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The classical Prophet Inequality arises from a fundamental problem in optimal-stopping theory. In this

problem, a gambler sees a finite sequence of independent, non-negative random variables. If he stops the

sequence at any time, he collects a reward equal to the most recent observation. The Prophet Inequality

states that, knowing the distribution of each random variable, the gambler can achieve at least half as

much reward in expectation, as a prophet who knows the entire sample path of random variables (Krengel

and Sucheston 1978). In this paper, we prove a corresponding bound for correlated non-negative random

variables. We analyze two methods for proving the bound, a constructive approach, which produces a worst-

case instance, and a reductive approach, which characterizes a certain submartingale arising from the reward

process of our online algorithm.

We apply this new prophet inequality to the design of algorithms for a class of two-sided bipartite matching

problems that underlie online task assignment problems. In these problems, demand units of various types

arrive randomly and sequentially over time according to some stochastic process. Tasks, or supply units,

arrive according to another stochastic process. Each demand unit must be irrevocably matched to a supply

unit or rejected. The match earns a reward that depends on the pair. The objective is to maximize the

total expected reward over the planning horizon. The problem arises in mobile crowd-sensing and crowd

sourcing contexts, where workers and tasks must be matched by a platform according to various criteria. We

derive the first online algorithms with worst-case performance guarantees for our class of two-sided bipartite

matching problems.

1. Introduction

The classical Prophet Inequality arises from a fundamental problem in optimal-stopping theory. In

this problem, a gambler sees a finite sequence of independent, non-negative random variables. If

he stops the sequence at any time, he collects a reward equal to the most recent observation. The

Prophet Inequality states that, knowing the distribution of each random variable, the gambler can

achieve at least half as much reward in expectation, as a prophet who knows the entire sample

path of random variables (Krengel and Sucheston 1978). The classical prophet inequality with

independent random variables was proved by Krengel and Sucheston (1977). Its importance arises

from its role as a primitive in a wide range of decision problems. Since the appearance of the
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first result, various versions of the prophet inequality has been proved. Hill and Kertz (1983)

study the inequality for independent, uniformly bounded random variables. Rinott et al. (1987)

prove a version for bounded negatively-dependent random variables. Samuel-Cahn (1991) obtain

general results for negatively dependent random variables, and provide some examples for the

case of positively dependent variables. In this paper, we study a version of prophet inequality

where the sequence of random variables are modeled as a customer arrival process and can be

arbitrarily correlated. The specification of our prophet inequality will be made clear in the problem

formulation.

We apply this new prophet inequality to the design of algorithms for a class of two-sided bipartite

matching problems underlying online task assignment problems (OTA). In these problems, demand

units of various types arrive randomly and sequentially over time according to some stochastic

process. Tasks, or supply units, arrive according to another stochastic process. Each demand unit

must be irrevocably matched to a supply unit or rejected. The match earns a reward that depends

on the pair. The objective is to maximize the total expected reward over the planning horizon.

The problem arises in mobile crowd-sensing and crowd-sourcing contexts, where workers and tasks

that arrive randomly overtime and must be matched by a platform according to various criteria.

For example, the marketplaces Upwork, Fiverr, and Freelancer match providers with customers of

professional services. Walmart evaluated a proposal to source its own customers to deliver orders

(Barr and Wohl 2013). The mobile platforms Sensorly, Vericell, VTrack, and PIER outsource the

task of collecting analyzing data, called sensing, to millions of mobile users. Enabled by information

technology, these crowd-sourcing and crowd-sensing businesses are revolutionalizing the traditional

marketplace. For example, Freelancers constitute 35% of the U.S. workforce and have generated a

trillion dollars in income as of 2015 (Pofeldt 2016). A survey found that 73% of freelancers have

found work more easily because of technology (Pofeldt 2016).

The two-sided matching problem that underlies many examples of OTA is very difficult to solve

optimally, due to three main reasons. First, given the many characteristics of both demand and

supply types and their importance in determining the quality of a match, the decision problem

must keep track of a vast amount of information, including the current state of supply and future

demand and supply arrivals. Second, both demand and supply processes may change over time,

so that the decision-making environment might be constantly changing. Third, demand units tend

to be time-sensitive and unmatched supply units might also leave the system after a time, so that

they have a finite period of availability.

Our contributions in this paper are as follow:

• We prove the first prophet inequality for a class of arbitrarily correlated non-negative random

variables. We analyze two methods for proving the bound, a constructive approach, which produces
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a worst-case instance, and a reductive approach, which characterizes a certain submartingale arising

from the reward process of our online algorithm.

• We formulate a new model of bipartite matching with non-homogenous Poisson arrivals for

both demand and supply units. Supply units can wait a deterministic amount of time, whereas

demand units must be matched irrevocably upon arrival. Decisions are not batched and must be

made for one demand unit at at time. Our model underlies an important class of online task

assignment problems for crowd-sourcing and crowd-sensing applications.

• We derive the first online algorithms with worst-case performance guarantees for our class of

two-sided bipartite matching problems. We prove that our algorithms have expected reward no

less than 1
4

times that of an optimal offline policy, which knows all demand and supply arrivals

upfront and makes optimal decisions given this information.

• We provide numerical experiments showing that despite the conservative provable ratio of

1/4, our online algorithm captures about half of the offline expected reward. We propose improved

algorithms that in the experiments capture 65% to 70% of the offline expected reward. Moreover,

the improved algorithms outperform the greedy and the bid-price heuristics in all scenarios. These

results demonstrate the advantage of using our online algorithms as they have not only optimized

performance in the worst-case scenario, but also satisfactory performance in average-case scenarios.

2. Literature Review

We review five streams of literature that are most closely related to our problem class.

2.1. Static matching

A variety of matching problems have been studied in static settings, for example, college-admissions

problems, marriage problems, and static assignment problems. In these problems, the demand and

supply units are known. The reward of matching each demand with each supply unit is also known.

The objective is to find a maximum-reward matching. See Abdulkadiroglu and Sönmez (2013) for

a recent review. Our setting differs in that demand units arrive randomly over time and decisions

must be made before all the units have been fully observed.

2.2. Dynamic assignment

Dynamic-assignment problems are a class of problems in which a set of resources must be dynam-

ically assigned to a stream of tasks that randomly arrive over time. These problems have a long

history, beginning with Derman, Lieberman and Ross (1972). See Su and Zenios (2005) for a recent

review of this literature.

Spivey and Powell (2004) study a version of the dynamic assignment problem in which the

resources may arrive randomly over time. They develop approximate-dynamic-programming heuris-

tics for the problem. They do not derive performance bounds for their heuristics.



4 Truong, Wang:

Anderson et al. (2013) study a specialized model in which supply and demand units are identical,

and arrivals are stationary over time. They characterize the performance of the greedy policy

under various structures for the demand-supply graph, where the objective is to minimize the total

waiting time for all supply units.

Akbarpour et al. (2014) analyze a dynamic matching problem for which they derive several broad

insights. They analyze two algorithms for which they derive bounds on the relative performance

under various market conditions. Their work differs from ours in four ways. First, they assume

that arrivals are stationary where as we allow non-stationary arrivals. Second, they assume that

demand units are identical except for the time of arrivals and supply units are also identical except

for the time of arrival, whereas we allow heterogeneity among the units. Finally, they study an

unweighted matching problem in which each match earns a unit reward, whereas we study a more

general weighted matching problem. Finally, their results hold in asymptotic regimes, where the

market is large and the horizon is long, whereas our results hold in any condition.

More recently Hu and Zhou (2015) study a dynamic assignment problem for two-sided markets

similar to ours. They also allow for random, non-stationary arrivals of demand and supply units.

They derive structural results for the optimal policy and asymptotic bounds. We depart from both

of the above papers in focusing on providing algorithms with theoretical performance guarantees

on all problem instances.

Baccara et al. (2015) study a dynamic matching problem in which demand units can wait, and

there is a tradeoff between waiting for a higher-quality match, and incurring higher waiting costs.

