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Abstract

We analyze the portfolio choice problem of investors who maximize rank-

dependent utility in a single-period complete market. We propose a new notion

of less risk taking: choosing optimal terminal wealth that pays off more in bad

states and less in good states of the economy. We prove that investors with

a less risk averse preference relation in general choose more risky terminal

wealth, receiving a risk premium in return for accepting conditional-zero-mean
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noise (more risk). However, such general comparative static results do not

hold for portfolio weights, which we demonstrate with a counter-example in a

continuous-time model.

Keywords: rank-dependent utility; portfolio selection; risk aversion; complete

markets; less risky terminal wealth; optimal stock holding
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1 Introduction

A fundamental economic question concerns the impact of risk attitude on risk taking

in portfolio selection. A well-known result by Arrow (1965) and Pratt (1964) shows

that in a simple, single-period market with one risk-free asset and one risky asset (a

stock), in which investors maximize expected utility (EU), more risk averse agents

will invest less in stocks.1 In markets with multiple risky assets, or with dynamic

trading in continuous-time, however, this basic comparative statics result for the

amount of risky assets does not always hold (Dybvig and Wang, 2012, Liu, 2001,

2007). Nonetheless, Dybvig and Wang (2012) show that in complete markets less risk

averse EU agents do choose optimal portfolio payoffs that render more noisy payoff

distributions (higher risk) in return for higher expected returns (risk premia).

Given the large body of experimental evidence that is at odds with the stan-

dard EU framework, it is natural, and indeed important, to try to derive similar

results for non-expected utility models, such as rank-dependent utility and prospect

theory. In these models investors transform objective probabilities by means of a

weighting function, a mechanism that can explain individuals’ strong preference for

improbable large gains and distaste for improbable large losses. In this paper we

focus on rank-dependent utility (RDU), a model that can resolve the Allais paradox

frequently observed in laboratory experiments. Further, RDU can explain puzzling

investor behavior, such as poor diversification and low stock market participation

(Polkovnichenko, 2005).

Chew et al. (1987) show that a preference relation modeled by RDU is more risk

averse if and only if the utility function is more concave and the probability weight-

ing function is more convex. Further, these authors show that a more risk averse

1Here, the term “more risk averse” is in the classical sense; see the precise definition in Section
2.1.
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RDU agent always invests less in the risky asset in a simple, one-period market with

one risk-free asset and one risky asset. Similar results are not, however, currently

available for a single-period complete market in which the RDU investor can trade a

continuum of Arrow-Debreu securities, a gap in the literature that we address in this

paper. Further, focusing on the most common implementation of the complete mar-

kets concept, we derive for the first time the optimal trading strategy of RDU agents

in a continuous-time Black-Scholes economy in which the investor can dynamically

trade one riskless asset and one risky stock.

We argue that in complete markets it is not useful nor suitable to define the

notion of “less risk taking” as simply investing less in the risky asset at any time

and at any wealth level. One reason is that in a general complete market with a

continuum of Arrow-Debreu securities, there are infinitely many “risky” contingent

claims investors can trade. Secondly, as we will show for the Black-Scholes market,

a more risk averse agent does not necessarily invest less in the stock at any time. In

this paper, we propose to use instead the notion of less risky terminal wealth: namely,

terminal wealth X is less risky than terminal wealth Y when X provides more payoff

in bad market states and less payoff in good market states, compared to Y .

Our primary result is that a more risk averse RDU agent will always choose a less

risky terminal wealth as defined above. This result is general, holding for any con-

tinuous distribution of the pricing kernel, any increasing and strictly concave utility

function, and any strictly increasing probability weighting function.

In literature, a related notion is proposed by Dybvig and Wang (2012): X1

decreasing-concave stochastically dominates X2 if X2 is distributed as X1 + Z + ε

where ε satisfying E[ε|X + Z] = 0 represents additional risk and Z ≥ 0 stands for

a risk premium.2 The authors then show that more risk averse investors with EU

preferences choose decreasing-concave stochastic dominating payoffs. The notion of

decreasing-concave stochastic dominance and our notion of less risky payoffs are not

inclusive to each other: the former is distribution-based with risk premia involved

and the latter is scenario-based without concerning risk premia; see the detailed dis-

cussions in Section 3.2.3. That said, our second result is that a less risk averse RDU

agent indeed chooses a decreasing-concave stochastically dominated payoff. There-

fore, we generalize the results for EU provided in Dybvig and Wang (2012) to the

2Decreasing-concave stochastic dominance is atually a variant of the so-called monotone-concave
stochastic dominance proposed by Dybvig and Wang (2012); see detailed discussions in Section 3.2.2.
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case of RDU. One should note that such an extension is nontrivial and of practi-

cal relevance, as Dybvig and Wang assume that all agents are risk averse, while the

probability weighting functions in our RDU framework allow for (locally) risk seeking

attitudes. Indeed, experimental studies have justified inverse-S-shaped probability

weighting functions, indicating risk seeking behavior; see for instance Tversky and

Kahneman (1992), Camerer and Ho (1994), Abdellaoui (2000), and Bleichrodt and

Pinto (2000). Thus, our results show that even when decision makers distort proba-

bilities and thus are locally risk seeking as found in practice, the wealth generated by

their investment strategies still displays a sensible trade-off between risk and return.

We then turn our attention to a special case of a single-period complete market

that is widely used in the finance literature: a continuous-time Black-Scholes market

in which investors can dynamically trade a risk-free asset and one risky stock following

a geometric Brownian motion. In this market we can consider the investor’s stock

holding at any time and any wealth level. For agents with EU preferences, Borell

(2007), Xia (2011) and Zariphopoulou and Kallblad (2014) all show that a more risk

averse agent always holds less stocks than a less risk averse agent at any given time and

any wealth level. For RDU agents, because of the inherent time-inconsistency due to

the presence of the probability weighting, we analyze pre-committed trading strategies

and provide closed-form solutions for an RDU agent’s optimal terminal wealth and

demand for stocks.3 We then prove that the standard comparative statics result still

holds when comparing an EU agent with an RDU agent. However, we illustrate that

this result does not hold when both agents are genuine RDU agents. More precisely,

we provide a counter-example in which investor A’s preference relation (modeled by

RDU) is more risk averse than investor B’s preference relation, yet investor A holds

more stocks than B at some point in time.

In related work, Liu (2001, 2007) shows that if the risky asset’s dynamics are

changed to a stochastic volatility model, a more risk averse EU agent may temporarily

hold more stocks because of hedging demand. A similar counter-example for EU

agents who trade a risky bond and a locally risk-less asset is provided in Dybvig and

Wang (2012). We are the first to show that changing the objective function in the

Black-Scholes market from EU to RDU will also give rise to cases in which more risk

3The optimal strategy derived today at time 0 might not be optimal in the future if the agent
reconsiders his planning problem at time t. We assume that the agent pre-commits by solving
his dynamic portfolio choice problem once, at time 0, and then implements the resulting optimal
dynamic trading strategy in the future (t > 0).
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averse investors hold more stocks.

Hence, we learn that in complete markets with RDU agents general comparative

statics results hold for the portfolio payoffs at the end of the planning horizon, rather

than for the portfolio weights. The essential reason behind these results is that the

stock is merely a device that the investor uses to achieve his desired end wealth

profile while satisfying various constraints. Thus, as long as the preference measure is

a functional only of the terminal wealth, it is that wealth profile, rather than the stock

allocation, that is relevant to the investor’s risk appetite. Therefore, our new notion

of less risk taking and the existing notion of decreasing-concave monotone dominance,

which are based on payoffs, are more appropriate for comparing the portfolio choice

of RDU agents with different risk tastes.

The remainder of this paper is organized as follows: In Section 2 we review the

definition of more risk averse preferences and the RDU representation of a preference

relation. In Section 3 we introduce the portfolio choice problem of an RDU agent

in the single-period complete market and propose the notion of less risky terminal

wealth. We prove that a more risk averse agent chooses a less risky terminal wealth

profile, and we characterize the payoff distribution. In Section 4 we then derive closed-

form expressions for the terminal wealth and for the optimal amount of investment in

stocks for a pre-committing RDU agent in the Black-Scholes market. Thereafter, we

use examples to illustrate that a more risk averse RDU investor can hold more stocks

at some point in time, even though his wealth profile is less risky. Finally, Section 5

concludes the paper. Proofs are placed in the Appendix.

2 Risk Aversion and Rank-Dependent Utility

2.1 Law-Invariant Preference Relation and Risk Aversion

A preference relation < is a partial order on a set of random payoffs living on a

measurable space. Define ∼ the equivalence relation associated with <, i.e., X ∼
Y if and only if X < Y and Y < X . Suppose the measurable space is endowed

with a probability measure, then < is called law-invariant if any two random payoffs

sharing the same distribution are equivalent. A law-invariant preference relation can

be viewed as a relation on a set of distribution functions, and we will take this view

in the following analysis.
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Recall the following definition from Machina (1982): Given a law-invariant pref-

erence relation <, a distribution F differs from another distribution F ∗ by a simple

compensated spread with respect to < if F ∼ F ∗ and there exists x0 ∈ R such that

F (x) ≥ F ∗(x) for all x < x0 and F (x) ≤ F ∗(x) for all x ≥ x0. In particular, when < is

represented by expectation,4 F is said to differ from F ∗ by a simple mean-preserving

spread (Rothschild and Stiglitz, 1970) if F differs from F ∗ by a simple compensated

spread.

