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We study web and mobile applications that are used to schedule advance service, from medical appoint-

ments to restaurant reservations. We model them as online weighted bipartite matching problems with

non-stationary arrivals. We propose new algorithms with performance guarantees for this class of problems.

Specifically, we show that the expected performance of our algorithms is bounded below by 1−
√

2
π

1√
k

+O( 1
k

)

times that of an optimal offline algorithm, which knows all future information upfront, where k is the mini-

mum capacity of a resource. This is the tightest known lower bound. This performance analysis holds for any

Poisson arrival process. Our algorithms can also be applied to a number of related problems, including dis-

play ad allocation problems and revenue management problems for opaque products. We test the empirical

performance of our algorithms against several well-known heuristics by using appointment scheduling data

from a major academic hospital system in New York City. The results show that the algorithms exhibit the

best performance among all the tested policies. In particular, our algorithms are 21% more effective than

the actual scheduling strategy used in the hospital system according to our performance metric.

1. Introduction

We study advance admission scheduling decisions in service systems. Advance admission scheduling

decisions are those that determine specific times for customers’ arrival to a facility for service.

Advance admission scheduling is used in many service industries. Restaurants reserve tables for

customers who call in advance. Healthcare facilities reserve appointment slots for patients who

request them. Airlines reserve flight seats for those who purchase flight tickets. Advance admission

scheduling enables service providers to better match capacity with demand because they control

customers’ actual arrivals to service facilities.
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We formulate and analyze a model that generally captures such admission scheduling systems.

For concreteness, we focus on the example of MyChart, a digital admission scheduling application

developed by Epic System. Epic is an electronic medical records company that is managing the

records of millions of health care providers and more than half of the patient population in the U.S.

(Husain 2014). Epic deploys MyChart to perform online scheduling of appointments through inter-

net portals. The use of applications like MyChart is part of a general trend in healthcare towards

providing electronic access to service through web and mobile applications (TechnologyAdvice

2015).

When a patient schedules an appointment over a web portal, MyChart first asks the patient for

the type of visit desired, whether it is for a physical exam, a consultation, a flu shot, etc. Next,

it asks for the beginning and end of the range of preferred dates. It then shows a menu with a

check box for morning and afternoon session for each day in the preferred date range. Patients

can select one or more preferred sessions. Finally, MyChart either offers the patient one or more

appointments, or states that no appointment can be found. We can conceive of many variations

over this basic interface.

Consider the following model of advance admission scheduling that captures MyChart as an

example. There are multiple service providers. Each provider offers a number of service sessions

over a continuous, finite horizon. We call a session associated with a single provider a resource. Let

n be the number of resources available over the horizon. Each resource j can serve Cj customers.

We call Cj the capacity of resource j. Each resource j must be booked by time tj or it perishes

at time tj. There are m customer types. Patients of type i, i= 1, . . . ,m, arrive according to some

known non-homogeneous Poisson process and make reservations through any of the modes made

available by the provider, web, phone, or mobile. A patient of type i generates a reward of rij when

served with a unit of resource j. We assume that the type of customers can be observed at the time

that they arrive to make an appointment, through the pattern of preferences that they indicate

and any data stored in the system on their profiles. We require that customers arriving at time
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t have weight 0 for all resources j that perish at time tj < t. The number of customer types can

be kept finite by discretizing the horizon but this number can be very large. We will discuss this

point shortly. When a customer arrives, a unit of an available resource must be assigned to her, or

she must be rejected. Each unit of a resource can be assigned to at most one customer. We allow

no-shows and the practice of overbooking to compensate for the effect of no-shows. The objective

of the problem is to allocate the resources to the customers to maximize the expected total reward

of the allocation.

Our advance reservation model is essentially an online weighted bipartite matching problem.

The resources in our model, when partitioned into units, can be seen as nodes on one side of a

bipartite graph. All the customers correspond to nodes on the other side that are arriving online.

The type of each arriving customer is determined by a time-varying distribution.

This resource allocation model can be found in many other applications. We summarize three

such applications below.

Ad allocation. In a typical display ad allocation problem, e-commerce companies aim at tailoring

display ads for each type of customers. Each ad, which corresponds to a resource, is often associated

with a maximum number of times to be displayed. Knowing the arrival rates of future customers,

the task is to make the most effective matching between ads and customers.

Single-leg revenue management. A special case of our model is the classic single-leg revenue

management problem in which all resources to be allocated are available at the same time. Cus-

tomers who bring a higher reward correspond to higher-fare classes. The decision is how to admit

or reject customers, given the time remaining until the flight and the current inventory of available

seats.

Management of opaque products. Internet retailers such as Hotwire or Priceline often offer a

buyer an under-specified or opaque product, such as a flight ticket, with certain details such as the

exact flight timing or the name of the airline withheld until after purchase. We assume that demand

for each opaque product is exogenous and independent of the availability of other products. When
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demand occurs, a decision is made to assign a specific product to that demand unit. Knowing

the arrival rates of all demands, we want to maximize the total expected revenue by strategically

assigning specific products.

Our contributions in this work are as follows:

• We provide a general, high-fidelity model of advance admission scheduling that captures cus-

tomer preferences across different resources. We allow non-stationary arrivals and no-shows. We

model the advance admission scheduling problem as an online weighted bipartite matching problem

with non-stationary arrivals and propose new algorithms with guarantees on the relative perfor-

mance.

• We prove the tightest known performance bound for the online matching problem with non-

stationary stochastic arrivals. Specifically, we prove that a primitive algorithm, which we call the

Separation Algorithm, has expected performance that is bounded below by 1−
√

2
π

1√
k

+O( 1
k
) times

that of an optimal offline algorithm, which knows all future information upfront, where k is the

minimum capacity of any resource. Our performance bound improves upon the lower bound of

Alaei, Hajiaghayi and Liaghat (2012). Moreover, it is close to an upper bound on the performance

of the Separation Algorithm that the same authors found.

We obtain our bound by analyzing a novel bounded Poisson process. This is a Poisson process

to which we apply a sequence of reflecting barriers. The process arises in the dual of an opti-

mization problem that characterizes our performance bound. The behavior of this process is very

complex, with no known closed-form description. We managed to obtain a closed-form approximate

characterization of the process.

• We improve on the Separation Algorithm by devising a novel bid-price-based algorithm, called

the Marginal Allocation Algorithm, that is much more practical. First, the Marginal Allocation

Algorithm is non-randomized, therefore more stable. Second, it is fair in the sense that it never

rejects a high-priority customer but accepts a low-priority customer, assuming that their arrival

times and preferences are the same. We prove that the Marginal Allocation Algorithm has the
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same theoretical performance guarantee as the Separation Algorithm. In addition, in numerical

experiments, we show that it achieves much better practical performance.

• We test the empirical performance of our algorithm against several well-known heuristics by

using appointment scheduling data from a department within a major academic hospital system in

New York City. The results show that our scheduling algorithms perform the best among all tested

policies. In particular, our algorithm is 21% more effective than the actual scheduling strategy used

in the hospital system according to our performance metric.

2. Literature Review

2.1. Appointment Scheduling

Our work is related to the literature on appointment scheduling. This area has been studied inten-

sively in recent years (Guerriero and Guido 2011, May et al. 2011, Cardoen et al. 2010, Gupta

2007). A large part of this literature considers intra-day scheduling, in which the number of patients

to be treated on each day is given or is exogenous, and the task is to determine an efficient

sequence of start times for their appointments. Another part of the literature considers multi-day

scheduling, in which patients are dynamically allocated to appointment days. Some works in this

literature focus on the number of patients to be served today, with the rest of the patients remain-

ing on a waitlist until the next day. This paradigm is called allocation scheduling. See, for example,

Huh et al. (2013), Min and Yih (2010), Ayvaz and Huh (2010), Gerchak et al. (1996). Recently,

more works have focused on the problem of directly scheduling patients into future days. This

paradigm is called advance scheduling. This paper considers an advance scheduling model with

multiple patient classes. In the literature of advance scheduling, Truong (2014) first studies the

analytical properties of a two-class advance scheduling model and gives efficient solutions to an

optimal scheduling policy. For the multi-class model, no analytical result is known so far. Goc-

gun and Ghate (2012) and Patrick et al. (2008) propose heuristics based on approximate dynamic

programming for these problems, but have not characterized the worst-case performance of these

heuristics. We propose online scheduling policies with performance guarantees for a very general

multi-class advance scheduling problem.
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Our advance scheduling model captures the preferences of patients in a general way. Patient

preferences are an important consideration in most out-patient scheduling systems. In the literature

considering patient preferences, Gupta and Wang (2008) consider a single-day scheduling model

where each arriving patient picks a single slot with a particular physician, and the clinic accepts

or rejects the request. Our model can be seen as a multi-period generalization of their work. We

also characterize the theoretical performance in an online setting, whereas they use stochastic

dynamic programming as the modeling framework and develop heuristics. Feldman et al. (2014)

study how to offer sets of open appointment slots to a stream of arriving patients over a finite

horizon of multiple days, given that patients have preferences for slots that can be captured by

the multinomial logit model. Their work is strongly influenced by assortment planning problems.

An important observation, which was first made by Gupta and Wang (2008), is that there is

a fundamental difference between many advance admission scheduling problems and assortment

planning problems. In admission scheduling, we can often work with revealed preferences, whereas

in assortment planning problems, decisions are made with knowledge only of a distribution of

customer preferences. Working with revealed preferences allows for a more efficient allocation of

service compared to working with opaque preferences. It also leads to more analytically tractable

models.

2.2. Online Resource Allocation

Our work is closely related to works on online matching problems. Traditionally, the online bipartite

matching problem studied by Karp et al. (1990) is known to have a best competitive ratio of 0.5 for

deterministic algorithms and 1− 1/e for randomized algorithms. For the online weighted bipartite

matching problem that we consider, the worst-case competitive ratio cannot be bounded below

by any constant. Many subsequent works have tried to improve performance ratios under relaxed

definitions of competitiveness.

Specifically, three types of assumptions are commonly used. The first type of assumption is that

each demand node is independently and identically (i.i.d.) picked from a known set of nodes. Under
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this assumption, Jaillet and Lu (2014), Manshadi et al. (2012), Bahmani and Kapralov (2010),

Feldman et al. (2009) propose online algorithms with competitive ratios higher than 1− 1/e for

the cardinality matching problem, in which the goal is to maximize the total number of matched

pairs. Haeupler et al. (2011) study online algorithms with competitive ratios higher than 1− 1/e

for the weighted bipartite matching problem. Our definition of competitive ratio is the same as

theirs. Our model is also similar, but we allow a more general arrival process of demand nodes in

which the distribution of nodes can change over time. Previous analyses depend crucially on the

fact that demand nodes are i.i.d. in order to simplify the expression for the probability that any

demand node is matched to any resource node. The expression becomes much more complex, and

the arguments break down in the case that demand arrivals are no longer i.i.d.

The second type of assumption is that the sequence of demand nodes is a random permutation

of an unknown set of nodes. This random permutation assumption has been used in the secretary

problem (Kleinberg 2005, Babaioff et al. 2008), adword problem (Goel and Mehta 2008) and the

bipartite matching problem (Mahdian and Yan 2011, Karande et al. 2011). Kesselheim et al. (2013)

study the weighted bipartite matching problem with extension to combinatorial auctions. Our work

is different from all of these in that the non-stationarity of arrivals in our model cannot be captured

by the random permutation assumption.

The third type of assumption made is that each demand node requests a very small amount

of resource. The combination of this assumption and the random-permutation assumption often

leads to polynomial-time approximation schemes (PTAS) for problems such as adword (Devanur

2009), stochastic packing (Feldman et al. 2010), online linear programming (Agrawal et al. 2014),

and packing problems (Molinaro and Ravi 2014). Typically, the PTAS proposed in these works

use dual prices to make allocation decisions. Under this third assumption, Devanur et al. (2011)

study a resource allocation problem in which the distribution of nodes is allowed to change over

time, but still needs to follow a requirement that the distribution at any moment induce a small

enough offline objective value. They then study the asymptotic performance of their algorithm. In
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our model, the amount capacity requested by each customer is not necessarily small relative to the

total amount of capacity available. Therefore, the analysis in these previous works does not apply

to our problem.

In our model, the arrival rates, or the distribution of demand nodes, are allowed to change

over time. This non-stationarity poses new challenges, because it cannot be analyzed with existing

methods. At the same time, it is an essential feature in our model because it allows us to capture

the perishability of service capacity in the applications that we consider. When a resource perishes

within the horizon, the demand for that resource drops to 0. Such a demand process must be

time-varying. This important feature has received only limited attention so far. Ciocan and Farias

(2012) consider an allocation model with a very general arrival process, but their allocation policy

has performance guarantee only when the arrival rates are uniform. In this paper, we allow arrival

processes to be non-homogeneous Poisson processes with arbitrary rates.

