∑

i�1
x′i , ∀ l � 1, 2, . . . , n.

A result immediately following this definition is
that, if x and x′ represent different system states at the
end of period t, and x � x′, then the total waiting cost
incurred by the jobs in x at t is no greater than that
incurred by the jobs in x′.

Lemma 1. For two vectors x , x′ ∈�n
+
, if x � x′, then xτw 6

x′τw.

Proof.
l∑

i�1
xi 6

l∑
i�1

x′i , ∀ l � 1, 2, . . . , n ,

�⇒
l∑

i�1
xiα 6

l∑
i�1

x′iα, ∀ l � 1, 2, . . . , n and ∀α > 0,

�⇒
n−1∑
l�1

l∑
i�1

xi(wl −wl+1)+
n∑

i�1
xi wn ,

6
n−1∑
l�1

l∑
i�1

x′i(wl −wl+1)+
n∑

i�1
x′i wn

�⇒
n∑

i�1
xi wi 6

n∑
i�1

x′i wi . �

The following lemma states two simple operations
that preserve a dominance relation:

Lemma 2. Fix an integer l > 0 and two vectors x , x′ ∈ �n
+

satisfying
x − h(x , l) � x′.

1. For any integer l′ > 0,

x − h(x , l + l′) � x′− h(x′, l′).

2. For any vector δ ∈ �n
0 ,

x + δ− h(x + δ, l) � x′+ δ.

Proof. This lemma is easily proved by directly check-
ing the definition of dominance relation. �
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3.3. Distance Function and Comparison of
Scheduling Policies

The following distance function captures the differ-
ence in the cumulative overtime usage between two
scheduling policies.
For two scheduling policies Π and Θ, the distance

function φt(Π,Θ) is defined recursively as{
φ0(Π,Θ)�0,
φt(Π,Θ)�max{φt−1(Π,Θ)−dΠt +dΘt ,0}, for t>1,

(2)

where recall that dΠt and dΘt are the numbers of over-
time slots used underΠ andΘ in period t, respectively.
That is, in a given period, the distance function changes
by the number overtime slots thatΘ uses in excess ofΠ.
However, its value is always kept nonnegative.
Table 1 provides an illustrative example. It lists the

number of overtime slots used in periods from 1 to 9
on a sample path. The corresponding values of the
distance function are shown in the bottom row of
the table.
The above definition of the distance function is moti-

vated by its use in Section 3.4. The distance function
is used mainly to identify periods in which one pol-
icy is “behind” another policy (when the distance is
positive) and periods in which it is “ahead” (when the
distance is 0). When a policy is ahead in a given period,
it has a lower waiting cost. When a policy is behind,
we will show that it has used up fewer overtime slots
cumulatively over a specific interval.

3.4. Invariance Between Policies in Terms of the
Distance Function

Wewill establish the following direct physical interpre-
tation of the distance function. If we remove the num-
ber of jobs equal to the value of the function φt(Π,Θ)
from state f Πt , the rest of the jobs in f Πt will be domi-
nated by the jobs in f Θt . Therefore, when the distance
is 0,Π is already ahead ofΘ, in the sense that its state is
dominated by that of Θ. When the distance is positive,
Π is behind Θ because it needs to perform some pos-
itive number of jobs to get ahead. Figure 1 illustrates
this interpretation.
We formalize the above statement as an invariance

between two scheduling policies that can be stated in

Table 1. Example of the Distance Function

Period t 1 2 3 4 5 6 7 8 9

dΘt 0 2 0 0 0 1 0 0 1
dΠt 1 0 1 2 0 0 0 1 2
φt(Π,Θ) 0 2 1 0 0 1 1 0 0

Note. Based on the numbers of scheduled overtime slots dΠt and dΘt of
two scheduling policies Π and Θ, respectively, the values of the dis-
tance function φt(Π,Θ) are computed and listed in the bottom row.

Figure 1. Illustration of the Distance Function

w = 1

f t
Π:

f t
Θ:

�t(Π, Θ) = 2

w = 1

2 2 3 4

1 3 3

Notes. There are 4 priority classes with waiting costs w � (4, 3, 2, 1).
By the end of period t, f Πt � (1, 1, 2, 1) and f Θt � (0, 2, 0, 2). The figure
displays all the jobs with their waiting costs marked. Assume that
φt(Π,Θ) � 2. After φt(Π,Θ) � 2 jobs with the highest priorities are
removed from f Πt , the remaining jobs, marked by the black box, have
lower priorities than the jobs in f Θt . Note that if we only removed 1
job with unit waiting cost of 4 from f Πt , the remaining jobs would
not be “dominated” by the jobs in f Θt , as there would be 3 jobs with
waiting costs of at least 2 remaining in f Πt , but only 2 such jobs in f Θt .

terms of the distance function and the dominance rela-
tion. This invariance will help us later to compare the
cost of the policies.

Theorem 1. For any two scheduling policies Π and Θ,
we have

f Πt − h( f Πt , φt(Π,Θ)) � f Θt , ∀ t � 1, 2, . . . ,T. (3)

Proof. Recall that st � ft−1, so Equation (3) is equiva-
lent to

sΠt − h(sΠt , φt−1(Π,Θ)) � sΘt . (4)

This Equation (4) is clearly true for t � 1, as sΠ1 � sΘ1 is
the initial state.

Suppose that (4) holds up to period t; next we prove
that it is also true for period t + 1.

In period t, after δt new jobs arrive, according to
Lemma 2 we have

sΠt + δt − h(sΠt + δt , φt−1(Π,Θ)) � sΘt + δt .

Then afterΘ removes Ct + dΘt jobs, Lemma 2 gives us

sΠt + δt − h(sΠt + δt , φt−1(Π,Θ)+Ct + dΘt )
� sΘt + δt − h(sΘt + δt ,Ct + dΘt ).

Now we let l � φt−1(Π,Θ)+ dΘt − dΠt and rewrite the
above equation as

sΠt + δt − h(sΠt + δt , l +Ct + dΠt ) � f Θt .

Depending on the value of l, there are two cases:
1. If l < 0, we have

sΠt + δt − h(sΠt + δt ,Ct + dΠt )
� sΠt + δt − h(sΠt + δt , l +Ct + dΠt )
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because the left-hand side has more jobs removed from
the vector sΘt + δt . It is easy to check that the binary
relation � is transitive, so the above equation leads to

sΠt + δt − h(sΠt + δt ,Ct + dΠt ) � f Θt
�⇒ f Πt � f Θt
�⇒ f Πt − h( f Πt , 0) � f Θt .

2. If l > 0, we have

sΠt + δt − h(sΠt + δt , l +Ct + dΠt )
� sΠt + δt − h(sΠt + δt ,Ct + dΠt )
− h(sΠt + δt − h(sΠt + δt ,Ct + dΠt ), l)

� f Πt − h( f Πt , l)
�⇒ f Πt − h( f Πt , l) � f Θt .