A law-invariant preference relation <∗ is more risk averse than another one < if

F ∗ <∗ F for any distributions F and F ∗ such that F differs from F ∗ by a simple

compensated spread with respect to <. In particular, a law-invariant preference

relation<∗ is risk averse if it dislikes simple mean-preserving spreads, i.e., F ∗ <∗ F for

any distributions F and F ∗ such that F differs from F ∗ by a simple mean-preserving

spread; see Rothschild and Stiglitz (1970) and Machina (1982).

2.2 Rank-Dependent Utility

A mapping V from the set of random payoffs to real numbers is said to be a represen-

tation of < if X < Y if and only if V (X) ≥ V (Y ), in which case V (X) is called the

preference value of X . Quiggin (1982) proposed the rank-dependent utility (RDU)

representation, which is a generalization of the expected utility (EU) representation

(Von Neumann and Morgenstern, 1947). In RDU, the preference value of any random

payoff X is defined as follows:

V (X) :=

∫

R

U(x)d[1 − w(1− FX(x))]. (1)

Here, and hereafter, when a probability measure is given and understood, for any

random variable X we denote FX as its cumulative distribution function (CDF).

Clearly, V induces a law-invariant preference. The function U(·), which is increasing

and continuous in its domain,5 is called a utility function, and the function w, which

is an increasing mapping from the unit interval onto itself, is called a probability

weighting function.

4In that case, F1(·) is preferred to F2(·) if and only if
∫

R
xdF1(x) ≥

∫

R
xdF2(x) or, equivalently,

any random payoff X is preferred to another random payoff Y if and only if E(X) ≥ E(Y ).
5Throughout this paper, by an “increasing” function we mean a “non-decreasing” function,

namely f is increasing if f(x) ≥ f(y) whenever x > y. We say f is “strictly increasing” if f(x) > f(y)
whenever x > y. Similar conventions are used for “decreasing” and “strictly decreasing” functions.
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The following theorem in Chew et al. (1987) shows that a given RDU preference

relation denoted by V1 is more risk averse than another RDU preference relation V2

if and only if the utility function of the first agent is more concave (i.e., the utility

function U1(·) is a concave transformation of U2(·)) and the probability weighting

function of this same agent is more convex (i.e., the weighting function w1(·) is a

convex transformation of w2(·)):6

Theorem 1 Let Vi(X) be the RDU preference relation with utility function Ui(·) and
probability weighting function wi, i = 1, 2, and assume that Ui(·), i = 1, 2 are strictly

increasing and continuous and that wi(·), i = 1, 2 are strictly increasing, continuous

and differentiable on [0, 1]. Then, the preference relation represented by V1(·) is more

risk averse than the preference relation represented by V2(·) if and only if U1(·) is a

concave transformation of U2(·) and w1(·) is a convex transformation of w2(·).

For a proof of this theorem, see Theorem 1 and Corollary 1 in Chew et al. (1987).7

3 Risk Aversion and Risk Taking in a Single-Period

Complete Market Portfolio Choice Model

3.1 Portfolio Selection Model

We consider a one-period market with 0 representing today and T > 0 representing

a future time, which will be referred to as the investor’s planning horizon. The set

of possible states of nature and the set of events at date T are (Ω,F), a measurable

space. A probability measure P is given in this measurable space. Any lower-bounded

F -measurable random variable X , which is regarded as a contingent claim and will be

realized at T , can be traded in the market today. Thus, this market is complete. There

is a strictly positive random variable ξ serving as the pricing kernel that determines

6A function φ(·) : R → R ∪ {−∞} is a concave transformation of another function ψ(·) : R →
R∪{−∞} if there exists a concave function h(·) : R∪{−∞} → R∪{−∞} such that h(−∞) = h(−∞)
and φ(·) = h(ψ(·)). A function φ(·) : R → R∪ {+∞} is a convex transformation of another function
ψ(·) : R → R ∪ {+∞} if − φ(·) is more concave than −ψ(·). For an equivalent characterization of
concave and convex transformation, see Appendix A in He et al. (2013).

7Note that Chew et al. (1987) use the representation
∫

R
U(x)dw̄(FX(x)), where w̄(z) := 1 −

w(1 − z) is the dual of w. Therefore, the statement in Chew et al. (1987, Theorem 1) that w̄1(·) is
a concave transformation of w̄2(·) translates to the statement that w1(·) is a convex transformation
of w2(·).
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the price of any contingent claim. More precisely, for any contingent claim X , its

price today is given as E [ξX ].

A continuous-time complete market model can be regarded as a special case of the

one-period complete market; see Karatzas and Shreve (1998) for details. In particular,

the set of terminal payoffs that can be achieved in the Black-Scholes market can be

regarded as the tradeable contingent claims in the one-period complete market as

defined above. In that special case, the pricing kernel ξ is a lognormally distributed

random variable.

We make the following assumption:

Assumption 1 Both Fξ(·) and F−1
ξ (·) are continuous and E[ξ] < +∞.

Consider an agent with initial capital x0 > 0 at time 0 and a preference relation

represented by RDU with utility function U(·) and probability weighting function

w(·): i.e., the agent evaluates any random payoff X according to (1). Assuming

bankruptcy is not allowed, the agent faces the following portfolio choice problem:

Max
X

∫

R+
U(x)d[1− w(1− FX(x))]

Subject to E[ξX ] ≤ x0, X ≥ 0.
(2)

In other words, given the initial capital, the agent chooses the best contingent claim,

i.e., the best terminal wealth at T , so as to maximize his RDU.

We make the following assumption regarding U(·) and w(·):

Assumption 2 U(·) is strictly increasing, strictly concave, continuously differen-

tiable on (0,+∞) and satisfies the Inada condition: U ′(0+) = +∞, U ′(+∞) = 0.

w(·) is strictly increasing and continuous in [0, 1] with w(0) = 0 and w(1) = 1.

Problem (2) has recently been studied extensively; see Carlier and Dana (2011),

He and Zhou (2014), and Xia and Zhou (2013). Here, we cite a general result provided

in Xia and Zhou (2013). To this end, we recall the definition of the concave and the

convex envelopes of a function:

Definition 1 Let C be a convex set in R and let f(·) be a real-valued function on

C. The convex envelope of f(·) is defined as the greatest convex function g(·) on C
such that g(x) ≤ f(x), x ∈ C. Similarly, the concave envelope of f(·) is defined as

the smallest concave function g(·) on C such that g(x) ≥ f(x), x ∈ C.
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Theorem 2 Suppose Assumptions 1 and 2 hold. Then, the optimal solution to (2)

is

X∗ = (U ′)−1
(

λ∗N̂ ′(1− w(Fξ(ξ)))
)

(3)

where N̂(·) is the concave envelope of

N(z) := −
∫ w−1(1−z)

0

F−1
ξ (t)dt, z ∈ [0, 1] (4)

and λ∗ > 0 is the number such that E[ξX∗] = x0.

Theorem 2 shows that the optimal terminal wealth X∗ is a decreasing function of

ξ because N̂(·) is concave and (U ′)−1(·) is decreasing. In other words, the optimal

terminal payoff must be anti-comonotonic with respect to the pricing kernel.

3.2 Notions of Less Risk Taking

3.2.1 A new notion of less risk taking

Our goal is to study whether a more risk averse agent takes less risk with his optimal

portfolio. To this end, we need to define the meaning of “less risk-taking” in the

portfolio selection context. In a single-period market in which investors can only

trade one risk-free asset and one risky stock at time 0, one can naturally regard the

allocation to the risky stock as the measure of risk taken by the agent. Then, one can

study whether a more risk averse agent invests less in the stock in this single-period,

single-stock market. For instance, Chew et al. (1987) show that this is the case in the

RDU framework; see also Arrow (1965) and Pratt (1964) for this basic comparative

statics result for investors who maximize EU.

In the complete market considered here, the notion of “less risk-taking” is not

easy to define because agents can trade any contingent claim rather than only one

risky stock. We propose the following definition:

Definition 2 Let X and Y be two terminal payoffs, i.e., contingent claims. X is less

risky than Y if there exists an event A ∈ F such that

sup
ω∈A

X(ω) ≤ inf
ω∈Ω\A

X(ω), sup
ω∈A

Y (ω) ≤ inf
ω∈Ω\A

Y (ω) (5)
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and almost surely,

X(ω) ≥ Y (ω), ω ∈ A, X(ω) ≤ Y (ω), ω ∈ Ac := Ω\A. (6)

We observe from (5) that A represents the set of bad market scenarios and Ω\A
the set of good scenarios: X and Y have lower outcomes in bad market scenarios A

than in good market scenarios Ac. As a result, (6) states that X has higher outcomes

than Y in bad market scenarios and lower outcomes than Y in good market scenarios.

In real life, people perceive a less risky asset as performing better when the market

goes down but performing worse when the market turns up. Thus, Definition 2 agrees

with the common perspective regarding a portfolio payoff being less or more risky.