Their setting is limited to just two types of units (demand or supply), whereas we allow arbitrarily

many types. They also assume stationary arrivals whereas we allow non-stationary arrivals.

2.3. Online Matching

In online matching, our work fundamentally extends the class of problems that have been widely

studied. In existing online matching problems, the set of available supply units is known and

corresponds to one set of nodes. Demand units arrive one by one, and correspond to a second set

of nodes. As each demand node arises, its adjacency to the resource nodes is revealed. Each edge

has an associated weight. The system must match each demand node irrevocably to an adjacent

supply node. The goal is to maximize the total weighted or unweighted size of the matching.

When demands are chosen by an adversary, the online unweighted bipartite matching problem

is originally shown by Karp, Vazirani and Vazirani (1990) to have a worst-case relative reward of

0.5 for deterministic algorithms and 1−1/e for randomized algorithms. The weighted this problem

cannot be bounded by any constant (Mehta 2012). Many subsequent works have tried to design

algorithms with bounded relative reward for this problem under more regulated demand processes.
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Three types of demand processes have been studied. The first type of demand processes studied

is one in which each demand node is independently and identically chosen with replacement from

a known set of nodes. Under this assumption, (Jaillet and Lu 2013, Manshadi et al. 2012, Bahmani

and Kapralov 2010, Feldman et al. 2009) propose online algorithms with worst-case relative reward

higher than 1− 1/e for the unweighted problem. Haeupler, Mirrokni, Vahab and Zadimoghaddam

(2011) study online algorithms with worst-case relative reward higher than 1−1/e for the weighted

bipartite matching problem.

The second type of demand processes studied is one in which the demand nodes are drawn

randomly without replacement from an unknown set of nodes. This assumption has been used

in the secretary problem (Kleinberg 2005, Babaioff, Immorlica, Kempe, and Kleinberg 2008), ad-

words problem (Goel and Mehta 2008) and bipartite matching problem (Mahdian and Yan 2011,

Karande, Mehta, and Tripathi 2011).

A variation to the second type of demand processes studied is one in which each demand node

requests a very small amount of resource. This assumption, called the small bid assumption,

together with the assumption of randomly drawn demands, lead to polynomial-time approxima-

tion schemes (PTAS) for problems such as ad-words (Devanur 2009), stochastic packing (Feldman,

Henzinger, Korula, Mirrokni, and Stein 2010), online linear programming (Agrawal, Wang and Ye

2009), and packing problems (Molinaro and Ravi 2013). Typically, the PTAS proposed in these

works use dual prices to make allocation decisions. Devanur, Jain, Sivan, and Wilkens (2011) study

a resource-allocation problem in which the distribution of nodes is allowed to change over time,

but still needs to follow a requirement that the distribution at any moment induce a small enough

offline objective value. They then study the asymptotic performance of their algorithm. In our

model, the amount capacity requested by each customer is not necessary small relative to the total

amount of capacity available.

The third type of demand processes studied are independent, non-homogenous Poisson processes.

Alaei, Hajiaghayi and Liaghat (2012), Wang, Truong and Bank (2015) and Stein, Truong and Wang

(2017) propose online algorithms for online allocation problems. We depart from these papers

in two major ways. The algorithms in these papers consist of two main steps. In the first step,

they solve a deterministic assignment LP to find the probabilities of routing each demand to each

supply unit. Given this routing, in the second step, they make an online decision to determine

whether to match a routed demand unit to a supply unit at any given time. In contrast, in the

first step, we find conditional probabilities of routing demand to supply units, given the set of

supply units that have arrived at any given time. We approximate these conditional probabilities

because they are intractable to compute directly. In the second step, after routing demands to

supply units according to these conditional probabilities, we design an admission algorithm based
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on the solution of our prophet inequality that, unlike existing admission techniques, deals with

correlated demand arrivals.

2.4. Online Task Assignment

This is a subclass of online matching problems that has seen an explosion of interest in recent years.

Almost all of these works model either the tasks or the workers as being fixed. Ho and Vaughan

(2012), Assadi et al. (2015), Hassan and Curry (2014), Manshadi et al. (2012) study variations of

OTA problems. Singer and Mittal (2013) consider both pricing and allocation decisions for OTA.

Singla and Krause (2013) study both learning and allocation decisions for OTA. Zhao et al. (2014),

Subramanian et al. (2015) study auction mechanism for OTA.

Tong et al. (2016) study OTA when the arrivals of both workers and tasks are in random

order. Their algorithms achieve a competitive ratio of 1/4. Concurrent with our work, Dickerson

et al. (2018) study a similar model with two-sided, i.i.d. arrivals. They prove that a non-adaptive

algorithm achieves a competitive ratio of 0.295. Further, they show that no online algorithm can

achieve a ratio better than 0.581, even if all rewards are the same. Note that both the models

of Tong et al. (2016) and Dickerson et al. (2018) are more restrictive than ours. In a model with

time-varying arrivals such as ours, non-adaptive algorithms such as the one proposed by Dickerson

et al. (2018), or a greedy algorithms such as one of the algorithms proposed by Tong et al. (2016),

are unlikely to perform well.

2.5. Revenue Management

Our work is also related to the revenue management literature. We refer to Talluri and Van Ryzin

(2004) for a comprehensive review of this literature.

Our work is related to the still limited literature on designing policies for revenue management

that are have worst-case performance guarantees. Ball and Queyranne (2009) analyze online algo-

rithms for the single-leg revenue-management problem. Their performance metric compares online

algorithms with an optimal offline algorithm under the worst-case instance of demand arrivals.

They prove that the competitive ratio cannot be bounded by any constant when there are arbitrar-

ily many customer types. Qin, Zhang, Hua and Shi (2015) study approximation algorithms for an

admission control problem for a single resource when customer arrival processes can be correlated

over time. They prove a constant approximation ratio for the case of two customer types, and

also for the case of multiple customer types with specific restrictions. They allow only one type

of resource to be allocated. Gallego, Li, Truong and Wang (2015) study online algorithms for a

personalized choice-based revenue-management problem. They allow multiple customer types and

products, and non-stationary independent demand arrivals. They allow customers to select from

assortments of offered products according to a general choice model. They prove that an LP-based

policy earns at least half of the expected revenue of an optimal policy that has full hindsight.
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3. Prophet Inequality with Correlated Arrivals
3.1. Problem Formulation

Throughout this paper, we let [k] denote the set {1,2, . . . , k} for any positive integer k.

Consider a finite planning horizon of T periods. There are I customer types and one unit of a

single resource that is managed by some platform. In each period t, depending on exogenous state

information St that is observable by time t, a customer of type i will arrive with some probability

pit(St). Upon an arrival of a customer, the platform can either sell the resource to the customer,

or irrevocably reject the customer. The reward earned by the platform for selling the resource to

a customer of type i ∈ [I] in period t ∈ [T ] is rit ≥ 0. The goal of the platform is to maximize the

expected total reward collected over the planning horizon.

Unlike existing research assuming independent or stationary arrival distributions, we allow the

sequence of arrival probabilities (p1t(St), p2t(St), . . . , pIt(St))t=1,...,T to be a correlated stochastic

process, which depends on the sample path (S1, S2, . . . , ST ) that is realized. We assume that we

know the joint distribution of this stochastic process of arrival probabilities, that is, the distribution

of {St}, and the distribution of arrivals conditional upon {St}. As a simple example, St may

represent the weather history at times {1, . . . , t}. Our model would capture any correlation in the

weather forecast, and assumes that the customer arrival probabilities pit(St) in each period t are

determined by the weather history St up to time t.