In sum, we have

f Πt − h( f Πt ,max(l , 0)) � f Θt
�⇒ f Πt − h( f Πt , φt(Π,Θ)) � f Θt
�⇒ sΠt+1 − h(sΠt+1 , φt(Π,Θ)) � sΘt+1.

Thus, the theorem is proved. �

The above invariance also sheds light on the asym-
metry of the distance function. The distance function
φt(Π,Θ) is merely a provable lower bound on the num-
ber of jobs that Π needs to perform to catch up to Θ.
Many other lower bounds are possible. Since the invari-
ance is a weak inequality, not an equality, it is not
reversible. That is, φt(Π,Θ),−φt(Π,Θ) because a rear-
rangement of terms in the invariance does not produce
the opposite inequality.

3.5. Partition of the Horizon
The next theorem shows that the distance function sep-
arates all periods into two types, depending on the sign
of the distance function. In one case, the current wait-
ing cost incurred under policy Π is bounded by that
under Θ. In the other case, the cumulative overtime
cost incurred under Π is bounded by that under Θ.

Theorem 2. In any period t,
1. if φt(Π,Θ)� 0, then WΠ

t 6WΘ
t ;

2. if φt(Π,Θ) > 0, let t0 � max{k: φk(Π,Θ)� 0, k < t}.
Then

t∑
k�t0+1

dΠk <
t∑

k�t0+1
dΘk .

Proof. If φt(Π,Θ) � 0, we know from Theorem 1 that
f Πt 6 f Θt . Then Lemma 1 gives WΠ

t 6WΘ
t .

The case φt(Π,Θ) > 0 can be proved by directly
checking the definition of the distance function. �

Using Table 1, we illustrate the two types of periods
distinguished in Theorem 2.

1. Periods in which φt(Π,Θ) � 0. These are periods
t � 1, 4, 5, 8, 9 in Table 1. From the first statement of
Theorem 2 we know that for this type of period, the
waiting costs underΠ are bounded by thewaiting costs
under Θ.
2. Periods in which φt(Π,Θ) > 0. We can divide

these periods into intervals of consecutive periods, e.g.,
interval [2, 3] and interval [6, 7] in Table 1. During each
of these intervals, the total number of overtime slots
used in Π is no greater than the number of overtime
slots used inΘ. Hence, in these intervals the total over-
time cost under Π is bounded by that under Θ.

In sum, in any type of period, one cost component
of Π, either the waiting cost or the overtime cost, is
bounded by the corresponding cost of Θ. Since Θ can
be any scheduling policy including the optimal offline
policy, Π will have a competitive ratio of 2 if it can
balance the two cost components evenly in an online
manner.

Similar to the distance function, a potential function
is a commonly used mapping from the history of two
policies to a scalar. By definition, the change in poten-
tial in each period must satisfy a generic inequality
involving the one-period costs for the two policies.
These inequalities can be simply summed to produce
the competitive bound desired, if the potential func-
tion also satisfies certain boundary conditions. The dis-
tance function, in contrast, is used to identify intervals
in which OLN is ahead of OFF, and intervals in which
OLN is behind OFF. In each type of interval, a cost of
OLN is shown to be upper bounded by a cost of OFF.
The intervals may be multiperiod. The distance func-
tion does not satisfy the generic inequality required for
potential functions. Its usage is also distinct from that
of potential functions. The sign of the distance func-
tion is used (whether positive or 0) but not its numeri-
cal value.

3.6. Proof of Performance
We will show that OLN has a competitive ratio of 2 by
using the distance function above.

Theorem 3. For any policy Π and any sample path,

max
( t∑

i�1
dOLN

i ,
t∑

i�1
WOLN

i

)
6

t∑
i�1
(dΠi +WΠ

i ),

∀ t � 1, 2, . . . ,T. (5)

Proof. When t � 0 the condition (5) is trivially true.
Suppose that (5) is true up to period t − 1. We next
prove that it also holds for period t.
Let gt �max(∑t

i�1 dOLN
i ,

∑t
i�1 WOLN

i ) be the maximum
of the two cumulative costs up to period t.

• Case 1: φt−1(OLN,Π)+ dΠt − dOLN
t < 0. We immedi-

ately have dOLN
t > 0 and

φt−1(OLN,Π)+ dΠt − (dOLN
t − 1) 6 0.
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Then from Theorem 2, we know that

W(dOLN
t − 1) 6WΠ

t .

In other words, even if we schedule one fewer job in
period t under OLN, the resulting waiting cost for this
period is still less than or equal to WΠ

t . The decision
criterion for OLN in (1) gives us

gt 6 gt−1 +W(dOLN
t − 1)

because otherwise using dOLN
t −1 overtime slots instead

of dOLN
t in period t would reduce the maximum com-

ponent of cumulative costs. Connecting the above two
equations, we get

gt 6 gt−1 +W(dOLN
t − 1) 6 gt−1 +WΠ

t

6
t−1∑
i�1
(dΠi +WΠ

i )+WΠ
t 6

t∑
i�1
(dΠi +WΠ

i ),

where the third inequality follows from induction on
the (t − 1)-th period.

• Case 2: φt−1(OLN,Π)+ dΠt − dOLN
t > 0. Again let

t0 � max{k: φk(OLN,Π)� 0, k < t} (6)

be the last period in which the distance function
was equal to 0. Since in this case φt(OLN,Π) �
φt−1(OLN,Π) + dΠt − dOLN

t > 0, from Theorem 2 we
know that

t∑
i�t0+1

dOLN
i <

t∑
i�t0+1

dΠi �⇒
t∑

i�t0+1
dOLN

i + 1 6
t∑

i�t0+1
dΠi .

On the other hand, definition (1) gives us

gt 6 gt0
+

( t∑
i�t0+1

dOLN
i + 1

)
because otherwise we could use one more overtime
slot to reduce gt . Combining the above two equations
we get

gt 6 gt0
+

( t∑
i�t0+1

dOLN
i + 1

)
6 gt0

+

t∑
i�t0+1

dΠi

6
t0∑

i�1
(dΠi +WΠ

i )+
t∑

i�t0+1
dΠi 6

t∑
i�1
(dΠi +WΠ

i ),

where the third inequality comes from induction on
the t0-th period.

• Case 3a: φt−1(OLN,Π) + dΠt − dOLN
t � 0, gt �∑t

i�1 dOLN
i . Let t0 be defined as in (6). From the defini-

tion of the distance function, we know that
t∑

i�t0+1
dOLN

i �

t∑
i�t0+1

dΠi .