The notion of less risky payoffs defines a relation, which depends on the choice of

the event that represents bad market scenarios. In order for this relation to be well

defined, we must rule out the possibility that X is less risky than Y with respect to

an event A and yet Y is less risky than X with respect to another event B; namely

we need to show that the relation is antisymmetric. The following proposition serves

this purpose.

Proposition 1 Let X and Y be two terminal payoffs which do not dominate each

other, i.e., neither X ≥ Y almost surely and X > Y with positive probability, nor

X ≤ Y almost surely and X < Y with positive probability. If X is less risky than Y

and Y is less risky than X, then X = Y almost surely.

To exclude arbitrage opportunities, any two terminal payoffs resulting from the

same initial wealth cannot dominate each other. Consequently, Proposition 1 shows

that the notion of less risky payoffs in Definition 2 is a well-defined relation among all

terminal payoffs resulting from the same initial wealth; that is, for any two terminal

payoffs, they are less risky to each other if and only if they are the same. Note that

this relation is not complete, that is, for some pair of payoffs one cannot tell which

one is less risky.8 However, it is reasonable for this relation to be incomplete because

8This is not surprising because the notion of less risky payoffs in Definition 2 is strong in the
following sense: market scenarios are divided into only two sets—the set of good scenarios and the
set of bad—and payoffX is less risky than payoff Y if the former is larger in the bad scenarios and is
smaller in the good scenarios than the latter. One can weaken this notion by allowing intermediate
scenarios that are not considered when determining which of the two payoffs is less risky. Such
an extension can make the notion of less risky payoffs less incomplete as a relation, at the cost of
making it less intuitive.
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it is likely in many occasions investors are unable to tell which of two given payoffs

is less risky.

Finally, note that the notion of less risky payoffs in Definition 2 is consistent with

the risky stock holding in the single-period single-stock market. Indeed, suppose the

total return rates of the risk-free asset and the risky stock are Rf and R, respectively,

and X = x0Rf + θ∗(R − Rf ) and Y = x0Rf + θ̃∗(R − Rf ) are the terminal wealths

corresponding to the dollar allocation θ∗ ≥ 0 and θ̃∗ ≥ 0, respectively. Then, it is not

difficult to show that X is less risky than Y if and only if θ∗ ≤ θ̃∗, and the set of bad

market scenarios is A = {ω | R(ω)− Rf < 0}. Therefore, combined with the results

in Chew et al. (1987), we conclude that in the single-period single-stock market, a

more risk averse agent indeed chooses a less risky terminal payoff per Definition 2.

In general, we have the following result:

Proposition 2 Let X and Y be two terminal payoffs. Suppose there exist a random

variable Z and decreasing functions f(·) and g(·) such that X = f(Z) and Y = g(Z).

If there exists z0 such that f(z) ≤ g(z), z < z0 and f(z) ≥ g(z), z ≥ z0, then X is less

risky than Y .

Proposition 2 shows that when the payoffs X and Y are monotone functions of a

random variable (which represents the market condition), determining whether X is

less risky than Y boils down to investigating whether the two payoff functions have

the single-crossing property.

3.2.2 Decreasing-concave stochastic dominance

A related notion is proposed by Dybvig and Wang (2012): For any two random

variables Y1 and Y2 with finite means, Y1 monotone-concave stochastically dominates

Y2 if E[V (Y1)] ≥ E[V (Y2)] for any concave increasing function V (·). A sufficient and

necessary condition for this dominance is that Y2 is distributed as Y1 − Z + ε where

Z ≥ 0 and E[ε|Y1 − Z] = 0; see Dybvig and Wang (2012, Theorem 1).

In the same market setting as in Section 3.1, Dybvig and Wang (2012) show that

for two investors with EU preferences, the less risk averse investor’s optimal payoff

X∗
2 is distributed as X∗

1 + Z + ε, where X∗
1 is the optimal payoff of the more risk-

averse investor, Z ≥ 0 and E[ε|X∗
1 +Z] = 0. In other words, −X∗

1 monotone-concave

stochastically dominates −X∗
2 . This result suggests us the following notion of less

risk taking: X1 decreasing-concave stochastically dominates X2 if X2 is distributed as

11



X1 +Z + ε for some Z ≥ 0 and E[ε|X1 +Z] = 0, that is, if E[V (X1)] ≥ E[V (X2)] for

any concave decreasing function V (·).9
If one regards random noise ε as additional risk and Z as a risk premium, then X1

decreasing-concave stochastically dominates X2 if X2 bears more risk (ε) in return

for a risk premium (Z). In this sense, X1 is less risky.

3.2.3 Comparison of the two notions

The notion of less risky payoffs in Definition 2 and the notion of decreasing-concave

stochastic dominance differ in the following aspects: First, a less risky payoff per

Definition 2 does not necessarily decreasing-concave stochastically dominate a more

risky payoff. For instance, consider a random variable R representing the excess

return of certain risky asset and assume that R can take both positive and negative

values to exclude arbitrage opportunities. Consider the following two wealth profiles:

X1 = W0 and X2 = θR+W0, where θ > 0 stands for the dollar amount invested in the

risky asset andW0 stands for initial wealth. Using our notion of less risk taking based

on payoffs, X1 is less risky whether E[R] is positive or negative. This result is intuitive

because a portfolio containing some risky asset is always more risky than a portfolio

that is fully invested in the risk-free asset. However, X1 does not decreasing-concave

stochastically dominate X2 when E[R] < 0 (because −E[X1] < −E[X2]).

Second, the notion of less risky payoffs in Definition 2 is scenario-based while

the notion of decreasing-concave stochastic dominance is distribution-based. Indeed,

the inequality E[V (X1)] ≥ E[V (X2)] that characterizes the latter notion depends

only on the distributions of X1 and X2. Thus, even when X1 decreasing-concave

stochastically dominates X2, it is not necessarily that X1 is less risky than X2 in the

sense of Definition 2.

In conclusion, the notion of less risky payoffs and the notion of decreasing-concave

stochastic dominance do not encompass each other. We will therefore study whether

a more risk averse RDU agent “takes less risk” under both of these notions.

9Indeed, X1 decreasing-concave stochastically dominatesX2 if and only if −X1 monotone-concave
stochastically dominates −X2, i.e., E[Ṽ (−X1)] ≥ E[Ṽ (−X2)] for any concave increasing function
Ṽ (·). Define V (x) := Ṽ (−x), we immediately conclude that E[V (X1)] ≥ E[V (X2)] for any concave
decreasing function V (·).
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3.3 More Risk Aversion Leading to Less Risk Taking

Consider two agents whose preference relations are represented by RDU. The utility

and probability weighting functions of agent i are Ui(·) and wi(·), respectively; i = 1, 2.

Denote by X∗
i the optimal payoff at time T , i.e., the solution to portfolio choice

problem (2) for agent i. Next, we present the main result of the paper. To this end,

we introduce a notion of extended differentiability.

Definition 3 A function f(·), which maps an open set C ⊆ R to R, is extendedly

differentiable in C if

lim
δ↓0

f(x+ δ)− f(x)

δ
= lim

δ↓0

f(x− δ)− f(x)

−δ ∈ R ∪ {+∞,−∞}

for any x ∈ C.

Theorem 3 Suppose Assumption 1 holds and that, for each i = 1, 2, Ui(·) and wi(·)
satisfy Assumption 2. In addition, assume that wi(·), i = 1, 2, are extendedly dif-

ferentiable in (0, 1). Let payoff X∗
i be the optimal solution to portfolio choice prob-

lem (2) corresponding to (Ui(·), wi(·)), i = 1, 2. If there exists a concave function

H(·), which is continuously differentiable in the interior of its domain, such that

U1(x) = H(U2(x)), x > 0 and a convex function T (·), which is continuously differen-

tiable in the interior of its domain, such that w1(z) = T (w2(z)), z ∈ [0, 1], then X∗
1 is

less risky than X∗
2 .

According to Theorem 1, one agent with an RDU preference relation is more risk

averse than another agent with an RDU preference relation if and only if the utility

and probability weighting functions of the first agent are more concave and more

convex, respectively, than those of the second agent. Thus, Theorem 3 shows that in

the RDU framework a more risk averse agent will choose a less risky terminal wealth

in the single-period complete market. This result agrees with those obtained by Chew

et al. (1987) in the setting of a single-period incomplete market with one stock.

We have shown in Theorem 2 that RDU agents’ optimal payoffs must be decreasing

functions of the pricing kernel ξ. Further, we showed in the proof of Theorem 3 the

following single-crossing property: the payoff function of a more risk averse RDU

agent is flatter and only once crosses the payoff function of a less risk averse agent.

This property has been established by Dybvig and Wang (2012) when the agents
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have EU preferences. Our RDU investors are markedly different from the strictly risk

averse EU agents in Dybvig and Wang (2012), as RDU agents may be locally risk

seeking because of the effect of probability weighting.