Let Xit ∈ {0,1} be the random variable indicating whether a customer of type i∈ [I] will arrive

in period t ∈ [T ], in state St. We must have E[Xit|St] = pit(St). We assume the time increments

are sufficiently fine so that, similar to many standard models in revenue management (van Ryzin

and Talluri 2005), we can assume that at most one customer arrives in any given period. More

precisely, we apply the common practice in revenue management assuming that
∑

i∈[I] pit(St)≤ 1

almost surely for all t∈ [T ], and

Xit = 1{ut ∈ [
i−1∑
k=1

pkt(St),
i∑

k=1

pkt(St))}, (1)

where ut is an independent [0,1] uniform random variable associated with period t. As a result, we

have
∑

i∈[I]Xit ≤ 1 almost surely for all t∈ [T ].

In each period t∈ [T ], events take place in the following order:

1. The platform observes St, and thus knows pit(St) for all i∈ [I].

2. The arrivals (X1t, . . . ,XIt) are realized according to (1).

3. The platform decides whether to sell the resource to the arriving customer if any.

Let St denote the support of St, for all t∈ [T ]. Without loss of generality and for ease of notation,

we define St as the set of external information in all the periods 1,2, . . . , t. As a result, given any St,
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the path (S1, . . . , St) is uniquely determined. We call a realization of ST a sample path. We assume

that we know the joint distribution of (S1, . . . , ST ) in the sense that we are able to simulate the

sample paths, and able to estimate the expected values of functions of the sample paths.

We can use a tree structure to represent the process (St)t∈[T ]. Let S0 be a dummy root node of

the tree. Every realization of S1 is a direct descendant of S0. Recursively, for any tree node that

is a realization of St, its direct descendants are all the different realizations of St+1 conditional on

the value of St.

3.2. Definition of Competitive Ratios

We will state the prophet inequality with correlated arrivals by proving the competitive ratio of

an algorithm used by the platform. Specifically, define an optimal offline algorithm OFF as an

algorithm that knows (Xit)i∈[I];t∈[T ] at the beginning of period 1 and makes optimal decisions to

sell the resource given this information. By contrast, the platform can use an online algorithm to

make decisions in each period t ∈ [T ] based on only St and (Xit′)i∈[I];t′∈[t]. We use V OFF to denote

the reward of OFF, and V ON the reward of an online algorithm ON.

Definition 1. An online algorithm ON is c-competitive if

E[V ON]≥ cE[V OFF],

where the expectation is taken over both ST and the random arrivals (Xit)i∈[I];t∈[T ].

3.3. Offline Algorithm and Its Upper Bound

We first show that the expected reward of the offline algorithm can be bounded from above by the

expected total reward collected from the entire sample path.

Proposition 1. E[V OFF]≤E[
∑T

t=1

∑I

i=1 ritpit(St)].

Proof. Suppose the resource has infinitely many units, so that the platform sells one unit of

the resource to every arriving customer. The resulting expected total reward

E[
∑
i∈[I]

∑
t∈[T ]

ritXit] =
∑
i∈[I]

∑
t∈[T ]

ritE[Xit] =
∑
i∈[I]

∑
t∈[T ]

ritE[pit(St)]

is clearly an upper bound on E[V OFF]. �

4. Online Algorithm

In this section, we propose a simulation-based threshold policy (STP) for the model of prophet

inequality with correlated arrivals and prove its performance guarantee.

Conditioned on any sample path ST , define

T (ST ) :=
∑
i∈[I]

∑
t∈[T ]

pit(St)
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as the total expected number of customer arrivals.

STP needs to know a uniform upper bound T̄ on T (·) (i.e., T̄ ≥ T (ST ) with probability one).

Given such a T̄ , STP computes the threshold

h(St) :=E

[ ∑T

t′=t+1

∑I

i=1 rit′pit′(St′)

1 + T̄ −
∑t

t′=1

∑I

i=1 pit′(St′)

∣∣ St] (2)

for deciding whether to sell the resource in period t. Specifically, upon an arrival of a type-i customer

in period t, if the resource is still available, STP sells the resource to the customer if rit ≥ h(St) and

rejects the customer otherwise. Note that h(·) can be computed for each scenario St by simulating

the sample paths that potentially arise conditional upon St. In particular, by Proposition 1 and

the definition of h(·), we have (recall that S0 is a (deterministic) dummy variable)

h(S0) =E

[∑T

t′=1

∑I

i=1 rit′pit′(St′)

1 + T̄
∣∣ S0

]
=

E[
∑T

t′=1

∑I

i=1 rit′pit′(St′)]

1 + T̄
≥ E[V OFF]

1 + T̄
. (3)

Given that E[V OFF] can be upper-bounded by h(S0) with a multiplicative factor, the goal of our

analysis is to establish a relationship between h(S0) and the expected reward E[V STP] of our online

algorithm.

4.1. Performance Guarantee

In this section, we provide two methods for proving the prophet inequality, i.e., the competitive

ratio of STP, under correlated arrival probabilities. The first method is constructive in the sense

that it reasons about the structure of a worst-case problem instance, and exhibits this structure

explicitly. The second method is deductive in that it proves the existence of the bound without

shedding light on the worst-case problem instance.

4.1.1. Constructive method for proving performance bound. With the constructive

method, we focus on proving the competitive ratio of STP for the case T̄ = 1. Since all the decisions

made by an online algorithm are based on the realized value of S1, we can assume without loss of

generality that S1 is deterministic (i.e., the competitive ratio holds when S1 is set to be any of its

possible realizations).

Then we fix the upper bound

R :=
T∑
t=1

I∑
i=1

E[ritpit(St)|S1] (4)

on V OFF. We will transform problem data progressively, each time making the expected total

reward of STP smaller on this instance. Then we will show that at some point, the expected total

reward of STP is easily bounded below by a constant.
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Conditioned on St and the event that the resource has not been sold by the beginning of period

t, let V STP(St) be the expected reward earned from assigning it to a demand unit during periods

from t to T . We can express V STP(St) explicitly by the following recursion:

V STP(St) =
I∑
i=1

pit(St)1(rit ≥ h(St))
(
rit−E[V STP(St+1)|St]

)
+E[V STP(St+1)|St], (5)

and V STP(ST+1) = 0.

We will work with the tree representation of the stochastic process S1, S2, . . . , ST . We call a node

St in the tree a terminal node if pit(St)> 0 for some i but pit′(St′) = 0 for all i= 1,2, ..., I and all

descendants St′ of St.

We will arrive at our bound by proving two sets of structural results for the worst-case instance

of the problem. The first set of structural results concern the reward process.

Lemma 1. Assume that the given problem instance achieves the worst-case ratio V STP/V OFF.

Then without loss of generality,

1.
∑T

t′=1

∑I

i=1 pit′(St′) = T̄ almost surely.

2. The reward is scenario dependent. That is, demand unit (i, t) has reward rit(St) at each

scenario St.

3. In each scenario St, there is at most one customer type with positive arrival probability. We

thus use p(St) and r(St) to denote the arrival probability and the reward of that customer type.

4. r(St) = h(St) or r(St) = (h(St))
− for all non-terminal nodes St.

Proof. The first property is easy to see, since we can always add nodes with 0 reward and posi-

tive arrival probabilities to paths in the tree to ensure that the property holds. This transformation

does not change either R or the outcome of STP.

By adding demand types if necessary, we can assume without loss of generality that the reward

is scenario dependent. That is, demand unit (i, t) has reward rit(St) at each scenario St.

We can split up each period into several periods if necessary, such that each scenario St has at

most one arrival with probability p(St) and reward r(St). This change preserves R and decreases

the expected reward for h according to (5), if the rewards are chosen to be increasing with time.

In the tree representation, if there is some highest-level non-terminal node St for which r(St)>

h(St) then conditioned on St, we can decrease r(St) and scale up r(St′) by some factor for all

scenarios St′ that descend from St, using the same factor for all St′ , such that the value of

T∑
t′=t

E[r(St′)p(St′)|St]

is unchanged. As a result, the equality in (4) is maintained. Do this until r(St) = h(St).
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We claim that this change decreases V STP(St), hence V STP(S1). To see the claim, note that

according to (5), the change reduces the immediate reward given St by some amount ∆ and

increases the future reward given St by no more than ∆. Thus the net effect is to reduce V STP(St).