Our algorithms solves a linear program and uses its optimal solution to make matching decisions.

The idea of using optimal solutions to a linear program is natural and has been used by several

previous works mentioned above. For example, Feldman et al. (2009), Manshadi et al. (2012),

Haeupler et al. (2011), and Kesselheim et al. (2013) have used similar algorithms to obtain constant

competitive ratios, albeit for different demand models.

The paper of Alaei et al. (2012) solves an online matching problem with non-stationary arrivals

in a discrete-time setting. They propose an algorithm similar to our Separation Algorithm, which

is a primitive algorithm that we analyze initially and later improve upon. They prove that this

algorithm achieves a competitive ratio of at least 1− 1√
k−3

and at most approximately 1− 1√
2πk

,

where k is the minimum capacity of a resource. Compared to Alaei et al. (2012), we prove a stronger

lower bound of 1−
√

2
π

1√
k

+O( 1
k
) on the competitive ratio for our Separation Algorithm, using a

few of the same ideas but largely different techniques, as we will elaborate on in Section 5. Thus, our

lower bound is more similar to their upper bound. We also point out that the Separation Algorithm

is not practical because it might route customers to resources that are already exhausted, while
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there are still other available resources. More importantly, because of randomization, it might

reject a high-priority customer, but accept a low-priority customer at nearly the same time. For

this reason, we propose a new “bid-pricing” algorithm, based on the Separation Algorithm, that

avoids all of the above problems. We prove that the improved algorithm has the same theoretical

performance guarantee, and has much better computational performance as tested on real data.

2.3. Revenue Management

Our work is also related to the revenue management literature. We refer to Talluri and van Ryzin

(2004) for a comprehensive review of this literature. Traditional works in this area assume that

demands for products are exogenous and independent of the availability of other products (Laut-

enbacher and Stidham 1999, Lee and Hersh 1993, Littlewood 1972). The decision is whether to

admit or reject a customer upon her arrival. Our model reduces to this admission control problem

in the special case that the resources are identical and are available at the same time.

When customers are open to purchase one among a set of different resources, our model controls

which resource to assign to each customer. Thus, our model captures the problem of managing

opaque products. Sellers of an opaque product conceal part of the products’ information from

customers. Sellers have the ability to select which specific product to offer after the purchase of

opaque product. This enables the seller to more flexibly manage their inventory. Opaque products

are often sold at a discount compared to specific products, making them attractive to wider seg-

ments of the market. These products are common in internet advertising, tour operations, property

management (Gallego et al. 2004) and e-retailing. Customers purchase an opaque product if the

declared characteristics fit their preferences. The buyer agrees to accept any specific product that

meets the opaque description. In our model, a specific product corresponds to a node on the right

side of a bipartite graph. A unit of demand for an opaque product corresponds to a node on the

left that connects to all of the specific products contained in the opaque product. The weight of

an edge corresponds to the revenue earned by selling the opaque product.
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Previous works related to opaque products include Gallego and Phillips (2004), Fay and Xie

(2008), Petrick et al. (2010), Chen et al. (2010), Lee et al. (2012), Gönsch et al. (2014) and Fay and

Xie (2015). Due to the problem of large state space, most analyses focus on models with very few

product types. For systems with many product types, some pricing and allocation heuristics are

known. There is numerical evidence that much of the benefit of opaque products can be obtained

by having two or three alternatives (Elmachtoub and Wei 2013). However, when a retailer has a

large number of alternative products, it is unclear how to design such an opaque product. Our work

focuses on online allocation policies with constant performance guarantees for the management of

an opaque product with an arbitrary number of alternatives.

Our model assumes independent demands, i.e., the demand for each product is exogenous and

independent of the availability of other products. Many recent works in revenue management con-

sider endogenous demands, which means that customers who find their most preferred product

unavailable might turn to other products. Examples of works on dependent demands include Gal-

lego et al. (2004), Zhang and Cooper (2005), Liu and van Ryzin (2008) and Gallego et al. (2015).

One of the main characteristics of these models is that customer preferences cannot be observed

until purchase decisions are made. In such situation, sellers only have a distributional informa-

tion of customer preferences. This phenomenon does not apply to admission scheduling systems.

In these systems, customer preference can be revealed before a unit of a resource is assigned. In

MyChart, for example, the system is able to customize the appointment to offer to each patient

after knowing the patient’s profile and availability. We assume that each customer’s preference is

observed before a resource is assigned. Knowledge of preferences gives service providers the ability

to improve the efficiency of the resource allocation process by tailoring the service offered to each

customer.

Our work is related to the still limited literature on designing policies for revenue management

that are robust to the distribution of arrivals. Ball and Queyranne (2009) analyze online algo-

rithms for the single-leg revenue management problem. Their performance metric is the traditional
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competitive ratio that compares online algorithms with an optimal offline algorithm under the

worst-case instance of demand arrivals. They prove that the competitive ratio cannot be bounded

below by any constant when there are arbitrarily many customer types. In our work, we relax the

definition of competitive ratio, and show that our algorithms achieve a constant competitive ratio

(under our definition) for any number of customer types and for a more general multi-resource

model. Qin et al. (2015) study approximation algorithms for an admission control problem for

a single resource when customer arrival processes can be correlated over time. They use as the

performance metric the ratio between the expected cost of their algorithm and that of an optimal

online algorithm. Our performance metric is stronger than theirs as we compare our algorithms

against an optimal offline algorithm, instead of the optimal online policy. Qin et al. (2015) prove a

constant approximation ratio for the case of two customer types, and also for the case of multiple

customer types with specific restrictions. They allow only one type of resource to be allocated. In

our model, we assume arrivals are independent over time, but we allow for multiple customer types

and multiple resources without additional assumptions.

3. Model

Throughout this paper, we let N denote the set of positive integers. For any n ∈N, let [n] denote

the set {1,2, ..., n}.

There are n∈N resources and m∈N customer types. Customers of each type i∈ [m] randomly

arrive over a continuous horizon [0,1] according to a known non-homogeneous Poisson process

with rate λi(t), for t∈ [0,1]. Let Λi ≡
∫ 1

0
λi(t)dt be the expected total number of arrivals of type-i

customers. Each resource j ∈ [n] has a capacity of Cj ∈N units.

When a customer arrives, one unit of capacity of an available resource must be assigned to

the customer, or the customer must be rejected. A customer of type i ∈ [m] earns a reward rij if

assigned to resource j ∈ [n]. The objective is to allocate the resources to the customers to maximize

the expected total reward from all of the allocated resources.

This model captures the expiration of resources in the following sense. Suppose we assign an

expiration time tj ∈ [0,1] to each resource j ∈ [n]. Then, for any customer type i ∈ [m] such that
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λi(t)> 0 for some t > tj, we require rij = 0. In this way, the reward from assigning resource j to

any customer who arrives after the expiration time tj is 0.

3.1. Definition of Competitive Ratios

Let δi be the actual total number of arrivals of type i customers. We must have E[δi] = Λi, for all

i∈ [m]. An offline algorithm knows δ= (δ1, δ2, ..., δm) at the beginning of the horizon. Let OPT(δ)

be the optimal offline reward given the number of arrivals δ. Note that an optimal offline algorithm

does not need to know the time of each arrival, as the algorithm essentially solves a maximum

weighted matching problem, between the customers and resources. An online algorithm, however,

does not know the entire sample path of future arrivals, but only knows the arrival rates λi(t),

i∈ [m]. In this paper, we define the competitive ratio as the ratio between the expected reward of

an online algorithm and the expected reward of an optimal offline algorithm.

Definition 1. An online algorithm is c-competitive if its total reward ALG satisfies

E[ALG]≥ cE[OPT(δ)],

where the expectation is taken over the sample path of customer arrivals (the random vector δ is

determined by the sample path of arrivals).

3.2. Offline Algorithm and Its Upper Bound

Before introducing our online algorithms, we first characterize an optimal offline algorithm and an

upper bound on the optimal offline reward.

In the offline case, the total number of arrivals δi of each customer type i is known, and the exact

arrival time is irrelevant. Given the δi’s, the maximum offline reward OPT(δ) can be computed by
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solving a maximum weighted matching problem, which can be formulated as the following LP:

OPT(δ) = max
∑
i∈[m]

∑
j∈[n]

xijrij

s.t.
n∑
j=1

xij ≤ δi, for i∈ [m]

m∑
i=1

xij ≤Cj, for j ∈ [n]

xij ≥ 0, for i∈ [m]; j ∈ [n].

(1)

where the decision xij is the number of type-i customers who are assigned to resource j. Let x̄(δ)

be an optimal solution to this LP. Then OPT(δ) =
∑m

i=1

∑n

j=1 rijx̄ij(δ).

We are interested in finding an upper bound on the expected optimal offline reward E[OPT(δ)].

We next show that LP (2), which uses E[δ] instead of δ as the total demand, gives such an upper

bound:

max
∑
i∈[m]

∑
j∈[n]

xijrij

s.t.
n∑
j=1

xij ≤Λi, for i∈ [m]

m∑
i=1

xij ≤Cj, for j ∈ [n]

xij ≥ 0.

(2)

Theorem 1. The optimal objective value of (2) is an upper bound on E[OPT(δ)].

Proof. Since
∑n

j=1 x̄ij(δ)≤ δi and
∑m

i=1 x̄ij(δ)≤ Cj, we must have
∑n

j=1 E[x̄ij(δ)]≤ E[δi] = Λi

and
∑m

i=1 E[x̄ij(δ)] ≤ Cj. Thus, E[x̄ij(δ)] is a feasible solution to the LP (2). It follows that the

optimal objective value of (2) is an upper bound on

m∑
i=1

n∑
j=1

rijE[x̄ij(δ)] =E[OPT(δ)].

Similar techniques have been used in revenue management to prove similar results (Gallego and

van Ryzin 1997). �
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4. Separation Algorithm

In this section, we propose the Separation Algorithm. The algorithm works by solving the LP (2)

once, routing the customers to the resources according to an optimal solution to the LP (2). Then,

for each resource separately, the algorithm optimally controls the admission of customers who have

been routed to that resource. Using the LP information with respect to the expected number of

arrivals (or sometimes, an estimate of the expected number of arrivals) is natural and has been used

in several previous results (for example, Feldman et al. (2009), Manshadi et al. (2012), Haeupler

et al. (2011), and Kesselheim et al. (2013)).

Let x∗ be an optimal solution to the linear program (2). Whenever a customer of type i arrives,

the Separation Algorithm randomly and independently picks a candidate resource j ∈ [n] with

probability x∗ij/Λi, regardless of the availability of resources. We say that this customer is routed

to resource j. According to the Poisson thinning property, the arrival process of type-i customers

who will be routed to resource j is a non-homogeneous Poisson process with rate

λij(t)≡ λi(t)x∗ij/Λi, for 0≤ t≤ 1. (3)

Viewing the random routing process as exogenous, each resource j receives an independent arrival

process with split rate λij(t) from each customer type i. Then for each resource j, the Separation

Algorithm optimally controls the admission of customers who will be routed to resource j. That

is, when a type-i customer is routed to resource j at time t, the algorithm compares rij with the

marginal cost of taking one unit away from resource j, where the marginal cost is computed based

on the future customers who will be routed to resource j. The customer is accepted and offered

resource j if rij is higher than or equal to the marginal cost. The customer is rejected if rij is

smaller than the marginal cost or if resource j has no remaining capacity.

For each resource j ∈ [n], let cj(t) ∈ {0,1, ...,Cj} denote the amount of resource j that remains

at time t. Given the exogenous random routing process, we define fj(t, cj(t)) as the optimal future
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reward of the admission control problem for resource j. fj(t, cj(t)) is governed by the Hamilton-

Jacobi-Bellman equation

∂fj(t, c)

∂t
=−

∑
i∈[m]

λij(t)(rij − fj(t, c) + fj(t, c− 1))+, ∀c= 1,2, ...,Cj, t∈ [0,1]. (4)

The boundary conditions are fj(1, c) = 0 for all c = 0,1, ...,Cj, and fj(t,0) = 0 for all t ∈ [0,1].

According to properties of the HJB equation, fj(t, c) is decreasing in t, which captures the fact

that resources are expiring over time. We call fj(·, ·) the reward function for resource j. In practice,

the continuous-time dynamic programming (4) can often be solved by discretizing the horizon (for

example, see Arslan et al. (2015)).