Then we have

gt 6 gt0
+

t∑
i�t0+1

dOLN
i 6

t0∑
i�1
(dΠi +WΠ

i )+
t∑

i�t0+1
dΠi

6
t∑

i�1
(dΠi +WΠ

i ),

where the first inequality comes from the condition for
this case, namely that gt �

∑t
i�1 dOLN

i .
• Case 3b: φt−1(OLN,Π) + dΠt − dOLN

t � 0, gt �∑t
i�1 WOLN

i . From Theorem 2 we have

WOLN
t 6WΠ

t

�⇒ gt 6 gt−1 +WOLN
t 6 gt−1 +WΠ

t

6
t−1∑
i�1
(dΠi +WΠ

i )+WΠ
t 6

t∑
i�1
(dΠi +WΠ

i ),

where the first inequality comes from the condition for
this case, namely that gt �

∑t
i�1 WOLN

i . �

Finally, using Theorem 3 we can show that OLN is
2-competitive, by letting Π be the optimal offline algo-
rithm OFF.

Corollary 1. On every sample path,

T∑
i�1
(dOLN

i +WOLN
i ) 6 2

T∑
i�1
(dOFF

i +WOFF
i ).

Proof.
T∑

i�1
(dOLN

i +WOLN
i ) 6 2 max

( T∑
i�1

dOLN
i ,

T∑
i�1

WOLN
i

)
6 2

T∑
i�1
(dOFF

i +WOFF
i ). �

3.7. Generalization to Discounted Costs
Now we generalize our previous results to the case of
discounted future costs. Given a discount factor γ ∈
(0, 1), let the total discounted cost from period 1 to T
be VΠT (γ),

VΠT (γ)�
T∑

t�1
(dΠt p +φΠt )γt−1.

The following theorem ensures that the competitive
ratio of our online algorithm is still 2 in the discounted-
cost case.

Theorem 4. For any policy Π and any horizon T, where T
is possibly infinite, we have

VOLN
T (γ) 6 2VΠT (γ).

Proof. We already know from Corollary 1 that for any
length t of the horizon and any sample path we have

VOLN
t 6 2VΠt ,
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where VΠt is the undiscounted cost from periods 1 to t.
Then for any policy Π,

VOLN
T (γ)�

T∑
t�1
(dOLN

t p +φOLN
t )γt−1

�

T∑
t�1
(VOLN

t −VOLN
t−1 )γt−1

�

T−1∑
t�1

VOLN
t · (γt−1 − γt)+VOLN

T · γT−1

6
T−1∑
t�1

2VΠt · (γt−1 − γt)+ 2VΠT · γT−1

� 2VΠT (γ). �

3.8. Lower Bounds
We prove that our online algorithm achieves the opti-
mal competitive ratio by reducing our scheduling
problem into a ski-rental problem and concluding that
the competitive ratios for the ski-rental problem apply
to our model.
The classical ski-rental problem, which was first

studied by Karlin et al. (1988), is a simplified version
of our allocation-scheduling problem. In the ski-rental
problem, a single job waits to be processed some time
in the future, but the exact date that the job will be
processed is unknown. A waiting cost of $1 is incurred
in each period that the job has to wait. The job can also
be immediately processed at an additional cost of $B at
any time. If we know that the job has to wait at least B
periods, then it is optimal to immediately process the
job in the current period. If the job needs to wait no
more than B periods, then it is optimal to let it wait.
This ski-rental problem is online if the exact time that
the job will be processed is unknown and is chosen by
an adversary. It is well known that the optimal com-
petitive ratio of the ski-rental problem is 2 for deter-
ministic algorithms (Karlin et al. 1988) and e/(e −1) for
randomized algorithms (Karlin et al. 1990).
Theorem 5. OLN is an optimal online algorithm for the
allocation-scheduling model.
Proof. In our allocation-scheduling model, if there is
only one job in the system and we always let Ct � 0
until some future period chosen by an adversary, then
the problem reduces to the ski-rental problem. Thus,
the ski-rental problem is a subclass of the allocation-
scheduling problem. Therefore, its lower bounds on
the competitive ratio also apply to the algorithms for
the allocation-scheduling problem. From this, we can
conclude that our 2-competitive deterministic algo-
rithm has the lowest possible competitive ratio. �

4. Model of Allocation Scheduling with
Cancellations

In this section, we consider the allocation-scheduling
problem with cancellations. The online algorithm we

propose in this section is adapted from the cost-
balancing algorithm of the previous section. The algo-
rithm in this section is a deterministic one.Wewill only
prove the competitive ratio over an undiscounted and
finite horizon, but similar to the results in Section 3.7,
our competitive analysis can be easily generalized to a
discounted and infinite horizon.

Starting from the model without cancellations, we
assume that a class i job has a cancellation probabil-
ity of qi ∈ [0, 1], and a cancellation cost of ri > 0. We
assume that the cancellation cost dominates the over-
time cost for each class, i.e., ri > p � 1 for all i. We
further assume that the cancellation probabilities and
costs are higher for higher-priority classes, i.e., r1 > r2 >
· · · > rn , and q1 > q2 > · · · > qn . This assumption makes
sense in most applications. In healthcare, higher pri-
ority patients have a higher need to be seen quickly,
less willingness to wait, and higher tendency to leave
for other care arrangements if they are made to wait
for too long. In server applications, higher priority jobs
have shorter deadlines. In service systems, higher pri-
ority customers are more impatient to wait, and often
bring higher profits to the system, which would be lost
if they leave the queue.

In each period, the following events happen in
sequence

1. At the beginning of period t, st � (st1 , st2 , . . . , stn)
is the total number of jobs in system, where sti is the
number of jobs of class i.

2. Each job in class i independently leaves the sys-
tem with probability qi . The remaining jobs form a
state mt , mt 6 st . The total cancellation cost incurred in
period t is

Rt � (st −mt)τr.

3. The capacity Ct and new arrivals δt are observed.
The system state becomes mt + δt .

4. The scheduling decision dt for period t is made.
The number of jobs remaining in the queue is ft , ft �

mt + δt − h(mt + δt , dt +Ct). The overtime cost incurred
in period t is dt , and the waiting cost incurred is

Wt � f τt w.

5. In the next period we have st+1 � ft .
For the competitive analysis of the online algorithm

with cancellations, we assume that an offline algo-
rithm sees future arrivals and capacities, δt ,Ct , t �

1, 2, . . . ,T, but does not see which jobs will cancel. Let
F� σ(δ1 , δ2 , . . . , δT ,C1 ,C2 , . . . ,CT) contain the informa-
tion that an offline algorithm can see. The objective is

E[VT | F]� E
[ T∑

t�1
(Rt + dt +Wt)

����F]
,

where the expectation is taken over the random cancel-
lation events.
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Before presenting the online algorithm, it is neces-
sary to reexamine the question of, in the presence of job
cancellations, whether it is still optimal for the offline
algorithm to serve jobs with the highest priorities first,
i.e., whether we can still use the h(·, ·) operator to rep-
resent an optimal offline scheduling decision. The fol-
lowing theorem ensures that this service rule is still
optimal.

Theorem 6. The optimal offline algorithm OFF always
schedules jobs with the highest priorities in each period.

Proof. As an offline algorithm, OFF knows all the
arrivals and capacities upfront. However, since the can-
cellation events are exogenous to offline algorithms,
OFF faces a stochastic setting in which jobs cancel ran-
domly in each period. In this stochastic decision pro-
cess, let u1

t (s) be the expected cost of OFF from t to T
when the system state at t is s. That is, let

u1
t (s)� E

[ T∑
i�t
(ROFF

i + dOFF
i +WOFF

i )
����F, st � s

]
.