3.4 The Payoff Distribution of Less Risk Averse Investors

Dybvig and Wang (2012) show that the optimal payoff of a more risk averse EU

agent decreasing-concave stochastically dominates the optimal payoff of a less risk

averse EU agent: the latter payoff is distributed as the former payoff plus a zero-

conditional-mean noise representing risk and a nonnegative random variable providing

a risk premium. We now extend this result to the RDU case, where investors apply

probability weights and are not necessarily globally risk averse. Indeed, we have the

following theorem:

Theorem 4 Let the same assumptions as in Theorem 3 hold. Then, X∗
2 is distributed

as X∗
1 + Z + ε, where Z ≥ 0 and E[ε|X∗

1 + Z] = 0. Furthermore, if X∗
1 6= X∗

2 , then

neither Z or ε can be zero.

Theorem 4 shows that a less risk averse RDU agent chooses a more risky payoff

distribution in the sense that a conditional-mean-zero noise ε is added to the payoff

of the less risk averse RDU agent. In return, the less risk averse agent receives the

risk premium Z. This result generalizes those obtained by Dybvig and Wang (2012)

in the EU setting. However, this generalization is nontrivial.

In the EU setting, it is assumed that the agents have concave utility functions and

thus are risk averse. Consequently, it is expected that if a less risk averse agent takes

more risk, he will be rewarded with a risk premium. In our RDU setting, although

the utility functions are still concave, the probability weighting functions are not

necessarily convex. It is known that an RDU agent is risk averse if and only if the

utility function is concave and the weighting function is convex (Chew et al., 1987,

Corollary 2). Thus, the RDU agents in our model are not necessarily risk averse.

Theorem 4 shows that even when the agents are not strictly risk averse, a less risk

averse agent still demands a risk premium when bearing more risk.
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4 Stock Holdings in the Black-Scholes Market

In this section we study the impact of risk aversion on stock holdings in the Black-

Scholes market, a dynamically complete market in which investors can trade one

risk-free asset and one risky stock continuously between time 0 and T and the price

of the stock follows a geometric Brownian motion. Previously, we showed that a more

risk averse RDU agent chooses less risky terminal wealth in any single-period complete

market. In the special case of a Black-Scholes market, we can consider in addition

whether a more risk averse agent also invests less in the risky stock at any time and

at any wealth level. In the EU case, an affirmative answer has been provided by

Borell (2007), Xia (2011) and Zariphopoulou and Kallblad (2014). However, counter-

examples in which this result does not hold exist for stock market processes with

stochastic volatility (Liu, 2001, 2007) and for a complete market in which a risky

bond is traded (Dybvig and Wang, 2012). It remains to be seen whether similar

comparative statics results hold for RDU agents in the Black-Scholes market.

This section first derives closed-form expressions for the optimal terminal wealth

and the corresponding (dynamic) amounts invested in stocks by RDU agents, who

pre-commit to implementing their optimal investment strategy derived at time 0.

We then show that when comparing an RDU agent and an EU agent, the more risk

averse agent always holds less stock at any time and at any wealth level. Finally, we

show that such comparative statics result does not hold when comparing two genuine

RDU agents, as illustrated by an explicit example in which the pre-committing RDU

agent is more risk averse and thus has more risky terminal wealth, but nonetheless, at

some point in time, holds more stocks than a less risk averse RDU agent. In line with

similar counter-examples cited earlier, this example illustrates that stock holding does

not necessarily fully reflect risk preference. Indeed, our notion of risk taking and the

notion of decreasing-concave stochastic dominance, both based on payoffs, are more

natural because the agent’s utility is derived from his terminal wealth, rather than

from his dynamic portfolio.

4.1 Market

Consider the Black-Scholes market in which a risk-free asset and a risky asset are

traded. The risk-free asset has the constant interest rate r, and the price of the risky
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asset follows the geometric Brownian motion

dS(t) = µS(t)dt+ σS(t)dW (t),

where W (·) is a standard Brownian motion and we denote by {Ft}t≥0 the augmented

filtration generated by W (·).
We consider a portfolio choice problem faced at time 0 in this market by an

agent who is endowed with initial capital x0 and trades the risk-free and risky assets

continuously with the objective of maximizing the RDU of his wealth at a given

terminal time T . Denote by π(t) the dollar amount invested in the risky asset at time

t. Then, the adapted process π(t), t ∈ [0, T ], which we call portfolio, represents the

agent’s dynamic trading strategy, that is, π(t) stands for the dollar amount invested

in the risky asset at time t. The agent’s dynamic portfolio choice problem is then

formulated as

Max
π

∫∞

0
u(x)d

[

−w(1− FX(T )(x))
]

subject to dX(t) = rX(t)dt+ π(t) [(µ− r)dt+ σdW (t)] , t ∈ [0, T ],

X(0) = x0, X(t) ≥ 0, ∀t ∈ [0, T ],

(7)

where FX(T )(·) is the CDF of X(T ) viewed at time 0 and X(t) ≥ 0, t ∈ [0, T ] is the

bankruptcy constraint.

Because of the nonlinear probability weighting function w(·), if the agent uses the
same RDU preference relation at future times to construct his optimal portfolio, the

issue of time inconsistency may arise: the optimal strategy planned today might not

be optimal in the future. Here, we assume that the agent only considers the portfolio

choice problem once, at time 0, i.e., problem (7), and the resulting optimal solution

is called a pre-commitment strategy and will be implemented in the future.10

Because the standard Black-Scholes market is dynamically complete, meaning

that any contingent claim at time T can be replicated by certain trading strategy, the

10In the literature, some researchers resolve the issue of time-inconsistency by considering the
so-called equilibrium, instead of optimal, strategies; see e.g., Ekeland and Lazrak (2006), Björk et al.
(2014) and the references therein. However, pre-committed strategies are still important, since they
are frequently applied in practice, sometimes with the help of certain commitment devices. For
instance, Barberis (2012) finds that the pre-committed strategy of a casino gambler is a stop-loss
one (when the model parameters are within reasonable ranges). Many gamblers indeed follow this
strategy by applying some commitment measures, such as leaving ATM cards at home or bringing
little money to the casino; see Barberis (2012) for a full discussion.

16



dynamic portfolio choice problem faced by the agent can be translated into (2) with

ξ ≡ ξ(T ) = e−Z(T ), Z(t) := (r +
κ2

2
)t+ κW (t), t ∈ [0, T ], (8)

where κ := (µ−r)/σ is the market price of risk. Without loss of generality, we assume

κ > 0.

4.2 Optimal Portfolio

To present the optimal portfolio, let us first recall the heat kernel:

H(s, x, y) :=
1√
2πs

e−
(x−y)2

2s , s > 0, x, y ∈ R.

In addition, define

h(x) := N̂ ′(1− w(1− FZ(T )(x))), x ∈ R.

Because N̂(·) is strictly increasing and concave, h(·) is strictly positive and decreasing.

Denote h := infx∈R h(x) = limx→+∞ h(x) and h := supx∈R h(x) = limx→−∞ h(x). To

avoid a trivial case, we assume that h < h.

Theorem 5 Let Assumption 2 hold. Assume that for each λ > 0, there exist α ∈
[1, 2) and C > 0 such that (U ′)−1(λh(x)) ≤ C(1 + e|x|

α

), x ∈ R. Then,

(i) the optimal wealth process for (7) is X∗(t) = u(t, Z(t), λ∗), where

u(t, z, λ) :=

∫

R

e−(y−z)(U ′)−1(λh(y))H

(

κ2(T − t), z + (r +
κ2

2
)(T − t), y

)

dy

and λ∗ > 0 is such that u(0, 0, λ∗) = x0.

(ii) For each fixed λ, u(·, ·, λ) ∈ C∞([0, T ) × R); for each fixed (t, z) ∈ [0, T ) × R,

u(t, z, ·) is strictly decreasing; and for each fixed t ∈ [0, T ), λ > 0, u(t, ·, λ) is

strictly increasing and

lim
z→−∞

u(t, z, λ) = e−r(T−t)(U ′)−1(λh), lim
z→+∞

u(t, z, λ) = e−r(T−t)(U ′)−1(λh).
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(iii) The optimal portfolio π∗(t) = π(t, X∗(t)), 0 ≤ t < T , where

π(t, x) := (σ−1κ)uz(t, u
−1(t, x, λ∗), λ∗),

x ∈ (e−r(T−t)(U ′)−1(λ∗h), e−r(T−t)(U ′)−1(λ∗h)), t ∈ [0, T ).
(9)

Here, u−1(t, x, λ∗) denotes the spatial inverse of u(t, z, λ∗), i.e., the inverse func-

tion of u(t, z, λ∗) with respect to z, and uz(t, z, λ
∗) is the first-order derivative

of u(t, z, λ∗) with respect to z.

4.3 Comparing EU and RDU Stock Holdings in the Black-

Scholes Market

We show in the following theorem that, keeping the utility function fixed, a pre-

committing RDU investor with a concave probability weighting function always holds

more stocks than an EU investor. Similarly, a pre-committing RDU investor with a

convex probability weighting always holds less stocks than in the EU case.