Below are the detailed steps of the Separation Algorithm:

1. Solve LP (2). Let x∗ be any optimal solution.

2. For each resource j ∈ [n], compute the reward function fj(t, c) according to (4).

3. Upon an arrival of a type-i customer at time t, randomly pick a number j ∈ [n] with probability

x∗ij/Λi. Assign resource j to the customer if resource j has positive remaining capacity and rij ≥

fj(t, cj(t))− fj(t, cj(t)− 1).

The following proposition states that the total expected reward of the Separation Algorithm is

given by the reward functions. We omit the proof as this result directly follows from properties of

the HJB equation.

Proposition 1. Conditioned on the state cj(t), the Separation Algorithm earns reward fj(t, cj(t))

from resource j in time [t,1] in expectation. In particular, the expected total reward of the Separation

Algorithm is
∑

j∈[n] fj(0,Cj).

5. Proof of Competitive Ratio

In this section, we show that if k is the minimum capacity of any resource, then the competitive

ratio of the Separation Algorithm is 1−
√

2
π

1√
k

+O( 1
k
). This result is stated in Theorem 4.

To prove the competitive ratio, we fix a resource j ∈ [n] and focus on the ratio

fj(0,Cj)∑
i∈[m] x

∗
ijrij

, (5)
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where fj(0,Cj) is the expected reward that the Separation Algorithm earns from resource j, and∑
i∈[m] x

∗
ijrij is an upper bound on the optimal expected offline reward from resource j (see LP

(1)).

We want to lower-bound (5) by examining all possible inputs r and λ(·). As we will prove a lower

bound that increases in the capacity value, the worst case for our analysis is Cj = k, where k is

the minimum capacity of any resource. Thus, for the rest of the section, we suppose Cj = k and

analyze the ratio
fj(0,k)∑
i∈[m] x

∗
ijrij

.

We apply Jensen’s inequality to the HJB equation (4) to obtain

∂fj(t, c)

∂t
=−

∑
i∈[m]

λij(t)(rij − fj(t, c) + fj(t, c− 1))+

≤−
∑
i∈[m]

λij(t)

(∑
i∈[m] λij(t)rij∑
i∈[m] λij(t)

− fj(t, c) + fj(t, c− 1)

)+

.

Thus, the performance of the Separation Algorithm can be lowered by replacing the problem

instance with one in which there is only one type of customer arrival with arrival rate λ(t) =∑
i∈[m] λij(t) and reward rate r(t) =

∑
i∈[m] rijλij(t)∑
i∈[m] λij(t)

, so that the worst-case instance has one customer

type, and time-dependent reward value r(·). This observation has also been made by Alaei et al.

(2012).

Furthermore, by (3) and definition of Λi, we can obtain

∑
i∈[m]

x∗ijrij =
∑
i∈[m]

rij

∫ 1

0

λij(t)dt

∫ 1

0
λi(t)dt

Λi

=

∫ 1

0

∑
i∈[m]

rijλij(t)dt

=

∫ 1

0

r(t)λ(t)dt.

Thus, to characterize the worst-case performance ratio for the fixed resource j, we only need to

lower-bound

fj(0, k)∑
i∈[m] x

∗
ijrij

≥ u0(0)∫ 1

0
r(t)λ(t)dt

, (6)
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where ul(t) is the new reward function defined based on λ(t) and r(t):

dul(t)

dt
=−λ(t)(r(t)−ul(t) +ul+1(t))+, ∀l= 0,1, ..., k− 1, t∈ [0,1] (7)

with boundary conditions ul(1) = 0 for all l= 0,1, ..., k and uk(t) = 0 for all t∈ [0,1].

Note that the HJB equation (7) is different from (4), as (7) is defined by a different arrival rate

and reward rate. Moreover, we use l to denote the consumed inventory in (7), whereas in (4), we

used c to denote the remaining inventory. This change is convenient for our analysis.

In order to lower-bound (6), we need to examine all possible reward rates r(·) and arrival rates

λ(·) such that the constraints of (2) are satisfied. The first constraint of (2) is satisfied by definition

of λ(t) and λij(t). The second constraint of (2) requires∫ 1

0

λ(t)dt=

∫ 1

0

∑
i∈[m]

λij(t)dt=
∑
i∈[m]

x∗ij ≤ k. (8)

5.1. Homogenizing time

Without loss of generality, we can change the horizon length, the arrival rate λ(·) and the reward

rate r(·) as follows, while keeping the ratio (6) unchanged:

1. If the inequality (8) is not tight, i.e.,
∫ 1

0
λ(t)dt < k, we can extend the horizon to length T > 1

by adding more arrivals with reward 0. Thus, we can equivalently assume
∫ T

0
λ(t)dt= k.

2. Let T be the length of the (possibly extended) horizon such that
∫ T

0
λ(t)dt = k. Define a

virtual time

t̄(t)≡
∫ t

0

λ(s)ds, ∀t∈ [0, T ].

We must have t̄(t) ∈ [0, k] for all t ∈ [0, T ]. Using this new time variable t̄(·), we can define new

reward functions as

ūl(s) = ul(t̄
−1(s)),

where we interpret t̄−1(s) as the first time t that satisfies t̄(t) = s. Similarly, we can define r̄(s) =

r(t̄−1(s)). Then we can equivalently transform the HJB equation for ul(t) as follows

dul(t)

dt
=
dūl(t̄(t))

dt̄(t)

dt̄(t)

dt
=
dūl(t̄)

dt̄
λ(t)
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=⇒ dūl(t̄)

dt̄
λ(t) =−λ(t)(r(t) +ul+1(t)−ul(t))+ =−λ(t)(r̄(t̄) + ūl+1(t̄)− ūl(t̄))+

=⇒ dūl(t̄)

dt̄
=−(r̄(t̄) + ūl+1(t̄)− ūl(t̄))+, ∀t̄∈ [0, k].

This equation can be viewed as another HJB equation with arrival rate 1 and reward rate r̄(·),

with boundary conditions uk(t) = 0 for t ∈ [0, k] and ul(k) = 0 for l = 0,1, ..., k. Furthermore, the

upper bound on the expected offline reward can be transformed as

∫ T

0

r(t)λ(t)dt=

∫ k

0

r̄(t̄)dt̄.

In summary, we can equivalently transform the problem into one whose arrival rate is uniformly 1

and whose time horizon is [0, k].

5.2. Bound-revealing optimization problem

After applying the above transformations, we can write an optimization problem that reveals the

competitive ratio as follows

min
r(t),ui(t),i=0,1,...,k−1;t∈[0,k]

u0(0) (9)

s.t.
dui(t)

dt
=−(r(t) +ui+1(t)−ui(t))+, ∀i= 0,1, ..., k− 1; t∈ [0, k]∫ k

0

r(t)dt= 1

ui(t)≥ 0, ∀i= 0,1, ..., k− 1; t∈ [0, k]

r(t)≥ 0.

Here the second constraint
∫ k

0
r(t)dt = 1 normalizes the upper bound on the expected offline

reward. By using gi(t) = −dui(t)/dt and replacing (·)+ with linear constraints, we can write the

above problem equivalently as (note that gk(t) = 0,∀t∈ [0, k])

min
r(t),gi(t),i=0,1,...,k−1;t∈[0,k]

∫ k

0

g0(s)ds

s.t. gi(t)≥ r(t) +

∫ k

t

gi+1(s)ds−
∫ k

t

gi(s)ds, ∀i= 0,1, ..., k− 1;∀t∈ [0, k]
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∫ k

0

r(t)dt= 1

gi(t)≥ 0, ∀i= 0,1, ..., k− 1; t∈ [0, k]

r(t)≥ 0.

Let αi(t) be a dual variable for the first constraint, for all i= 0,1, ..., k− 1 and t ∈ [0, k]. Let β

be a dual variable for the second constraint. The dual problem is

max
αi(t),β

β

s.t. α0(t) +

∫ t

0

α0(s)ds≤ 1, ∀t∈ [0, k]

αi(t) +

∫ t

0

αi(s)ds≤
∫ t

0

αi−1(s)ds, ∀i= 1,2, ..., k− 1;∀t∈ [0, k]

β ≤
k−1∑
i=0

αi(t), ∀t∈ [0, k]

αi(t)≥ 0, ∀i= 0,2, ..., k− 1,∀t∈ [0, k].

(10)

This dual problem tries to maximize the minimum value of
∑k−1

i=0 αi(t) with respect to t. The

optimal β is a lower bound on the competitive ratio that we seek to characterize.

5.3. A dual-feasible solution for the bound-revealing problem

We first show that a feasible solution to the dual problem (10) can be constructed based on a

modification of a Poisson process. As we shall explain shortly, this is a Poisson process to which we

apply a control, using a sequence of bounding barriers. We will use the solution obtained via this

derived process to obtain a lower bound on the optimal value of the bound-revealing optimization

problem (9). We will refer to the process as a bounded Poisson process. Alaei et al. (2012) also

prove their bound by working with a dual-feasible solution. However, we construct our dual-feasible

solution differently using a novel method. Because our bound has to be tighter, our analysis of this

solution is also much more involved.

Let t0, t1, t2, ..., tk be a sequence of time points such that 0 = t0 < t1 < · · ·< tk−1 < tk = k.
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Figure 1 Illustration of the bounded Poisson process. Dashed red line is the barrier. Solid blue line is the R(t)

process. The barrier is active when the two lines overlap.

Let {N(t)}t≥0 be a (counting) Poisson process with rate 1. We apply an upper barrier to N(t)

to obtain a new bounded process {R(t)}t≥0. Figure 1 illustrates this R(t) process. Starting with an

initial value 0 at time t0 = 0, the barrier increases by 1 at times t1, t2, ..., tk−1. At these time points,

the new bounded process has values

R(ti) = min(i− 1,R(ti−1) +N(ti)−N(ti−1)), ∀i= 1,2, ..., k− 1,

with R(t0) =R(0) = 0. And for t∈ [ti, ti+1], we have

R(t) = min(i,R(ti) +N(t)−N(ti)), ∀i= 1,2, ..., k− 1.

Eventually,

R(tk) =R(k) = min(k− 1,R(tk−1) +N(k)−N(tk−1)).

Theorem 2. There exists a feasible dual solution β∗, α∗i (t) for t ∈ [0, k], i= 0,1,2, ..., k− 1, such

that

α∗i (t) =P(R(t) = i)β∗, ∀t∈ [0, k], i= 0,1, ..., k− 1,

k(1−β∗) = β∗

[
k−

k−1∑
i=0

iP(R(k) = i)

]
(11)

for the bounded Poisson process R(t) as constructed above.

Given that β∗ and α∗ are dual-feasible, we will next attempt to lower-bound objective β∗ by

analyzing the process R(·).

First we show that the times at which the barriers are applied are bounded above by 1,2, . . . , k−1.
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Theorem 3. The time points t1, t2, ..., tk−1 constructed in the proof of Theorem 2 satisfy ti ≤ i, for

i= 1,2, ..., k− 1.

Before proving Theorem 3, we first prove Lemmas 1 to 5, which further characterize the behavior

of the process R(t). These lemmas collectively show that when the barriers are applied at regular

points starting at some time of the horizon, i.e., ti = i for all i≥ l for some integer l, the time spent

at the barriers must be monotone decreasing in the index i for all i≥ l.

For ease of notation, let

Ii ≡
∫ ti+1

ti

1(R(s) = i)ds

be the total time that the bounded process R(t) stays at the barrier i during the interval [ti, ti+1],

for i = 0,1, ..., k − 1. Note that E[Ii] =
∫ ti+1

ti
P(R(s) = i)ds. Let Pi(λ) be the probability that a

Poisson random variable with mean λ is equal to i. Let P≥i(λ) and P≤i(λ) denote
∑∞

j=iPj(λ) and∑i

j=0Pj(λ), respectively.

First, assuming that the barriers are applied at regular points 0,1, . . . , k−1, we can quantify the

difference in the expected time spent at each barrier, given different starting points for the process

R(·).

Lemma 1. Given any l ∈ {1,2, ..., k− 1}, if tl = l and tl+1 = l+ 1, we must have

E[Il|R(l) = l− j]−E[Il|R(l) = l− j− 1] = P≥j+1(1)

for all j = 0,1, ..., l− 1.

Next, assuming that the barriers are applied at regular points 0,1, . . . , k−1, we can characterize

the differences in the expected time spent at each barrier for successive pairs of starting points.

Lemma 2. Given any l ∈ {2,3, ..., k− 1}, if ti = i for all i= l, l+ 1, ..., k− 1, we must have

E[Ii|R(l) = l]−E[Ii|R(l) = l− 1]≥ e−1(E[Ii|R(l) = l− 1]−E[Ii|R(l) = l− 2])

for all i= l, l+ 1, ..., k− 1.



