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We study a fundamental model of resource allocation in which a finite number of resources must be assigned

in an online manner to a heterogeneous stream of customers. The customers arrive randomly over time

according to known stochastic processes. Each customer requires a specific amount of capacity and has a

specific preference for each of the resources, with some resources being feasible for the customer and some

not. The system must find a feasible assignment of each customer to a resource or must reject the customer.

The aim is to maximize the total expected capacity utilization of the resources over the horizon. This model

has application in services, freight transportation, and online advertising. We present online algorithms with

bounded competitive ratios relative to an optimal offline algorithm that knows all stochastic information.

Our algorithms perform extremely well compared to common heuristics, as demonstrated on a real data set

from a large hospital system in New York City.
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1. Introduction

We study a fundamental model of resource allocation in which a finite number of resources must

be assigned in an online manner to a heterogeneous stream of customers. The customers arrive

randomly over time according to known stochastic processes. Each customer requires a specific

amount of capacity and has a specific preference for each of the resources, with some resources

being feasible for the customer and some not. The system must find a feasible assignment of each

customer to a resource or must reject the customer. The aim is to maximize the total expected

capacity utilization of the resources over the time horizon.

This model has application in multiple areas, including services, online advertising, and freight

transportation. We now explain a few of the applications.

Service Reservation. In services such as healthcare, the resources can correspond to service

sessions. For example, a resource might be a Monday afternoon session from 1 to 5 PM with Dr.

Smith. The customers are patients who arrive to book appointments over time. Based on a patient’s

urgency, type of visit, arrival time, and preferences, the patient might require a specific length of

visit and might be preferably assigned only to a subset of sessions. Upon the arrival of a patient,
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the system has to reserve a part of a session for the patient. This appointment decision typically

takes place immediately. If an appointment cannot be found, the system must reject the patient.

Generalized Adwords. In online advertizing, the resources correspond to advertisers. The capac-

ity of each resource corresponds to the budget of the corresponding advertiser. Ad impressions

arrive randomly over time. Each impression, depending on its characteristics, commands a known

non-negative bid from each of the advertisers. When an impression occurs, the ad platform must

allocate it to an advertiser for use. The ad platform earns the bid, and the budget of the advertiser

is depleted by the same amount. The aim of the ad platform is to maximize the expected revenue

earned. Our model is more general than adwords models, as we allow bids to have arbitrary sizes,

whereas adwords model tend to assume that bid sizes must be very small relative to the budgets,

or that each bid must be truncated by the remaining budget (Mehta 2012).

Freight Allocation. Freight carriers such as motor carriers, railroad companies, and shipping

companies have fleets of containers that can be deployed to move loads from specific origins to

destinations. The assignment of containers to routes are tactical decisions that are performed on

a larger time scale. Suppose that we focus on a single route. Each container, with its specific

departure and arrival time, corresponds to a resource. Customer demands for the route arrive

randomly over time. Each demand unit has a specific size and delivery time line. As each demand

unit arrives, the operational decision is how to assign the demand unit to a specific container in

the fleet (Spivey and Powell 2004). This assignment generates a quoted time of delivery for the

customer, reduces the available capacity in the container, and earns the system an amount that

can be roughly proportional to the amount of capacity consumed.

Our model captures most, if not all, of the features of the above applications. Specifically, we

consider a continuous-time planning horizon. There are m resources with known capacities. There

are n customer types. Each customer type is associated with a known stochastic arrival process.

Each customer can be assigned to a known subset of the resources, and consumes a known amount

of each resource that it is assigned to. The system aims to assign customers to resources immediately

and irrevocably as they arrive in order to maximize the total expected amount of resources used.

A salient feature of our model is that the resources may be perishable. This feature makes

the model especially appropriate for service applications. More specifically, each resource may be

associated with a known expiry date that falls within or beyond the horizon. The way we capture

an expiry date for a specific resource is to make that resource infeasible for all customer types that

arrive after its expiry date. That is, to capture the perishability of resources, we equivalently force

the composition of customer types that arrive over time to change over time. For this reason, the

non-stationarity of arrivals in our model is of especial importance.
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Another significant advantage of non-stationary arrivals is the ability to better capture real appli-

cations. In real applications, demands can be highly non-stationary, changing with the time of day,

time of week, seasons and longer-term trends (Huh et al. 2012). Kim and Whitt (2014) have shown,

for example, that call-center and hospital demands are well-modeled by non-homogeneous Poisson

processes. For a problem that essentially aims to match demand with supply over time, capturing

this non-stationarity in demand arrivals can lead to significant improvements in performance over

stationary models.

Our basic model can be adapted as needed to fit various applications. In this paper, we will focus

on solution methods for the core model. It is easy to see that the associated dynamic stochastic

optimization problem is intractable to solve with dynamic prog ramming. The state of the system

grows exponentially with the length of the horizon. Therefore, we aim to develop near-optimal

policies that are robust and easy to compute. We will study an online version of the problem. A

problem is online if at all points in time, the algorithm has to make adaptive decisions based only

on past and current information. In contrast, an offline algorithm knows all future (stochastic)

information up-front. We will use competitive analysis to evaluate our algorithms (Borodin and

El-Yaniv 2005). We will consider the relative expected performance between an online algorithm

and an optimal offline algorithm. We define the minimum ratio between the benefit achieved under

the online algorithm and that under the optimal offline algorithm as competitive ratio for that

online algorithm. An algorithm with a competitive ratio of α is α-competitive.

We propose 0.321-competitive online algorithms. Further, we show that an upper bound on the

competitive ratio of any algorithm is 1/2. Ours are the first algorithms with performance guarantees

for the advance reservation of service with heterogeneous customer needs and preferences. They

are also the first algorithms with constant competitive ratios for the adwords problem without any

assumption on the bid size and on the stationarity of the arrival process. Despite the conservative

performance characterization, we show that our algorithms perform extremely well compared to

common heuristics as demonstrated on a real data set from a large hospital system in New York

City.

2. Literature Review

Our model is related to many streams of literature, the closest of which are the adwords, the

dynamic knapsack, and the appointment-scheduling literature.

2.1. Adwords problems

Our model generalizes adwords problems. Considerable work has been done in this area. If each

bid is truncated by the remaining budget, it was shown by Mehta (2012) that a greedy algorithm

achieves a worst-case competitive ratio of 1/2 in the adversarial-demand model. For adwords models
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Table 1 Results on adwords models.

Reference Lower bound achieved Assumption

Mehta (2012) 0.5 adversarial demand, truncated bids

Our work
0.321 stochastic demand

1− 1/
√

2πd+O(1/d) stochastic demand, bid to budget ratio at most 1/d
Goel and Mehta (2008) 1− 1/e≈ 0.63 randomly ordered demand, small bids
Mirrokni et al. (2012) 0.76 randomly ordered demand, small bids

Devanur et al. (2012) 1− 1/
√

2πd
stochastic demands,

bid to budget ratio at most 1/d, d≥ 2,
truncated bids

Devanur et al. (2011) 1− 1/e≈ 0.63 i.i.d. demand, truncated bids

in which demands arrive in random orders and bids are small, Goel and Mehta (2008) prove that

a greedy algorithm achieves a worst-case ratio of 1− 1/e. Mirrokni et al. (2012) later improve this

ratio to 0.76. If demands are i.i.d., but bids are not necessarily small, Devanur et al. (2011) show

that a greedy algorithm achieves the worst-case ratio of 1−1/e. Later, Devanur et al. (2012) show

that under stochastic demands, if the bid to budget ratio is at most 1/d, d≥ 2, and if bids can be

truncated, then there is an algorithm that achieves a worst-case ratio of 1− 1/
√

2πd. If the bid to

budget ratios at most ε2, then the algorithm achieves a worst-case ratio of 1−O(ε). Finally, no

algorithm can achieve a worst-case ratio that is better than 1− o(1/
√
d) when the bid to budget

ratios are as large as 1/d. The main difference between our work and this literature is that we do

not make the assumption of truncated bids, small bids, or i.i.d. demand. Furthermore, we study

the ratio of expected performance between the online and optimal offline algorithm, rather than

the worst-case ratio.

2.2. Dynamic knapsack problems

Our problem is related to multi-constrained dynamic knapsack problems (MKP). In these problems,

a set of randomly arriving items must be packed into one or more knapsacks, respecting the

capacity constraints of the knapsacks. The goal is to maximize the value of the items packed.

Note that our problem is different from these dynamic multi-knapsack problems. In our problem,

each customer can be satisfied using one of a subset of resources, rather than any resource, due

to preferences, urgency, priorities, etc. These feasibility constraints must be accounted for in the

assignment decision. In contrast, a knapsack problems, an object can be placed into any knapsack,

as long as the capacity constraints are satisfied.

Dynamic-programming characterizations have been studied in the case of one knapsack (Papas-

tavrou et al. 1996, Kleywegt and Papastavrou 1998, Van Slyke and Young 2000, Lin et al. 2008,

Chen and Ross 2014). Some results generalize to the MKP but these results are not sufficient to

yield provable approximations (Van Slyke and Young 2000). Many authors have studied online

algorithms for the MKP. It is shown in Marchetti-Spaccamela and Vercellis (1995) that no online
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algorithm for MKP exists with a constant worst-case competitive ratio. Therefore, Marchetti-

Spaccamela and Vercellis (1995) and Lueker (1998) study algorithms with bounded additive differ-

ences away from the offline optimal. Finally, Chakrabarty et al. (2013) design an algorithm with a

bounded worst-case competitive ratio, assuming that the size of each item is very small relative to

the capacity, and the value-to-size ratio of each item is upper and lower bounded by two constants.

Our model is different from the MKP model because our resources are not interchangeable, as

customer preferences for them might be different. Our approach also differs from existing MKP

approaches in that we seek to bound the ratio of expected performance between the online and

optimal offline algorithm, rather than the worst-case ratio.

2.3. Online resource-allocation problems

Our model falls within the literature on online resource allocation. Adwords and dynamic knapsack

problems are subclasses of this literature. Although this is a vast literature, it can be roughly

divided into several streams based on the assumptions made about the model. The first stream

is focused on designing algorithms for problems in which demands arrive in adversarial fashion

(Karp et al. 1990, Kalyanasundaram and Pruhs 1996, Aggarwal et al. 2011, Devanur et al. 2013).

The second stream is focused on problems in which demands arrive as a random permutation of

a known sequence (Goel and Mehta 2008, Agrawal et al. 2009, Devanur and Hayes 2009, Mahdian

and Yan 2011, Karande et al. 2011, Bhalgat et al. 2012). The third stream is focused on problems

in which demands are drawn i.i.d. from an unknown distribution (Ghosh et al. 2009, Devanur et al.