Theorem 6 Suppose U(·) and w(·) satisfy Assumption 2 and there exists a > 0 such

that −U ′(x)/U ′′(x) ≤ a(1+x), x > 0. Assume infx∈R h(x) = 0 and supx∈R h(x) = +∞
where h(x) = N̂ ′(1 − w(1 − FZ(T )(x))), x ∈ R. Further, assume that h(·) is contin-

uously differentiable and strictly decreasing, and h′(x)/h(x) is bounded. Denote by

π(t, x), (t, x) ∈ [0, T ) × (0,∞) the optimal portfolio of the agent with utility func-

tion U(·) and probability weighting function w(·). Denote by π̄(t, x), (t, x) ∈ [0, T )×
(0,+∞) the optimal portfolio of the agent with the same utility U(·) and the identity

probability weighting function w̄(z) = z, z ∈ [0, 1]. Then, π(t, x) ≤ π̄(t, x), (t, x) ∈
[0, T )× (0,+∞) when w(·) is convex, and π(t, x) ≥ π̄(t, x), (t, x) ∈ [0, T )× (0,+∞)

when w(·) is concave.

Let us comment on the technical conditions in Theorem 6. Note that h(·) is

always decreasing. The assumptions that infx∈R h(x) = 0, supx∈R h(x) = +∞, h(·) is
strictly decreasing and that h′(·) is continuous are not essential. The assumption that

−U ′(x)/U ′′(x) satisfies the linear growth condition, i.e., is bounded by a(1 + x), is

technically essential however, because it is needed to apply the comparison principle

of parabolic PDEs, as in Xia (2011). Note that the power utility function satisfies

this assumption. For the same reason, we need to assume that h′(x)/h(x) is bounded.

This assumption is satisfied by the following probability weighting function used by
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Jin and Zhou (2008) and by He and Zhou (2014):

w(z) =











ke(a+b)Φ−1(z̄)+ a2

2 Φ (Φ−1(z) + a) , z ≤ z̄,

A + ke
b2

2 Φ (Φ−1(z)− b) , z ≥ z̄,

(10)

where Φ(·) is the CDF of a standard normal random variable and k and A are given

as

k =
1

e
b2

2 Φ (−Φ−1(z̄) + b) + e(a+b)Φ−1(z̄)+ a2

2 Φ (Φ−1(z̄) + a)
> 0 and A = 1− ke

b2

2 ,

respectively. Because

w′′(z)

w′(z)
=











− a
Φ′(Φ−1(z))

, 0 < z < z̄,

b
Φ′(Φ−1(z))

, z̄ < z < 1,

(11)

this weighting function is concave if a ≥ 0, b ≤ 0, is convex if a ≤ 0, b ≥ 0 and is

inverse-S shaped if a ≥ 0, b ≥ 0. A lengthy calculation shows that when b < κ
√
T

and a > −κ
√
T ,

h(x) =











Ce
−
(

1+ a

κ
√

T

)

x
, x ≤ x0,

Ce

(

− a+b

κ
√

T

)

x0e
−
(

1− b

κ
√

T

)

x
, x ≥ x0,

for some x0 > 0 and C > 0. Then, it follows that h′(x)/h(x) is bounded.

A consequence of Theorem 6 is that when comparing an RDU agent and an EU

agent, the more risk averse one always hold less stocks.

Corollary 1 Consider two agents with utility functions Ui(·) and probability weight-

ing functions wi(·), i = 1, 2 and assume one of the agents has EU preferences, i.e.,

one of wi(·)’s is the identity function. For i = 1, 2, suppose Ui(·) and wi(·) satisfy As-

sumption 2 and there exist ai > 0 such that −U ′
i(x)/U

′′
i (x) ≤ ai(1+x), x > 0. Assume

infx∈R hi(x) = 0 and supx∈R hi(x) = +∞ where hi(x) = N̂ ′
i(1−wi(1−FZ(T )(x))), x ∈

R. Further, assume that hi(·) is continuously differentiable and strictly decreasing,

and h′i(x)/hi(x) is bounded. Denote by πi(t, x), (t, x) ∈ [0, T ) × (0,∞) the optimal

portfolio of agent i, i = 1, 2. If agent 1 is more risk averse than agent 2, then
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π1(t, x) ≤ π2(t, x), (t, x) ∈ [0, T )× (0,∞).

4.4 Counter-Example of a More Risk Averse Investor Hold-

ing More Stocks in the Black-Scholes Market

We have shown that when comparing an RDU agent with an EU one, the more risk

averse one always holds less stocks. Intriguingly, as we will demonstrate numerically

now, this comparative statics result does not extend to the case of two genuine RDU

agents.

Using the same market data as in Mehra and Prescott (1985) and He and Zhou

(2014), we set the mean return of the stock equal to µ = 7% per year, with volatility

σ = 15.34% and risk-free rate r = 1%. Hence, the market price of risk is κ = 0.391.

We assume the evaluation period T of the investor (i.e., the planning horizon) to be

exactly one year. The log pricing kernel, ln ξ, then, follows a normal distribution,

with mean −8.65% and standard deviation 39.11%.

We consider the power utility function U(x) = (x1−α − 1)/(1 − α), x > 0, with

α > 0 as the relative risk aversion parameter. In the special case α = 1, the utility

function is defined as U(x) = ln(x), x > 0. We choose the probability weighting

function to be a power function as well: w(z) = zγ , z ∈ [0, 1] for γ > 0. The special

case in which γ = 1 corresponds to the case of no probability weighting, i.e., to one

in which RDU degenerates into the standard expected utility model. For 0 < γ < 1,

the probability weighting function is concave, while it is convex for γ > 1. It is easy

to see that w(·) becomes more convex when the parameter γ becomes larger. A more

convex probability weighting function implies stronger underweighting of extremely

good outcomes and more overweighting of the worst outcomes, which amplifies risk

aversion.

In our numerical experiments we focus on the optimal portfolios at terminal time

T . If the optimal terminal wealth, as a function of Z(T ), is strictly increasing and

differentiable, then, in a neighborhood of that wealth level, the optimal portfolio

is continuous in time t when t approaches T . As a result, the optimal portfolios

near the terminal time with different parameters will maintain the same order of

stock allocations at the terminal time. Further, if we find that one RDU agent has

strictly higher stock holdings at time T than another agent at some particular level

of wealth, then we can conclude that the first agent has higher stock holding than the
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second in a neighborhood of that wealth level and time. On the other hand, under

some technical conditions, if one RDU agent, at any wealth level, has lower stock

holding than another at time T , then, using the comparison theorem from the theory

of parabolic partial differential equations, one can conclude that the first agent has

lower stock holding at any time; see for instance the example in Theorem 6. Thus,

in order to compare the stock holdings of two agents at any time, we only need to

compare the holdings at the terminal time T .

We fix α = 2 and choose γ to be 0.25, 0.5, 1, 1.5, or 2. Figure 1 shows that

optimal terminal wealth is a strictly decreasing function of the pricing kernel ξ(T )

when the probability weighting function is concave (γ = 0.25, 0.5) and in the expected

utility case (γ = 1). However, when the probability weighting function is convex (γ =

1.5, 2), the optimal wealth of the investor has a ceiling due to the underweighting of

very good states, which occur with low probability. Figure 2 shows the stock holding

at terminal time T . Note in passing that in the expected utility case (γ = 1) the

stock holding is a linear function of wealth going through the origin, a classical result

demonstrating that the fraction of wealth allocated to stocks is constant.

Comparing the case in which γ = 1.5 and the case γ = 2 in Figure 2, we find

that the stock holding is strictly lower in the first case than in the second case at a

range of wealth levels. Recall that the higher γ is, the more risk averse the agent

is. This example therefore demonstrates that, in the RDU framework, a more risk

averse and pre-committed agent does not necessarily hold less stocks at any time and

at any wealth level, in contrast to the result obtained in the standard EU framework.

Moreover, because we have shown in Theorem 3 that a more risk averse agent chooses

less risky terminal wealth, this example also illustrates that the portfolio replicating

a less risky terminal wealth profile does not always necessarily consist of less stocks.

The observations we made in the previous numerical example are not specific

to the choice of power probability weighting functions. Indeed, we also considered

the probability weighting function (10). From (11), we can see that this weighting

function becomes more convex when a becomes smaller or when b becomes larger.

Using this probability weighting function, we also find that a more risk averse pre-

committed agent does not necessarily hold less stocks at any time or at any wealth

level.

A possible economic reason for the above seemingly counter-intuitive examples is

the time-inconsistency of the dynamic RDU portfolio choice problem, which arises due
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Figure 1: Optimal terminal wealth as a function of the pricing kernel ξ at time T in
the Black-Scholes market. The relative risk aversion index is fixed at α = 2. The
power index of the probability weighting function γ varies: 0.25, 0.5, 1, 1.5, or 2.
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Figure 2: Optimal stock holding as a function of wealth level at time T in the Black-
Scholes market. The relative risk aversion index is fixed at α = 2. The power index
of the probability weighting function γ varies: 0.25, 0.5, 1, 1.5, or 2.
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to the presence of probability weighting. The replicating strategy of the “optimal”

terminal wealth, which is derived from a single-period portfolio choice problem, is

optimal only for t = 0, and not optimal (in the traditional sense of “optimality”) for

any t > 0. Indeed, since the underlying problem is time inconsistent, there is simply

no trading strategy that is optimal for all t > 0. One either has to resort to some

different notion of “optimality” (such as “equilibrium strategies”) or simply to pre-

committed strategies (which are widely adopted in practice). If we take the latter,

then the stock allocations after t = 0 are obtained from pre-commitment rather than

from optimality, and a more risk averse agent may need to take riskier positions in

order to pre-commit.