22 Wang, Truong, and Bank: Online Advance Admission Scheduling

Using the previous result, we relax the assumption that all the barriers are applied at regular

points 0,1, . . . , k−1. We assume now that the barriers are applied at regular times beyond a point.

Under this condition, we show that the differences in the expected time spent at successive barriers

are increasing with the starting point of the process.

Lemma 3. Given any l ∈ {1,2, ..., k−2}, if ti ≤ i for i= 1,2, ..., l, and ti = i for i= l+1, l+2, ..., k−

1, we must have

E[Ii|R(l) = l]−E[Ii+1|R(l) = l]≥E[Ii|R(l) = l− 1]−E[Ii+1|R(l) = l− 1]

for all i= l, l+ 1, ..., k− 2.

Next, assuming that the barriers are applied at regular points 0,1, . . . , k− 1, we show that the

expected time spent by the process at each barrier is decreasing with the index of the barrier.

Lemma 4. If ti = i for all i= 1,2, ..., k− 1, we must have E[Ii]≥E[Ii+1] for all i= 1,2, ..., k− 2.

Proof. It is obvious that for any i≥ 1,

E[Ii|R(1) = 1]≥E[Ii|R(1) = 0],

because when the starting position becomes lower, it is harder for the random process R(t) to

reach the barrier at any later time. Since E[Ii|R(1) = 0] =E[Ii], and by symmetry, E[Ii|R(1) = 1] =

E[Ii−1], we have E[Ii−1]≥E[Ii] for all i≥ 1. �

Finally, we relax the requirement of Lemma 4. We require only that the barriers be applied at

regular points only after some time. We show that the expected time spent at the barriers are still

decreasing.

Lemma 5. Given any l ∈ {1,2, ..., k−2}, if ti ≤ i for i= 1,2, ..., l, and ti = i for i= l+1, l+2, ..., k−

1, we must have

E[Ii]≥E[Ii+1]

for all i= l, l+ 1, ..., k− 2.
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The idea of the proof of Theorem 3 is as follows. We will start by setting the barriers at times

0,1, . . . , k− 1. We then successively reduce the values ti, i= 0,1, . . ., until the expected time spent

at each barrier is no more than 1/β − 1. By the monotonicity shown in Lemma 5, this procedure

must stop with the expected time spent at each barrier bounded above by 1/β− 1.

If we change the value of β, the time points t1, t2, ..., tk−1 that result from the above procedure

must change continuously in β. We simply choose β such that, when the procedure ends, the

expected time spent at the last barrier is 1/β − 1, which implies that the expected time spent at

all barriers is exactly 1/β− 1.

5.4. Computing the bound

First, we prove an inequality, which will be useful in computing our bound.

Lemma 6. For any x, y ∈ Z and λ ∈ [0, k] such that x ≥ y ≥ k − 1 − λ, we must have for any

l= 0,1, ..., k− 1,
l∑

i=−l

Pk−1+i−x(λ)≤
l∑

i=−l

Pk−1+i−y(λ).

Finally, we derive our lower bound on β∗. The bound is simply a reduction of the equation

k(1−β∗) = β∗

[
k−

k−1∑
i=0

iP(R(k) = i)

]
,

which follows from Theorem 2. β∗ is strictly greater than 0.5 for k ≥ 2. For example, when k = 2,

β∗ satisfies

3β+βe1/β−3 = 2,

from which we can obtain β∗ ≈ 0.615.

Proposition 2.

β∗ ≥ 1

1 + 1
k
[
∑∞

i=2k−1 iPi(k) + 2
∑k−1

i=1 iPk+i−1(k)]
.

Theorem 4. If k is the minimum capacity of any resource, the competitive ratio for the Separation

Algorithm is at least

β∗ ≥ 1

1 + 2
[
P≥k(k)

k
+ e−kkk

k!

] = 1−
√

2

π

1√
k

+O(
1

k
).
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6. Marginal Allocation Algorithm

In this section, we propose the Marginal Allocation Algorithm, which improves on the Separation

Algorithm by converting it to a bid-price algorithm.

The Separation Algorithm, when carried out in practice, has several problems. First, it might

route customers to unavailable resources when they can be better matched to other resources.

Second, because of the random routing, it might unfairly accept a lower-priority customer after

rejecting a higher-priority customer. In this section, we present the Marginal Allocation Algorithm

which resolves these issues by converting the Separation Algorithm into a bid-price algorithm. We

will prove that the Marginal Allocation Algorithm has theoretical performance no worse than that

of the Separation Algorithm.

The Marginal Allocation Algorithm uses the marginal reward fj(t, cj(t))− fj(t, cj(t)− 1) as a

bid price for resource j. When a customer of type i arrives, the Marginal Allocation Algorithm

rejects the customer if rij < fj(t, cj(t))− fj(t, cj(t)− 1) for all available resources j; otherwise, it

assigns this customer to resource

arg max
j
{rij − fj(t, cj(t)) + fj(t, cj(t)− 1)|cj(t)> 0}.

To carry out this algorithm, we only need to compute the n reward functions at the beginning

of the horizon. Thus the space requirement is polynomial in T and n. At any time t, we only need

to know the n reward functions fj(t, cj(t)), for j = 1,2, ..., n, so as to make a decision.

The following theorem states that the Marginal Allocation Algorithm performs at least as well

as the Separation Algorithm:

Theorem 5. The expected total reward of the Marginal Allocation Algorithm is no less than that

of the Separation Algorithm.

As a result, when k is the minimum capacity, the competitive ratio of the Marginal Allocation

Algorithm is 1−
√

2
π

1√
k

+O( 1
k
). When k tends to infinity, the competitive ratios tends to 1, so the

Marginal Allocation Algorithm is asymptotically optimal.
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6.1. Resource sharing

In settings in which customers have similar preferences for all the resources, the Marginal Allocation

Algorithm utilizes resources more effectively than the Separation Algorithm, because the latter

restricts each customer to only one resource but the former can allocate any available resource.

We focus on such settings in this section, and lower-bound the expected reward that the Marginal

Allocation can earn more than the Separation Algorithm.

Proposition 3. The expected reward earned by the Marginal Allocation Algorithm can be as much

as 1/(1− e−1) times that earned by the Separation Algorithm.

Proof. Suppose rij = 1 for all j ∈ [n] and i ∈ [m]. Suppose Cj = 1 for all j ∈ [n]. Suppose∑
i∈[m] Λi = n. In this way, the total expected number of arrivals is equal to the total capacity.

The optimal LP solution must satisfy
∑

i∈[m] x
∗
ij = 1.

Since for any resource j ∈ [n], the reward values rij are the same for all customer types i ∈ [m],

the expected future reward earned from future customers must be no more than the reward values,

i.e., fj(t,1)≤ rij = 1 for all t∈ [0,1].

fj(0,1) =

∫ 1

0

∑
i∈[m]

λij(s)(rij − fj(s,1) + fj(s,0))+ds

=

∫ 1

0

∑
i∈[m]

λij(s)(1− fj(s,1))+ds

=

∫ 1

0

∑
i∈[m]

λij(s)(1− fj(s,1))ds.

=⇒ fj(0,1) = 1− e−
∫ 1
0

∑
i∈[m] λij(s)ds = 1− e−

∫ 1
0

∑
i∈[m] λi(s)x

∗
ij/Λids = 1− e−1.

This result is easy to see, as the Separation Algorithm collects a reward the first time a customer

is routed to resource j. 1− e−1 is exactly the probability that the number of customers routed to

resource j (Poisson random variable with mean 1) is greater than or equal to 1.

Thus, the total expected reward earned by the Separation Algorithm is

∑
j∈[n]

fj(0,1) = n(1− e−1).
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In this setting, since the bid prices are no larger than the reward values, the Marginal Allocation

Algorithm never rejects a customer unless all the resources are empty. Let N be the total number

of arrivals during the horizon. N is a Poisson random variable with mean
∑

i∈[m] Λi = n.

According to Chebyshev’s inequality,

P(N <E[N ]− (E[N ])0.75)≤ Var(N)

(E[N ])1.5
= n−0.5.

The Marginal Allocation Algorithm earns at least

[E[N ]− (E[N ])0.75]P(N ≥E[N ]− (E[N ])0.75)

=[n−n0.75][1−P(N <E[N ]− (E[N ])0.75)]

≥[n−n0.75][1−n−0.5]

≥n−n0.75−n0.5.

The ratio between the total expected reward earned by the Marginal Allocation Algorithm and

the Separation Algorithm is at least

n−n0.75−n0.5

n(1− e−1)
=

1

1− e−1
(1−n−0.25−n−0.5).

It approaches 1/(1− e−1) when n becomes large.

�

6.2. Overbooking

No-shows is an issue that is common to all advance admission-scheduling systems. When customers

book in advance, events may transpire between the date of the booking and the planned date of

service that cause customers to miss their appointments. Due to the frequent occurrence of no-

shows, overbooking is commonly used in service industries. Suppose each customer has a no-show

probability of pj when assigned to resource j, and incurs a cost of Dj when being denied getting

resource j. Then we can model the overbooking strategy by expanding capacities at additional
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costs. Assume that the no-show events are exogenous to both online and offline algorithm. For

resource j, the kth overbooked unit of capacity incurs an expected marginal cost of

oj(k) =Dj · (1− pj) ·

k−1∑
l=0

Cj + k− 1

l

plj(1− pj)Cj+k−1−l

 , (12)

where the value in the brackets represents the probability that, among the Cj + k− 1 customers

who have already booked resource j, at most k− 1 of them do not show up. The additional 1− pj

in the product represents the probability that the kth overbooked customer does show up. Note

that the marginal cost oj(k) is independent of customer type, and is increasing in k.

Assuming that the reward rij is earned whether a customer of type i actually takes resource j,

the marginal reward of allocating the kth overbooked unit of resource j to a type i customer is

r̃i,j,k = rij − oj(k).

When using this reward value r̃i,j,k, we are treating each overbooked unit of resource j as a

virtual slot to be allocated. Then, the theoretical bound of our algorithms still applies, with r̃i,j,k

being the reward of expanded units.

Since r̃i,j,k ≤ ri,j and r̃i,j,k decreases in k, an optimal offline algorithm, when allocating resource

j, will first fill in the Cj units of regular capacity and then assign customers to those virtual slots

with lower values of k. It will not use virtual slots with non-positive marginal reward. Then, when

b overbooked units of resource j are used under the optimal offline algorithm by the end, the total

cumulative cost
b∑

k=1

oj(k) (13)

is just the actual expected overbooking cost for resource j.

7. Numerical Studies

We compare our Marginal Allocation Algorithm against the outcome of the actual scheduling

practices used in the Division of Clinical Genetics within the Department of Pediatrics at Columbia

University Medical Center (CUMC). The third author oversees appointment scheduling practice
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at the medical center. We estimate our model parameters, including patient preferences, arrival

rates and hospital processing capacities, by using historical appointment-scheduling data from the

outpatient clinics. We also test the performance of our algorithm against some simple heuristics.

We find that our Marginal Allocation Algorithm performs the best among all heuristics considered,

and is 21% more efficient than current practice, according to our performance metric, which we

will explain below.

Specifically, we used data from the Division of Clinical Genetics at CUMC. Clinical Genetics is a

field of medicine where adults are assessed for the risk of having offsprings with heritable conditions

and children are assessed for genetic disorders. Geneticists use physical exams, chromosome testing

and DNA analysis to diagnose patients suspected of having genetic abnormalities. The data we

used contain more than 9000 appointment entries recorded in the year 2013. Each entry in the data

records information about one appointment. The entry includes the date that the patient makes

the appointment, the exact time of the appointment, whether the patient eventually showed up to

the original appointment, canceled the appointment some time later, or missed the appointment.

Canceled appointment slots are offered to new patients when possible.

The average number of patients who arrive to make appointments on each day is shown in

Figure 2. The actual arrival pattern is highly non-stationary, as the average number of arrivals on

Friday is about twice that on other days. Our Marginal Allocation Algorithm gracefully handles

this inherent non-stationarity.

We assume that there are two sessions on each day, a morning and an afternoon session. Each

session on each day corresponds to a resource in our model. About 98% appointments were sched-

uled into sessions on Monday through Thursday. We ignore the 2% of appointments scheduled into

other sessions because there are insufficient data to perform accurate analysis for these sessions. In

other words, we set the capacity of sessions on Friday, Saturday and Sunday to be 0. The capacity

of sessions from Monday to Thursday are set based on the actual number of appointments made

on these days, which is about 23 appointments per session. We will vary the capacity values in

some of our experiments.
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Figure 2 Average number of arrivals in a week.

In this numerical experiment we do not model rescheduling, and treat each rescheduled appoint-

ment as an independent request. We also do not model the reuse of canceled appointment slots.