2011, Balseiro et al. 2014). The fourth stream is focused on problems in which demands are drawn

i.i.d. from an known distribution (Feldman et al. 2009, Agrawal et al. 2009, Feldman et al. 2010,

Vee et al. 2010, Jaillet and Lu 2012, Manshadi et al. 2012, Jaillet and Lu 2013). The fifth stream

is focused on resource allocation under the small-bid or truncated-bid assumption (Mehta et al.

2007, Buchbinder et al. 2007, Jaillet and Lu 2011, Devanur et al. 2012). Very few papers focus on

models with non-stationary stochastic demand as we do, and in these cases, they either assume

that bids can be truncated (Ciocan and Farias 2012), or assume that the resource consumption is

constant for all demand units, i.e., the problems are matching problems (Alaei et al. 2011, Wang

et al. 2016, Gallego et al. 2015).

2.4. Appointment-scheduling problems

Our work is related to the literature on appointment scheduling. Most relevant is the stream

of literature focusing on how to assign future appointments to patients. This paradigm is called

advance scheduling. In the literature of advance scheduling, Truong (2015) studies the analytical

properties of a two-class advance-scheduling model and gives efficient methods for computing an

optimal scheduling policy. Gocgun and Ghate (2012), Patrick et al. (2008), Feldman et al. (2014),
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and Gupta and Wang (2008) study structural properties of optimal policies and propose heuris-

tics for several related models, although they do not investigate the theoretical performance of

these heuristics. Wang et al. (2016) propose online algorithms with constant competitive ratios for

advance scheduling with multiple patient types and with patient preferences. Their model is very

close to ours in that the demand processes are allowed to be known non-stationary stochastic pro-

cesses. They also define the same notion of competitive ratio. However, their model is considerably

easier, since they assume that each customer demands a unit amount of capacity. In contrast, we

assume that customers have heterogeneous capacity requirements. As we shall show, much of the

effort in our algorithms and their analysis is directed towards taking care of these differences in

capacity requirement.

The paper is organized as follows. We specify the model and performance metric in Section 3. In

Section 4, we prove that 0.5 is an upper bound on the competitive ratio of any online algorithm for

this problem. We derive an upper bound on the optimal offline objective in Section 5. In Section 6,

we design a basic online algorithm with a competitive ratio of 0.5(1−1/e)≈ 0.316, which serves to

illustrate our key ideas. In Section 7, we refine the algorithm to employ resource sharing in order

to obtain an improved competitive ratio of 0.321, as well as an improved empirical performance.

In Section 8, we compare the empirical performance of our algorithms against two commonly used

heuristics by simulating the algorithms on appointment-scheduling data obtained from a large

hospital system in New York City.

3. Model and Performance Metric

We use [n] to denote the set {1,2, . . . , n} and consider a continuous horizon [0, T ]. There are

m resources and n customer types. Resource j ∈ [m] has capacity cj ∈ R+. Customers of type

i ∈ [n] arrive according to a non-homogeneous Poisson process with rate λi(t), for t ∈ [0, T ]. Let

Λi =
∫ T

0
λi(t)dt be the expected total number of arrivals of type-i customers. The arrival rates of

all the customer types are known. When a customer arrives, one of the m resources needs to be

immediately allocated to the customer, or the customer must be rejected. If resource j is allocated

to a customer of type i, exactly uij units of resource j must be provided. We assume that the

uij ∈ [0, cj], ∀i ∈ [n] and j ∈ [m], are known. The reward earned for the assignment of customer

type i to resource j is also uij. The objective is to maximize the total expected reward over the

horizon, which equivalently maximizes total resource utilization.

Let I be a sample path of customer arrivals over the entire horizon. We say that an algorithm is

offline if it knows I at time 0. An algorithm is online if at any time t, it only knows future arrival

rates and the realization of all the arrivals prior to t.
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Let ALG(I) be the total amount of resources allocated by an online algorithm ALG. Let OPT(I)

be the total amount of resources allocated by an optimal offline algorithm OPT . We define the

competitive ratio of ALG to be

Competitive Ratio of ALG=
E[ALG(I)]

E[OPT(I)]
, (1)

where the expectation is taken over all sample paths I and over the random realizations of the

online algorithm. Our definition of competitive ratio follows previous works including Feldman et al.

(2009), Jaillet and Lu (2013), and Wang et al. (2016). It is less conservative than the worst-case

ratio minI
ALG(I)

OPT(I)
that has been more commonly used for online algorithms.

4. Upper Bound on the Competitive Ratio

In this section, we prove upper bounds on competitive ratios that can be achieved by any online

algorithm. We first prove a uniform upper bound on the competitive ratio.

Proposition 1. The competitive ratio of any online algorithm is at most 0.5.

Proof. Consider an input with two customer types and a single resource. Assume that the

horizon is [0,1]. The capacity of the resource is c1 = 1.

• Type-1 customers have a very large arrival rate in time [0,0.5], but their arrival rate is 0

after time 0.5. In particular, Λ1 =
∫ 0.5

0
λ1(t)dt� 1, so that we can ignore the event that no type-1

customer arrives. Their utilization for the single resource is u11 = ε/Λ1 for some very small value ε.

• Type-2 customers arrive in time (0.5,1]. They have a very small arrival rate Λ2 =
∫ 1

0.5
λ2(t)dt=

ε. Their utilization for the resource is u21 = c1 = 1.

Since customers of type 2 request the entire resource, the offline algorithm will allocate the

resource to a type-2 customer if there is one. The probability that at least one type-2 customer

arrives is 1−e−Λ2 = Λ2 +o(Λ2
2) = ε+o(ε2). With probability 1−o(Λ2) = 1−o(ε), no type-2 customer

will arrive, in which case the optimal offline algorithm will accept as many type-1 customers as

possible. The expected total utilization of all type-1 customers is u11 ·Λ1 = ε. Suppose ε� c1 = 1.

Then all type-1 customer can be accepted. In sum, the expected amount of resource allocated by

an optimal offline algorithm is

1 · (ε+ o(ε2)) + ε · (1− o(ε))

=2ε+ o(ε2).

The decision of an online algorithm is whether to accept type-1 customers during time [0,0.5]. If

it does accept type-1 customers, the online algorithm earns u11 ·Λ1 = ε in expectation. Otherwise,

with probability Λ2 +o(Λ2
2) it earns u21, which is u21(Λ2 +o(Λ2

2)) = ε+o(ε2) in expectation. In sum,
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an online algorithm cannot allocate more than ε+ o(ε2) in expectation. Thus, an upper bound on

the competitive ratio is

(ε+ o(ε2))/(2ε+ o(ε2)),

which tends to 0.5 in the limit as ε→ 0. �

Next, we prove upper bounds on competitive ratios for special cases in which the utilization uij

for each resource is bounded away from cj. Specifically, suppose there is some integer d ≥ 2 for

which uij ≤ cj/d for all i ∈ [n], j ∈ [m]. In Proposition 2, we prove an upper bound that depends

on any finite d. In Proposition 3, we prove an even tighter upper bound for the asymptotic regime

d→∞. We introduce the following technical lemma for proving the parameter-dependent bounds

on competitive ratios.

Lemma 1. If N is a Poisson random variable and

d−1∑
i=1

P (N = i)
i

d
+P (N ≥ d) = 1− 1

2d

for some integer d≥ 2, then

P (N ≥ d)≥ 1

2
.

Proof. It is easy to deduce that

d−1∑
i=1

P (N = i)
i

d
+P (N ≥ d) (2)

≤
d−1∑
i=0

P (N = i)
d− 1

d
+P (N ≥ d)

=1− (1−P (N ≥ d))
1

d
. (3)

Thus, (3) is an upper bound on (2). In order to satisfy (2)= 1− 1
2d

, we must have (3)≥ 1− 1
2d

. That

is,

1− (1−P (N ≥ d))
1

d
≥ 1− 1

2d

=⇒ P (N ≥ d)≥ 1

2
.

�

Proposition 2. For any given integer d≥ 2, if uij ≤ cj/d for all i ∈ [n], j ∈ [m], then the com-

petitive ratio of any online algorithm is at most 4d−2
4d−1
≤ 1− 1

4d
.

Proof. Consider a single resource with capacity c1 = 1. Consider two demand types that arrive

over horizon [0,1]:
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• Type-1 customers only arrive during the first half of the horizon, i.e., [0,0.5]. During the first

half of horizon, their arrival rate is huge Λ1 =
∫ 0.5

0
λ1(t)dt� 2d, so that we can ignore the event

that fewer than 2d type-1 customers arrive. Assume u11 = 1
2d

+ ε for some infinitesimally small ε.

• Type-2 customers arrive only during the second half of the horizon, i.e., (0.5,1]. Let N be the

total number of arrivals of type-2 customers. Assume that u21 = 1/d.

The optimal online algorithm has only two choices: (i) accept at least one type-1 customer, in

which case the total reward is at most 1− 1
2d

+O(ε) (because the ε allocation forbids the last 1
2d

unit of the resource from being taken); (ii) do not accept any type-1 customer, in which case the

total reward is only collected from type-2 customers

d−1∑
i=1

P (N = i)i ·u21 +P (N ≥ d)d ·u21 =
d−1∑
i=1

P (N = i)
i

d
+P (N ≥ d).

Assume that the distribution of N is such that

d−1∑
i=1

P (N = i)
i

d
+P (N ≥ d) = 1− 1

2d
.

Then the expected total reward earned by the optimal online algorithm is at most 1− 1
2d

+O(ε).

The optimal offline algorithm also chooses from the above two options, but now first observes

the value of N . If N ≥ d, the optimal offline algorithm accepts d customers of type 2. Otherwise,

the optimal offline algorithm accepts 2d−1 type-1 customers to achieve total reward 1− 1
2d

+O(ε).

In sum the expected total reward of the offline algorithm is

P (N ≥ d) +P (N <d)(1− 1

2d
+O(ε)).

By Lemma 1, we have P (N ≥ d)≥ 1
2
. Then the expected total reward of the offline algorithm

can be bounded by

P (N ≥ d) +P (N <d)(1− 1

2d
+O(ε))

=P (N ≥ d) +P (N <d)(1− 1

2d
) +O(ε)

=P (N ≥ d) + (1−P (N ≥ d))(1− 1

2d
) +O(ε)

=P (N ≥ d)
1

2d
+ 1− 1

2d
+O(ε)

≥1

2
· 1

2d
+ 1− 1

2d
+O(ε)

=1− 1

4d
+O(ε).

In sum, the competitive ratio of the optimal algorithm is at most

1− 1
2d

+O(ε)

1− 1
4d

+O(ε)
=

4d− 2 +O(ε)

4d− 1 +O(ε)
.
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When ε tends to 0, the ratio becomes

4d− 2

4d− 1
≤ 1− 1

4d
.

�

Proposition 3. For large positive integer d, if uij ≤ cj/d for all i ∈ [n], j ∈ [m], then the com-

petitive ratio of any online algorithm is at most 1− 1

2
√
πd

+ o(1/
√
d).