Also, since the value of h(Ss) and the rewards stay the same for every node Ss preceding St,

V STP(S1), is reduced.

In the tree representation, if there is some highest-level non-terminal node St for which r(St)<

h(St) then conditioned on St, we can increase r(St) by a small amount and scale down r(St′) by

some factor for all scenarios St′ descending from St, using the same factor for all St′ , such that the

equality in (4) is maintained and all rewards remain non-negative. Do this until r(St) = (h(St))
−,

where (h(St))
− denotes a value infinitessimally smaller than h(St). It is easy to see that this change

decreases V STP(St). Hence V STP(S1) is decreased as we argued just above. Repeat the previous

transformations until at all non-terminal nodes St, we have r(St) = h(St) or r(St) = (h(St))
−. �

Lemma 1 implies that T (ST ) = T̄ in the worst-case instance. We will assume for the rest of the

subsection that our worst-case data has the structure imposed by Lemma 1. Therefore, for the rest

of this subsection, we write the threshold function h in the following alternative way

h(St) =E

[ ∑T

t′=t+1

∑I

i=1 rit′pit′(St′)

1 +
∑T

t′=t+1

∑I

i=1 pit′(St′)

∣∣ St] . (6)

Our second set of structural results concern the arrival probabilities.

Lemma 2. Let T̄ = 1. Assume that the data achieves the worst-case ratio V STP/R. Without loss

of generality, for T ≥ 2, the followings hold:

1. There is a unique path S1, S2, . . . , ST with positive arrival probabilities.

2. At every node St, t= 1, . . . , T − 1, r(St) = h(ST ) =E[r(ST )p(ST )|St];

3. p(St) = 0, t= 2, . . . , T ;

4. V STP(S1)≥ R
2

.

Proof. We will prove the theorem by induction on T . First, we prove the result for T = 2. By

the tree reward simplifications,

r(S1)≈ h(S1) =
∑
u∈S2

P(S2 = u|S1)
r(u)p(u)

1 + p(u)
≤
∑
u∈S2

P(S2 = u|S1)r(u)p(u) =E[V STP(S2)|S1].

Therefore r(S1) = h(S1) to make V STP(S1) as small as possible. Define

c2 =
∑
u∈S2

P[S2 = u]p(u),

R2 =
∑
u∈S2

P[S2 = u]p(u)r(u),

c = c2 + p(S1).
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Notice that by definition of R we have

R=R2 + p(S1)r(S1).

Fix R, R2, and c. Consider what happens when we scale down c2 by a factor α, scale up r(u)

for leaf nodes u to maintain R2 constant, and scale down r(S1) to maintain p(S1)r(S1) =R−R2

constant. We argue that we will reduce V STP(S1) while keeping R constant. Indeed, for α= 1,

p(S1) = T̄ −αc2.

This implies that

V STP(S1) = p(S1)r(S1) + (1− p(S1))
∑
u

P[S2 = u]p(u)r(u),

= R−R2 + (1− T̄ +αc2)R2.

This is where we make p(S1)r(S1) =R−R2. Hence,

∂V STP(S1)

∂α
= c2R2 ≥ 0.

Therefore, V STP/R is minimized when α= 0, or p(S2) = 0 for all S2 ∈ S2. Therefore, the base case

is proved.

Assume the theorem holds for T − 1. Fix c+ =
∑T

t=2 P(St|S1)p(St) and R+ =∑T

t=2 P(St|S1)p(St)r(St). Let the immediate successors of S1 be Sk2 , k= 1, . . . ,K. Let

Rk =E[
T∑
t=2

r(St)p(St)|Sk2 ],

k= 1, . . . ,K. Since the instance that minimizes V STP(S1) must minimize E[V (S2)|S1] subject to c+

and R+, we have by the induction hypothesis, that

E[V STP(S2)|S1] ≥
K∑
1

P(Sk2 )
Rk

2

=
R+

2
.

This lower bound is attained when K = 1,
∑T

t=2 P(St|SK2 )p(St) = 1, p(St) = 0 for all t= 3, . . . , T ,

and P(SK2 |S1) = c− p(S1).

By the induction hypothesis, V STP(S2) = E[p(ST )r(ST )|S2] = h(S1). We also know that r(S1)≈
h(S1) by the tree reward simplifications, we conclude that r(S1) = h(S1), since the impact on

V STP(S1) is the same in either case. Thus,

V STP(S1) = E[p(ST )r(ST )|S1].
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We know that

R = p(ST )r(ST )(P(ST |S1) +
T−1∑
s=1

P(Ss|S1)P(ST |Ss)p(Ss))

= p(ST )r(ST )(P(ST |S1) +P(SK2 |S1)P(ST |SK2 )p(SK2 ) +P(ST |S1)p(S1))

= p(ST )r(ST )P(ST |S1)(1 + p(SK2 ) + p(S1)).

This implies that

V STP(S1) = p(ST )r(ST )P(ST |S1)

=
R

1 + p(SK2 ) + p(S1)

≥ R

2
,

with the lower bound being realizable when p(SK2 ) = 0 and p(S1) = 1. By induction, the lemma

holds for all T . �

Lemmas 1 and 2 and Proposition 1 combine to give us the competitive ratio of STP directly:

Theorem 1. For T̄ = 1, we have

V STP(S1)≥ R

2
=

1

2

T∑
t=1

I∑
i=1

E[ritpit(St)|S1]≥ 1

2
E[V OFF]. (7)

4.1.2. Reductive martingale method for proving performance bound. In this section,

we provide an alternative, reductive proof for the performance bound of STP that works for a more

general case, when T̄ > 0.

Define τ ∈ [T + 1] as the random period in which the resource is sold to a customer under STP.

If the resource is not sold at the end of the last period T , we set τ = T + 1. In this way, τ is a

stopping time bounded from above by T + 1. We define pi,T+1(ST+1) = 0 for all i∈ [I].

Define a stochastic process {Z(St)}t=0,1,...,T+1 as

Z(St) = h(St) +
t∑

t′=1

I∑
i=1

pit′(St′)(rit′ −h(St′))
+.

Proposition 2. E[V STP] =E[Z(Sτ )].

Proof. Recall that in any period t ∈ [T ], at most one customer can arrive, i.e.,
∑I

i=1Xit ≤ 1

with probability one.

For any t ∈ [T ], conditioned on τ = t, i.e., STP sells the resource in period t, the following two

conditions must hold:

1. Exactly one customer arrives in period t, i.e.,
∑I

i=1Xit = 1.
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2. The type i of the customer who arrives in period t must satisfy the threshold condition

rit ≥ h(St) (so that STP sells the resource), or more precisely,
∑I

i=1Xit(rit−h(St))≥ 0.

Altogether, using the fact that Xit’s are indicators, we can obtain

I∑
i=1

Xit(rit−h(St)) =
I∑
i=1

Xit(rit−h(St))
+. (8)

The expected reward of STP is

E[V STP] =E

[
T∑
t=1

I∑
i=1

Xitrit1(τ = t)

]

=E

[
T∑
t=1

(
I∑
i=1

Xit(rit−h(St)) +
I∑
i=1

Xith(St)

)
1(τ = t)

]
¬
=E

[
T∑
t=1

(
I∑
i=1

Xit(rit−h(St)) +h(St)

)
1(τ = t)

]
­
=E

[
T∑
t=1

(
I∑
i=1

Xit(rit−h(St))
+ +h(St)

)
1(τ = t)

]

=E

[
T∑
t=1

I∑
i=1

Xit(rit−h(St))
+1(τ = t)

]
+E

[
T∑
t=1

h(St)1(τ = t)

]
®
=E

[
T∑
t=1

I∑
i=1

Xit(rit−h(St))
+1(τ = t)

]
+E[h(Sτ )].

Above, ¬ is because
∑

i∈[I]Xit = 1 conditioned on τ = t ∈ [T ]; ­ is by equation (8); ® is because

the definition of h(·) naturally gives h(ST+1) = 0.