Canceled slots are reused in practice, resulting in more efficient use of capacity. In this way, our

algorithms are at a disadvantage compared to actual practice because it has less capacity at its

disposal.

We assume that the higher the probability that a patient will show up for a session, the more

preferred the session is. Thus, we use show probabilities as a proxy for patient preferences for each

session in a week. Specifically, we define the reward of assigning a patient who arrives in period i

to a session j as

rij =

Probability that the patient arriving in period i will show up in session

j without canceling the appointment some time later or missing the

appointment eventually.

(14)

This definition of reward value does not capture all practical concerns, but it gives a good sense

of scheduling effectiveness. The higher the measure is, the fewer no-shows and cancellations are

likely to result, and the fewer appointments slots are potentially wasted. In practice, operators try

to subjectively assign appointments to accommodate patient preferences while maintaining a high

level of utilization of capacity. Because operators decisions are decentralized, they do not follow a

precise and uniform procedure. However, our definition of reward is compatible with the goals of

the actual system.
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We estimate the show probabilities as a function of 3 factors: the day of the week, the time of

day (morning/afternoon) and the number of days of wait starting from the patient’s arrival to the

actual appointment. In the first part of our experiment, we assume that patients have identical

preferences in the sense that any two patients arriving on the same day will have the same reward

values for each open session. Thus, patients differ only in their time of arrival.

Both of the above assumptions regarding the homogeneity of preferences and the usefulness of

show probabilities as indicators of preferences are strong assumptions. We are aware that the show

probabilities are imperfect substitute for actual preferences. They also only express an average

measure of preference. A finer experiment would take into account actual preferences and vari-

ability of preferences among patients. However, we believe that our experiment is still valuable in

indicating the value of using online algorithms. In a sense, our online algorithms are at a disadvan-

tage compared to real practice because in practice, appointments were made taking into account

actual preferences, whereas our online algorithms ”know” only the show probabilities.

Figure 3 illustrates the show probabilities of patients who arrive on a Thursday to make appoint-

ments for the following week. We can see that, in general, the shorter the wait is in days, the higher

the show probability is. Figure 4 illustrates the show probability as a function of number of days

to wait before getting service. The show probabilities range from as low as 27%, for appointments

made more than two months into the future, to as high as 97%, for same-day visits. Table 1 shows

more show probabilities as a function of waiting time and day of week of the appointment.

Figure 3 Show probabilities of appointment slots assigned to patients who arrived on the previous Thursday.
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Figure 4 Show probabilities as functions of number of days to wait before getting service.

Table 1 Show probabilities for morning sessions, as a function waiting time and day of week of the appointment.

Some cells are NA because there is no patient arrival during weekends.

Number of days waiting

Day of Week of Appointment 0 1 2 3 4 5 6 7 8

Mon 91% NA NA 81% 85% 78% 82% 70% 69%

Tue 78% 83% NA NA 62% 70% 73% 58% 53%

Wed 97% 61% 46% NA NA 57% 65% 52% 50%

Thur 95% 67% 41% 50% NA NA 60% 58% 57%

We used a 12-week period from March to May in 2013 as our time horizon. An appointment

reminder system was in use during this time. There are 2032 patients scheduled during this horizon

according to our data. We use the sample consisting of these 2032 patient arrivals to simulate the

performance of the following scheduling policies.

• The Marginal Allocation Algorithm (MAA). The arrival rates, which are inputs of the algo-

rithm, are estimated using our one-year data in 2013. The average number of arrivals in each day

of week has been shown earlier in Figure 2.

• The Marginal Allocation Algorithm with estimation error α% (MAA-α%). This algorithm

uses reward values (14) that are each randomly and independently perturbed by relative errors

drawn from a uniform distribution over [−α%, α%]. The total reward earned by this algorithm is



32 Wang, Truong, and Bank: Online Advance Admission Scheduling

computed using the unperturbed reward values. We include these algorithms to test the impact of

our parameter estimation errors on the performance comparison with actual practice.

• The Separation Algorithm.

• The outcome of actual practice used in hospitals. The total reward earned by the actual

strategy is also calculated using the reward values defined in (14).

• The greedy policy, which always assigns a patient to the available session that is most preferred

by the patient, as indicated by the show probability of the session. It captures a naive but easily

implementable policy when a scheduler is aware of patient preferences.

• The bid-price policy, which uses the optimal dual variables of LP (2) corresponding to the

capacity constraints as the bid prices. It assigns an arriving customer to the resource with the

lowest price smaller than or equal to the revenue that the customer brings. This heuristic is a

widely used heuristic in resource-allocation problems.

In our first experiment, we do not consider overbooking and cancellations. The capacity of each

session is set to be the number of appointments made in practice. In other words, we assume that

the actual practice fully utilizes the capacity of all resources. Furthermore, we assume that patients

arriving on the same day have homogeneous reward values.

Since we use show probability as the reward of scheduling a patient, the total reward that a

scheduling policy earns from the total 2032 patients is equal to the expected number of patients,

among 2032, who will show up to the original appointments. In particular, since the show proba-

bilities are themselves estimated based on the scheduling of the actual practice, the total reward

earned by the actual practice is just the actual number of patients, out of the total 2032, that

showed up during the horizon.

For each scheduling policy, we report as its performance the ratio of total reward to the total

number 2032 of arrivals. This ratio represents the overall percentage of patients who will show

up. Table 2 summarizes the performance of all scheduling policies we consider. We can see that

our Marginal Allocation Algorithm performs the best, and in particular, gives more than 30%
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improvement over the actual practice, according to our performance measure. It is noteworthy

that the greedy and bid-price policies do not have performance guarantees and can perform arbi-

trarily badly. In contrast, our Marginal Allocation Algorithm has not only a provable performance

guarantee, but also good empirical performance.

The strength of our Marginal Allocation Algorithm is more directly reflected in comparison with

the greedy policy. The greedy policy can be carried out by anyone as long as the patient preferences

are exploited. Our Marginal Allocation Algorithm, which does smart reservation, gives 12.9%

empirical improvement in scheduling efficiency over this heuristic. Note that in this experiment, all

patients have the same priority. Our Marginal Allocation Algorithm is likely to exhibit much higher

rewards when there are more patient types to consider because it can make more intelligent tradeoffs

among the types than the greedy policy can. Remarkably, our Marginal Allocation Algorithm can

be implemented as easily as the greedy policy. In the greedy approach, the scheduler has to be given

a number representing estimated patient preference for each session. In our Marginal Allocation

Algorithm, the scheduler also needs to be given only one number, namely the marginal value of

reward function, for each session.

7.1. Consideration for Overbooking

Starting from the numerical settings in the previous section, we study the practice of overbooking.

Let Aj be the actual number of patients who are assigned to session j. We assume that the

actual strategy overbooks each session by a constant ratio, and thereby treat Cj = αAj as the

actual capacity of session j, where α ∈ [0,1] is a scaling parameter that we vary in the numerical

experiment.

We define the no-show probability as

PNS =

Total number of no-shows
+

Total number of appointments that are canceled no more than
2 days prior to the appointment time

Total number of appointments
.

The number is 26.89% as estimated from the data for Clinical Genetics.
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Table 2 The empirical performance of different scheduling policies.

Scheduling Policy Performance of scheduling policies relative to LP upper bound

Actual Strategy 67%

Greedy 81%

Bid-Price Heuristic 89%

Separation Algorithm 80%

MAA 92%

MAA-5% 91%

MAA-10% 88%

MAA-20% 83%

MAA-40% 74%

A common practice is to take advantage of such high no-show probability by scheduling more

patients to a session than its actual capacity can handle. Using terminology defined in Section 6.2,

we use PNS as the no-show probability for every session. We also vary the no-show penalty D in

our experiments in the range [2,10]. In this way, the pair (α,D) tunes the cost (12) of overbooking

each session. The previous experiment corresponds to the case α= 1,D=∞.

Now the total reward of a scheduling policy is equal to the sum of all reward values (14), i.e.,

show probabilities, earned from patients less the overbooking costs (12). In particular, we apply the

function (12) of overbooking cost to the actual practice as well. That is, in our experiment the total

overbooking costs incurred under the actual practice does not depend on the actual overbooked

number of patients, but rather on the expected costs (12) estimated a priori. The performance

of each scheduling policy is reported as its total reward relative to the total reward of the actual

practice.

Table 3 summarizes the performance of scheduling policies when α= 0.75 and D ranges from 2

to 15. Generally the performance of all policies decreases as the penalty D increases because of the

reduced reward of overbooking.
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Table 3 The total reward of scheduling policies relative to LP upper bound under different values of penalty D.

α= 0.75.

D Actual Strategy Greedy Bid-Price Heuristic Separation Alg. MAA

2 70.1% 81.5% 89.0% 82.1% 93.2%

3 68.7% 80.6% 86.7% 82.0% 92.4%

4 66.8% 80.0% 86.6% 82.5% 92.3%

5 64.5% 79.5% 87.2% 82.8% 92.3%

6 62.2% 79.2% 88.7% 82.5% 92.0%

7 59.7% 78.9% 88.0% 82.6% 92.0%

8 57.1% 78.7% 88.6% 82.5% 92.0%

9 54.5% 78.2% 88.4% 82.4% 92.0%

10 51.8% 77.8% 88.4% 82.1% 91.5%

Table 4 reports the performance of scheduling policies when D = 3 and α increases from 70%

to 100%. The performance of all the scheduling policies reaches a limit for large values of α. This

is because when α is large, there is a large surplus of capacity associated with low overbooking

costs. In such cases, scheduling policies virtually cannot see any capacity constraint, and thus have

very good performance. Overall, for all values of α, our Marginal Allocation Algorithm performs

at least 30% better than actual practice.

7.2. Consideration for Patient Availability

In the previous numerical experiments, patients who arrive in the same periods are treated as

identical. However, in reality there is variability among patients’ availability. In this section, we

capture this variability by simulating a particular chosen patient’s availability for a particular

session of the week as being drawn from a given distribution. This experiment tests whether more

complex heterogeneous patient types affect the comparative performance of our algorithm.

We model the heterogeneity of patient availability as follows. A patient cannot be assigned to a

session if he is unavailable for it. Otherwise, the reward for the session is still the show probability as
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Table 4 The total reward of scheduling policies relative to LP upper bound under different values of α. D= 3.

α Actual Strategy Greedy Bid-Price Heuristic Separation Alg. MAA

70% 62.7% 77.2% 88.3% 82.9% 92.2%

75% 68.7% 80.6% 86.7% 82.0% 92.4%

80% 70.8% 83.9% 88.9% 81.8% 93.4%

85% 71.4% 88.9% 92.5% 82.6% 94.5%

90% 71.1% 91.4% 94.4% 83.3% 94.8%

95% 70.7% 92.5% 95.9% 84.6% 95.8%

100% 70.5% 93.2% 95.7% 85.7% 96.2%

modeled in the previous sections. We assume that each patient has the same availability pattern for

every week. A patient is available for any session with probability PA, and this event is independent

of the availability for other sessions in the same week. We vary PA from 15% to 100% to test the

performance of all the scheduling policies we consider. When PA = 100%, the problem is reduced

to the one in the last section, in which a patient can be assigned to any session.

Since we model 8 sessions in a week, one in the morning and one in the afternoon from Monday

to Thursday (recall that there were very few appointments scheduled for Friday), each patient’s

availability can be represented by an 8-dimension binary vector. Then, patients arriving in each

period are further divided into 28 patient types, with ri,k,j = 0 if a patient of type k ∈ {1,2, ...,28}

arriving in period i is not available for session j.

We assume that the sessions offered by actual practice to patients were all available, so that the

total reward of actual practice is not affected by this newly modeled feature. The performance of

each of the remaining scheduling policies is the averaged total reward over 10,000 runs of simulation.

In each simulation we draw the same 2032 number of arrivals from data, but we randomly generate

patient availability. For PA ranging from 15% to 100%, Table 5 shows the performance of scheduling

policies relative to the performance of actual practice. The relative performance is better for higher

values of PA, as there is more flexibility in scheduling when patients are available to more sessions.
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Table 5 The total reward of scheduling policies relative to LP upper bound under different values of PA. D= 3,

α= 0.7.