Let u2
t (s) be the cost of OFF from t to T immediately

after cancellations have occurred in period t, and when
the system state at t is s,

u2
t (s)�E

[
dOFF

t +WOFF
t

+

T∑
i�t+1
(ROFF

i + dOFF
i +WOFF

i )
����F,mt � s

]
.

We next show by induction that for any s1 � s2,

u1
t (s1) 6 u1

t (s2) (7)
and u2

t (s1) 6 u2
t (s2). (8)

These two results will naturally lead to the proof of
this theorem.

First, it is clear that (8) holds in the last period T, as
no cancellation will ever happen starting at that time,
and hence the result reduces to the casewithout cancel-
lations. Suppose that (8) holds starting from period t.
We next prove that (7) also holds for period t and that
(8) holds for period t − 1.

Let ei be the unit vector with 1 for the ith element
and 0 for all other elements. Since adding more jobs to
the system only imposes a larger cost, we must have

u1
t (s) 6 u1

t (s + ei)

for any i � 1, 2, . . . , n. Then to prove (7), it suffices to
prove that for any i < j,

u1
t (s + e j) 6 u1

t (s + ei).

For any s̃ 6 s, let P(s , s̃) be the probability that all the
jobs in s̃ remain while all the jobs in s − s̃ cancel. Then
the offline cost value can be written as

u1
t (s + ei)
�

∑̃
s6s

P(s , s̃)[(s− s̃)τr + qi(ri + u2
t (s̃))+ (1− qi)u2

t (s̃ + ei)],

where ri + u2
t (s̃) is the total cost value under the condi-

tion that the additional job ei cancels, and u2
t (s̃ + ei) is

the cost value under the condition that the additional
job does not cancel.

By induction we know that u2
t (s̃ + e j) 6 u2

t (s̃ + ei) if
i < j. Moreover, the marginal cost of u2

t ( · ) must be
bounded by the overtime cost, namely,

u2
t (s̃ + ei)− u2

t (s̃)6 p 6 ri

because otherwise the offline policy would service the
additional job ei by overtime and reduce the marginal
cost to p. Then for any i < j,

u1
t (s + e j)
�

∑̃
s6s

P(s , s̃)[(s− s̃)τr + q j(r j + u2
t (s̃))+ (1− q j)u2

t (s̃ + e j)]

6
∑̃
s6s

P(s , s̃)[(s− s̃)τr + q j(ri + u2
t (s̃))+ (1− q j)u2

t (s̃ + ei)]

6
∑̃
s6s

P(s , s̃)[(s− s̃)τr + qi(ri + u2
t (s̃))+ (1− qi)u2

t (s̃ + ei)]

� u1
t (s + ei).

where the last inequality follows from the fact that
qi > q j and that ri + u2

t (s̃)> u2
t (s̃ + ei).

Thus, we have proved (7) for period t. Now it is
immediately clear that the optimal offline scheduling
rule in period t − 1 always services the jobs with the
highest priorities, because (7) states that it is better to
have lower priority jobs in the system at the beginning
of period t and that the costs to serve any two jobs are
the same. It also follows that (8) holds for period t −1,
as having lower-priority jobs in system leads to lower
waiting costs and, at the same time, lower-priority jobs
at the beginning of the next period. �

4.1. Online Algorithm and Summary of Main Ideas
The extension of the online algorithm OLN that we
develop in this section works similarly to the version
we presented earlier. This algorithm OLN balances the
waiting cost with the sum of overtime costs and cancel-
lation costs by minimizing the maximum of the cumu-
lative cost components. Some redefinition of the costs
is necessary. Therefore, we will defer a precise descrip-
tion of the online algorithm until we have described
this redefinition.

Two ideas are necessary in the development of a
performance bound. First, we need to show that the
dominance relation previously developed holds analo-
gously under cancellations. In general, it need not hold,
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but wewill show that if cancellation events are stochas-
tically coupled, then the dominance relation can be
preserved. Second, we need to incorporate into our
analysis a new cancellation cost.We do this by develop-
ing a new cost-accounting scheme. In this scheme, we
treat a cancellation as a job that is forced to be served
in overtime. With this change, we can apply the proof
of the performance bound in the previous section with
few changes.

4.2. Coupling of Two Scheduling Policies
Our goal in this section is to compare the system states
under two policies, Π and Θ, by redefining our dis-
tance function. Suppose that the policies start with the
same initial state and experience the same capacity Ct
and arrivals δt for each period t. Since both online and
offline algorithms do not know which jobs will cancel,
we can couple the cancellation events under Π and Θ.
We show that a new distance function can be defined
based on a coupling of cancellations.
Let oΠt � ‖sΠt −mΠt ‖1 be the total number of canceled

jobs in period t for policy Π. We define a new dis-
tance function φ̄(Π,Θ) for any two policies Π andΘ as
follows
φ̄0(Π,Θ)�0,
φ̄t(Π,Θ)�max{φ̄t−1(Π,Θ)−dΠt −oΠt +dΘt +oΘt ,0},

for t>1.
(9)

This new distance function takes both the number
of overtime slots and the number of canceled jobs into
account.

Suppose that at the beginning of period t we have

sΠt − h(sΠt , φt−1(Π,Θ)) � sΘt . (10)

Then we can always simulate the cancellations in
period t in three phases as follows (see Figure 2 for an
illustration):
1. Let the φ̄t−1(Π,Θ) jobs with the highest priorities

in state sΠt , i.e., those counted in h(sΠt , φ̄t−1(Π,Θ)), make
their cancellation decisions.
2. Let l � (‖sΠt ‖1 − φ̄t−1(Π,Θ))+ be the number of

remaining jobs in state sΠt that have not made their
cancellation decisions yet. Let U1 ,U2 , . . . ,Ul be i.i.d.
[0,1] uniform random variables. For each of the l jobs,
going from the highest priority to the lowest prior-
ity, if the ith job is in class j, let the ith job cancel if
and only if q j >Ui . Then, for the l jobs with the high-
est priorities in state sΘt , let them cancel similarly, by
using the same sequence of uniform random variables
U1 ,U2 , . . . ,Ul (but using possibly different cancellation
probabilities). In this way we have coupled the cancel-
lation events between the l jobs with the lowest prior-
ities under Π and the l jobs with the highest priorities
under Θ.

Figure 2. Stochastic Coupling of Cancellation Events

�t –1(Π, Θ)

Phase 3 Phase 2

Coupled

l jobs are considered in
Phase 2 under each policy

Phase 1

Priority

Π

Θ

Notes. After removing φt−1(Π,Θ) jobs with the highest priorities
from the state under Π, the remaining l jobs are dominated by the
jobs under Θ, in that the priority of each remaining job under Π is
at most that of the job with the same priority ranking under Θ. In
Phase 2, the cancellation events of each pair of jobs having the same
priority ranking under the two policies are coupled together.