If τ > t, i.e., STP does not sell the resource in period 1,2, . . . , t, then any customer who arrives

in period t must not satisfy the threshold condition. Thus, conditioned on τ > t, we must have∑I

i=1Xit(rit−h(St))
+ = 0. Consequently,

I∑
i=1

Xit(rit−h(St))
+1(τ > t) = 0

=⇒
I∑
i=1

Xit(rit−h(St))
+1(τ = t) =

I∑
i=1

Xit(rit−h(St))
+1(τ ≥ t).

Then the expected reward can be further written as

E[V STP] =E

[
T∑
t=1

I∑
i=1

Xit(rit−h(St))
+1(τ = t)

]
+E[h(Sτ )]

=E

[
T∑
t=1

I∑
i=1

Xit(rit−h(St))
+1(τ ≥ t)

]
+E[h(Sτ )]

=E

[
T∑
t=1

E

[
I∑
i=1

Xit(rit−h(St))
+1(τ ≥ t)

∣∣St,{Xi′t′}i′=1,2,...,I;t′=1,2,...,t−1

]]
+E[h(Sτ )]
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=E

[
T∑
t=1

E

[
I∑
i=1

Xit(rit−h(St))
+
∣∣St,{Xi′t′}i′=1,2,...,I;t′=1,2,...,t−1

]
1(τ ≥ t)

]
+E[h(Sτ )]

(the event τ ≥ t depends only on the information from periods 1 to t− 1)

=E

[
T∑
t=1

E

[
I∑
i=1

Xit(rit−h(St))
+|St

]
1(τ ≥ t)

]
+E[h(Sτ )].

Finally, we use pit(St) =E[Xit|St] and pi,T+1(ST+1) = 0 to obtain

E[V STP] =E

[
T∑
t=1

E

[
I∑
i=1

Xit(rit−h(St))
+|St

]
1(τ ≥ t)

]
+E[h(Sτ )]

=E

[
T∑
t=1

I∑
i=1

pit(St)(rit−h(St))
+1(τ ≥ t)

]
+E[h(Sτ )]

=E

[
τ∑
t=1

I∑
i=1

pit(St)(rit−h(St))
+

]
+E[h(Sτ )]

=E[Z(Sτ )].

�

Lemma 3. For any b≥ 1, a≥ 0, r1, ..., rn ≥ 0 and p1, ..., pn ≥ 0,

a+
∑n

i=1 piri
b+
∑n

i=1 pi
≤ a

b
+

n∑
i=1

pi(ri−
a

b
)+.

Proof. Let I ⊆ {1,2, ..., n} be the set such that ri ≥ a/b for all i∈ I.

a

b
+

n∑
i=1

pi(ri−
a

b
)+

=
a

b
+
∑
i∈I

pi(ri−
a

b
)

=

(
a
b

+
∑

i∈I pi(ri−
a
b
)
)

(b+
∑

i∈I pi)

b+
∑

i∈I pi

=
a+

∑
i∈I piri + (b− 1 +

∑
i∈I pi)(

∑
i∈I pi(ri− a/b))

b+
∑

i∈I pi

≥
a+

∑
i∈I piri

b+
∑

i∈I pi

≥
a+

∑n

i=1 piri
b+
∑n

i=1 pi
.

The last inequality follows from the fact that for any j 6∈ I,

rj <
a

b
≤
a+

∑
i∈I piri

b+
∑

i∈I pi
.

�

Proposition 3. The process {Z(St)}t≥0 is a sub-martingale with respect to St.
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Proof. For any t≥ 1, by definition of Z(St) and Z(St−1), we can obtain

E[Z(St)|St−1]

=E[h(St) +
t∑

t′=1

I∑
i=1

pit′(St′)(rit′ −h(St′))
+|St−1]

=E[h(St)−h(St−1) +
I∑
i=1

pit(St)(rit−h(St))
+|St−1] +Z(St−1).

It suffices to prove that in expectation, h(St−1)≤ h(St) +
∑I

i=1 pit(St)(rit−h(St))
+. We can derive

h(St−1)

=E

[ ∑T

t′=t

∑I

i=1 rit′pit′(St′)

1 + T̄ −
∑t−1

t′=1

∑I

i=1 pit′(St′)

∣∣ St−1

]

=E

[ ∑T

t′=t+1

∑I

i=1 rit′pit′(St′) +
∑I

i=1 ritpit(St)

1 + T̄ −
∑t

t′=1

∑I

i=1 pit′(St′) +
∑I

i=1 pit(St)

∣∣ St−1

]

=E

[
E

[ ∑T

t′=t+1

∑I

i=1 rit′pit′(St′) +
∑I

i=1 ritpit(St)

1 + T̄ −
∑t

t′=1

∑I

i=1 pit′(St′) +
∑I

i=1 pit(St)

∣∣St] ∣∣ St−1

]

=E

E
[∑T

t′=t+1

∑I

i=1 rit′pit′(St′)|St
]

+
∑I

i=1 ritpit(St)

1 + T̄ −
∑t

t′=1

∑I

i=1 pit′(St′) +
∑I

i=1 pit(St)

∣∣ St−1


≤E

E
[∑T

t′=t+1

∑I

i=1 rit′pit′(St′)|St
]

1 + T̄ −
∑t

t′=1

∑I

i=1 pit′(St′)
+

I∑
i=1

pit(St)

rit− E
[∑T

t′=t+1

∑I

i=1 rit′pit′(St′)|St
]

1 + T̄ −
∑t

t′=1

∑I

i=1 pit′(St′)

+ ∣∣ St−1


=E

E[ ∑T

t′=t+1

∑I

i=1 rit′pit′(St′)

1 + T̄ −
∑t

t′=1

∑I

i=1 pit′(St′)
|St

]
+

I∑
i=1

pit(St)

(
rit−E

[ ∑T

t′=t+1

∑I

i=1 rit′pit′(St′)

1 + T̄ −
∑t

t′=1

∑I

i=1 pit′(St′)
|St

])+ ∣∣ St−1


=E

[
h(St) +

I∑
i=1

pit(St) (rit−h(St))
+
∣∣ St−1

]
,

where the inequality follows from Lemma 3 and the fact that T̄ is an upper bound on the expected

total number of arrivals on any sample path:

T̄ ≥
t∑

t′=1

I∑
i=1

pit′(St′) =⇒ 1 + T̄ −
t∑

t′=1

I∑
i=1

pit′(St′)≥ 1.

�

With Propositions 2 and 3 established, we apply the optional stopping theorem, to obtain our

main result, namely the prophet inequality under correlated arrival probabilities:

Theorem 2.

E[V STP]≥E[h(S0)] =
E[
∑T

t=1

∑I

i=1 ritpit(St)]

1 + T̄
≥ E[V OFF]

1 + T̄
.
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Proof.

E[V STP] =E[Z(Sτ )]≥E[Z(S0)] =E[h(S0)] =
E[
∑T

t=1

∑I

i=1 ritpit(St)]

1 + T̄
≥ E[V OFF]

1 + T̄
,

where the first inequality is by the optimal stopping theorem for sub-martingales, and the last

equality is given by (3).

�

5. Application to Two-sided Matching Problems

In this section, we describe how our results can be applied to design algorithms for a basic matching

problem in two-sided markets.

5.1. Model

Again consider a finite planning horizon of T periods. There are I types of demand units and J

types of supply units. Both demand and supply units arrive randomly over the T periods. The

demand unit of type i∈ [I] that arrives at time t∈ [T ] if any, can be identified using the pair (i, t).

Similarly, the supply unit of type j ∈ [J ] that arrives at time s ∈ [T ] if any, can be identified with

the pair (j, s).

Each demand unit (i, t) has a known non-negative reward rijts when matched with a supply

unit (j, s). This reward can capture how far apart the units are in time and how compatible their

respective types are. If types i and j are incompatible, then the reward rijts could be very small or

0. If i and j are compatible, then rijts can decrease with the length of the interval [s, t] to capture

the diminishing value of the match when the supply unit must wait for a long time for the demand

unit.