PA Actual Strategy Greedy Bid-Price Heuristic Separation Alg. MAA

15.00% 88.8% 89.6% 96.0% 93.1% 96.4%

20.00% 77.6% 86.0% 93.5% 90.9% 95.1%

25.00% 72.5% 83.4% 92.1% 89.5% 94.2%

30.00% 70.0% 81.5% 91.4% 88.9% 93.7%

35.00% 68.4% 80.2% 91.4% 88.5% 93.5%

40.00% 67.2% 79.3% 90.8% 87.9% 93.2%

45.00% 66.3% 78.7% 91.5% 87.6% 93.0%

50.00% 65.7% 78.2% 90.7% 86.8% 92.7%

55.00% 65.1% 77.8% 90.5% 86.0% 92.7%

60.00% 64.7% 77.6% 89.3% 85.5% 92.7%

65.00% 64.3% 77.5% 88.7% 85.0% 92.8%

70.00% 64.0% 77.5% 88.9% 84.5% 92.5%

75.00% 63.7% 77.6% 88.6% 84.0% 92.4%

80.00% 63.4% 77.6% 87.7% 83.7% 92.3%

85.00% 63.2% 77.6% 88.3% 83.5% 92.4%

90.00% 63.0% 77.5% 88.4% 83.3% 92.5%

95.00% 62.9% 77.5% 88.0% 83.1% 92.4%

100.00% 62.7% 77.2% 88.3% 82.9% 92.2%

Even when PA is as small as 15%, our Marginal Allocation Algorithm still performs 8% better than

actual practice. The gap gradually increases to more than 40% as PA increases.

8. Appendix: Omitted Proofs

Proof of Theorem 2.
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Proof. Note that the distribution of {R(t)}t≥0 is determined by the time points t1, t2, ..., tk−1.

In particular, for t∈ (ti, ti+1), the value of P(R(t) = i) is only determined by t1, t2, ..., ti.

Given any value β ∈ (0,1), we can construct a sequence of those time points t1, t2, ..., tk−1 recur-

sively based on the following condition∫ ti+1

ti

P(R(t) = i)dt=
1

β
− 1, ∀i= 0,1, ..., k− 2. (15)

Here ti is when the barrier is increased to position i, and is thus the first time that P(R(t) = i)

becomes positive. Given t1, t2, ..., ti, this condition sets the value for ti+1 = ti+1(β) by requiring that

the area under the function P(R(t) = i) for t∈ [ti, ti+1] is exactly 1/β− 1.

According to the above construction, since P(R(t) = i) is a continuous function of t, the time

points t1, t2, ..., tk−1 must change continuously in β.

Furthermore, when β→ 1, i.e., the area under the function P(R(t) = i) for t ∈ [ti, ti+1] tends to

0 for each i= 0,1, ..., k− 2, we must have ti+1− ti→ 0 for each i= 0,1, ..., i− 2. This implies that

tk−1→ t0 = 0. On the other hand, when β→ 0, we have 1/β−1→∞, so the area under P(R(t) = i)

for t ∈ [ti, ti+1] can be arbitrarily large. In other words, by tuning the value of β, we can set tk−1

to be any value within (0, k).

Therefore, there must exist some β ∈ (0,1) such that tk−1 satisfies∫ tk

tk−1

P(R(t) = k− 1)dt=
1

β
− 1.

Let β∗ be such a value that satisfies this condition. Set α∗i (t) =P(R(t) = i)β∗. We next prove that

this construction of β∗ and α∗i (t), for i= 0,1, ..., k−1 and t∈ [0, k], satisfies the constraints of (10).

First of all, for t≤ t1, we have

α∗0(t) +

∫ t

0

α∗0(s)ds= β∗P(R(t) = 0) +

∫ t

0

β∗P(R(s) = 0)ds

= β∗ · 1 +β∗
∫ t

0

P(R(s) = 0)ds

≤ β∗+β∗
∫ t1

0

P(R(s) = 0)ds

= β∗+β∗(1/β∗− 1)

= 1.
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Note that the inequality is tight when t= t1. For t > t1, since the barrier is above position 0, the

random process R(t) is changing from state R(t) = 0 to state R(t) = 1 at rate 1 (the transition

happens when N(t) increases by 1). Thus, we must have, for t > t1,

∂P(R(t) = 0)

∂t
=−P(R(t) = 0)

=⇒P(R(t) = 0)−P(R(t1) = 0) =−
∫ t

t1

P(R(s) = 0)ds

=⇒P(R(t) = 0) +

∫ t

0

P(R(s) = 0)ds=P(R(t1) = 0) +

∫ t1

0

P(R(s) = 0)ds

=⇒α∗0(t) +

∫ t

0

α∗0(s)ds= α∗0(t1) +

∫ t1

0

α∗0(s)ds= 1.

Therefore, the first constraint of (10) holds and is tight for t≥ t1.

To prove that the second constraint also holds, we recursively look at i = 1,2, ..., k − 1. Recall

that ti is the first time that P(R(t) = i) becomes positive. Thus for t≤ ti we have P(R(t) = i) = 0

and

α∗i (t) +

∫ t

0

α∗i (s)ds= β∗P(R(t) = i) +

∫ t

0

β∗P(R(s) = i)ds= 0.

For t∈ [ti, ti+1], we have

α∗i (t) +

∫ t

0

α∗i (s)ds= β∗P(R(t) = i) +

∫ t

0

β∗P(R(s) = i)ds

= β∗P(R(t) = i) +β∗
∫ t

ti

P(R(s) = i)ds

≤ β∗P(R(t) = i) +β∗
∫ ti+1

ti

P(R(s) = i)ds

= β∗P(R(t) = i) +β∗(1/β∗− 1)

= β∗P(R(t) = i) +β∗
∫ ti

ti−1

P(R(s) = i− 1)ds.

When t∈ [ti, ti+1] and R(t) = i, the random process is actively bounded above by the barrier, so

the probability P(R(t) = i), as a function of t, can only increase due to the transition from state
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R(t) = i− 1 to R(t) = i. The rate of this transition is 1. Thus, we have P(R(t) = i) =
∫ t
ti
P(R(s) =

i− 1)ds, which leads to

α∗i (t) +

∫ t

0

α∗i (s)ds≤β∗P(R(t) = i) +β∗
∫ ti

ti−1

P(R(s) = i− 1)ds

=β∗
∫ t

ti

P(R(s) = i− 1)ds+β∗
∫ ti

ti−1

P(R(s) = i− 1)ds

=β∗
∫ t

0

P(R(s) = i− 1)ds

=

∫ t

0

α∗i−1(s)ds.

(16)

Note that the inequality is tight when t= ti+1.

For t > ti+1, the barrier is above i, so the random process R(t), if still at state R(t) = i, is not

actively bounded by the barrier. Thus the state R(t) = i is involved in two transitions: from state

i to i+ 1, and from i− 1 to i. More precisely, we have for t > ti+1,

∂P(R(t) = i)

∂t
=P(R(t) = i− 1)−P(R(t) = i)

=⇒P(R(t) = i) +

∫ t

0

P(R(s) = i)ds−
∫ t

0

P(R(s) = i− 1)ds

= 0.

=⇒ α∗i (t) +

∫ t

0

α∗i (s)ds=

∫ t

0

α∗i−1(s)ds. (17)

This proves that the second constraint of (10) holds (and is tight for t≥ ti+1, for each i= 1,2, ..., k−

1, respectively). Finally, the last constraint of (10) trivially holds because
∑k−1

i=0 P(R(t) = i) = 1 =⇒

β∗ =
∑k−1

i=0 α
∗
i (t).

To prove (11), we can deduce that

β∗
k−1∑
i=0

iP(R(k) = i)

=
k−1∑
i=0

iα∗i (k)

=
k−1∑
i=0

i

[∫ k

0

α∗i−1(s)ds−
∫ k

0

α∗i (s)ds

]
(by (17))
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=
k−1∑
i=0

∫ k

0

α∗i (s)ds− k
∫ k

0

α∗k−1(s)ds (by canceling identical terms)

=

∫ k

0

(
k−1∑
i=0

α∗i (s)

)
ds− kβ∗

∫ k

0

P(R(s) = k− 1)ds

=

∫ k

0

β∗ds− kβ∗(1/β∗− 1)

=2kβ∗− k.

We can then easily obtain (11) by rearranging terms. �

Proof of Lemma 1.

Proof.

E[Il|R(l) = l− j]

=

∫ l+1

l

P(R(s) = l|R(l) = l− j)ds

=

∫ 1

0

P≥j(s)ds.

Similarly, E[Il|R(l) = l− j− 1] =
∫ 1

0
P≥j+1(s)ds. Thus,

E[Il|R(l) = l− j]−E[Il|R(l) = l− j− 1]

=

∫ 1

0

P≥j(s)ds−
∫ 1

0

P≥j+1(s)ds

=

∫ 1

0

Pj(s)ds

=

∫ 1

0

e−s
sj

j!
ds

=
∞∑

ν=j+1

e−1 1

ν!

=P≥j+1(1).

�

Proof of Lemma 2.

Proof. Fix any i∈ {l, l+ 1, ..., k− 1}. For ease of notation, define

∆d,j ≡E[Ii|R(d) = d− j]−E[Ii|R(d) = d− j− 1]
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to be the increment in the expected time that R(t) stays at the barrier during [ti, ti+1], when the

state at time t = d changes from R(d) = d − j − 1 to R(d) = d − j, for all d = l, l + 1, ..., i and

j = 0,1, ..., d− 1.

From Lemma 1 we know that ∆i,j = P≥j+1(1). Furthermore, for d < i and d ≥ l, the value of

E[Ii|R(d) = d− j] can be recursively computed by conditioning on R(d+ 1), i.e., on the movement

of the random process during time [d, d+ 1]. Precisely,

E[Ii|R(d) = d− j] =

j∑
ν=0

Pν(1)E[Ii|R(d+ 1) = d− j+ ν] +
∞∑

ν=j+1

Pν(1)E[Ii|R(d+ 1) = d].

Here, for example, R(d+ 1) = d− j + ν represents the condition where the random process R(t)

moves ν steps upwards during time [d, d + 1]; R(d + 1) = d represents the condition where the

barrier is active at time t= d+ 1.

Similarly,

E[Ii|R(d) = d− j− 1] =

j+1∑
ν=0

Pν(1)E[Ii|R(d+ 1) = d− j− 1 + ν] +
∞∑

ν=j+2

Pν(1)E[Ii|R(d+ 1) = d]

=

j∑
ν=0

Pν(1)E[Ii|R(d+ 1) = d− j− 1 + ν] +
∞∑

ν=j+1

Pν(1)E[Ii|R(d+ 1) = d].

The above two equations lead to the following recursion for ∆d,j

∆d,j =E[Ii|R(d) = d− j]−E[Ii|R(d) = d− j− 1]

=

j∑
ν=0

Pν(1)[E[Ii|R(d+ 1) = d− j+ ν]−E[Ii|R(d+ 1) = d− j− 1 + ν]]

=

j∑
ν=0

Pν(1)∆d+1,j−ν+1.

(18)

Note that in order to prove the lemma, we need to show ∆l,0/∆l,1 ≥ 1/e. To this end, we prove

a stronger result by constructing a bound on ∆d,j/∆d,j+1 for all d= l, l+ 1, ..., i, and j = 0,1, ..., d.

We construct the bounds using a sequence of ‘stationary’ values ∆∗,0,∆∗,1, ..., which are defined

based on the recursion (18) and are independent of d:

∆∗,0 = 1;
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∆∗,j =

j∑
ν=0

Pν(1)∆∗,j−ν+1, ∀j = 0,1,2, ... (19)

=⇒


∆∗,1 = e∆∗,0,

∆∗,j+1 = (e− 1)∆∗,j −
∑j

ν=2
1
ν!

∆∗,j−ν+1, ∀j ≥ 1.

(20)

We next prove that

∆d,j

∆d,j+1

≥ ∆∗,j
∆∗,j+1

(21)

by induction on d.

• First, we prove that (21) holds for d= i, by showing that ∆i,j is decreasing in j but ∆∗,j is

increasing in j.

By Lemma 1, ∆i,j = P≥j+1(1)>P≥j+2(1) = ∆i,j+1, which means ∆i,j is decreasing in j.

From (20) we know that ∆∗,0 = e−1∆∗,1 <∆∗,1. Provided that ∆∗,ν ≤∆∗,j for all ν ≤ j and some

j ≥ 1, we can deduce from (20),

∆∗,j+1

∆∗,j
≥ e− 1−

j∑
ν=2

1

ν!
≥ e− 1−

∞∑
ν=2

1

ν!
= e− 1− (e− 2) = 1.

Thus, ∆∗,j is increasing in j, which finishes the proof that (21) holds when d= i.