Proof. We construct a special case of our model as follows. Let cj = 1 for all j ∈ [m]. There are

n=m+ 1 customer types.

• For each customer type i= 1,2, ...,m, uii = 1/d and uij = 0 for all j 6= i.

• For customer type m+ 1, um+1,j = ε for all j ∈ [m]. We will let ε tend to 0.

• For each customer type i= 1,2, ...,m,

λi(t) =

{
0, ∀t∈ [0, T/2)
d/T, ∀t∈ [T/2, T ].

As a result, Λi =
∫ T

0
λi(t)dt= d/2 for all i= 1,2, ...,m.

• For customer type m+ 1,

λm+1(t) =

{
m
εT
, ∀t∈ [0, T/2]

0, ∀t∈ (T/2, T ].

As a result, Λm+1 =
∫ T

0
λm+1(t)dt= m

2ε
.

We first analyze the optimal online algorithm. For each resource i ∈ [m], in the second half of

the horizon, customers of type i will request Λiuii = 0.5 amount of resource i, i.e., half of the

resource, in expectation. On the other hand, in the first half of the horizon, customers of type

m+ 1 can totally take Λm+1um+1,j = 0.5m units of any resource in expectation. We let ε tend to 0,

so customers of type m+ 1 will request almost exactly 0.5m units of any resource.

It is easy to see that the optimal online strategy is to give type-(m+ 1) customers 0.5− unit of

each of the m resources, where 0.5− means infinitesimally approaching 0.5 from below as ε tends

to 0. This is because of symmetry, or more rigorously, because the marginal reward of adding 1/d

unit of capacity to each resource is decreasing in the amount of the resource that is remaining at

time T/2.

Starting from time T/2, the optimal online algorithm assigns the remaining 0.5+ unit of each

resource i to customers of type i. Let Ni be the number of arrivals of type-i customers, for i =

1,2, ...,m. We must have E[Ni] = Λi = d/2. The total expected amount of resource i assigned to

customers by the end is

0.5−+ E[min(0.5,Niuii)],
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where 0.5− is the amount assigned to customers of type m+1, and E[min(0.5,Niuii)] is the expected

amount assigned to customers of type i.

When d is large, we apply the central limit theorem so that Niuii is approximated by a normal

distribution with mean 0.5 and variance 1
2d

. Then

E[min(0.5,Niuii)] = 0.5− 1√
2d

∫ ∞
0

φ(x)xdx+ o(1/
√
d) = 0.5− 1

2
√
πd

+ o(1/
√
d),

where φ(·) is the standard normal pdf.

In sum, when d is large so that the distribution of Ni can be approximated by the central limit

theorem, the optimal online algorithm earns expected reward

0.5−+ 0.5− 1

2
√
πd

+ o(1/
√
d) = 1− 1

2
√
πd

+ o(1/
√
d)

from each resource i, and earns total expected reward

m(1− 1

2
√
πd

) + o(m/
√
d)

from all the m resources.

Now we analyze the optimal offline algorithm. The optimal offline algorithm will first fill each

resource i with customers of type i, for i= 1,2, ...,m. After that, the total remaining capacity of

all the m resources will be
m∑
i=1

max(0,1−Niuii).

We again apply the central limit theorem so that each Niuii is approximated by a normal

distribution with mean 0.5 and variance 1
2d

. Then the total remaining capacity can be written as

m−
m∑
i=1

Niuii− o(m/
√
d),

where m is the total initial capacity of all the m resources; Niuii is the amount of resource requested

by customers of type i; −o(m/
√
d) represents the loss from the approximation by the central limit

theorem, plus the loss from the (ignorable) events that Niuii > 1. Now
∑m

i=1Niuii is approximated

by a normal random variable with mean m/2 and variance m
2d

.

Next, the optimal offline algorithm fills the remaining capacity with customers of type m+ 1,

who will totally take (m/2)− units of any resource. After that, the expected remaining capacity is

E[max(0,m−
m∑
i=1

Niuii− o(m/
√
d)− (m/2)−)]

=E[max(0,m/2−
m∑
i=1

Niuii− o(m/
√
d))]

=

√
m

2d

∫ ∞
0

φ(x)xdx+ o(m/
√
d)

=

√
m

2
√
πd

+ o(m/
√
d).
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The total expected reward earned by the optimal offline algorithm is

m−
√
m

2
√
πd

+ o(m/
√
d),

which is the total capacity m less the expected remaining capacity.

Finally, the competitive ratio of the optimal online algorithm is

m(1− 1

2
√
πd

) + o(m/
√
d)

m−
√
m

2
√
πd

+ o(m/
√
d)

=
1− 1

2
√
πd

+ o(1/
√
d)

1− 1

2
√
mπd

+ o(1/
√
d)
,

which tends to 1− 1

2
√
πd

+ o(1/
√
d) when m= d. �

5. Upper Bound on the Optimal Offline Objective

We derive an upper bound on the optimal offline objective, namely E[OPT(I)]. Since E[OPT(I)]

is very hard to analyze due to its complex offline properties, we are interested in developing an

upper bound on E[OPT(I)], which is more tractable. We will later compare the performance of

our online algorithms against this upper bound, rather than directly with E[OPT(I)].

Our upper bound can be formulated as a static LP, which allocates the expected demands Λi, i∈

[n], to the capacities cj, j ∈ [m]. The decision variable xij of the LP stands for the average number

of customers of type i to be allocated to resource j. The LP produces a fractional assignment.

V LP = max
xij

∑
i∈[n]

∑
j∈[m]

xijuij

s.t.
∑
i∈[n]

xijuij ≤ cj, ∀j ∈ [m]∑
j∈[m]

xij ≤Λi, ∀i∈ [n]

xij ≥ 0, ∀i∈ [n], j ∈ [m].

(4)

By the linearity of assignment problems, it can be shown easily that

Proposition 4. V LP is an upper bound on E[OPT(I)].

Proof of Proposition 4.

Proof. Let ai(I) be the actual number of arrivals of type-i customers in sample path I. Let

x̃(I) be a corresponding optimal offline (fractional) assignment. Then x̃(I) must satisfy

∑
i∈[n]

x̃ij(I)uij ≤ cj, ∀j ∈ [m],

∑
j∈[m]

x̃ij(I)≤ ai(I), ∀i∈ [n].
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Taking expectation on both sides, we obtain∑
i∈[n]

E[x̃ij(I)]uij ≤ cj, ∀j ∈ [m],

∑
j∈[m]

E[x̃ij(I)]≤E[ai(I)] = Λi, ∀i∈ [n].

These inequalities imply that E[x̃(I)] is a feasible solution to (4). Thus V LP must be an upper

bound on
∑

i∈[n],j∈[m] E[x̃ij(I)]uij, which proves the proposition. �

6. Basic Online Algorithm

As a warm up, we design an online algorithm which we prove to have a competitive ratio of at

least 0.5(1− 1/e)≈ 0.316. This algorithm serves to illustrate the following two main ideas, which

we will later refine to obtain an improved bound.

• LP-based random routing. We make use of an optimal solution x∗ to the static LP (4) to

route customers to resources. Note that this solution assigns demand to supply at an aggregate

level, in the expected sense. Given a solution x∗, for each arriving customer of type i ∈ [n], we

randomly route the customer to each candidate resource j ∈ [m] independently with probability

x∗ij/Λi. We say a customer is routed to resource j if resource j is chosen as a candidate resource

for the customer. By random routing, we can conclude that the arrival process of type-i customers

who are routed to resource j is a non-homogeneous Poisson process with rate λi(t)
x∗ij
Λi

, for t∈ [0, T ].

• Reservation by customer type. After the random routing stage, we make binary admission

decisions about whether to commit each resource j to each customer i who is routed to j. If the

decision is ‘no’, we reject the customer. We make this admission decision as follows. For each

resource j, we divide the candidate customer types who will potentially be routed to j into two

sets based on utilization uij. Set Lj ⊆ [n] consists of customer types of which the utilizations uij

are larger than cj/2. Mathematically,

Lj = {i∈ [n] : uij > cj/2}.

The other set Sj = [n]−Lj consists of customer types with utilization uij that are at most cj/2.

For each resource j, our algorithm chooses one set, either Sj or Lj, whichever has the higher

expected total utilization for resource j. The algorithm exclusively reserves resource j for customers

whose types are in the chosen set. The algorithm rejects all customer types in the complementary

set. This step is meant to resolve conflict in resource usage among different customer types by

restricting use of the resource to the most promising subset of customer types.

Large-or-Small (LS) Algorithm:
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1. (Pre-processing step) Solve the LP (4). Let x∗ be an optimal solution. For each resource j,

define

UL
j ≡

∑
i∈Lj

x∗ijuij

as the amount of resource j allocated to customer types in Lj by the static LP. Similarly, define

US
j ≡

∑
i∈Sj

x∗ijuij

as the amount of resource j allocated to customer types in Sj by the LP.

2. (Reservation step) Reserve the resource j for customer types in the set Lj if UL
j ≥US

j . Oth-

erwise, reserve resource j for customer types in the set Sj.

3. (Random routing step) Upon an arrival of a type-i customer, randomly pick a resource j with

probability x∗ij/Λi.

4. (Admission step) If the remaining capacity of resource j is at least uij and i belongs to the

set that is reserved for j then accept the customer. Otherwise, reject the customer.

As a consequence of the random routing process, we can separate the analysis for every resource

j ∈ [m]. Define

Uj ≡UL
j +US

j

as the total amount of resource j allocated by the LP. We will show that in expectation, at least

1

2

(
1− 1

e

)
Uj

units of resource j will be occupied in LS.

We will use the following technical lemma, which bounds the tail expectation of demands fol-

lowing a compound Poisson distribution.

Lemma 2. Let X1,X2,X3, ... be a sequence of i.i.d. random variables that take values from [0, β],

for some given β ∈ [0, 1
l
] with l≥ 2 being an integer. Let N be a Poisson random variable. For any

given α∈ [0,1], if

E

[
N∑
k=1

Xk

]
= α,

we must have

E

[
min

(
N∑
k=1

Xk,1−β

)]
≥ 1−β
l− 1

E[min(N ′, l− 1)],

where N ′ is a Poisson random variable with mean α(l− 1)/(1−β). In particular, when l= 2,

E

[
min

(
N∑
k=1

Xk,1−β

)]
≥ (1−β)

(
1− e−α/(1−β)

)
.
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Proof of Lemma 2.

Proof. Let Z1,Z2,Z3, ..., be a sequence of i.i.d. random variables each following a uniform

distribution over [0, (1−β)/(l− 1)]. For every k= 1,2, ..., define a function

X̃k(x)≡ 1−β
l− 1

1(Zk <x),

where 1(·) denotes an indicator function.

Since β ∈ [0,1/l], we must have β ≤ (1−β)/(l−1). It is then easy to check that for any x∈ [0, β],

we have

E[X̃k(x)] =
1−β
l− 1

· x

(1−β)/(l− 1)
= x.