Similar counter-examples, however, are also available for portfolio choice problems

in which time-inconsistency plays no role at all, see Liu (2001, 2007) and Dybvig and

Wang (2012). The standard comparative statics results, therefore, do not hold for

risky asset holdings, regardless of whether the problem concerned is time-consistent

or inconsistent. The key message is that, in complete markets, risky assets are simply

a means that investors use to achieve desired payoffs. Thus, in our view, the new

notion of less risk taking and the notion of decreasing-concave monotone dominance,

which are based on payoffs, are more appropriate for comparing the portfolio choice

of agents with different risk tastes.

5 Conclusion

In this paper we studied the optimal portfolio choice problem of an investor who

maximizes RDU in a single-period complete market. In particular, we studied whether

an investor with a more risk averse RDU preference ordering will always choose a less

risky investment strategy. For this purpose, we first introduced a new notion of

less risk taking for portfolio choice in single-period complete markets based on the

investor’s terminal wealth at planning horizon T . A less risky terminal wealth profile

returns more in bad market states and less in good states. We showed that our notion

of less risk taking is consistent with less stock holdings in a simple discrete-time one-

period market with one stock and one risk-free asset as in Chew et al. (1987).

Then, we proved that in a general single-period complete market with a continuum

of Arrow-Debreu securities, a more risk averse RDU agent will always choose a less

risky terminal wealth. Further, the payoff distribution of a less risk averse RDU agent
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differs from the distribution of a more risk averse agent by a risk premium and some

conditional-mean-zero noise. Hence, RDU agents trade off expected return and risk,

defined in terms of their terminal payoff distribution. Our result is general, holding for

any strictly concave utility function and any strictly increasing probability weighting

function, under mild technical conditions. We extended earlier results for globally risk

averse EU agents by Dybvig and Wang (2012) to a non-expected utility framework

that accommodates probability weighting and locally risk seeking behavior.

Our general result for optimal payoffs, however, does not necessarily imply that a

more risk averse RDU investor will hold less risky assets at all times and all wealth

levels. We investigated this issue in the continuous-time Black-Scholes market in

which the investor can dynamically trade one stock and a riskless asset. In this setting

we first derived a closed-form expression for the time 0 optimal investment strategy of

an RDU investor who pre-commits to implementing this strategy after time 0. Then,

we showed that between an EU investor and RDU investor, the more risk averse

one always holds less risky assets at any time and any wealth level. For two genuine

RDU agents, however, we illustrated by a numerical counter-example that a more risk

averse RDU investor may need to hold more stocks for a period of time to replicate

his less risky terminal wealth, compared to an investor who is less risk averse. We

argued that this phenomenon may arise from the inherent time-inconsistency of the

RDU portfolio selection problem in a dynamic setting. Other counter-examples are

available for standard portfolio choice problems with EU agents (Dybvig and Wang,

2012, Liu, 2001, 2007). The underlying issue is that, in complete markets, risky asset

holdings are merely a device to achieve desired payoffs, and general comparative

statics results hold only for these terminal payoffs.

Appendix A Some Results on Convex Envelopes

Recall the notion of extended differentiability defined in Section 3.3. For any function

f(·) on a convex set C, recall the definition of its convex envelope f̂(·) in Section 3.1.

It is well known that the convex envelope f̂(·) satisfies

f̂(x) = inf
{

m
∑

i=1

αif(xi) | xi ∈ C, αi ≥ 0, i = 1, . . . , m,
m
∑

i=1

αi = 1,
m
∑

i=1

αixi = x
}

.

(A.1)
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In the following, we need to use Lemma B.6 in Xia and Zhou (2013). For readers’

convenience, we reproduce this lemma here (with change of notations):

Lemma 1 Assume function f : [0, 1] → R is continuous. Then, its convex envelop

f̂ satisfies the following:

(i) f̂ is continuous on [0, 1];

(ii) f̂ is affine on {x ∈ [0, 1] : f̂(x) < f(x)}; and

(iii) f̂(0) = f(0) and f̂(1) = f(1).

The following two lemmas introduce further properties of convex envelopes.

Lemma 2 Let f(·) be a continuous function on [0, 1]. Denote f̂(·) as its convex

envelop. Then, the following are true:

(i) If f(·) is strictly increasing, so is f̂(·).

(ii) If f(·) is extendedly differentiable on (0, 1), then f̂(·) is continuously differen-

tiable in (0, 1). In addition, for any z ∈ (0, 1) such that f̂(z) = f(z), f(·) is

differentiable at z and f̂ ′(z) = f ′(z).

Proof We first prove statement (i). Recall that f̂ is the convex envelope of f , so

f̂(z) ≤ f(z), z ∈ [0, 1]. Fix any 0 ≤ z1 < z2 ≤ 1. Define

xi := sup{z ≤ zi|f̂(z) = f(z)}, yi := inf{z ≥ zi|f̂(z) = f(z)}, i = 1, 2.

From Lemma 1-(iii), we have f(0) = f̂(0) and f(1) = f̂(1); so xi ∈ [0, zi] and

yi ∈ [zi, 1] are well defined. Because both f̂ and f are continuous due to Lemma

1-(i), we must have f̂(xi) = f(xi) and f̂(yi) = f(yi). Finally, by the definition of xi

and yi, we conclude that f̂(z) < f(z) for any z ∈ (xi, yi). Furthermore, xi < yi if and

only if f̂(zi) < f(zi), in which case xi < zi < yi.

If xi = yi, i = 1, 2, we have f̂(z1) = f(z1) < f(z2) = f̂(z2), where the inequality

is the case because f is strictly increasing. If x1 = y1 and x2 < y2, we have x1 =

y1 = z1 and f̂(z1) = f(z1). By the definition of x2, we must have z1 ≤ x2. Because

f̂(z) < f(z), z ∈ (x2, y2), Lemma 1-(ii) shows that f̂ is affine on [x2, y2]. Because

f is strictly increasing, we have f̂(x2) = f(x2) < f(y2) = f̂(y2), showing that f̂
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is strictly increasing in [x2, y2]. Because z1 ≤ x2 < z2 < y2, we conclude that

f̂(z1) = f(z1) ≤ f(x2) = f̂(x2) < f̂(z2). Using a similar argument, we can show

that f̂(z1) < f̂(z2) when x1 < y1 and x2 = y2. Finally, we consider the case in

which xi < yi, i = 1, 2. Again, because f is strictly increasing and f̂ is affine on

[xi, yi], we conclude that f̂(z1) < f̂(y1) = f(y1) and f(x2) = f̂(x2) < f̂(z2). If

y1 ≤ x2, we immediately conclude that f̂(z1) < f̂(z2). Otherwise, by the definition of

xi, yi, i = 1, 2, we must have y1 = y2, in which case x1 < z1 < z2 < y2 and f̂ is affine

on [x1, y2]. Consequently, f̂ is strictly increasing on [x1, y2] and f̂(z1) < f̂(z2).

Next, we prove statement (ii). First, thanks to Lemma 1, the set {z ∈ [0, 1]|f̂(z) <
f(z)} does not contain {0, 1} and is open. In addition, f̂(·) is affine on this set.

Consequently, f̂(·) is differentiable on this set. For any z ∈ (0, 1) with f̂(z) = f(z),

we have

f̂ ′(z−) = lim
δ↓0

f̂(z − δ)− f̂(z)

−δ ≥ lim
δ↓0

f(z − δ)− f(z)

−δ = f ′(z).

Similarly, f̂ ′(z+) ≤ f ′(z). Because +∞ > f̂ ′(z+) ≥ f̂ ′(z−) > −∞ from the convexity

of f̂(·), we conclude that f̂ ′(z+) = f̂ ′(z−) = f ′(z) ∈ R. Thus, both f̂(·) and f(·)
are differentiable at z. Consequently, f̂(·) is differentiable on (0, 1). Because f̂(·) is
convex, it must be continuously differentiable on (0, 1). �

Lemma 3 Let f(·) and g(·) be two strictly increasing and continuous functions on

[0, 1] with extended differentiability on (0, 1). Denote f̂(·) and ĝ(·) as the convex

envelopes of f(·) and g(·), respectively. Suppose that there exist a strictly increas-

ing, continuous and convex function H(·) on [0, 1] with differentiability on (0, 1) and

H(0) = 0 and H(1) = 1 such that f(z) = g(H(z)), z ∈ [0, 1]. Then, f̂ ′(z)
ĝ′(H(z))

is

increasing on (0, 1).

Proof From Lemmas 1 and 2, f̂(·) and ĝ(·) are strictly increasing and continuous on

[0, 1] and continuously differentiable on (0, 1). Because of convexity, we must have

f̂ ′(z) > 0, ĝ′(z) > 0, z ∈ (0, 1). Thus, the function f̂ ′(z)
ĝ′(H(z))

is well-defined on (0, 1).