3. Let the other jobs in sΘt make their cancellation
decisions.

The following theorem shows that, under the above
coupling of cancellation events, the distance function
still enables us to set up a dominance relationship
between Π and Θ.

Theorem 7. Suppose (10) holds in period t. After the above
coupled cancellation process, we have on every sample path,

mΠt − h(mΠt , φ̄t−1(Π,Θ)− oΠt + oΘt ) �mΘt . (11)

In particular,

φ̄t−1(Π,Θ)− oΠt + oΘt > 0. (12)

By the end of period t,

f Πt − h( f Πt , φ̄t−1(Π,Θ)− dΠt − oΠt + dΘt + oΘt ) � f Θt . (13)

Proof. Recall that l � (‖sΠt ‖1 − φ̄t−1(Π,Θ))+. Let xΠi and
xΘi be the vectors of jobs considered in the ith coupling
phase under Π and Θ, respectively, for i � 1,2,3 (see
Figure 2). In particular, we have in Phase 1,

xΠ1 � h(sΠt , φ̄t−1(Π,Θ)),

in Phase 2,

xΠ2 � sΠt − xΠ1 and xΘ2 � h(sΘt , l),

and in Phase 3,
xΘ3 � sΘt − xΘ2 .

Let x̄Πi and x̄Θi be the vectors of remaining jobs in xΠi
and xΘi , respectively, after cancellations have occurred.
Let yΠi � ‖xΠi ‖1 − ‖ x̄Πi ‖1 and yΘi � ‖xΘi ‖1 − ‖ x̄Θi ‖1 be the
number of canceled jobs in phase i under Π and Θ,
respectively.
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Under coupling, the ith job in xΠ2 , ranked by prior-
ity, is coupled with the ith job in xΘ2 . According to the
initial condition (10), we have xΠ2 � xΘ2 , i.e., the ith job
in xΠ2 has equal or lower priority than the ith job in xΘ2 .
According to the coupling process, if the ith job in xΠ2
cancels, then the ith job in xΘ2 cancels. So we must have

yΠ2 6 yΘ2 .

Since xΠ2 � xΘ2 , by removing yΘ2 − yΠ2 jobs with the
highest priorities from x̄Π2 , the resulting state must be
dominated by x̄Θ2 , i.e.,

x̄Π2 − h(x̄Π2 , yΘ2 − yΠ2 ) � x̄Θ2 .

In phase 1, there are φ̄t−1(Π,Θ)− yΠ1 jobs in x̄Π1 . Plug-
ging these jobs into the dominance relation, we get

x̄Π1 + x̄Π2 − h(x̄Π1 + x̄Π2 , φ̄t−1(Π,Θ)− yΠ1 + yΘ2 − yΠ2 ) � x̄Θ2 .

By further adding the jobs in phase 3, we get

x̄Π1 + x̄Π2 − h(x̄Π1 + x̄Π2 , φ̄t−1(Π,Θ)− yΠ1 + yΘ2 − yΠ2 + yΘ3 )
� x̄Θ2 + xΘ3 ,

which is just (11).
To prove (12), note that φ̄t−1(Π,Θ) > yΠ1 because no

more than φ̄t−1(Π,Θ) jobs can cancel in phase 1, and
yΘ2 > yΠ2 due to the coupling process. Hence,

φ̄t−1(Π,Θ)− oΠt + oΘt � φ̄t−1(Π,Θ)− yΠ1 + yΘ2 − yΠ2 + yΘ3
> φ̄t−1(Π,Θ)− yΠ1 + yΘ2 − yΠ2 > 0,

proving (12).
To see that (11) and (12) lead to (13), we treat mΠt

and mΘt as states in an intermediate period, and we
treat φ̄t−1(Π,Θ) − oΠt + oΘt > 0 as the distance function
value for the intermediate period. Then (13) follows
according to Theorem 1. �

Corollary 2. For any two scheduling policies Π and Θ, we
have on every sample path,

f Πt − h( f Πt , φ̄t(Π,Θ)) � f Θt , ∀ t �1,2, . . . ,T.

Proof. This statement is equivalent to Equation (13),
which is also the same as

sΠt+1− h(sΠt+1 , φ̄t(Π,Θ)) � sΘt+1.

This finishes the proof that (10) holds for all period t
by induction. Therefore, (13) holds for all period t. �

In the remainder of this paper, we use the coupling
of cancellations whenever we compare two scheduling
policies. We will directly use Theorem 7 and Corol-
lary 2 without specifying each time that cancellations
are coupled.

4.3. New Cost-Accounting Scheme
Next we present a new cost-accounting scheme. The
idea of the new cost-accounting scheme is to treat a
cancellation as a job that is forced to be served in over-
time, by moving around some components of the cost
of a cancellation. With this change, we can apply the
proof of the performance bound in Theorem 3with few
changes.

The new cost-accounting scheme separates each can-
cellation cost into two parts: ri − p and p (recall that
ri > p for each i). The online algorithm incorporates the
two parts of the cancellation cost into the original wait-
ing cost and overtime cost, respectively. It achieves a
competitive ratio of two by rebalancing the two com-
ponents.

In the new cost-accounting scheme, let the new can-
cellation cost be r̃i � p�1 for all class i, and let the new
waiting cost in period t for class i jobs be

w̃t , i �

{
wi +γ(ri −1)qi for period t <T,
wi for period t �T <∞,

where γ is the discount factor. Note that the new wait-
ing cost in the last period is different from that in other
periods. It is also easy to check that w̃t ,1 > w̃t ,2 > · · ·
> w̃t ,n , and thus f Πt � f Θt implies w̃τ

t f Πt 6 w̃τ
t f Θt for all t.

Now the total waiting cost in period t is

W̃t � f τt w̃t ,

and the total cost in period t can be written as

Ω̃t � (ot + dt)+W̃t .

The following theorem states that the new cost-
accounting scheme is equivalent to the original one.

Theorem 8. For any horizon T, where T can be infinite, the
total cost for any scheduling policy differs only by a constant
between the original and new cost-accounting scheme.

Proof. Let Ωt and Ω̃t be the cost incurred in period t
under the original and new cost-accounting schemes,
respectively. We have for any scheduling policy,

E
[ T∑

t�1
γt−1Ωt

����F]
�E

[ T∑
t�1
γt−1((st−mt)τr+dt + f τt w)

����F]
�E

[ T∑
t�1
γt−1((st−mt)τ(r−1)+ ‖st−mt ‖1+dt + f τt w)

����F]
�E

[ T∑
t�1
γt−1((st−mt)τ(r−1)+ot +dt + f τt w)

����F]
�E

[ T∑
t�1
γt−1(E[(st−mt)τ(r−1) |F, st]+ot +dt + f τt w)

����F]
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�E
[ T∑

t�1
γt−1

( n∑
i�1

sti qi(ri−1)+ot +dt + f τt w
) ����F]

�

n∑
i�1

s1, i qi(ri−1)+E
[ T∑

t�2
γt−1

n∑
i�1

sti qi(ri−1)

+

T∑
t�1
γt−1(ot +dt + f τt w)

����F]
�

n∑
i�1

s1, i qi(ri−1)+E
[T−1∑

t�1
γt−1

n∑
i�1

ft , iγqi(ri−1)

+

T∑
t�1
γt−1(ot +dt + f τt w)

����F]
�

n∑
i�1

s1, i qi(ri−1)+E
[ T∑

t�1
γt−1(ot +dt + f τt w̃t)

����F]
�

n∑
i�1

s1i qi(ri−1)+E
[ T∑

t�1
γt−1Ω̃t

����F]
.