Thus, we have for every k= 1,2, ...,

E[X̃k(Xk)|Xk] =Xk.

According to Jensen’s inequality, we must have

min

(
N∑
k=1

Xk,1−β

)
≥E

[
min

(
N∑
k=1

X̃k(Xk),1−β

)
|X1,X2, . . .

]

=⇒E

[
min

(
N∑
k=1

Xk,1−β

)]
≥E

[
min

(
N∑
k=1

X̃k(Xk),1−β

)]
.

Since X̃k(Xk) is either 0 or (1−β)/(l− 1), the term
∑N

k=1 X̃k(Xk) has the same distribution as

N ′(1−β)/(l− 1) where N ′ is a Poisson random variable with mean

E[N ′] =
l− 1

1−β
E

[
N∑
k=1

X̃k(Xk)

]
=
l− 1

1−β
E

[
N∑
k=1

Xk

]
=
l− 1

1−β
α.

Therefore,

E[min(
N∑
k=1

Xk,1−β)]≥E

[
min

(
N∑
k=1

X̃k(Xk),1−β

)]
=E[min(N ′(1−β)/(l− 1),1−β)]

=
1−β
l− 1

E[min(N ′, l− 1)].

When l= 2, this equals (1−β)
(
1− e−α/(1−β)

)
.

�

We are now ready to prove the competitive ratio of LS. The idea is to compare the utilization

of each resource j under LS with the utilization of resource j under OFF . The latter is given by

US
j +UL

j . The former depends on the choice of the set reserved for j, either Lj or Sj. With either

choice, we can gauge the total expected utilization, in some cases using Lemma 2, to obtain a lower

bound. We then repeat this comparison for all resources j to arrive at a global bound.
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Theorem 1. LS is at least (1− 1/e)/2-competitive.

Proof of Theorem 1.

Proof. For each resource j ∈ [m] there are two cases.

• Case 1: UL
j ≥US

j . Let Y L
j be the total number of customers who are routed to resource j and

whose types are in Lj. Y
L
j is a Poisson random variable with mean

µLj ≡E[Y L
j ] =

∑
i∈Lj

x∗ij.

Conditional on the value of Y L
j , the amount of resource j requested by each of the Y L

j customers

is i.i.d. and has mean

ūLj ≡
∑

i∈Lj
x∗ijuij∑

i∈Lj
x∗ij

=
UL
j

µLj
.

If Y L
j = 1, the expected amount of resource j taken by that only customer is just ūLj . Thus, we

get an expected reward P (Y L
j = 1)ūLj from the event Y L

j = 1.

If Y L
j > 1, only the first customer can take resource j, and all the other Y L

j − 1 customers will

be rejected due to lack of remaining capacity. The expected amount of resource taken by the first

customer may not be ūLj since arrivals are non-homogeneous, but must be still greater than cj/2.

Thus, we get an expected reward P (Y L
j > 1)cj/2 from the event Y L

j > 1.

In sum, the expected amount of resource taken by these Y L
j customers is at least

P (Y L
j = 1)ūLj +P (Y L

j > 1)cj/2

=µLj e
−µLj ūLj +

(
1− e−µ

L
j −µLj e−µ

L
j

)
cj/2

=UL
j e
−µLj +

(
1− e−µ

L
j −µLj e−µ

L
j

)
cj/2. (5)

We obtain a lower bound on (5) by minimizing its value with respect to µLj . We can deduce that

d

dµLj

[
UL
j e
−µLj +

(
1− e−µ

L
j −µLj e−µ

L
j

)
cj/2

]
= 0

=⇒−UL
j e
−µLj +

(
1 + e−µ

L
j − e−µ

L
j +µLj e

−µLj
)
cj/2 = 0

=⇒ µLj = 2UL
j /cj. (6)

It is easy to check that (5) is minimized at solution (6), and the corresponding minimum value

of (5) is

UL
j e
−2UL

j /cj +
(

1− e−2UL
j /cj − 2UL

j /cje
−2UL

j /cj

)
cj/2

=
(

1− e−2UL
j /cj

)
cj/2

≥
(
1− e−Uj/cj

)
cj/2

≥
(
1− e−1

)
Uj/2.

The last step follows since Uj/cj ≤ 1.
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• Case 2: UL
j <U

S
j . Let Y S

j be the total number of customers who are routed to resource j and

whose types are in Sj. Y
S
j is a Poisson random variable with mean

E[Y S
j ] =

∑
i∈Sj

x∗ij.

Let W S
1 ,W

S
2 ,W

S
3 , ..., be a sequence of i.i.d. random variables each having distribution

P (W S
k ≤ x) =

∑
i∈Sj

1(uij ≤ x)
x∗ij∑
l∈Sj

x∗lj
, ∀k= 1,2, ....

Here each W S
k can be seen as the random amount of resource j requested by one of the Y S

j customers

conditional on the value of Y S
j . Then

∑Y S
j

k=1W
S
k represents the total random amount of resource j

requested by all the Y S
j customers. It is easy to check that

E

 Y S
j∑

k=1

W S
k

=US
j ≥

Uj
2

=⇒E

 Y S
j∑

k=1

W S
k

cj

=
US
j

cj
≥ Uj

2cj
.

If
∑Y S

j

k=1W
S
k ≤ cj, all the Y S

j customers will be accepted, and we will get total reward
∑Y S

j

k=1W
S
k

from resource j.

If
∑Y S

j

k=1W
S
k > cj, some of the Y S

j customers must be rejected due to lack of capacity. But

whenever a customer is rejected, the remaining available capacity of resource j must be strictly

less than 0.5cj, since W S
k /cj ∈ [0,0.5] w.p.1 for every k.

In sum, the total reward we get from resource j is at least

Y S
j∑

k=1

W S
k ·1(

Y S
j∑

k=1

W S
k ≤ cj) + 0.5cj ·1(

Y S
j∑

k=1

W S
k > cj)

≥min(

Y S
j∑

k=1

W S
k ,0.5cj).

Its expected value can be written as

E

min

 Y S
j∑

k=1

W S
k ,
cj
2

= cjE

min

 Y S
j∑

k=1

W S
k

cj
,
1

2

 .
We then apply Lemma 2 to obtain

E

min

 Y S
j∑

k=1

W S
k

cj
,
1

2

≥ 1

2

(
1− e−2US

j /cj

)
≥ 1

2

(
1− e−

Uj
cj

)
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=⇒E

min

 Y S
j∑

k=1

W S
k

cj
,
1

2

≥ Uj
2cj

(
1− 1

e

)

=⇒E

min

 Y S
j∑

k=1

W S
k ,
cj
2

≥ Uj
2

(
1− 1

e

)
.

In sum, in both cases the expected amount of resource j allocated to customers is at least

Uj(1− 1/e)/2. Summing over every resource j ∈ [m], we can obtain the performance guarantee of

our algorithm ∑
j∈[m]

Uj ·
1

2

(
1− 1

e

)
= V LP · 1

2

(
1− 1

e

)
≥E [OPT(I)] · 1

2

(
1− 1

e

)
.

�

Below, we prove that the competitive ratio (1− 1/e)/2 is tight for LS in the sense that there is

at least one problem instance and a corresponding LP solution where LS has relative performance

that is bounded above by (1− 1/e)/2.

Proposition 5. The competitive ratio (1− 1/e)/2 is tight for LS.

Proof. We prove the theorem by constructing a special case where the total expected reward

of LS is E[OPT(I)] · (1− 1/e)/2.

Let n= 2. Let ε > 0 be a small number. Let u11 = 0.1 and u1j = 0.1(1− ε) for every j 6= 1. Let

u21 = 0.5 + ε and u2j = (0.5 + ε)(1− ε) for every j 6= 1. Let cj = 1 for every j ∈ [m]. The expected

number of arrivals is Λ1 = 5 and Λ2 = 0.5/(0.5 + ε).

We set m to be very large such that (with probability very close to 1) the optimal offline algorithm

can assign each demand unit to a distinct resource. Thus we have

E[OPT(I)]≥Λ1u12 + Λ2u22 = 5 · 0.1(1− ε) + 0.5/(0.5 + ε) · (0.5 + ε)(1− ε) = 1− ε.

On the other hand, it is easy to verify that the LP has a unique optimal solution, namely x∗11 = Λ1,

x∗21 = Λ2 and x∗ij = 0 for all other i, j. Then LS reserves resource 1 only for type-2 customers. In

this way, the probability that LS accepts one customer of type 2 is 1− e−Λ2 . Thus, the expected

total reward of LS is

u21 · (1− e−Λ2) = (0.5 + ε) · (1− e−0.5/(0.5+ε)).

In sum, the performance ratio of LS can be upper-bounded by

(0.5 + ε) · (1− e−0.5/(0.5+ε))

E[OPT(I)]
≤ (0.5 + ε) · (1− e−0.5/(0.5+ε))

1− ε
,

which approaches (1− 1/e)/2 when ε tends to 0. Thus, the competitive ratio of LS is at most

(1− 1/e)/2 when ε tends to 0.

�
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6.1. Parameter-dependent bounds for smaller utilization values

In this section, we modify the LS algorithm for cases in which all utilization values uij are

bounded away from cj. We characterize the performance of the modified algorithm using compet-

itive ratios that depend on model parameters.

Assume that there is some integer d≥ 2 for which uij ≤ cj/d for all i∈ [n], j ∈ [m]. The modified

LS algorithm considers the value of uij as “large” if uij ∈ (
cj
d+1

,
cj
d

], and “small” if uij ∈ [0,
cj
d+1

].

More precisely, we re-define

Lj = {i∈ [n] : uij > cj/(d+ 1)}

and

Sj = {i∈ [n] : uij ≤ cj/(d+ 1)}.

Also re-define UL
j and US

j based on the modified sets Lj and Sj, respectively, in the same way as

before.

In addition to the two options of reserving a resource j for Lj or Sj, the modified LS algorithm

considers a third option of simply pooling all customer types together. In other words, the third

option allows for any customer who is routed to a resource j to take the resource in a first-come

first-served fashion.

Intuitively, if we only considered the same (first two) options as in the original LS algorithm, the

competitive ratio would never exceed 0.5, because in the worst case, the algorithm would always

reject half of total demand by the reservation rule. By adding the third option, which potentially

utilizes all the demand, we can raise the competitive ratio of the modified LS algorithm to 1 as

d→∞. Note that, however, this third option is not helpful in the general case d= 1, when it can

cause arbitrarily poor performance to pack all customer types together.

Modified Large-or-Small (MLS) Algorithm:

1. (Pre-processing step) Same as for LS.

2. (Reservation step) Calculate the following three ratios

ratioLj ≡
1

d+ 1


d∑
k=1

e
−

(d+1)UL
j

cj

(
(d+1)UL

j

cj

)k
(k− 1)!

+
∞∑

k=d+1

d · e−
(d+1)UL

j
cj

(
(d+1)UL

j

cj

)k
k!