We assume that supply units can wait but demand units cannot. At the end of each period t,

after arrivals of demand and supply units have been observed, the demand unit that arrives in

period t, if any, must be matched immediately to an existing supply unit or rejected. Note that if

a supply unit (j, s) can only wait a finite amount of time, then we can require that rijts = 0 for any

t that is sufficiently large compared to s.

Let Λit ∈ {0,1} be a random indicator of whether demand unit (i, t) arrives, and Mjs ∈ {0,1} a

random indicator of whether supply unit (j, s) arrives. We assume that all the random indicators

Λit, ∀i∈ [I], t∈ [T ], and Mjs, ∀j ∈ [J ], s∈ [T ], are mutually independent.

The arrival probabilities λit := E[Λit] and µjs := E[Mjs] are deterministic and known to the

platform a priori. To avoid trivialities in the analysis, we assume all the λit and µjs are strictly

positive, but their values can be arbitrarily small.

Thus, regardless of the availability of supply units, the demand arrival processes are not cor-

related a priori. However, for each particular supply unit, the best demand unit that should be
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assigned to it must depend on the availability of other supply units. When there are many supply

units, some of them might not even be assigned to any demand unit. By contrast, when there are

very few supply units, each of them can be matched to some demand unit.

We also assume that the time increments are sufficiently fine, so that at most one demand unit

and one supply unit arrive in any period t ∈ [T ]. More precisely, we require
∑

i∈[I] λit ≤ 1 and∑
j∈[J] µjs ≤ 1 for all t, s∈ [T ]. Also similar to (1), the arrival events can be defined as

Λit = 1{ut ∈ [
i−1∑
k=1

λkt,
i∑

k=1

λkt)}, Mjs = 1{vs ∈ [

j−1∑
k=1

µks,

j∑
k=1

µks)}, (9)

where u1, . . . , uT and v1, . . . , vT are mutually independent [0,1] uniform random variables.

In any period t, the platform first observes Λ1t, . . . ,ΛIt and M1t, . . . ,MJt. Then, if there is any

arriving demand unit in period t, the platform uses an online algorithm to make an assignment

decision. In other words, a demand unit can be matched to any supply unit arriving in the same

period or earlier.

The objective of the problem is to match demand and supply units in an online manner to

maximize the expected total reward earned over the horizon. We do not allow fractional matchings.

That is, each demand unit must be matched in whole to a supply unit.

5.2. Offline Algorithm and Its Upper Bound

An optimal offline algorithm OFF can see the arrivals of all the demand and supply units (Λ,M)

at the beginning of period 1. Given (Λ,M), The maximum offline reward V OFF(Λ,M) is equal to

the value of the following maximum-weight matching problem.

V OFF(Λ,M) = max
xijts(Λ,M),i∈[I];j∈[J];t,s∈[T ]

∑
i,j,t,s

xijts(Λ,M)rijts

s.t.
∑
i,t

xijts(Λ,M)≤Mjs, ∀j ∈ [J ];s∈ [T ],∑
j,s

xijts(Λ,M)≤Λit, ∀i∈ [I]; t∈ [T ],

xijts(Λ,M)≤ΛitMjs, ∀i∈ [I]; j ∈ [J ]; t, s∈ [T ],

xijts(Λ,M) = 0, ∀i∈ [I]; j ∈ [J ]; t∈ [T ];s= t+ 1, . . . , T,

xijts(Λ,M)≥ 0, ∀i∈ [I]; j ∈ [J ]; t, s∈ [T ].

(10)

In the above LP, the variable xijts(Λ,M) encapsulates the probability that both demand unit (i, t)

and supply unit (j, s) arrive and (i, t) is assigned to (j, s). The fourth constraint requires that a

demand unit in period t cannot be matched to any supply unit arriving later than t.

The competitive ratio c of an online algorithm ON is similarly defined as

c=E[V ON]/E[V OFF(Λ,M)],
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where V ON is the total reward of the online algorithm, and the expectation is taken over (Λ,M).

Note that (10) cannot be solved without a priori access to the realizations of (Λ,M). Thus, we

are interested in finding an upper bound on the expected optimal offline reward E[V OFF(Λ,M)]

when we do not have such a priori access.

The following LP solves for the total probabilities xijts of having demand unit (i, t) arrived and

assigned to (j, s).

max
xijts

∑
i,j,t,s

xijtsrijts

s.t.
∑
i,t

xijts ≤ µjs, ∀j ∈ [J ];s∈ [T ],∑
j,s

xijts ≤ λit, ∀i∈ [I]; t∈ [T ],

xijts ≤ λitµjs, ∀i∈ [I]; j ∈ [J ]; t, s∈ [T ],

xijts = 0, ∀i∈ [I]; j ∈ [J ]; t∈ [T ];s= t+ 1, . . . , T,

xijts ≥ 0, ∀i∈ [I]; j ∈ [J ]; t, s∈ [T ].

(11)

The constraints above are derived from those of (10).

Theorem 3. The optimal objective value of (11) is an upper bound on E[V OFF(Λ,M)].

Proof. Let x∗ijts(Λ,M) be an optimal solution to LP (10). Define a solution to LP (11) as

x̄ijts :=E[x∗ijts(Λ,M)].

Since
∑

i,t x
∗
ijts(Λ,M) ≤Mjs,

∑
j,s x

∗
ijts(Λ,M) ≤ Λit, and x∗ijts(Λ,M) ≤ ΛitMjs are required in

(10), we must have

∑
i,t

x̄ijts =
∑
i,t

E[x∗ijts(Λ,M)]≤E[Mjs] = µjs,∑
j,s

x̄ijts =
∑
j,s

E[x∗ijts(Λ,M)]≤E[Λit] = λit,

x̄ijts =E[x∗ijts(Λ,M)]≤E[ΛitMjs] = λitµjs.

Also, x∗ijts(Λ,M) = 0 for all s > t implies x̄ijts = 0 for all s > t.

Thus, x̄ijts is a feasible solution to LP (11). It follows that the optimal value of LP (11) is an

upper bound on ∑
i,j,t,s

x̄ijtsrijts =
∑
i,j,t,s

E[x∗ijts(Λ,M)]rijts =E[V OFF(Λ,M)].

�
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5.3. Online Algorithm for Two-Sided Matching

In this section, we describe and analyze a matching algorithm.

The algorithm is composed of two simpler sub-routines, a Separation Subroutine and an Admis-

sion Subroutine. The Separation Subroutine randomly samples a supply unit for each incoming

demand unit. This sampling splits the demand arrivals into separate arrival streams, each coming

to a separate supply unit. Subsequently, for each supply unit independently, the Admission Sub-

routine uses the algorithm in Section 4 to control the matching of at most one among all incoming

demand units to it.

Let St := {0,1}J×t. Define St ∈ St as the information set that records the arrivals of supply units

up to period t. That is,

St = ({Mj1}j=1,2,...,J ,{Mj2}j=1,2,...,J , ...,{Mjt}j=1,2,...,J).

For convenience, let S0 be a dummy constant. In our analysis, ST = M is the sample path of

scenarios defined in Section 3.1.

The matching algorithm first needs to compute an optimal solution x∗ to LP (11). Then, the

Separation Subroutine calculates a probability

pijts(St) :=
min(λit,

∑J

j′=1

∑t

s′=1Mj′s′
x∗
ij′ts′
µj′s′

)∑J

j′=1

∑t

s′=1Mj′s′
x∗
ij′ts′
µj′s′

·Mjs

x∗ijts
µjs

(12)

of choosing (j, s) as a candidate supply unit to be matched to (i, t). Note that if s > t, then we

must have x∗ijts = 0 (see LP (11)) and thus pijts(St) = 0. That is, our algorithm never tries to match

a demand unit in period t to a supply unit arriving later than t.