• When d< i,

∆d,j∆∗,j+1−∆d,j+1∆∗,j

=

(
j∑

ν1=0

Pν1(1)∆d+1,j−ν1+1

)(
j+1∑
ν2=0

Pν2(1)∆∗,j−ν2+2

)

−

(
j∑

ν1=0

Pν1(1)∆∗,j−ν1+1

)(
j+1∑
ν2=0

Pν2(1)∆d+1,j−ν2+2

)
(by (18) and (19))

=

(
j∑

ν1=0

Pν1(1)∆d+1,j−ν1+1

)
P0(1)∆∗,j+2−

(
j∑

ν1=0

Pν1(1)∆∗,j−ν1+1

)
P0(1)∆d+1,j+2

+

(
j∑

ν1=0

Pν1(1)∆d+1,j−ν1+1

)(
j∑

ν2=0

Pν2+1(1)∆∗,j−ν2+1

)

−

(
j∑

ν1=0

Pν1(1)∆∗,j−ν1+1

)(
j∑

ν2=0

Pν2+1(1)∆d+1,j−ν2+1

)

=

j∑
ν1=0

Pν1(1)P0(1) (∆d+1,j−ν1+1∆∗,j+2−∆∗,j−ν1+1∆d+1,j+2)
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+

j∑
ν1=0

ν1−1∑
ν2=0

Pν1(1)Pν2+1(1) (∆d+1,j−ν1+1∆∗,j−ν2+1−∆∗,j−ν1+1∆d+1,j−ν2+1)

+

j∑
ν2=0

ν2−1∑
ν1=0

Pν1(1)Pν2+1(1) (∆d+1,j−ν1+1∆∗,j−ν2+1−∆∗,j−ν1+1∆d+1,j−ν2+1)

+

j∑
ν1=0

Pν1(1)Pν1+1(1) (∆d+1,j−ν1+1∆∗,j−ν1+1−∆∗,j−ν1+1∆d+1,j−ν1+1)

=

j∑
ν1=0

Pν1(1)P0(1) (∆d+1,j−ν1+1∆∗,j+2−∆∗,j−ν1+1∆d+1,j+2)

+

j∑
ν1=0

ν1−1∑
ν2=0

Pν1(1)Pν2+1(1) (∆d+1,j−ν1+1∆∗,j−ν2+1−∆∗,j−ν1+1∆d+1,j−ν2+1)

+

j∑
ν2=0

ν2−1∑
ν1=0

Pν1(1)Pν2+1(1) (∆d+1,j−ν1+1∆∗,j−ν2+1−∆∗,j−ν1+1∆d+1,j−ν2+1)

=

j∑
ν1=0

Pν1(1)P0(1) (∆d+1,j−ν1+1∆∗,j+2−∆∗,j−ν1+1∆d+1,j+2) (22)

+

j∑
ν1=0

ν1−1∑
ν2=0

(Pν1(1)Pν2+1(1)−Pν2(1)Pν1+1(1)) (∆d+1,j−ν1+1∆∗,j−ν2+1−∆∗,j−ν1+1∆d+1,j−ν2+1)

(23)

Now using induction on d+ 1, we know that for ν1 ≥ 0,

∆d+1,j−ν1+1

∆d+1,j+2

≥ ∆∗,j−ν1+1

∆∗,j+2

,

and thus (22)≥ 0. In (23), since ν1 > ν2, we can use induction on d+ 1 again to obtain

∆d+1,j−ν1+1

∆d+1,j−ν2+1

≥ ∆∗,j−ν1+1

∆∗,j−ν2+1

=⇒∆d+1,j−ν1+1∆∗,j−ν2+1−∆∗,j−ν1+1∆d+1,j−ν2+1 ≥ 0.

Furthermore, since ν1 > ν2,

Pν1(1)Pν2+1(1)−Pν2(1)Pν1+1(1) = Pν1(1)Pν2(1)

(
1

ν2 + 1
− 1

ν1 + 1

)
≥ 0.

Thus, (23)≥ 0. In sum, we have shown ∆d,j∆∗,j+1 −∆d,j+1∆∗,j ≥ 0, which finishes the induction

proof for condition (21).
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This result (21) directly leads to the statement of the Lemma

∆l,0 ≥∆l,1

∆∗,0
∆∗,1

= ∆l,1/e.

�

Proof of Lemma 3.

Proof. Fix any i ∈ {l, l+ 1, ..., k− 2}. By symmetry, we have E[Ii|R(l) = l] = E[Ii+1|R(l+ 1) =

l+ 1] and E[Ii|R(l) = l− 1] =E[Ii+1|R(l+ 1) = l].

Thus,

E[Ii|R(l) = l]−E[Ii+1|R(l) = l]− (E[Ii|R(l) = l− 1]−E[Ii+1|R(l) = l− 1])

=E[Ii+1|R(l+ 1) = l+ 1]−E[Ii+1|R(l+ 1) = l]− (E[Ii+1|R(l) = l]−E[Ii+1|R(l) = l− 1]))

=E[Ii+1|R(l+ 1) = l+ 1]−E[Ii+1|R(l+ 1) = l]− e−1(E[Ii+1|R(l+ 1) = l]−E[Ii+1|R(l+ 1) = l− 1]))

≥0,

where the last inequality follows from Lemma 2. �

Proof of Lemma 5.

Proof. Given any sequence of times points t̄1 ≤ t̄2 ≤ · · · ≤ t̄l such that t̄j ≤ j, ∀j = 1,2, ..., l, we

want to prove the lemma when tj = t̄j for j ≤ l and tj = j for j > l.

Fix any i ∈ {l, l + 1, ..., k − 2}. Initially, set tj = j for all j = 1,2, ..., k − 1, and we know that

E[Ii]≥E[Ii+1] by Lemma 4. We next prove that E[Ii]≥E[Ii+1] always holds when we reduce the

value of tj from j to t̄j sequentially for j = 1,2, ..., l.

Define

I ′i =


Ii, if i > l∫ l+1

l
1(R(s) = l)ds, if i= l.

By this definition, Ii is different from I ′i only if i= l and tl < l (we create the definition of I ′i so as

to facilitate the proof for the case of i= l). Note that we always have Ii ≥ I ′i.

Consider the result of reducing tj from j to t̄j, when td = d for all d= j + 1, j + 2, ..., k− 1. Let

R̂(t), Îi and Î ′i be the values of R(t), Ii and I ′i, respectively, before reducing tj, i.e., when tj = j. Let

R̄(t), Īi and Ī ′i be the new values of R(t), Ii and I ′i, respectively, after reducing tj to t̄j.
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Suppose E[Îi]≥E[Îi+1] holds. We next prove that E[Īi]≥E[Īi+1] also holds.

• When tj = j, since j ≤ l, we must have tl = l and thus E[Îi] =E[Î ′i].

• We must have P(R̄(j) = ν) =P(R̂(j) = ν) for all ν ≤ j−2, because if R̂(j)≤ j−2, the random

process does not touch the barrier during [tj−1, j], and is not affected by the change in tj.

• We must have P(R̄(j) = j − 1) ≤ P(R̂(j) = j − 1) and P(R̄(j) = j) ≥ P(R̂(j) = j) because

when tj becomes smaller, there is more time for the random process R(t) to jump from state j− 1

up to j. Moreover,

P(R̄(j) = j)−P(R̂(j) = j) =P(R̂(j) = j− 1)−P(R̄(j) = j− 1)≥ 0. (24)

Based on the above results, we can then deduce that (E[Īi] is defined as E[Ii] given tj = t̄j.

Similarly, E[Îi] is defined as E[Ii] given tj = j)

E[Īi]−E[Īi+1]

≥E[Ī ′i]−E[Īi+1]

=

j∑
ν=0

E[Ī ′i|R̄(j) = ν]P(R̄(j) = ν)−
j∑

ν=0

E[Īi+1|R̄(j) = ν]P(R̄(j) = ν)

=

j∑
ν=0

E[Î ′i|R̂(j) = ν]P(R̄(j) = ν)−
j∑

ν=0

E[Îi+1|R̂(j) = ν]P(R̄(j) = ν) Given R(j) = ν, reducing tj does not affect the random process after t≥ j,

due to the memoryless property.


=

j−2∑
ν=0

E[Î ′i|R̂(j) = ν]P(R̂(j) = ν) +

j∑
ν=j−1

E[Î ′i|R̂(j) = ν]P(R̄(j) = ν)

−
j−2∑
ν=0

E[Îi+1|R̂(j) = ν]P(R̂(j) = ν)−
j∑

ν=j−1

E[Îi+1|R̂(j) = ν]P(R̄(j) = ν)

=

j∑
ν=0

E[Î ′i|R̂(j) = ν]P(R̂(j) = ν) +

j∑
ν=j−1

E[Î ′i|R̂(j) = ν](P(R̄(j) = ν)−P(R̂(j) = ν))

−
j∑

ν=0

E[Îi+1|R̂(j) = ν]P(R̂(j) = ν)−
j∑

ν=j−1

E[Îi+1|R̂(j) = ν](P(R̄(j) = ν)−P(R̂(j) = ν))

=E[Î ′i] +

j∑
ν=j−1

E[Î ′i|R̂(j) = ν](P(R̄(j) = ν)−P(R̂(j) = ν))
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−E[Îi+1]−
j∑

ν=j−1

E[Îi+1|R̂(j) = ν](P(R̄(j) = ν)−P(R̂(j) = ν))

=E[Î ′i]−E[Îi+1] +

j∑
ν=j−1

(E[Î ′i|R̂(j) = ν]−E[Îi+1|R̂(j) = ν])(P(R̄(j) = ν)−P(R̂(j) = ν))

=E[Îi]−E[Îi+1] +

j∑
ν=j−1

(E[Î ′i|R̂(j) = ν]−E[Îi+1|R̂(j) = ν])(P(R̄(j) = ν)−P(R̂(j) = ν))

≥
j∑

ν=j−1

(E[Î ′i|R̂(j) = ν]−E[Îi+1|R̂(j) = ν])(P(R̄(j) = ν)−P(R̂(j) = ν))

=(P(R̄(j) = ν)−P(R̂(j) = ν))×

(E[Î ′i|R̂(j) = j]−E[Îi+1|R̂(j) = j]−E[Î ′i|R̂(j) = j− 1] +E[Îi+1|R̂(j) = j− 1]). (by (24))

Now Lemma 3 gives

E[Î ′i|R̂(j) = j]−E[Î ′i|R̂(j) = j− 1]−E[Îi+1|R̂(j) = j] +E[Îi+1|R̂(j) = j− 1]≥ 0.

This proves that E[Īi]≥E[Īi+1]. Therefore, we always have E[Ii]≥E[Ii+1] when we change tj from

j to t̄j for all j = 1,2, ..., l. �

Proof of Theorem 3.

Proof. We give a new and more detailed construction of the same set of times points as con-

structed in the proof of Theorem 2.

Fix any β ∈ (0,1). Starting with ti = i, ∀i= 1,2, ..., k− 1, we run the following algorithm:

For i= 0,1, ..., k− 2:

(a) If E[Ii]> 1/β− 1, reduce ti+1 such that E[Ii] = 1/β− 1.

(b) Stop if E[Ii]< 1/β− 1.

If the algorithm stops at (b) when i= l, we must have

E[I0] =E[I1] = · · ·=E[Il−1] = 1/β− 1

and, according to Lemma 5,

1/β− 1 =E[Il−1]≥E[Il]≥ · · · ≥E[Ik−1]. (25)
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On the other hand, if the algorithm never stops at (b), we must have

E[I0] =E[I1] = · · ·=E[Ik−2] = 1/β− 1. (26)

If we change the value of β, the time points t1, t2, ..., tk−1 as the result of the algorithm must

change continuously in β. This implies that E[Ik−1] =
∫ k
tk−1

P(R(s) = k− 1)ds must change contin-

uously in β. When β is close to 0, we must have E[Ik−1]< 1/β− 1; when β is close to 1, we must

have E[Ik−1]> 1/β− 1. Therefore, there must exist a β such that, when the algorithm ends,

E[Ik−1] = 1/β− 1.

Let β∗ be such a value.

Now the time points have met all desired conditions if (26) holds (i.e., the algorithm never stops

at (b)). If the algorithm stops at some step (b), then according to (25),

1/β∗− 1 =E[Il−1]≥E[Il]≥ · · · ≥E[Ik−1] = 1/β∗− 1

=⇒E[I0] =E[I1] = · · ·=E[Ik−1] = 1/β∗− 1,

which gives all desired conditions of the time points as well. �

Lemma 7.

β∗ =
1

2
+

1

2k

k−1∑
i=0

iα∗i (k).

Proof. Starting from Theorem 2 we can deduce that

k(1−β∗) = β∗

[
k−

k−1∑
i=0

iP(R(k) = i)

]

=⇒ 2kβ∗ = k+β∗
k−1∑
i=0

iP(R(k) = i) = k+
k−1∑
i=0

iα∗i (k)

=⇒ β∗ =
1

2
+

1

2k

k−1∑
i=0

iα∗i (k).