 ,

ratioSj ≡
1

d+ 1


d∑
k=1

e
−

(d+1)US
j

cj

(
(d+1)US

j

cj

)k
(k− 1)!

+
∞∑

k=d+1

d · e−
(d+1)US

j
cj

(
(d+1)US

j

cj

)k
k!

 ,
ratioall

j ≡
Uj
cj
·

(
1− e−d

∞∑
i=d

(i− d+ 1)
di−1

i!

)
.
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Reserve resource j for customer types in Lj if ratioLj is the largest among the three ratios; reserve

resource j for customer types in Sj if ratioSj is the largest among the three; otherwise, open the

resource to all customer types.

3. (Random routing step) Same as for LS.

4. (Admission step) Same as for LS.

Theorem 2 states that the performance of the MLS algorithm is determined by

max{ratioLj , ratioSj , ratioall
j }, which is essentially a function of d, UL

j and US
j . Each of the three ratios

represents the competitive ratio when the algorithm uses the corresponding reservation strategy.

Figure 1 illustrates when each of the three ratios is the largest. For example, when d= 2, Uj = cj

and US
j = 0.2Uj, we have ratioSj ≈ 0.18, ratioLj ≈ 0.54 and ratioall

j ≈ 0.43, while the upper bound

given by Proposition 2 is about 0.86.

We have ratioLj increases in UL
j , and ratioSj increases in US

j , because intuitively, the reservation

strategies perform better when there are more customers reserved. When UL
j and US

j are balanced,

ratioall
j is the largest (for d ≥ 2), because this option pools all customers together and does not

discard half of total demand.

Figure 1 Competitive ratio max(ratioL
j , ratioS

j , ratioall
j ) of MLS as a function of US

j ∈ [0,Uj ] when Uj = cj = 1.

In particular, ratioall
j is independent of US

j as we fix Uj = 1. ratioL
j depends on US

j as UL
j = Uj −US

j . The flat part

in the middle of each curve corresponds to ratioall
j being larger than ratioL

j and ratioS
j . The decreasing part of

each curve corresponds to ratioL
j being the largest (when US

j is small and UL
j is large). The increasing part

corresponds to ratioS
j being the largest.

Theorem 2. Suppose there is some integer d≥ 2 for which uij ≤
cj
d

for all i and j. From each

resource j, the modified LS algorithm earns expected reward

cj max(ratioLj , ratioSj , ratioall
j ).
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Proof. Based on the modified sets Sj and Lj, re-define variables such as Y S
j , Y L

j , µLj , ūLj and

{W S
k }k≥1 in the same way as in the proof of Theorem 1.

• Case 1: Suppose the modified algorithm reserves resource j for customer types in Lj, i.e.,

ratioLj = max(ratioLj , ratioSj , ratioall
j ) .

The algorithm will allocate resource j to exactly min(d,Y L
j ) customers whose types are in Lj.

Conditioned on Y L
j ≤ d, each of these min(d,Y L

j ) = Y L
j customers will take ūLj = UL

j /µ
L
j unit of

resource j in expectation. Conditioned on Y L
j > d, each of these min(d,Y L

j ) = d customers must

take at least
cj
d+1

unit of resource j. Thus, We expect to earn at least

d∑
k=1

kūLj ·P (Y L
j = k) +

dcj
d+ 1

·P (Y L
j >d) (7)

=
d∑
k=1

k
UL
j

µLj
· e−µ

L
j

(µLj )k

k!
+

∞∑
k=d+1

dcj
d+ 1

· e−µ
L
j

(µLj )k

k!

=
d∑
k=1

UL
j · e−µ

L
j

(µLj )k−1

(k− 1)!
+

∞∑
k=d+1

dcj
d+ 1

· e−µ
L
j

(µLj )k

k!

=UL
j P (Y L

j <d) +
dcj
d+ 1

P (Y L
j >d).

We want to find the µLj = E[Y L
j ] that minimizes this expected reward. We can deduce that

∂

∂µLj
[UL
j P (Y L

j <d) +
dcj
d+ 1

P (Y L
j >d)]

=UL
j P (Y L

j <d− 1)−UL
j P (Y L

j <d) +
dcj
d+ 1

P (Y L
j >d− 1)− dcj

d+ 1
P (Y L

j >d)

=
dcj
d+ 1

P (Y L
j = d)−UL

j P (Y L
j = d− 1)

=
dcj
d+ 1

e−µ
L
j

(µLj )d

d!
−UL

j e
−µLj

(µLj )d−1

(d− 1)!

=e−µ
L
j

(µLj )d−1

(d− 1)!

(
dcj
d+ 1

·
µLj
d
−UL

j

)
.

Setting the derivative to zero, we obtain µLj = (d+ 1)
UL
j

cj
. It is easy to check that (7) is minimized

at µLj = (d+ 1)
UL
j

cj
, when it is equal to

d∑
k=1

k
UL
j

µLj
· e−µ

L
j

(µLj )k

k!
+

∞∑
k=d+1

dcj
d+ 1

· e−µ
L
j

(µLj )k

k!

=
d∑
k=1

kcj
d+ 1

· e−
(d+1)UL

j
cj

(
(d+1)UL

j

cj

)k
k!

+
∞∑

k=d+1

dcj
d+ 1

· e−
(d+1)UL

j
cj

(
(d+1)UL

j

cj

)k
k!

=
cj

d+ 1


d∑
k=1

e
−

(d+1)UL
j

cj

(
(d+1)UL

j

cj

)k
(k− 1)!

+
∞∑

k=d+1

d · e−
(d+1)UL

j
cj

(
(d+1)UL

j

cj

)k
k!


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=cjratioLj .

Therefore, when the algorithm reserves resource j for Lj, cjratioLj = cj max(ratioLj , ratioSj , ratioall
j )

lower bounds the expected reward from resource j.

• Case 2: Next, suppose the algorithm reserves resource j for customer types in Sj, i.e., ratioSj =

max(ratioLj , ratioSj , ratioall
j ).

Recall that {W S
k }k≥1 is a sequence of i.i.d. random variables, each representing the random

amount of resource j requested by one of the Y S
j customers, conditional on the value of Y S

j . Since

uij ≤ cj/(d+ 1) for i∈ Sj, we must have

W S
k /cj ∈ [0,

1

d+ 1
].

Conditioned on Y S
j , if

∑Y S
j

k=1W
S
k > cj, the remaining capacity of resource j must be strictly less

than
cj
d+1

by the end. Thus the total reward we expect to earn from resource j is

E

min

 Y S
j∑

k=1

W S
k , cj −

cj
d+ 1


=cj ·E

min

 Y S
j∑

k=1

W S
k

cj
,1− 1

d+ 1



≥cj ·
1

d+ 1


d∑
k=1

e
−

(d+1)US
j

cj

(
(d+1)US

j

cj

)k
(k− 1)!

+
∞∑

k=d+1

d · e−
(d+1)US

j
cj

(
(d+1)US

j

cj

)k
k!


=cjratioSj .

Here the inequality is by Lemma 2, when β = 1/(d+ 1), l= d+ 1 and α=US
j /cj. Therefore, when

the algorithm reserves resource j for Sj, cjratioSj = cj max(ratioLj , ratioSj , ratioall
j ) lower bounds the

expected reward from resource j.

• Case 3: Finally, suppose the algorithm opens resource j to all customer types. Let Yj be the

total number of customers who are routed to resource j. Then Yj is a Poisson random variable

with mean

E[Yj] =
∑
i∈[n]

x∗ij.

Let W1,W2,W3, ..., be a sequence of i.i.d. random variables each having distribution

P (Wk ≤ x) =
∑
i∈[n]

1(uij ≤ x)
x∗ij∑
l∈[n] x

∗
lj

, ∀k= 1,2, ....
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Here each Wk can be seen as the random amount of resource j requested by one of the Yj customers

conditional on the value of Yj. Then
∑Yj

k=1Wk represents the total random amount of resource j

requested by all the Yj customers, conditioned on Yj. It is easy to check that E
[∑Yj

k=1
Wk
cj

]
=

Uj

cj
.

Since Wk/cj ∈ [0,1/d] for every k, the expected amount of resource j taken by these Yj customers

is at least

E

min

 Yj∑
k=1

Wk, cj − cj/d

= cjE

min

 Yj∑
k=1

Wk

cj
,1− 1/d

 .
We then apply Lemma 2 to obtain

cjE

min

 Yj∑
k=1

Wk

cj
,1− 1/d

≥ cj 1− 1/d

d− 1
E[min(N ′, d− 1)] =

cj
d

E[min(N ′, d− 1)],

where N ′ is a Poisson random variable with mean
Uj

cj
· d−1

1−1/d
=

Uj

cj
· d. Let N be a Poisson random

variable with mean E[N ] = d that is independent of N ′. We have E[N ] ≥ E[N ′] since Uj/cj ≤ 1.

We can further deduce that

cj
d

E[min(N ′, d− 1)]

=
cj
d

[
d−1∑
i=1

i · e−E[N ′] (E[N ′])i

i!
+
∞∑
i=d

(d− 1)e−E[N ′] (E[N ′])i

i!

]

=
cj
d

E[N ′]

[
d−2∑
i=0

e−E[N ′] (E[N ′])i

i!
+

∞∑
i=d−1

d− 1

i+ 1
· e−E[N ′] (E[N ′])i

i!

]

=
cj
d

E[N ′]E[min(1,
d− 1

N ′+ 1
)]

≥cj
d

E[N ′]E[min(1,
d− 1

N + 1
)]

=
cj
d

E[N ′]

E[N ]
·E[N ]E[min(1,

d− 1

N + 1
)]

=
cj
d

E[N ′]

E[N ]
·E[N ]

[
d−2∑
i=0

e−E[N ] (E[N ])i

i!
+

∞∑
i=d−1

d− 1

i+ 1
· e−E[N ] (E[N ])i

i!

]

=
cj
d

E[N ′]

E[N ]
·

[
d−1∑
i=1

i · e−E[N ] (E[N ])i

i!
+
∞∑
i=d

(d− 1)e−E[N ] (E[N ])i

i!

]

=
cj
d

E[N ′]

E[N ]
E[min(N,d− 1)]

=Uj ·
1

d
E[min(N,d− 1)]

=Uj ·
1

d
(E[N ]−E[max(N − d+ 1,0)])

=Uj ·

(
1− e−d

∞∑
i=d

(i− d+ 1)
di−1

i!

)
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=cjratioall
j .

Therefore, when the algorithm reserves resource j for all customer types, cjratioall
j =

cj max(ratioLj , ratioSj , ratioall
j ) lower bounds the expected reward from resource j.

�

As illustrated in Figure 1, ratioall
j increases in d. In the next corollary, we prove that ratioall

j =

1−O(1/
√
d). This matches the best possible dependence on d according to Proposition 3.