Note that the second term on the last line is the total
cost value under the new cost-accounting scheme, and
the first term is a constant that depends only on the
initial state. �

This theorem implies that the optimal policy remains
the sameunder the new cost-accounting scheme.More-
over, since the total cost value decreases by a constant∑n

i�1 s1i qi(ri − 1)when new costs are applied, the online
algorithms under the new cost-accounting scheme are
also online algorithms for the original costs, with the
same competitive ratios. Next we construct the online
algorithms under the new cost-accounting scheme.

4.4. Online Algorithm and Proof of Performance
In the presence of cancellations, our online algorithm
OLN balances the waiting cost W̃OLN

t and the sum
of overtime cost and cancellation cost by minimiz-
ing the maximum of the cumulative cost components.
Mathematically, let W(d) � (mOLN

t + δt − h(mOLN
t + δt ,

d+Ct))τw̃t be thewaiting cost to be incurred in period t
if d overtime slots are used in t. Then dOLN

t is deter-
mined by

dOLN
t �argmin

d
max

( t∑
i�1

oOLN
i +

t−1∑
i�1

dOLN
i + d ,

t−1∑
i�1

W̃OLN
i +W(d)

)
. (14)

Theorem 9. For any policy Π and any sample path,

max
( t∑

i�1
(oOLN

i + dOLN
i ),

t∑
i�1

W̃OLN
i

)
6

t∑
i�1
(oΠi + dΠi +W̃Π

i ),

∀ t �1,2, . . . ,T. (15)

Proof. The proof is similar to the proof for the deter-
ministic algorithm without cancellations. When t � 0,
the condition (15) is trivially true. Suppose that (15) is

true up to period t−1. We next prove that it also holds
in period t.

Let

gt �max
( t∑

i�1
oOLN

i + dOLN
i ,

t∑
i�1

W̃OLN
i

)
be the maximum of the two cumulative costs up to
period t.

• Case 1: φ̄t−1(OLN,Π)+ oΠt + dΠt − oOLN
t − dOLN

t < 0.
According to Theorem 7 we have φ̄t−1(OLN,Π)+ oΠt −
oOLN

t > 0. So we must have dOLN
t > 0 and

φ̄t−1(OLN,Π)+ oΠt + dΠt − oOLN
t −(dOLN

t −1)6 0,

which means that the distance function in period t will
be 0 even if we schedule one fewer overtime slot. Then
according to Corollary 2 we know that

W(dOLN
t −1)6 W̃Π

t .

On the other hand, the definition of OLN (14)
gives us

gt 6 gt−1 +W(dOLN
t −1)

because otherwise using dOLN
t −1 overtime slots instead

of dOLN
t in period t would reduce the maximum com-

ponent of cumulative costs. Connecting the above two
equations we get

gt 6 gt−1 +W(dOLN
t −1)6 gt−1 +W̃Π

t

6
t−1∑
i�1
(oΠi + dΠi +W̃Π

i )+W̃Π
t 6

t∑
i�1
(oΠi + dΠi +W̃Π

i ),

where the third inequality follows from induction on
the (t−1)th period.

• Case 2: φ̄t−1(OLN,Π)+ oΠt + dΠt − oOLN
t − dOLN

t > 0.
Let

t0 �max{k: φ̄k(OLN,Π)�0, k < t} (16)

be the last period for which the distance function
equals 0. According to the definition of the new dis-
tance function, we know that

t∑
i�t0+1
(oOLN

i + dOLN
i )<

t∑
i�t0+1
(oΠi + dΠi )

�⇒
t∑

i�t0+1
(oOLN

i + dOLN
i )+16

t∑
i�t0+1
(oΠi + dΠi ).

On the other hand, definition (14) gives us

gt 6 gt0
+

t∑
i�t0+1
(oOLN

i + dOLN
i )+1,
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because otherwise we could use one more overtime
slot to reduce gt . Combining the above two equations,
we get

gt 6 gt0
+

t∑
i�t0+1
(oOLN

i + dOLN
i )+1

6 gt0
+

t∑
i�t0+1
(oΠi + dΠi )

6
t0∑

i�1
(oΠi + dΠi +W̃Π

i )+
t∑

i�t0+1
(oΠi + dΠi )

6
t∑

i�1
(oΠi + dΠi +W̃Π

i ),

where the third inequality comes from induction on
the t0-th period.

• Case 3a: φ̄t−1(OLN,Π)+ oΠt + dΠt − oOLN
t − dOLN

t � 0,
gt �

∑t
i�1(oOLN

i + dOLN
i ). Let t0 be defined as in (16). From

the definition of the distance function, we know that

t∑
i�t0+1
(oOLN

i + dOLN
i )�

t∑
i�t0+1
(oΠi + dΠi ).

Then we have

gt 6 gt0
+

t∑
i�t0+1
(oOLN

i + dOLN
i )6

t0∑
i�1
(oΠi + dΠi +W̃Π

i )

+

t∑
i�t0+1
(oΠi + dΠi )6

t∑
i�1
(oΠi + dΠi +W̃Π

i ),

where the first inequality comes from the condition of
this case, namely that gt �

∑t
i�1(oOLN

i + dOLN
i ).

• Case 3b: φ̄t−1(OLN,Π)+ oΠt + dΠt − oOLN
t − dOLN

t � 0,
gt �

∑t
i�1 W̃OLN

i . From Corollary 2 we have

f OLN
t � f Πt
�⇒ W̃OLN

t 6 W̃Π
t

�⇒ gt 6 gt−1 +W̃OLN
t 6 gt−1 +W̃Π

t

6
t−1∑
i�1
(oΠi + dΠi +W̃Π

i )+W̃Π
t 6

t∑
i�1
(oΠi + dΠi +W̃Π

i ),

where the first inequality comes from the condition of
this case, namely that gt �

∑t
i�1 W̃OLN

i . �

Finally, using Theorem 9 we can show that OLN is
2-competitive in the new cost-accounting scheme, by
letting Π be the optimal offline algorithm OFF.

Corollary 3. On every sample path,

T∑
i�1
(oOLN

i + dOLN
i +W̃OLN

i )6 2
T∑

i�1
(oOFF

i + dOFF
i +W̃OFF

i ).