When applying the prophet inequality theory developed in previous sections, we will fix a supply

unit (j, s), and think of (pijts(St))i,t as the probabilities that demand units “arrive” at (j, s). We

first establish some important properties regarding the arrival probabilities pijts(·).

Proposition 4.

1.
∑I

i=1

∑T

t=1 pijts(St)≤ 1, for all j ∈ [J ] and s∈ [T ].

2.
∑J

j=1

∑t

s=1 pijts(St)≤ λit, for all i∈ [I] and t∈ [T ].

Proof.

I∑
i=1

T∑
t=1

pijts(St) =
I∑
i=1

T∑
t=1

min(λit,
∑J

j′=1

∑t

s′=1Mj′s′
x∗
ij′ts′
µj′s′

)∑J

j′=1

∑t

s′=1Mj′s′
x∗
ij′ts′
µj′s′

·Mjs

x∗ijts
µjs

≤Mjs

I∑
i=1

T∑
t=1

x∗ijts
µjs

≤Mjs

≤ 1,
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where the second inequality is given by the first constraint of LP (11).

We can then derive

J∑
j=1

t∑
s=1

pijts(St)

=
J∑
j=1

t∑
s=1

min(λit,
∑J

j′=1

∑t

s′=1Mj′s′
x∗
ij′ts′
µj′s′

)∑J

j′=1

∑t

s′=1Mj′s′
x∗
ij′ts′
µj′s′

·Mjs

x∗ijts
µjs

=
min(λit,

∑J

j′=1

∑t

s′=1Mj′s′
x∗
ij′ts′
µj′s′

)∑J

j′=1

∑t

s′=1Mj′s′
x∗
ij′ts′
µj′s′

·
J∑
j=1

t∑
s=1

Mjs

x∗ijts
µjs

=min(λit,
J∑

j′=1

t∑
s′=1

Mj′s′
x∗ij′ts′

µj′s′
)

≤λit.

�

Online Matching Algorithm:

• (Initialization) Solve (11) for an optimal solution x∗.

• Upon an arrival of a demand unit (i, t) in period t:

1. (Separation Subroutine) Randomly pick a supply unit (j, s) with probability pijts(St)/λit, for

all j ∈ [J ], s ∈ [t] (recall that we assume λit to be strictly positive). Notice that by definition of

pijts(·), only those supply units that have arrived (i.e., satisfy Mjs = 1 and s≤ t) can have a positive

probability to be picked.

Also, since Proposition 4 gives
∑

j,s pijts(St)/λit ≤ 1, if the inequality is strict (i.e.,∑
j,s pijts(St)/λit < 1), then it is possible that no supply unit is picked. In such a case, reject the

demand unit directly.

2. (Admission Subroutine) Let Xijts be the indicator of whether demand unit (i, t) arrives and

the Separation Routine picks supply unit (j, s). We have

E[Xijts|St] = P(Λit = 1) · pijts(St)/λit = λit · pijts(St)/λit = pijts(St).

For the supply unit (j, s) picked by the Separation Subroutine (i.e., Xijts = 1), we apply algorithm

STP by viewing (pijts(St))i,t as the sequence of correlated arrival probabilities. Specifically, match

(i, t) to (j, s) if (j, s) is still available and rijts ≥ hjs(St), where

hjs(St) :=E

[∑T

t′=t+1

∑I

i=1 rijt′spijt′s(St′)

2−
∑t

t′=1

∑I

i=1 pijt′s(St′)

∣∣ St] .
Notice that we have chosen T̄ = 1 (see (2)) for this two-sided online matching problem. This is

because the first property of Proposition 4 guarantees
∑I

i=1

∑T

t=1 pijts(St)≤ 1 = T̄ .
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5.4. Performance of the Online Algorithm

We first establish an approximation bound for the Separation Subroutine, which relates the arrival

probabilities pijts(·) to the LP upper bound (11). We start with a technical lemma.

Lemma 4. For any λ> 0 and x> 0,

min(λ,x)

x
≥ 1− 1

4λ
x.

Proof. For x≤ λ, min(λ,x)/x= 1≥ 1− 1
4λ
x.

For x> λ,

min(λ,x)

x
− (1− 1

4λ
x)

=
λ

x
− 1 +

1

4λ
x

=
λ

x
+

1

4
· x
λ
− 1

≥2 ·
√
λ

x
· 1
2

√
x

λ
− 1

≥0.

�

Using the above lemma and the definition of pijts(·), we are ready to prove the proximity of pijts(·)

relative to x∗.

Theorem 4. E[pijts(St)]≥ 0.5x∗ijts.

Proof. Fix any i, j, t, s, but M (and thus St) is random. For any supply unit (j′, s′), define

Yj′s′ ≡Mj′s′ ·x∗ij′ts′/µj′s′ .

Note that E[Yj′s′ ] = x∗ij′ts′/µj′s′ ·P(Mj′s′ = 1) = x∗ij′ts′/µj′s′ ·µj′s′ = x∗ij′ts′ .

We can then deduce

E[pijts(St)]

=E[
min(λit,

∑
j′,s′ Yj′s′)∑

j′,s′ Yj′s′
·Yjs]

≥E[(1− 1

4λit

∑
j′,s′

Yj′s′) ·Yjs]

(by Lemma 4; if
∑
j′,s′

Yj′s′ = 0, we have Yjs = 0 so the inequality still holds)

=E[1− 1

4λit

∑
j′ 6=j,s′ 6=s

Yj′s′ ]E[Yjs]−
1

4λit
E[Y 2

js]
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=(1− 1

4λit

∑
j′ 6=j,s′ 6=s

x∗ij′ts′)x
∗
ijts−

1

4λit
x∗ijts ·x∗ijts/µjs

≥(1− 1

4
)x∗ijts−

1

4
x∗ijts

(because the constraints of LP (11) requires
∑
j′s′

x∗ij′ts′ ≤ λit and x∗ijts ≤ µjsλit)

=
1

2
x∗ijts.

�

Now, we tie together the above approximation bound with the prophet inequality established in

Section 4:

Theorem 5. The total reward V ON of our matching algorithm satisfies

E[V ON]≥ 1

4
E[V OFF(Λ,M)].

Proof. Fix any (j, s) for j ∈ [J ] and s∈ [T ]. A demand unit (i, t) is matched to (j, s) if and only

if Xijts = 1 and rijts ≥ hjs(St). This is exactly the single-resource problem presented in Section 3.1.

Therefore, by Theorem 2, the expected total reward earned from (j, s) is at least (recall that we

choose T̄ = 1 for this two-sided online matching problem)

E[hjs(S0)] =
E[
∑T

t=1

∑I

i=1 rijtspijts(St)]

2
.

We then use Theorem 4 to obtain

E[hjs(S0)] =
E[
∑T

t=1

∑I

i=1 rijtspijts(St)]

2
=

∑T

t=1

∑I

i=1 rijtsE[pijts(St)]

2
≥
∑T

t=1

∑I

i=1 rijtsx
∗
ijts

4
.

Consequently, the total expected reward summed over all supply units is at least

∑
j∈[J]

∑
s∈[T ]

E[hjs(S0)]≥
∑
j∈[J]

∑
s∈[T ]

∑
t∈[T ]

∑
i∈[I] rijtsx

∗
ijts

4
≥ 1

4
E[V OFF(Λ,M)],

where the final inequality follows from Theorem 3. �

Note that the ratio of 1/4 above results from a loss of a factor of 1/2 from the solution of

Prophet Inequalities, and another factor of 1/2 from the tractable approximation to the upper-

bound deterministic LP. Since 1/2 is an upper bound on the competitive ratio for the standard

prophet inequality (which is a special case of our prophet inequality with correlated arrival prob-

abilities), any improvement to the bound of the online algorithm must come from refining the

solution to the LP.



24 Truong, Wang:

6. Numerical Studies

In this section, we conduct numerical experiments to explore the performance of our algorithms.

We model our experiments on applications that match employers with freelancers for short-term

projects, such as web design, art painting, and data entry.