Corollary 1. If there is some integer d≥ 2 for which uij ≤
cj
d

for all i and j, then the com-

petitive ratio of the modified LS is at least 1− 1√
2πd

+O(1/d).

Proof. The expected amount of resource j allocated to customers is at least

cj max(ratioLj , ratioSj , ratioall
j )

≥cjratioall
j

=Uj ·

(
1− e−d

∞∑
i=d

(i− d+ 1)
di−1

i!

)

=Uj ·

(
1− e−dd

d

d!
− 1

d
e−d

∞∑
i=d

di

i!

)

≥Uj ·

(
1− e−dd

d

d!
− 1

d
e−d

∞∑
i=0

di

i!

)

=Uj ·
(

1− e−dd
d

d!
− 1

d

)
=Uj ·

(
1− 1√

2πd
+O(1/d)

)
.

The last step above follows by Stirling’s formula.

Summing over every resource j ∈ [m], we can obtain the performance guarantee of the modified

LS algorithm

∑
j∈[m]

Uj ·
(

1− 1√
2πd

+O(1/d)

)
=V LP ·

(
1− 1√

2πd
+O(1/d)

)
≥E [OPT(I)] ·

(
1− 1√

2πd
+O(1/d)

)
.

�
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7. Improving the Bound

In this section, we derive an algorithm with an improved competitive ratio compared to LS. This

algorithm also groups customer types based on the utilization uij, but in a more sophisticated way

than LS. Moreover, this algorithm also relaxes the random routing step in order to allow customers

more opportunities to be assigned to resources. This strategy of allowing greater resource sharing

among customer types greatly improves the empirical performance of the algorithm.

We will prove that the competitive ratio of the new algorithm is

r∗ = max

{
r ∈ (0,0.5) : r≤ max

z∈(0,0.5)
h(z, r)

}
, (8)

where

h(z, r)≡ z−
[
z− 1

2

(
1− 1

1− 2r
· 1

e2

)]
(1− 2r)

(
1− z

1− z− r

)2(1−z)

. (9)

We can numerically solve (8) to find that r∗ ≈ 0.321.

For every resource j, we first divide all customer types into two sets Sj and Lj in the same way

that LS does. Then, we further partition the customers in Sj into two sets, “medium small” and

“tiny”, depending on their utilization of resource j. Let

Mj = {i∈ Sj : uij ≥ z∗ · cj}, (10)

Tj = {i∈ Sj : uij < z
∗ · cj}, (11)

where

z∗ ≡ arg max
z∈(0,0.5)

h(z, r∗)≈ 0.42. (12)

It is easy to check that there is only one maximizer.

Recall that Uj =
∑

i∈[n] x
∗
ijuij, U

L
j =

∑
i∈Lj

x∗ijuij and US
j =

∑
i∈Sj

x∗ijuij, where x∗ is an optimal

solution to the LP (4). We further define UM
j ≡

∑
i∈Mj

x∗ijuij and UT
j ≡

∑
i∈Tj

x∗ijuij analogously.

Intuitively, the load values UT
j ,U

M
j ,U

S
j ,U

L
j serve as estimates for how much capacity of resource

j is expected to be utilized by customers of types in the sets Tj,Mj, Sj and Lj, respectively. For

a given resource j, if any of the load values dominates the others, it might be a good strategy to

reserve resource j exclusively for customers in the corresponding set.

We next categorize every resource j into one of two types based on the load values.

Definition 1. Resource j is a type-A resource if

US
j ≥−0.5cj log(1− 2r∗Uj/cj)

or UT
j ≥−(1− z∗)cj log

(
1− r∗Uj

cj(1− z∗)

)
.

Otherwise, resource j is a type-B resource.
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The motivation for the above definition is as follows. If resource j is of type A, then US
j or UT

j

are relatively large compared to other load values, which implies that customers that are routed

to resource j by the LP (4) tend to have relatively small utilization uij. On the other hand, if

resource j is of type B, then UL
j is relatively larger, which implies that customers that are routed

to resource j by the LP tend to have relatively large utilization uij.

Depending on the type of resource, we will reserve each resource wholly for a certain set of

customer types. We say that a customer of type i is admissible to resource j if this customer can

be assigned to resource j by our algorithm. The following definition defines the reservation criteria

of the algorithm.

Definition 2. A customer of type i, i ∈ [n], is admissible to resource j, j ∈ [m], if and only if

at least one of the following criteria holds:

• Resource j is of type A,

• or i∈Mj ∪Lj.

We are now ready to specify the improved algorithm.

Refined Large-or-Small Algorithm (RLS):

1. (Pre-processing step) Same as for LS.

2. (Random routing step) Same as for LS.

3. (Admission step) If a customer is admissible to resource j and there is enough remaining

capacity in j, then assign the customer to resource j.

4. (Resource-sharing step) If a customer is rejected in the Admission Step, but there is another

resource with enough remaining capacity and to which the customer is admissible, then assign the

customer to any such resource. Otherwise, reject the customer.

The idea of the algorithm is as follows. If a resource j is of type A, then we can bound from above

the left-over capacity of the resource, because a type-A resource tends to be used by a sufficiently

high number of customers in sets Sj and Tj. Whenever one such customer is rejected, we know

that the remaining capacity is small. Furthermore, since it is not disadvantageous to turn away

customers of other types, their utilization being higher than those in Sj and Tj, we will admit

customers of all types to a type-A resource. On the other hand, if resource j is of type B, then

customers who are admissible to the resource have large utilization values. We can allocate a large

enough amount of the resource as soon as one such customer arrives. We do not admit customers

with small utilization values to type-B resources in order to leave enough space for customer types

in Mj and Lj.

For each resource j, let Nj denote the total number of customers who are routed to resource j

in Step (2) of RLS. Note that Nj does not include customers who are assigned resource j in Step
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(4) of RLS. Let Wj1,Wj2, ..., be a sequence of i.i.d. random variables each having a distribution

that is given by

P (Wj1 ≤ x) =
∑
i∈[n]

1(uij ≤ x)
x∗ij∑

k∈[n] x
∗
kj

.

That is, each variable Wj1 can be seen as the utilization uij of a single random customer who is

routed to resource j during the horizon. Since the probability that such a customer has type i is
x∗ij∑

k∈[n] x
∗
kj

, Wj1 takes value uij with this probability. The following lemma gives a lower bound on

the expected amount of capacity of a type-A resource that will be allocated by RLS.

Lemma 3. If resource j is of type-A, then the expected amount of resource j allocated by RLS

is at least

max

E

min(

Nj∑
k=1

Wjk1(Wjk ≤ 0.5cj),0.5cj)

 ,E
min(

Nj∑
k=1

Wjk1(Wjk ≤ z∗cj), (1− z∗)cj)

 .

Proof.
∑Nj

k=1Wjk1(Wjk ≤ 0.5cj) has the same distribution as the total (random) amount of

resource j requested by customers who are routed to resource j and whose types are in Sj. If the

actual amount of resource j allocated to customers is less than
∑Nj

k=1Wjk1(Wjk ≤ 0.5cj), it must be

that at least one customer with type in Sj is rejected due to lack of remaining capacity of resource

j. In such a case, the actual amount of resource j allocated to customers must be at least 0.5cj,

because otherwise the customer with type in Sj would not have been rejected. Thus, the total

amount of resource j allocated by our algorithm is at least min(
∑Nj

k=1Wjk1(Wjk ≤ 0.5cj),0.5cj).

A similar argument applies to customers with types in Tj.
∑Nj

k=1Wjk1(Wjk ≤ z∗cj) has the same

distribution as the total amount of resource j requested by customers who are routed to resource

j and whose types are in Tj. If at least one of these requests is rejected, the remaining capacity of

resource j must be at most z∗cj. Thus, the total amount of resource j allocated to customers is at

least min(
∑Nj

k=1Wjk1(Wjk ≤ z∗cj), (1− z∗)cj).

The proof follows when we take expectation of the lower bounds. �

Let µMj =
∑

i∈Mj
x∗ij and µLj =

∑
i∈Lj

x∗ij be the expected number of customers who are routed

to resource j and whose types are in Mj and Lj, respectively. The following lemma gives a lower

bound on the expected amount of capacity of a type-B resource that will be allocated by RLS.

Lemma 4. If resource j is of type B, then the expected amount of resource j allocated to cus-

tomers in RLS is at least

min{z∗cj, e−µ
M
j [UL

j e
−µLj + 0.5cj(1− e−µ

L
j −µLj e−µ

L
j )] + (1− e−µ

M
j )z∗cj}.
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Proof. If any customer is assigned to resource j in Step (4) of the algorithm, then at least

z∗cj of resource j is allocated, since every customer type i that is admissible to resource j satisfies

uij ≥ z∗cj.

If no customer is assigned to resource j by Step (4), then resource j can only be allocated to

customers who are directly routed to this resource, i.e. in Step (3) of RLS. We consider three cases:

• At least one customer with type in Mj is routed to resource j. This event occurs with proba-

bility 1− e−µ
M
j . In such a case, we use z∗cj as the lower bound on the amount of resource j taken

by customers.

• No customer with type in Mj is routed to resource j, and exactly one customer with type in

Lj is routed to resource j. This event occurs with probability e−µ
M
j · µLj e−µ

L
j . Conditional on this

event, the expected amount of resource j taken by the only customer with type in Lj is∑
i∈Lj

x∗ijuij∑
i∈Lj

x∗ij
=
UL
j

µLj
.

• No customer with type in Mj is routed to resource j, and more than one customer with type

in Lj are routed to resource j. This event occurs with probability e−µ
M
j (1−e−µ

L
j −µLj e−µ

L
j ). In this

event, we use 0.5cj as the lower bound on the amount of resource j taken by the customer in Lj,

by definition of Lj.

In summary, if no customer is assigned to resource j in Step (3), the expected amount of resource

j taken by customers routed to the resource is at least

(1− e−µ
M
j )z∗cj + e−µ

M
j ·µLj e−µ

L
j ·
UL
j

µLj
+ e−µ

M
j (1− e−µ

L
j −µLj e−µ

L
j )0.5cj

=e−µ
M
j [UL

j e
−µLj + 0.5cj(1− e−µ

L
j −µLj e−µ

L
j )] + (1− e−µ

M
j )z∗cj.

We complete the proof by combining this result with the lower bound z∗cj for the case that a

customer is assigned to resource j by Step (4) of the algorithm. �

We combine the previous two lemmas to prove the performance guarantee of the algorithm.

Theorem 3. For each resource j, the expected amount of resource j allocated to customers is

at least r∗Uj.