Proof.
T∑

i�1
(oOLN

i + dOLN
i +W̃OLN

i )

6 2max
( T∑

i�1
(oOLN

i + dOLN
i ),

T∑
i�1

W̃OLN
i

)
6 2

T∑
i�1
(oOFF

i + dOFF
i +W̃OFF

i ). �

Using Theorem 8, we can establish the performance
guarantee of our cost-balancing algorithm in the origi-
nal cost-accounting scheme.

Corollary 4.

E
[ T∑

t�1
((sOLN

t −mOLN
t )τr + dOLN

t +wτ f OLN
t )

����F]
6 2E

[ T∑
t�1
((sOFF

t −mOFF
t )τr + dOFF

t +wτ f OFF
t )

����F]
.

Proof.

E
[ T∑

t�1
((sOLN

t −mOLN
t )τr + dOLN

t +wτ f OLN
t )

����F]
�

n∑
i�1

s1i qi(ri −1)+E
[ T∑

t�1
((oOLN

t + dOLN
t )+ w̃τ

t f OLN
t )

����F]
6 2

n∑
i�1

s1i qi(ri −1)+2E
[ T∑

t�1
((oOFF

t + dOFF
t )+ w̃τ

t f OFF
t )

����F]
�2E

[ T∑
t�1
((sOFF

t −mOFF
t )τr + dOFF

t +wτ f OFF
t )

����F]
,

where the first and last equality follows from Theo-
rem 8. �

Similar to the result in Section 3.8, we can show
that in the allocation-scheduling model with cancella-
tions, OLN has the best competitive ratio for any online
algorithms.

Theorem 10. OLN is an optimal online algorithm for the
allocation-scheduling model with cancellations.

Proof. Theorem 5 implies that 2 is an upper bound of
the optimal competitive ratio for the model with can-
cellations. Thus, OLN is an optimal online algorithm
for the model with cancellations. �

Note that we have allowed both demand and capac-
ity to vary in this model because the algorithms we
propose are flexible enough to dealwith uncertainty on
both sides. In systems with stable or predictable capac-
ity, there is still uncertainty on the demand side, and in
the worst case the theoretical performance guarantee
remains the same. However, as the uncertainty reduces
the practical performance of our algorithms will tend
to improve.
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5. Numerical Performance
In this section we test the numerical performance of
our online algorithm OLN. We vary multiple parame-
ters to test the sensitivity of its performance. We com-
pare the results against those of an optimal offline pol-
icy, an optimal stochastic policy that knows about the
distribution of future arrivals and capacities, and other
heuristics. The results show that the gap between our
online algorithm and the offline algorithm is within
16% in most cases when the total arrival rate is close
to the daily capacity. The gap is larger when capacity
exceeds demand or when demand exceeds capacity by
a large amount. However, in such extreme cases cer-
tain naive policies perform very well, and these poli-
cies should be used. For example, when there is a large
surplus of capacity, no overtime resource should be
used. When the number of arrivals is overwhelming,
we always want to schedule as many jobs as possible
in each period.
We present two sets of experiments. In the first set of

experiments, we populate the problem with synthetic
parameters. In the second set of experiments, we sim-
ulate the algorithms on a real appointment-scheduling
data set from a large academic medical center. We
report the expected performance of our algorithm and
other heuristics under a range of parameters.

5.1. Experiments with Synthetic Data
We generate synthetic model parameters as follows.
Our base test case is a two-class problem with parame-
ters w� (0.3,0.1), r� (2,1.2), and q� (0.1,0.05). Arrivals
are set to be stationary independent Poisson random
variables with mean E[δt] � (2,3) for each period t.
Capacity is constant Ct �5 for all periods. The planning
horizon has T � 60 periods, and the discount factor is
γ�0.95. Each cost value is simulated by at least 10,000
replicates. For each test case, we report the relative per-
formance of the following five policies:

• VOLN denotes the total cost of our online algo-
rithm OLN.

• VOFF denotes the optimal offline cost. Recall that
OFF knows which jobs will arrive in every future
period but does not know which jobs will cancel in
each period. In each period, OFF makes an optimal
dynamic decision as to howmany overtime slots to use
knowing the cancellation probabilities of all jobs. OFF
is computed using dynamic programming. In the pres-
ence of cancellations, computing OFF is costly due to
the huge state space we need to store. Thus, we only
report the performance of OFF when the total number
of classes is small.

• VOPT denotes the total cost of a stochastic optimal
policy that knows the distribution of future demands.
OPT is computed using dynamic programming. We
also report the performance of OPT only in small test
cases.

• VOLN∗ denotes the total cost of a variant OLN∗ of
our cost-balancing policy. OLN∗ balances two cost com-
ponents by using a different balancing ratio. An opti-
mal balancing ratio is chosen for each test case. More
precisely, for each test case we estimate the expected
total cost of our online algorithm under various values
of balancing ratios, and we use a line search method to
find a balancing ratio that locally minimizes the cost.

• Vc denotes the total cost of a cutoff policy. We
define a cutoff policy C(k) as follows. C(k) performs k
extra overtime slots per week. The i-th overtime slot,
i � 1, . . . , k, is always performed on the (i mod 5)-th
day of the week. For each test case, we find the optimal
cutoff value k∗ and let Vc be the total cost of C(k∗).

Table 2 shows the test results for different values
of Ct . Our online scheduling policy OLN performs
best when demands and capacities are balanced, i.e.,
Ct � δ1 + δ2 � 5. It is interesting to notice that the
gap between OPT and OFF is very small when Ct is
below the total arrival rate but increases to around 10%
when Ct equals it. As mentioned earlier, this is because
it is easy to carry out a near-optimal policy when Ct
exceeds or is less than the total arrival rate by a large
amount. Thus, it is most valuable and difficult to study
the case when the daily capacity Ct is close to the
expected daily number of arrivals ‖δ‖1. The result of
our online policy is satisfactory in such situations. Its
gap against OPT is only around 5%.

Tables 3 to 5 show the results when parameters of
the higher priority class are varied. Generally all the
scheduling policies we consider are not sensitive to
these parameters. This is because most often all the
higher priority jobs are served by regular capacities

Table 2. Performance Results Under Different Values of Ct

Ct VOPT/VOFF (%) VOLN/VOFF (%) VOLN∗/VOFF (%) Vc/VOFF (%)

2 101.3 137.1 102.3 102.3
3 104.2 135.2 106.7 107.6
4 108.9 128.0 112.8 120.3
5 110.5 115.5 115.8 118.1
6 102.5 115.3 102.6 102.6
7 100.2 116.5 100.5 100.2

Table 3. Performance Results Under Different Values of w1

w1 VOPT/VOFF (%) VOLN/VOFF (%) VOLN∗/VOFF (%) Vc/VOFF (%)