We assume there are 30 employer (demand) types and 30 worker (supply) types. We set the

reward rijts according to the formula

rijts = sij · fts · gij,

where we use sij, fts and gij to capture three different aspects of a matching:

• Ability to accomplish tasks. sij represents the ability of workers of type j to work for

employers of type i. We randomly draw sij from a normal distribution N (0,1) for each pair (i, j).

In particular, if sij < 0, the reward of the matching will be negative, and thus no algorithm will

ever match worker type j to employer type i.

• Idle time of workers. It may be wise to limit the total time that a worker is idle in the

system before being assigned a job. Thus, we set

fts = 1−α+αe−(t−s)/τ

so that the reward of a matching is discounted by α when the idle time of the worker exceeds τ .

• Geographical distance. Certain freelance jobs may require a short commute distance

between workers and employers. For demonstration purpose, we assume that each worker type and

employer type is associated with a random zip code in Manhattan, with probability proportional

to the total population in the zip code zone. Let d(i, j) be the Manhattan distance between the

centers of zip code zones of worker type j and employer type i. We assume that

gij = 1−β+βe−d(i,j)/ω,

so the reward is discounted by β when the commute distance exceeds ω.

We consider a horizon of 60 periods. Depending on the application, one period may correspond

to a day or a 10-minute span. In any period, a random number of workers may sign in to be ready

to provide service. The type of a worker is uniformly drawn from all the worker types. Let µ(t)

be the rate at which workers appear in the system. Similarly, when an employer arrives, the type

of the employer is uniformly drawn from all the employer types. Let λ(t) be the arrival rate of

employers.

We randomly generate multiple test scenarios. In each scenario, we independently draw µ(t) and

λ(t), for every period t, from a uniform distribution over [0,1]. Given the rates µ(t) and λ(t), we
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further vary other model parameters by first choosing the base case to be α= 0.5, τ = 10 (periods),

β = 0.5, ω= 0.05◦, and then each time varying one of these parameters.

We test the following algorithms:

• (ON) Our online algorithm without resource sharing.

• (ON1
+) A variant of our online algorithm with resource sharing. When ON1

+ rejects a customer

in the admission subroutine, ON1
+ offers another resource with the largest non-negative margin

E

[∑T

t′=t+1

∑I

i=1 rit′pit′(St′)

2−
∑t

t′=1

∑I

i=1 pit′(St′)

∣∣ St]− rijts.
• (ON2

+) A variant of our online algorithm with resource sharing. When ON2
+ rejects a customer

in the admission subroutine, ON2
+ offers another resource with the largest non-negative margin

130%×E

[∑T

t′=t+1

∑I

i=1 rit′pit′(St′)

2−
∑t

t′=1

∑I

i=1 pit′(St′)

∣∣ St]− rijts.
• (ON3

+) A variant of our online algorithm with resource sharing. When ON3
+ rejects a customer

in the admission subroutine, ON3
+ offers another resource with the largest non-negative margin

160%×E

[∑T

t′=t+1

∑I

i=1 rit′pit′(St′)

2−
∑t

t′=1

∑I

i=1 pit′(St′)

∣∣ St]− rijts.
• (ON4

+) A variant of our online algorithm with resource sharing. When ON4
+ rejects a customer

in the admission subroutine, ON4
+ offers another resource with the largest non-negative margin

200%×E

[∑T

t′=t+1

∑I

i=1 rit′pit′(St′)

2−
∑t

t′=1

∑I

i=1 pit′(St′)

∣∣ St]− rijts.
• A greedy algorithm that always offers a resource with the highest reward.

• A bid-price heuristic based on the optimal dual prices of LP (10)

We report numerical results in Tables 1 to 4, where the performance of each algorithm is sim-

ulated using 1000 replicates. For our online algorithms, in each period we compute the threshold

hjs(St) by simulating 100 future sample paths. We find that, despite the 1/4 provable ratio, the

algorithm ON captures about half of the offline expected reward, and the improved algorithms ON1
+

and ON2
+ capture 65% to 70% of the offline expected reward. Moreover, the improved algorithms

outperform the greedy and the bid-price heuristics in all scenarios. These results demonstrate the

advantage of using our online algorithms as they have not only optimized performance in the

worst-case scenario, but satisfactory performance on average as well.
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Table 1 Scenario 1. Performance of different algorithms relative to LP (10).

ON Greedy BPH ON1
+ ON2

+ ON3
+ ON4

+

Base 49.8% 62.2% 63.7% 66.1% 67.9% 67.9% 67.5%
α= 0 48.0% 56.9% 63.4% 65.3% 67.6% 67.9% 67.4%
α= 0.2 48.6% 58.8% 64.0% 65.7% 67.8% 67.9% 67.5%
α= 0.8 51.8% 64.9% 62.9% 66.1% 67.6% 67.6% 67.2%
α= 1 53.4% 65.3% 64.0% 65.7% 66.9% 66.8% 66.4%
τ = 2 50.3% 62.8% 65.7% 66.9% 68.8% 69.0% 68.3%
τ = 5 50.3% 63.1% 64.8% 66.6% 68.2% 68.5% 67.9%
τ = 20 49.3% 60.8% 63.2% 65.8% 67.5% 67.8% 67.4%
τ = 30 49.1% 60.0% 63.2% 65.6% 67.6% 67.7% 67.1%
β = 0 49.9% 62.6% 63.6% 66.1% 68.0% 68.1% 67.5%
β = 0.2 49.9% 62.6% 63.7% 66.1% 68.0% 67.9% 67.7%
β = 0.8 49.9% 60.4% 63.2% 65.3% 67.0% 67.1% 66.6%
β = 1 49.6% 56.9% 62.4% 64.0% 65.7% 65.8% 65.4%

ω= 0.005 49.7% 61.1% 63.0% 65.6% 67.4% 67.4% 66.9%
ω= 0.02 49.8% 61.6% 63.5% 65.8% 67.6% 67.6% 67.1%
ω= 0.08 49.9% 62.5% 63.8% 66.2% 68.0% 68.1% 67.5%
ω= 0.15 50.1% 62.7% 63.7% 66.1% 68.0% 68.2% 67.6%

Table 2 Scenario 2. Performance of different algorithms relative to LP (10).

ON Greedy BPH ON1
+ ON2

+ ON3
+ ON4

+

Base 50.3% 65.4% 66.6% 67.7% 69.6% 69.4% 69.2%
α= 0 48.2% 61.2% 67.3% 67.9% 70.1% 70.3% 70.0%
α= 0.2 49.2% 63.1% 67.3% 67.8% 69.9% 70.1% 69.7%
α= 0.8 51.7% 66.5% 65.1% 67.0% 68.7% 68.4% 68.2%
α= 1 52.5% 66.5% 65.2% 66.1% 67.7% 67.5% 67.1%
τ = 2 51.3% 67.4% 69.3% 69.4% 71.5% 71.3% 71.0%
τ = 5 50.9% 66.6% 67.8% 68.3% 70.1% 70.0% 69.7%
τ = 20 49.7% 64.1% 66.3% 67.4% 69.6% 69.5% 69.2%
τ = 30 49.4% 63.5% 66.3% 67.6% 69.6% 69.5% 69.4%
β = 0 50.5% 66.5% 67.1% 68.6% 70.5% 70.4% 69.9%
β = 0.2 50.5% 66.4% 66.9% 68.3% 70.3% 70.0% 69.8%
β = 0.8 50.1% 62.4% 65.9% 66.2% 68.1% 67.8% 67.7%
β = 1 50.4% 58.2% 64.8% 64.5% 66.5% 66.3% 66.1%

ω= 0.005 50.2% 64.6% 66.0% 67.1% 68.9% 68.7% 68.6%
ω= 0.02 50.2% 64.9% 66.2% 67.3% 69.3% 69.0% 68.8%
ω= 0.08 50.4% 65.8% 66.7% 68.0% 69.8% 69.7% 69.5%
ω= 0.15 50.3% 66.1% 67.0% 68.2% 70.2% 70.1% 69.8%
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