Proof. First consider the case that resource j is of type A. Since
∑Nj

k=1Wjk1(Wjk ≤ 0.5cj) and∑Nj

k=1Wjk1(Wjk ≤ z∗cj) has compound Poisson distribution with mean

E

 Nj∑
k=1

Wjk1(Wjk ≤ 0.5cj)

=US
j , E

 Nj∑
k=1

Wjk1(Wjk ≤ z∗cj)

=UT
j ,
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we can apply Lemma 2 to get

E

min(

Nj∑
k=1

Wjk1(Wjk ≤ 0.5cj),0.5cj)

=cjE

min(

Nj∑
k=1

Wjk

cj
1(Wjk ≤ 0.5cj),0.5)


≥cj0.5

(
1− e−2US

j /cj

)
,

and

E

min(

Nj∑
k=1

Wjk1(Wjk ≤ z∗cj), (1− z∗)cj)

=cjE

min(

Nj∑
k=1

Wjk

cj
1(Wjk ≤ z∗cj),1− z∗)


≥cj(1− z∗)

(
1− e

−
UT
j

cj(1−z∗)

)
.

Then according to Definition 1, we have by the definition of type-A resources

US
j ≥−0.5cj log(1− 2r∗Uj/cj) =⇒ cj0.5(1− e−2US

j /cj )≥ r∗Uj,

or

UT
j ≥−(1− z∗)cj log(1− r∗Uj

cj(1− z∗)
) =⇒ cj(1− z∗)(1− e

−
UT
j

cj(1−z∗) )≥ r∗Uj.

In sum, we have

max

E

min(

Nj∑
k=1

Wjk1(Wjk ≤ 0.5cj),0.5cj)

 ,E
min(

Nj∑
k=1

Wjk1(Wjk ≤ z∗cj), (1− z∗)cj)


≥max

{
cj0.5(1− e−2US

j /cj ), cj(1− z∗)(1− e
−

UT
j

cj(1−z∗) )

}
≥r∗Uj.

This proves the theorem for type-A resources.

Now we consider the case that resource j is of type B. Starting from this point, we will assume

without loss of generality that cj = 1. Based on Lemma 4, we need to show

min{z∗, e−µ
M
j [UL

j e
−µLj + 0.5(1− e−µ

L
j −µLj e−µ

L
j )] + (1− e−µ

M
j )z∗} ≥ r∗Uj.

Since z∗ > r∗ as we numerically checked, it suffices to show

e−µ
M
j

[
UL
j e
−µLj + 0.5

(
1− e−µ

L
j −µLj e−µ

L
j

)]
+
(

1− e−µ
M
j

)
z∗ ≥ r∗Uj

based on Lemma 4.

By examining the first and second derivatives of UL
j e
−µLj + 0.5(1− e−µ

L
j −µLj e−µ

L
j ) with respect

to µLj , it is easy to check that

e−µ
M
j

[
UL
j e
−µLj + 0.5

(
1− e−µ

L
j −µLj e−µ

L
j

)]
+
(

1− e−µ
M
j

)
z∗ ≥ e−µ

M
j · 0.5

(
1− e−2UL

j

)
+
(

1− e−µ
M
j

)
z∗

= z∗− e−µ
M
j

[
z∗− 0.5

(
1− e−2UL

j

)]
.



30 Stein, Truong, and Wang: Advance Service Reservations with Heterogeneous Customers

If z∗ < 0.5(1−e−2UL
j ), we must have z∗−e−µ

M
j [z∗−0.5(1−e−2UL

j )]> z∗ > r∗ = r∗cj ≥ r∗Uj, which

proves the theorem for this case.

Now suppose z∗ ≥ 0.5(1− e−2UL
j ). Since µMj =

∑
i∈Mj

x∗ij ≥
∑

i∈Mj
x∗ij · 2uij = 2UM

j , we have

z∗− e−µ
M
j

[
z∗− 0.5

(
1− e−2UL

j

)]
≥z∗− e−2UM

j

[
z∗− 0.5

(
1− e−2UL

j

)]
=z∗− e−2(US

j −U
T
j )
[
z∗− 0.5

(
1− e−2(Uj−US

j )
)]
. (13)

It is easy to see that (13) is decreasing in UT
j . We next show that, given Uj and UT

j , (13) is also

decreasing in US
j .

∂

∂US
j

[
z∗− e−2(US

j −U
T
j )[z∗− 0.5(1− e−2(Uj−US

j ))]
]

=2e−2(US
j −U

T
j )[z∗− 0.5(1− e−2(Uj−US

j ))]− e−2(US
j −U

T
j )e−2(Uj−US

j )

=e−2(US
j −U

T
j )(2z∗− 1)

<0.

According to Definition 1, we must have

US
j <−0.5 log(1− 2r∗Uj) (14)

and

UT
j <−(1− z∗) log

(
1− r∗Uj

1− z∗

)
. (15)

Since (13) is decreasing in US
j and UT

j , we can plug in (14) and (15) and obtain

z∗− e−2(US
j −U

T
j )[z∗− 0.5(1− e−2(Uj−US

j ))]

≥z∗− e−2(−0.5 log(1−2r∗Uj)+(1−z∗) log(1−
r∗Uj
1−z∗ ))[z∗− 0.5(1− e−2(Uj+0.5 log(1−2r∗Uj)))]

=z∗−
[
z∗− 1

2

(
1− 1

1− 2r∗Uj
· 1

e2Uj

)]
(1− 2r∗Uj)

(
1− z∗

1− z∗− r∗Uj

)2(1−z∗)

. (16)

Since z∗ and r∗ are constants, (16) is a function of a single variable Uj. It is easy to check that

this function is increasing and concave in Uj for Uj ≤ cj = 1. Moreover, it equals 0 at Uj = 0.

Therefore,

z∗−
[
z∗− 1

2

(
1− 1

1− 2r∗Uj
· 1

e2Uj

)]
(1− 2r∗Uj)

(
1− z∗

1− z∗− r∗Uj

)2(1−z∗)

≥Uj

[
z∗−

[
z∗− 1

2

(
1− 1

1− 2r∗
· 1

e2

)]
(1− 2r∗)

(
1− z∗

1− z∗− r∗

)2(1−z∗)
]

=Ujh(z∗, r∗)

=Ujr
∗.

This completes the proof for the theorem. �
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8. Numerical Study

We compare the empirical performance of our algorithms against two commonly used heuristics by

simulating the algorithms on appointment-scheduling data obtained from a large hospital system

in New York City.

We obtain our data set from an Allergy department in the hospital system. The data set con-

tains more than 20000 appointment entries recorded in the year 2013. Each entry in the data

records information about one appointment. The entry includes the date that the patient makes

the appointment, the exact time of the appointment, whether the patient eventually showed up to

the original appointment, canceled the appointment some time later, or missed the appointment.

The average total number of patients who arrive to make appointments on each day is shown

in Figure 2. It can be readily seen that the arrival pattern is highly non-stationary, as the average

total number of arrivals on Thursday is 60% more than that on Wednesday.

Figure 2 Average number of arrivals in a week.

We simulate a discrete horizon of 200 days. In each day, a random number of patients arrive to

make appointments. Each patient needs to be assigned an appointment of 15 min, 30 min, 45 min,

depending on his or her condition. By medical necessity, some patients must be assigned same-day

appointments if at all. We call these patients urgent patients. Other patients can be assigned to any

day in the future. We call these patients regular patients. The relative proportions of patients in

each priority category are summarized in Table 2. We impose a requirement that regular patients

must be assigned an appointment that is no more than 20-days away from the date of his or her

first request for an appointment. Although this hard deadline is not strictly enforced in reality,

consideration for patient satisfaction often impels the administration to limit as much as possible

the number of days that each patient must be made to wait. Our deadline mimics this effect.

We assume a 5-day work week. We estimate the expected number of patients arriving per day of

the week as shown in Figure 2. We assume that each patient randomly and independently falls into

one of the six categories shown in Table 2. All patients, whether urgent or regular, arrive at the
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Table 2 Percentage of patients in different categories.

15 min 30 min 45 min
urgent 27% 1% 0%
regular 45% 14% 9%

beginning of a day. In our model, the type of a patient is defined by both the time of arrival (one

of these 200 days) and one of the six conventional “types” as defined in Table 2. Overall, there are

1,200 patient types in our model. Moreover, each λi(t) is only non-zero for one day of the horizon.

We assume that there are multiple sessions on each day. Each session corresponds to a resource

in our model. We vary the session length among 1, 1.5, 2, 3, or 4 hours. We assume that a patient

can be assigned to any appointment within a day, as long as there is enough service time remaining

and the day falls within the deadline to serve the patient. We vary the number of sessions that are

available per day.

We test the following two algorithms

• Our basic online algorithm (LS).

• Our modified LS algorithm (MLS).

• Our refined algorithm (RLS).

• A greedy heuristic (GRD) that tries to assign every patient to the most recent session that is

available and falls within his deadline.

• A heuristic (RSRV ) that reserves for each category an amount of capacity that is approxi-

mately equal to the average utilization of that category. This reservation is nested in the sense that

higher-priority patients have access to their reserved capacity, as well as the reserved capacity of

all lower-priority categories. The heuristic then assigns patients greedily to the reserved capacity.

• The primal-dual algorithm (PD) given by Buchbinder et al. (2007).

For each algorithm and each test case, we simulate the total length of appointments made during

the entire 200 periods and calculate the average total length over 1000 replicates. We report the

ratio of this average number relative to the optimal objective value of the upper bound given in (4).

Note that in this numerical setting, the LP (4) can be solved by a simple greedy approach. First,

we pack all urgent patient types into the same-day appointment sessions. Then, for period t from

1 to 200, we pack regular patient types which arrive in period t into the earliest available sessions.

This yields an optimal solution to LP (4). In more general settings for which simple heuristics do

not give optimal LP solutions, one can always apply efficient packing LP solvers (Allen-Zhu and

Orecchia 2018).

Tables 3 to 7 summarize the performance of the algorithms. The scale is the ratio of total capacity

to total demand. In each cell, the first number is the performance of the algorithm relative to the

upper bound (4); the second number is the average number of days that admitted regular patients

need to wait under the algorithm. We make several observations:
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Table 3 Algorithm performance and average waiting time of regular patients. The length of each session is 1

hour.