0.1 110.8 115.4 115.7 117.6
0.2 110.2 115.5 115.4 117.4
0.3 109.7 115.6 115.0 117.3
0.4 110.4 115.6 115.9 118.5
0.5 109.9 115.6 115.4 118.5
0.6 110.2 115.6 116.1 119.2
0.7 109.5 115.7 115.2 118.9
0.8 109.5 115.7 115.2 119.5
0.9 110.0 115.6 115.8 120.5
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Table 4. Performance Results Under Different Values of q1.

q1 VOPT/VOFF (%) VOLN/VOFF (%) VOLN∗/VOFF (%) Vc/VOFF (%)

0.1 110.8 115.5 116.1 118.5
0.2 109.6 115.5 115.0 117.5
0.3 110.3 115.6 116.0 118.7
0.4 109.8 115.6 115.5 118.6
0.5 110.2 115.8 116.1 119.4
0.6 109.8 115.7 115.6 119.4
0.7 109.7 115.7 115.5 119.7
0.8 110.2 115.7 116.1 120.7
0.9 110.4 115.7 116.5 121.3

Table 5. Performance Results Under Different Values of r1.

r1 VOPT/VOFF (%) VOLN/VOFF (%) VOLN∗/VOFF (%) Vc/VOFF (%)

2 110.2 115.6 115.5 117.8
3 110.2 115.5 115.8 118.2
4 109.9 115.7 115.5 118.4
5 109.9 115.6 115.7 118.8
6 110.3 115.6 116.0 119.7
7 109.9 115.7 115.6 119.8
8 109.7 115.6 115.5 120.0

and thus do not affect the overtime and waiting costs.
In Tables 6 and 7, the waiting costs of both classes
are varied. In these cases, the performance of all the
scheduling policies change broadly. Nevertheless, the
variant OLN∗ of our online policy always outperforms
the cutoff heuristic.

In Table 8, we allow the arrivals to be nonstationary
and test different patterns of arrival rates. In the case of
cyclic arrivals, the arrival rates are set to be (4,7), (1,1),

Table 6. Performance Results When w1 and w2 Are Both
Increasing

VOPT/VOFF VOLN/VOFF VOLN∗/VOFF Vc/VOFF

w1 w2 (%) (%) (%) (%)

0.3 0.1 110.8 115.5 116.2 118.5
0.4 0.2 116.9 127.4 123.2 133.9
0.5 0.3 119.5 132.9 123.2 129.3
0.6 0.4 118.5 136.7 120.2 121.2
0.7 0.5 114.6 138.7 114.7 114.7
0.8 0.6 110.9 141.6 111.0 111.0
0.9 0.7 107.1 143.0 107.2 107.2

Table 7. Performance Results When w1 Is Increasing and w2
Is Decreasing

VOPT/VOFF VOLN/VOFF VOLN∗/VOFF Vc/VOFF

w1 w2 (%) (%) (%) (%)

0.5 0.5 114.3 138.8 114.5 114.7
0.6 0.4 117.9 136.7 119.7 120.6
0.7 0.3 120.2 132.9 123.9 130.0
0.8 0.2 116.9 127.4 123.1 134.3
0.9 0.1 109.7 115.7 115.5 120.2

Table 8. Performance Results When Demand Is
Nonstationary

Demand VOPT/VOFF VOLN/VOFF VOLN∗/VOFF Vc/VOFF

pattern (%) (%) (%) (%)

Cyclic 104.4 111.7 110.3 111.0
Declining 106.3 130.2 110.6 115.9
Growing 106.6 121.5 121.3 121.6

Table 9. Performance Results Under Larger Dimensions of
State Space

Number of job classes VOLN/Vc (%) VOLN∗/Vc (%)

4 98.4 91.6
8 90.6 88.0

and (1,1) for every three consecutive periods. The case
of declining arrivals has rates dropping from (3,5) to
(1,1) linearly, whereas the case of growing rates has the
reverse pattern. In all these cases, the gap of our online
policy is within 30%, and the gap of its variant OLN∗
is smaller than that of the cutoff policy by as much
as 5%. Table 9 shows the results when there are more
priority classes. In these settings, the waiting costs are
uniformly distributed between 0.8 and 0.2, the cancel-
lation probabilities are uniformly distributed between
0.2 and 0.05, and the cancellation costs are uniformly
distributed between 8 and 1. The arrival rates for all
the classes are set to be the same with Ct � ‖δ‖1. We
compare cost values against the cutoff heuristic. Both
OLN and OLN∗ outperform the cutoff policy. More-
over, the online policy performs better when there are
more priority classes.

5.2. Experiments with Real Data
In this section, we test our cost balancing algorithm
and other heuristics using a real data set that con-
tains medical information of patients who seek treat-
ment at Columbia University Medical Center (CUMC).
The data is collected from the Congenital Heart Cen-
ter at CUMC and includes information on all children
621 years of age undergoing cardiac surgery in the
pediatric operating rooms in 2014.

There are two types of surgeries, urgent and elec-
tive. We assume that urgent patients have a waiting
cost of w1 � 10 per day. We categorize elective patients
according to their STAT categories. Following this clas-
sificationmethod, elective patients are divided into five
groups according to five different risk levels for mortal-
ity, with STAT Category 1 being the lowest in risk and
STAT Category 5 being the highest in risk of mortality
(Society of Thoracic Surgeons 2016). We assume that
higher-risk elective cases have higher waiting costs.
This assumption is reasonable because these cases are
elective cases that can afford to wait for some time.
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Table 10. Empirical Performance of Algorithms Under
Different Values of Unit Overtime Cost

Overtime cost VOLN/Vc (%) VOLN∗/Vc (%)

5 162.50 100.00
8 148.22 100.00
11 136.48 99.99
14 126.57 99.98
17 118.29 99.98
20 110.88 100.47
23 104.62 99.14
26 98.70 96.65
29 93.61 93.13
32 89.35 89.09

Among elective cases, higher risk tends to correspond
to more serious health conditions that can be remedied
by surgery, thus higher health costs if delayed. Thus,
we assign the waiting costs of these categories to be
(w2 ,w3 , . . . ,w6)� (5,4,3,2,1). We vary the overtime cost
over a range [5,32].
Most often, each OR can serve two patients on a

given day during regular hours. There are two ORs in
the medical center. On Tuesdays, Wednesdays and the
first and third Mondays of every month, two ORs are
open, and thus the regular capacity is four. On Thurs-
days, Fridays, and every second and fourth Monday of
every month, only one OR is open, and thus the regu-
lar capacity is two. The regular capacity is zero during
weekends.

We estimate directly from data the arrival rates of
urgent patients as a function of the day of week. For
elective patients, however, since the data record only
the dates of surgery, but not of arrival, we estimate the
arrival rates based on the daily number of scheduled
surgeries, assuming that the arrival rates are constant
over weekdays. We simulate a horizon of 60 days for
1,000 replicates in each test case. We do not consider
cancellations in this scenario.

We report the results in Table 10. We can see that
OLN performs better than the cutoff policy when the
overtime cost is large, which is the case in real set-
tings. Furthermore, if the right balancing ratio is cho-
sen, OLN∗ always outperforms the cutoff policy.
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