Define Af := {z ∈ [0, 1]|f̂(z) < f(z)} and Bf := [0, 1]\Af . Define Ag and Bg

similarly. Then, both Bf and Bg are closed sets containing {0, 1} because of Lemma

1. Next, we show that Af ⊆ H−1Ag. For any z0 ∈ Af , define x0 := sup{z ≤
z0|f̂(z) = f(z)} and y0 := inf{z ≥ z0|f̂(z) = f(z)}. Again, by Lemma 1, we have
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x0 < z0 < y0, f̂(x0) = f(x0) and f̂(y0) = f(y0). Thanks to Lemma 1-(ii), we have

f̂(·) is affine on [x0, y0]; so

f(z0) > f̂(z0) =
f̂(y0)− f̂(x0)

y0 − x0
(z0 − x0) + f̂(x0) =

f(y0)− f(x0)

y0 − x0
(z0 − x0) + f(x0).

Recalling that f(z) = g(H(z)), z ∈ [0, 1], we have

g(H(z0)) = f(z0) >
f(y0)− f(x0)

y0 − x0
(z0 − x0) + f(x0)

=
g(H(y0))− g(H(x0))

y0 − x0
(z0 − x0) + g(H(x0))

=
g(H(y0))− g(H(x0))

H(y0)−H(x0)
(H(z0)−H(x0))

H(y0)−H(x0)
y0−x0

H(z0)−H(x0)
z0−x0

+ g(H(x0))

≥ g(H(y0))− g(H(x0))

H(y0)−H(x0)
(H(z0)−H(x0)) + g(H(x0)),

where the last inequality is due to the convexity of H(·). By the characterization of

convex envelop (A.1), H(z0) ∈ Ag.

Finally, we show that for any 0 < z1 < z2 < 1,

f̂ ′(z1)

ĝ′(H(z1))
≤ f̂ ′(z2)

ĝ′(H(z2))
.

Define y1 := inf{z ≥ z1 | ĝ(H(z)) = g(H(z))} and x2 := sup{z ≤ z2 | ĝ(H(z)) =

g(H(z))}. By Lemma 1 and the continuity and strict monotonicity of H , we conclude

that y1 ∈ [z1, 1] and x2 ∈ [0, z2] are well defined, ĝ(H(z)) < g(H(z)) for z ∈ [z1, y1) ∪
(x2, z2], y1 > z1 if and only if ĝ(H(z1)) < g(H(z1)), x2 < z2 if and only if ĝ(H(z2)) <

g(H(z2)), and ĝ(H(y1)) = g(H(y1)), ĝ(H(x2)) = g(H(x2)), i.e., y1, x2 ∈ H−1Bg.

We first consider the case in which y1 ≥ z2. In this case, H(z1) < H(z2) ≤ H(y1)

and ĝ(z̃) < g(z̃) for z̃ ∈ [H(z1), H(y1)). By Lemma 1-(ii), ĝ is affine on [H(z1), H(y1)],

yielding ĝ′(H(z1)) = ĝ′(H(z2)). Because f̂(·) is convex, f̂ ′(·) is increasing. As a result,

f̂ ′(z1)

ĝ′(H(z1))
=

f̂ ′(z1)

ĝ′(H(z2))
≤ f̂ ′(z2)

ĝ′(H(z2))
.

The case in which x2 ≤ z1 can be treated similarly.

Finally, we consider the case in which y1 < z2 and x2 > z1. Because ĝ(H(z)) <
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g(H(z)) for z ∈ [z1, y1) and ĝ(H(x2)) = g(H(x2)), we must have y1 ≤ x2, i.e.,

0 < z1 ≤ y1 ≤ x2 ≤ z2 < 1. On the one hand, ĝ′(H(z1)) = ĝ′(H(y1)) because ĝ(·) is
affine on [H(z1), H(y1)]. As a result,

f̂ ′(z1)

ĝ′(H(z1))
=

f̂ ′(z1)

ĝ′(H(y1))
≤ f̂ ′(y1)

ĝ′(H(y1))

where the inequality is due to the convexity of f̂(·). For a similar reason, we have

f̂ ′(z2)

ĝ′(H(z2))
≥ f̂ ′(x2)

ĝ′(H(x2))
.

On the other hand, because Af ⊆ H−1Ag and y1 ∈ H−1Bg, we conclude that y1 ∈ Bf .

As a result, by Lemma 2-(ii), g(·) is differentiable atH(y1) with ĝ
′(H(y1)) = g′(H(y1))

and f(·) is differentiable at y1 with f̂ ′(y1) = f ′(y1). Because f(y1) = g(H(y1)), H(·)
is differentiable on (0, 1) and g(·) is differentiable at H(y1), we have f̂

′(y1) = f ′(y1) =

g′(H(y1))H
′(y1). For a similar reason, g(·) is differentiable at H(x2), ĝ

′(H(x2)) =

g′(H(x2)) and f̂
′(x2) = f ′(x2) = g′(H(x2))H

′(x2). Then, we have

f̂ ′(x2)

ĝ′(H(x2))
=
g′(H(x2))H

′(x2)

g′(H(x2))
= H ′(x2) ≥ H ′(y1) =

g′(H(y1))H
′(y1)

g′(H(y1))
=

f̂ ′(y1)

ĝ′(H(y1))
,

and this completes the proof. �

Appendix B Proofs

Proof of Theorem 2 This is a direct consequence of Theorem 3.3 in Xia and Zhou

(2013). Note that we do not have consumption at time 0. In addition, the function

N(·), defined as in Eq. (3.10) in Xia and Zhou (2013), is the same as in (4). �

Proof of Proposition 1 Suppose X is less risky than Y when the event A represents

the bad market scenarios, but Y is less risky thanX when the bad event is B. Because

X ≥ Y on A almost surely (abbreviated as ‘a.s.’) and Y ≥ X a.s. on B, we conclude

that X = Y a.s. on A ∩ B. Using a similar argument, we can conclude that X = Y

a.s. on Ac∩Bc. Next, we first consider the case in which A∩Bc has zero probability.

In this case, because X ≤ Y a.s. on Ac, we have X ≤ Y a.s. on Ac ∩ B. Because
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A ∩Bc = Ω/((A ∩B) ∪ (Ac ∩Bc) ∪ (Ac ∩B)) has zero probability, we conclude that

X ≤ Y a.s. Since X and Y do not dominate each other, it follows that X = Y a.s.

Similarly, when B ∩Ac has zero probability, we also have X = Y a.s.

Finally, we consider the case in which both A∩Bc and B∩Ac have nonzero proba-

bility. Because supω∈AX(ω) ≤ infω∈Ac X(ω), we have supω∈A∩Bc X(ω) ≤ infω∈Ac∩BX(ω).

On the other hand, since supω∈B X(ω) ≤ infω∈Bc X(ω), we conclude that supω∈B∩Ac X(ω) ≤
infω∈Bc∩AX(ω). As a result, we have

inf
ω∈A∩Bc

X(ω) ≤ sup
ω∈A∩Bc

X(ω) ≤ inf
ω∈Ac∩B

X(ω) ≤ sup
ω∈B∩Ac

X(ω) ≤ inf
ω∈Bc∩A

X(ω),

from which it follows that X is constant on (A ∩ Bc) ∪ (B ∩ Ac). Similarly, Y is

constant on (A ∩ Bc) ∪ (B ∩ Ac). However, X ≥ Y on A and X ≤ Y on Ac a.s., we

deduce X = Y on (A∩Bc)∪ (B ∩Ac). Since we already showed that X = Y a.s. on

(A ∩ B) ∪ (Ac ∩ Bc), we finally arrive at X = Y a.s. �

Proof of Proposition 2 Choose A = {ω | Z(ω) < z0} and the conclusion follows

immediately. �

Proof of Theorem 3 By Theorem 2, we have, for each i = 1, 2,

X∗
i = (U ′

i)
−1

(

λ∗i N̂
′
i(1− wi(Fξ(ξ)))

)

where N̂i(·) is the concave envelope of

Ni(z) := −
∫ w−1

i (1−z)

0

F−1
ξ (t)dt, z ∈ [0, 1]

and λ∗i > 0 is the number such that E[ξX∗
i ] = x0. It is clear that X

∗
i is a function of

ξ and this function is decreasing because of the concavity of Ui(·) and N̂i(·).
To proceed, we first show that

N̂ ′
1(1− w1(Fξ(x)))

N̂ ′
2(1− w2(Fξ(x)))
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is a decreasing function, which is equivalent to showing that

N̂ ′
1(1− w1(w

−1
2 (z)))

N̂ ′
2(1− z)

=
N̂ ′

1(1− T (z))

N̂ ′
2(1− z)

, 0 < z < 1

is decreasing. Denote Mi(z) := −Ni(1 − z), z ∈ [0, 1] and M̂i(·) the convex envelop

of Mi(·), i = 1, 2. Then we have N̂i(z) = −M̂i(1− z), z ∈ [0, 1]. As a result, we only

need to show that

M̂ ′
1(T (z))

M̂ ′
2(z)

, 0 < z < 1

is decreasing.