�

Proof of Lemma 6.
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Proof. If suffices to prove the case when x= y+ 1. We have

l∑
i=−l

Pk−1+i−(y+1)(λ)−
l∑

i=−l

Pk−1+i−y(λ)

=Pk−2−l−y(λ)−Pk−1+l−y(λ).

If k − 2 − l − y < 0, the lemma trivially holds because Pk−2−l−y(λ) = 0 and thus Pk−2−l−y(λ) −

Pk−1+l−y(λ)≤ 0.

Now suppose k− 2− l− y≥ 0. Then

Pk−2−l−y(λ)

Pk−1+l−y(λ)

=
λk−2−l−y

(k− 2− l− y)!
· (k− 1 + l− y)!

λk−1+l−y

=
1

λ2l+1

l∏
i=−l

(k− 1− y+ i).

Since y≥ k−1−λ, we must have k−1−y≤ λ and (k−1−y+ i)(k−1−y− i)≤ λ2. This shows

that Pk−2−l−y(λ)/Pk−1+l−y(λ)≤ 1 and thus Pk−2−l−y(λ)−Pk−1+l−y(λ)≤ 0. �

Lemma 8. For any l= 0,1, ..., k− 1, we have

l∑
i=−l

Pk−1+i(k)≤ 1

β∗

l∑
i=0

α∗k−1−i(k).

Proof. Define

R(i) ≡R(ti) +N(k)−N(ti), ∀i= 0,1,2, ..., k.

Note that since the bounded process R(t) is determined by N(t), the random variables R(i)’s are

also determined by N(t).

Since

P(R(0) = i) =P(R(t0) +N(k)−N(t0) = i) =P(N(k) = i) = Pi(k)

and

P(R(k) = i) =P(R(k) = i) = α∗i (k)/β∗,
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it suffices to show that

l∑
i=−l

P(R(j−1) = k− 1 + i)≤
l∑

i=−l

P(R(j) = k− 1 + i) (27)

for all l= 0,1, ..., k− 1 and j = 1,2, ..., k.

According to the definition of the bounded process R(t), if R(tj−1) +N(tj)−N(tj−1) ≤ j − 1,

then R(tj) =R(tj−1) +N(tj)−N(tj−1) and thus

R(j) =R(tj) +N(k)−N(tj)

=R(tj−1) +N(tj)−N(tj−1) +N(k)−N(tj)

=R(tj−1) +N(k)−N(tj−1)

=R(j−1).

Therefore,

l∑
i=−l

P(R(j−1) = k− 1 + i|R(tj−1) +N(tj)−N(tj−1)≤ j− 1)

=
l∑

i=−l

P(R(j) = k− 1 + i|R(tj−1) +N(tj)−N(tj−1)≤ j− 1)

for all l= 0,1, ..., k− 1 and j = 1,2, ..., k.

Now consider the case x=R(tj−1) +N(tj)−N(tj−1)> j− 1. We must have

R(j−1) = x+N(k)−N(tj),

R(j) = j− 1 +N(k)−N(tj).

Recall that Lemma 3 gives tj ≤ j, so x> j−1≥ tj−1 = k−1− (k− tj). We can then apply Lemma

6 by further setting y= j− 1 and λ= k− tj and obtain (for x> j− 1)

l∑
i=−l

P(R(j−1) = k− 1 + i|R(tj−1) +N(tj)−N(tj−1) = x)

=
l∑

i=−l

P(x+N(k)−N(tj) = k− 1 + i|R(tj−1) +N(tj)−N(tj−1) = x)
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=
l∑

i=−l

P(N(k)−N(tj) = k− 1 + i−x|R(tj−1) +N(tj)−N(tj−1) = x)

=
l∑

i=−l

P(N(k− tj) = k− 1 + i−x)

≤
l∑

i=−l

P(N(k− tj) = k− 1 + i− (j− 1))

=
l∑

i=−l

P(j− 1 +N(k)−N(tj) = k− 1 + i|R(tj−1) +N(tj)−N(tj−1) = x)

=
l∑

i=−l

P(R(j) = k− 1 + i|R(tj−1) +N(tj)−N(tj−1) = x)

In sum, we have shown (27), which proves the lemma. �

Proof of Proposition 2.

Proof. Combining Lemma 7 and Lemma 8, we obtain

β∗ =
1

2
+

1

2k

k−1∑
i=0

iα∗i (k)

=
1

2
+

1

2k

k−2∑
l=0

l∑
i=0

α∗k−1−i(k)

≥1

2
+

1

2k

k−2∑
l=0

β∗
l∑

i=−l

Pk−1+i(k)

=
1

2
+
β∗

2k

[
k−2∑
l=0

0∑
i=−l

Pk−1+i(k) +
k−2∑
l=0

l∑
i=1

Pk−1+i(k)

]

=
1

2
+
β∗

2k

[
k−1∑
i=1

iPi(k) +
2k−2∑
i=k

(2k− i− 2)Pi(k)

]

=
1

2
+
β∗

2k

[
2k−2∑
i=1

iPi(k) +
2k−2∑
i=k

(2k− 2i− 2)Pi(k)

]

=
1

2
+
β∗

2k

[
2k−2∑
i=1

iPi(k)− 2
k−1∑
i=1

iPk−1+i(k)

]
.

=⇒ β∗ ≥ k

2k−
[∑2k−2

i=1 iPi(k)− 2
∑k−1

i=1 iPk−1+i(k)
]

=
k

k+
[
k−

∑2k−2

i=1 iPi(k)
]

+ 2
∑k−1

i=1 iPk−1+i(k)

=
k

k+
∑∞

i=2k−1 iPi(k) + 2
∑k−1

i=1 iPk−1+i(k)
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=
1

1 + 1
k

[∑∞
i=2k−1 iPi(k) + 2

∑k−1

i=1 iPk−1+i(k)
]

�

Proof of Theorem 4.

Proof.

∞∑
i=2k−1

iPi(k) + 2
k−1∑
i=1

iPk+i−1(k)≤ 2
∑∞

i=1 iPk+i−1(k)

= 2
∑∞

i=1 i
kk+i−1

(k+i−1)!
e−k

= 2
[
kke−k

(k−1)!
+
∑∞

i=k Pi(k)
]
.

=⇒ β∗ ≥ 1

1+ 2
k

[
kke−k
(k−1)!

+
∑∞
i=k Pi(k)

]
= 1

1+2

[
e−kkk
k! +

P≥k(k)
k

] .

By Stirling’s formula,

e−kkk

k!
=

1√
2πk

+ o(1/k).

Furthermore, since P≥k(k)≤ 1, we have

P≥k(k)

k
=O(1/k).

Thus,

β∗ ≥ 1

1 + 2
[
e−kkk
k!

+
P≥k(k)

k

] =
1

1 + 2
[

1√
2πk

+ o(1/k) +O(1/k)
] = 1−

√
2

π

1√
k

+O(1/k).

In sum, we have proved that

fj(0, k)∑m

i=1 x
∗
ijrij

≥ u0(0)∫ 1

0
r(t)λ(t)dt

≥ β∗ ≥ 1−
√

2

π

1√
k

+O(1/k).

Since β∗ increases in the capacity k, when k is the minimum capacity of any resource, we must

have ∑n

j=1 fj(0,Cj)∑n

j=1

∑m

i=1 x
∗
ijrij

≥min
j∈[n]

fj(0,Cj)∑m

i=1 x
∗
ijrij

≥ β∗ ≥ 1−
√

2

π

1√
k

+O(1/k).

This proves the competitive ratio of the Separation Algorithm. �
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Proof of Theorem 5.

Proof. Let h(t, c) be the expected future reward of the Marginal Allocation Algorithm starting

at time t when c= (c1, c2, ..., cn) is the vector of resources available at t. Let f(t, c) =
∑n

j=1 fj(t, cj)

be the expected future reward of the Separation Algorithm starting at time t when c is the vector

of resources available at t. We will show that

h(t, c)≥ f(t, c) (28)

for any state (t, c).

Define an algorithm Π(i) as follows. For the first i customers, apply the Marginal Allocation

Algorithm. Afterward, for the (i+ 1)-th, (i+ 2)-th,..., customers, apply the Separation Algorithm.

Let h(i)(t, c) be the expected future reward when algorithm Π(i) is applied starting at time t with

remaining inventory c, and assuming that no customers have arrived prior to time t. We must have

h(0)(t, c) = f(t, c),

lim
i→∞

h(i)(t, c) = h(t, c).

HJB equation for computing the expected reward of algorithm Π(1) is

∂h(1)(t, c)

∂t
=−

m∑
i=1

λi(t)

(
max
j∈[n]

(rij − fj(t, cj) + fj(t, cj − 1))
+−∆(1)(t, c)

)
, (29)

where

∆(1)(t, c)≡ h(1)(t, c)− f(t, c).

The boundary conditions for (29) are h(1)(1, c) = 0 (the length of the horizon is 1) and fj(t,−1) =

−∞, ∀j = 1,2, ..., n and t ∈ [0,1]. Note that according to the boundary condition fj(t,−1) =−∞,

the ‘bid price’ of any resource j that has no remaining inventory becomes infinity, as fj(t,0)−

fj(t,−1) =∞.

To see why (29) is true, consider the discrete version of (29). During any small period (t, t+ δt),

one of the following three events must take place.
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• No customer arrives during (t, t+ δt). Then the expected future reward h(1)(t, c) turns into

h(1)(t+ δt, c).

• A customer of some type i arrives, but Π(1) (which applies the Marginal Allocation Algorithm

to the customer) rejects the customer. We must have

max
j∈[n]

(rij − fj(t+ δt, cj) + fj(t+ δt, cj − 1))
+

= 0,

because rij must be smaller than the ‘bid price’ fj(t + δt, cj) − fj(t + δt, cj − 1) of all available

resources j; we must also have that h(1)(t, c) turns into f(t+δt, c), as Π(1) turns into the Separation

Algorithm.

• A customer of some type i arrives and the customer is assigned to a resource j. In this case, the

system collects reward rij, and h(1)(t, c) turns into f(t+δt, c−ej) as Π(1) turns into the Separation

Algorithm, where ej is the unit vector with the j-th position being 1. Note that

f(t+ δt, c− ej) = f(t+ δt, c) + fj(t+ δt, cj − 1)− fj(t+ δt, cj).

Then mathematically, we can combine the second and the third bullet points, and say that when a

customer of type i arrives, the expected future reward h(1)(t, c) turns into total current and future

reward

f(t+ δt, c) + max
j∈[n]

(rij − fj(t+ δt, cj) + fj(t+ δt, cj − 1))
+
.

In sum, the recursive equation for h(1)(t, c) is

h(1)(t, c) =(1−
m∑
i=1

λi(t)δt)h
(1)(t+ δt, c)

+
m∑
i=1

λi(t)δt

(
f(t+ δt, c) + max

j∈[n]
(rij − fj(t+ δt, cj) + fj(t+ δt, cj − 1))

+

)
.

Letting δt→ 0 we obtain (29).

Therefore,

∂h(1)(t, c)

∂t
≤ ∂f(t, c)

∂t
+

m∑
i=1

λi(t)∆
(1)(t, c). (30)
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This equation implies that, if at some time t0 we have ∆(1)(t0, c)< 0 or equivalently

h(1)(t0, c)− f(t0, c)< 0, (31)

then we must have

∂h(1)(t, c)

∂t
<
∂f(t, c)

∂t
, ∀t∈ (t0,1] (32)

and

h(1)(t, c)< f(t, c), ∀t∈ (t0,1]. (33)

However, since we know that h(1)(1, c) = f(1, c) = 0, (33) cannot be true, and thus (31) cannot be

true. Therefore, we have proved

h(1)(t, c)≥ f(t, c), ∀t∈ [0,1]. (34)

Next, we show that

h(i)(t, c)≥ h(i−1)(t, c), ∀t∈ [0,1] (35)

by induction on i.

Equation (34) already proves the base case i= 1. Suppose for some ī > 1, (35) holds for all i < ī.

Now we show that it also holds for i= ī. By definition, for any ī > 1, algorithms Π(̄i) and Π(̄i−1)

must allocate the first customer in the same way. Thus, Π(̄i) and Π(̄i−1) earn the same reward from

the first customer, and then transit into the same state. After that first customer, Π(̄i) continues to

apply Π(̄i−1) pretending that no customer has ever arrived, while Π(̄i−1) continues to apply Π(̄i−2).

By induction, the expected future reward of Π(̄i−1) is at least that of Π(̄i−2). Therefore, the expected

future reward of Π(̄i) is at least that of Π(̄i−1).

Thus, we have proved (35). It immediately follows that

h(∞)(t, c)≥ h(0)(t, c).

�
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