Number of sessions Scale LS RLS GRD RSRV PD
18 70.5% 69.6%, 18.6 94.7%, 16.3 98.4%, 14.4 80.2%, 17.5 97.9%, 16.7
19 74.4% 69.2%, 18.3 94.2%, 15.4 98.4%, 11.0 78.8%, 17.4 97.6%, 16.9
20 78.3% 69.3%, 18.1 94.3%, 13.5 98.1%, 6.4 77.4%, 17.2 97.1%, 16.9
21 82.2% 69.4%, 17.7 94.4%, 11.1 96.2%, 2.4 76.2%, 16.9 96.4%, 16.7
22 86.2% 69.9%, 17.2 94.5%, 10.8 96.0%, 1.3 75.1%, 16.6 95.5%, 16.2
23 90.1% 70.3%, 16.2 94.5%, 11.0 96.0%, 0.9 74.0%, 16.2 94.3%, 15.5
24 94.0% 70.8%, 13.8 94.2%, 10.2 95.5%, 0.7 73.1%, 15.6 92.5%, 15.6
25 97.9% 70.7%, 9.0 93.7%, 6.8 94.5%, 0.5 72.2%, 14.6 90.5%, 15.9
26 101.8% 70.7%, 4.2 93.4%, 3.3 94.7%, 0.4 73.0%, 12.8 90.3%, 16.1
27 105.7% 71.0%, 1.6 95.3%, 1.3 95.7%, 0.3 74.8%, 9.7 91.3%, 16.0
28 109.7% 71.0%, 0.9 96.6%, 0.8 96.6%, 0.2 76.6%, 6.3 92.4%, 15.7
29 113.6% 70.9%, 0.6 97.4%, 0.6 97.2%, 0.2 77.4%, 3.2 93.4%, 15.4
30 117.5% 71.0%, 0.5 97.8%, 0.4 97.7%, 0.2 77.8%, 1.4 94.2%, 15.1
31 121.4% 71.0%, 0.4 98.3%, 0.3 98.2%, 0.1 78.0%, 0.9 95.1%, 14.4
32 125.3% 71.0%, 0.3 98.6%, 0.3 98.4%, 0.1 78.1%, 0.6 96.4%, 12.9
33 129.2% 70.9%, 0.2 98.8%, 0.2 98.7%, 0.1 78.1%, 0.4 97.2%, 12.0

Table 4 Algorithm performance and average waiting time of regular patients. The length of each session is 1.5

hours.

Number of sessions Scale MLS RLS GRD RSRV PD
12 70.5% 76.2%, 18.6 98.2%, 15.9 98.4%, 14.4 92.7%, 17.7 97.9%, 17.5
13 76.4% 76.3%, 18.3 97.9%, 12.8 98.4%, 8.8 91.5%, 17.5 97.4%, 17.5
14 82.2% 76.5%, 17.7 97.7%, 10.8 96.3%, 2.4 90.2%, 17.3 96.7%, 17.4
15 88.1% 77.1%, 16.8 97.5%, 11.5 96.1%, 1.1 88.9%, 17.0 95.7%, 17.3
16 94.0% 77.5%, 13.9 96.7%, 10.8 95.6%, 0.7 87.6%, 16.5 93.9%, 17.2
17 99.9% 77.5%, 6.8 95.7%, 5.5 93.7%, 0.5 86.5%, 15.7 91.5%, 17.1
18 105.7% 77.6%, 1.7 97.2%, 1.4 95.7%, 0.3 90.3%, 14.3 93.7%, 16.8
19 111.6% 77.7%, 0.8 98.0%, 0.7 96.8%, 0.2 94.2%, 11.0 95.0%, 16.7
20 117.5% 77.7%, 0.5 98.4%, 0.5 97.6%, 0.2 97.9%, 6.3 95.9%, 16.5
21 123.4% 77.7%, 0.4 98.7%, 0.3 98.1%, 0.1 99.2%, 2.2 96.5%, 16.5
22 129.2% 77.7%, 0.3 99.0%, 0.3 98.5%, 0.1 99.6%, 0.9 97.1%, 16.4

Table 5 Algorithm performance and average waiting time of regular patients. The length of each session is 2

hours.

Number of sessions Scale MLS RLS GRD RSRV PD
9 70.5% 78.0%, 18.6 99.1%, 16.0 98.5%, 14.4 91.1%, 17.9 97.9%, 17.7
10 78.3% 77.3%, 18.1 99.0%, 11.2 98.4%, 6.4 89.2%, 17.7 97.3%, 17.6
11 86.2% 77.9%, 17.2 98.6%, 11.6 96.2%, 1.4 87.2%, 17.4 96.3%, 17.5
12 94.0% 78.3%, 13.9 97.3%, 11.0 95.7%, 0.7 85.4%, 17.1 94.5%, 17.4
13 101.8% 78.3%, 4.4 96.4%, 3.7 94.4%, 0.4 85.3%, 16.4 93.0%, 17.3
14 109.7% 78.9%, 1.0 98.0%, 0.9 96.5%, 0.3 90.2%, 15.0 95.1%, 17.2
15 117.5% 79.2%, 0.5 98.6%, 0.5 97.6%, 0.2 95.2%, 10.8 96.3%, 17.1
16 125.3% 79.1%, 0.3 99.0%, 0.3 98.2%, 0.1 99.4%, 4.8 97.0%, 16.9
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Table 6 Algorithm performance and average waiting time of regular patients. The length of each session is 3

hours.

Number of sessions Scale MLS RLS GRD RSRV PD
6 70.5% 84.3%, 18.6 99.3%, 16.3 98.6%, 14.3 93.9%, 17.7 98.0%, 18.0
7 82.2% 84.5%, 17.8 98.9%, 11.6 96.5%, 2.4 91.8%, 17.2 96.9%, 17.7
8 94.0% 84.9%, 13.9 97.4%, 11.6 95.7%, 0.7 89.5%, 16.3 94.8%, 17.6
9 105.7% 85.3%, 1.7 97.5%, 1.5 95.6%, 0.3 92.4%, 13.3 94.7%, 17.5
10 117.5% 85.4%, 0.5 98.8%, 0.5 97.6%, 0.2 99.6%, 4.3 96.5%, 17.4
11 129.2% 85.4%, 0.3 99.4%, 0.3 98.5%, 0.1 99.9%, 0.7 97.4%, 17.2

Table 7 Algorithm performance and average waiting time of regular patients. The length of each session is 4

hours.

Number of sessions Scale MLS RLS GRD RSRV PD
5 78.3% 86.0%, 18.1 99.2%, 11.9 98.6%, 6.2 93.7%, 17.4 97.4%, 17.8
6 94.0% 86.7%, 13.9 97.3%, 11.9 95.8%, 0.7 91.1%, 16.0 94.9%, 17.6
7 109.7% 87.1%, 1.0 98.2%, 0.9 96.5%, 0.3 97.0%, 8.2 95.6%, 17.5
8 125.3% 87.5%, 0.3 99.3%, 0.3 98.3%, 0.1 99.8%, 0.8 97.1%, 17.3

Table 8 Algorithm performance and average waiting time of regular patients. Regular patients arrive only on

Mondays, and same-day patients arrive only on the other weekdays. The length of each session is 1 hour.

Number of sessions Scale LS RLS GRD RSRV PD
16 74.4% 75.5%, 17.4 94.7%, 6.3 93.9%, 0.6 86.1%, 1.1 86.7%, 7.3
17 79.1% 75.7%, 17.5 94.3%, 8.1 92.2%, 0.6 85.3%, 1.0 85.3%, 3.2
18 83.7% 76.0%, 17.2 94.2%, 9.8 90.6%, 0.5 84.0%, 0.9 84.6%, 2.1
19 88.4% 76.1%, 16.3 94.0%, 11.0 89.0%, 0.5 82.3%, 0.9 83.7%, 1.9
20 93.0% 76.1%, 11.1 93.9%, 8.4 88.0%, 0.5 80.8%, 0.8 83.0%, 1.7
21 97.7% 76.2%, 3.5 94.4%, 2.7 88.6%, 0.4 80.6%, 0.8 83.6%, 1.6
22 102.3% 76.1%, 2.0 94.7%, 1.7 89.5%, 0.4 80.7%, 0.7 84.4%, 1.5
23 107.0% 75.7%, 1.5 94.5%, 1.3 90.1%, 0.4 80.8%, 0.7 85.2%, 1.4
24 111.6% 75.6%, 1.2 95.0%, 1.0 91.9%, 0.3 82.0%, 0.6 87.0%, 1.3
25 116.3% 75.6%, 1.0 95.7%, 0.8 93.8%, 0.3 83.4%, 0.6 88.9%, 1.3
26 120.9% 75.6%, 0.8 96.2%, 0.7 95.4%, 0.3 84.8%, 0.6 90.5%, 1.2
27 125.6% 75.6%, 0.6 96.6%, 0.6 96.7%, 0.2 86.2%, 0.5 91.8%, 1.2

Table 9 Performance relative to the upper bound given in (4), when parameters are randomly generated.

Number of sessions LS RLS GRD RSRV PD
Worst Setting 44.3% 68.4% 66.3% 43.7% 67.6%

Average Setting 65.2% 96.3% 95.9% 85.2% 95.9%

• The refined algorithm RLS is never more than 7% worse than the upper bound on average in

each of the scenarios tested. The reservation heuristic RSRV could be as much as 16% worse than

the upper bound on average. The greedy heuristic GRD could be as much as 5.7% worse than the

upper bound on average.

• Predictably, the refined algorithm RLS dominates the basic algorithms LS and MLS. This

performance gain comes from better resource sharing.
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• The greedy heuristic GRD also performs consistently better than the static reservation heuris-

tic RSRV , except when the scale is high. Most likely, the greedy heuristic allows greater resource

sharing among different customer types, which results in better resource utilization. However, when

the scale is high, there is an abundance of capacity, so that resource sharing is less important.

• The greedy heuristic GRD tends to be good when the scale is either very large or very small.

These are situations in which it is easier to do well. When there is little capacity, the utilization

can be kept high even with a naive algorithm because there is relative very high demand. When

there is an abundance of capacity, the utilization can be close to optimal because a high proportion

of demand can be accommodated. Therefore, an algorithm offers the most value relative to a naive

heuristic when the scale is moderate.

• Similar to GRD, the Primal-Dual algorithm performs well when the scale is either large or

small. However, its performance is slightly worse than GRD in most cases. This might be because

the Primal-Dual algorithm is specially designed to improve the worst-case performance, whereas

we report the average-case performance.

• The refined algorithm RLS performs significantly better than, or is very close to, the better of

the two heuristics. It performs much better than the heuristics when the scale is moderate, which

is when an algorithm offers the most value relative to a naive heuristic.

• The average number of days that admitted regular patients need to wait under the greedy

heuristic is the smallest among all algorithms. This is because the greedy heuristic allows regular

patients to take sessions that could have been reserved for same-day patients. In Table 8, we test

scenarios that better illustrate the outcomes of making greedy assignments. We let regular patients

arrive only on Mondays, and let same-day patients arrive only on the other four weekdays. We find

that the greedy heuristic results in extremely short waiting times compared to other algorithms,

but the performance of the greedy heuristic is much worse due to the fact that it does not reserve

the right amount of resources for same-day patients.

We also test the algorithms under randomly generated settings. In Table 9, we report the worst

performance and the average performance of all the algorithms over 100 random settings. The

performance of algorithms in each setting is calculated by simulating 1000 replicates. Each of the

100 random settings is generated by

• uniformly generating the percentages in Table 2;

• uniformly picking a deadline for all regular patients between 5 and 30 days;

• uniformly setting the capacity of all resources to be between 45 and 150 minutes;

• uniformly picking a scale between 70% and 130%.

Again, our RLS algorithm consistently performs well in these test cases.
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