Denote ϕ(z) :=
∫ z

0
F−1
ξ (t)dt, z ∈ [0, 1]. By Assumption 1, ϕ(·) is strictly increasing,

continuous on [0, 1] and continuously differentiable in (0, 1) with ϕ′(z) = F−1
ξ (z) >

0, z ∈ (0, 1). On the other hand, because we assume that wi(·) is extendedly differ-

entiable in (0, 1), so is w−1
i (·), i = 1, 2. Noting Mi(z) = −Ni(1− z) = ϕ(w−1

i (z)), z ∈
[0, 1], we conclude that Mi(·) is strictly increasing and continuous on [0, 1] and is

extendedly differentiable in (0, 1), i = 1, 2.

On the other hand, since w1(z) = T (w2(z)), z ∈ [0, 1], we have w−1
1 (y) = w−1

2 (T−1(y)),

y ∈ [0, 1]. As a result,

M1(T (z)) = ϕ(w−1
1 (T (z))) = ϕ(w−1

2 (T−1(T (z)))) =M2(z), z ∈ [0, 1].

Now, applying Lemma 3 in Appendix A, we conclude that
M̂ ′

1(T (z))

M̂ ′
2(z)

is decreasing

in 0 < z < 1; so
N̂ ′

1(1−w1(Fξ(x)))

N̂ ′
2(1−w2(Fξ(x)))

is decreasing in x > 0.

Next, from U1(x) = H(U2(x)), x > 0, it follows that U ′
1(x) = H ′(U2(x))U

′
2(x), x >

0. Consequently,

(U ′
1)

−1(y) = (U ′
2)

−1

(

y

H ′(U2((U ′
1)

−1(y)))

)

, y > 0.

Denote

ψ1(x) :=
λ∗1N̂

′
1(1− w1(Fξ(x)))

H ′(U2((U
′
1)

−1(λ∗1N̂
′
1(1− w1(Fξ(x))))))

, ψ2(x) := λ∗2N̂
′
2(1− w2(Fξ(x))).
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Then, X∗
i = fi(ξ), where fi(x) := (U ′

2)
−1(ψi(x)), i = 1, 2. Note that fi(·) is decreasing

and continuous because N̂ ′
i(·) is continuous as a result of Lemma 2-(ii) in Appendix.

Because (U ′
2)

−1(·) is decreasing, to finish the proof, it suffices to show, in view of

Proposition 2, that there exists x0 such that ψ1(x) ≥ ψ2(x) ∀x < x0 and ψ1(x) ≤
ψ2(x) ∀x ≥ x0.

Note that N̂ ′
i(z) > 0, z ∈ (0, 1) following Lemma 2; so ψi(x) > 0. We have

ψ1(x)

ψ2(x)
=
λ∗1
λ∗2

N̂ ′
1(1− w1(Fξ(x))

N̂ ′
2(1− w2(Fξ(x)))

1

H ′(U2((U
′
1)

−1(λ∗1N̂
′
1(1− w1(Fξ(x))))))

.

We have shown that
N̂ ′

1(1−w1(Fξ(x))

N̂ ′
2(1−w2(Fξ(x)))

is decreasing in x. On the other hand, because

H(·), U1(·) and N̂1(·) are concave and U2(·), w1(·) and Fξ(·) are increasing, we

have that H ′(U2((U
′
1)

−1(λ∗1N̂
′
1(1 − w1(Fξ(x)))))) is increasing in x. Consequently,

ψ1(x)/ψ2(x) is decreasing in x. Because of the initial budget constraint, we have

E[ξ(U ′
2)

−1(ψ1(ξ))] = E[ξ(U ′
2)

−1(ψ2(ξ))]. Thus, neither ψ1(x)/ψ2(x) > 1 ∀x ∈ R nor

ψ2(x)/ψ2(x) < 1 ∀x ∈ R holds. However, ψ1(x)/ψ2(x) is decreasing in x; hence there

must exist x0 such that ψ1(x)/ψ2(x) ≥ 1 for x < x0 and ψ1(x)/ψ2(x) ≤ 1 for x ≥ x0.

This completes the proof. �

Proof of Theorem 4 We first show that E[X∗
2 ] ≥ E[X∗

1 ] and that the inequality

becomes an equality if and only if X∗
1 = X∗

2 . By Theorem 2, X∗
i = fi(ξ) where fi(·)

is a decreasing function, i = 1, 2. From the proof of Theorem 3, there exist x0 > 0

such that f2(x) ≥ f1(x) when x < x0 and f2(x) ≤ f1(x) when x > x0. Consequently,

(f2(x)− f1(x))(x− x0) ≤ 0 for any x, so we have

0 ≥ E[(f2(ξ)− f1(ξ))(ξ − x0)] = E[(X∗
2 −X∗

1 )(ξ − x0)]

= E[ξX∗
2 ]− E[ξX∗

1 ]− x0(E[X
∗
2 ]− E[X∗

1 ]) = −x0(E[X∗
2 ]− E[X∗

1 ])

where the last equality is due to the initial budget constraint. As a result, E[X∗
2 ] ≥

E[X∗
1 ]. Noting that the only inequality in the above derivation becomes an equality

if and only if f2(ξ)− f1(ξ) = 0 almost surely, we conclude that E[X∗
2 ] = E[X∗

1 ] if and

only if X∗
1 = X∗

2 .

Next, following steps similar to those presented in Dybvig and Wang (2012), we

show that X∗
2 is distributed as X∗

1 + Z + ε. To this end, we only need to show that

X∗
1 decreasing-concave stochastically dominates X∗

2 , i.e., E[V (X∗
1 )] ≥ E[V (X∗

2 )] for
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any decreasing concave function V (·). Fix any such function V (·). For any x in the

domain of V (·), let V ′(x) be any selection from the sub-gradient of V (·) at x. Because
of concavity, V ′(·) is decreasing. Recall that X∗

i = fi(ξ), i = 1, 2. For any x > x0,

V (f2(x))− V (f1(x)) ≤ V ′(f1(x))(f2(x)− f1(x)) ≤ V ′(f1(x0))(f2(x)− f1(x))

where the last inequality is valid because V ′(·) is decreasing and f1(x0) ≥ f1(x) ≥
f2(x) for x > x0. On the other hand, for any x < x0,

V (f2(x))− V (f1(x)) ≤ V ′(f1(x))(f2(x)− f1(x)) ≤ V ′(f1(x0))(f2(x)− f1(x))

where the last inequality is due to V ′(·) being decreasing and f1(x0) ≤ f1(x) ≤ f2(x)

for x < x0. Therefore, we have V (X
∗
2 )−V (X∗

1 ) ≤ V ′(f1(x0))(X
∗
2 −X∗

1 ) almost surely.

Consequently,

E[V (X∗
2 )]− E[V (X∗

1 )] ≤ V ′(f1(x0))E[X
∗
2 −X∗

1 ] ≤ 0,

where the last inequality follows from the fact that E[X∗
1 ] ≤ E[X∗

2 ] and V (·) is de-

creasing.

Finally, if X∗
1 6= X∗

2 , then E[X∗
1 ] < E[X∗

2 ]. Because E[X∗
2 ] = E[X∗

1 ] + E[Z], we

conclude that Z 6= 0. Next, we show that ǫ 6= 0; otherwise, X∗
2 strictly first-order

stochastically dominates X∗
1 because Z ≥ 0 and Z 6= 0. Because the utility function

U1(·) and probability weighting function w1(·) (of, say, agent 1) are strictly increasing,

X∗
2 is strictly preferred to X∗

1 by agent 1, which contradicts the optimality of X∗
1 . �

Proof of Thoerem 5 We first prove statement (i). According to Theorem 2, the

optimal terminal wealth

X∗(T ) = (U ′)−1
(

λ∗N̂ ′(1− w(Fξ(ξ)))
)

= (U ′)−1(λ∗h(Z(T ))).

According to standard portfolio selection theory (Karatzas and Shreve, 1998), we

have

X∗(t) = eZ(t)
E
[

e−Z(T )X∗(T )|Ft

]

, 0 ≤ t ≤ T.

Straightforward calculation shows that X∗(t) = u(t, Z(t), λ∗). In particular, x0 =
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X∗(0) = u(0, Z(0), λ∗) = u(0, 0, λ∗).

Statement (ii) can be checked directly using the dominance convergence theo-

rem and monotone convergence theorem and the assumption that (U ′)−1(λh(z)) are

properly bounded.

Finally, we prove statement (iii). Because X∗(·) represents the wealth process

associated with the optimal portfolio π∗(·), we have the following wealth equation:

dX∗(t) = rX∗(t)dt+ π∗(t) [(µ− r)dt+ σdW (t)] .

On the other hand, applying Itô lemma to X∗(t) = u(t, Z(t), λ∗) yields

dX∗(t) = a(t)dt+ uz(t, Z(t), λ
∗)κdW (t)

for some process a(·). As a result, the optimal portfolio must be

π∗(t) = (σ−1κ)uz(t, Z(t), λ
∗).

Consequently,

π∗(t) = (σ−1κ)uz(t, Z(t), λ
∗) = (σ−1κ)uz(t, u

−1(t, X∗(t), λ∗), λ∗) = π(t, X∗(t)),

t ∈ [0, T ). �

Proof of Theorem 6 First, we derive some bound of (U ′)−1(λh(x)) in order to apply

Theorem 5.

Because h′/h is bounded and h(·) is strictly decreasing, there exist C > 0 such

that −C ≤ h′(x)/h(x) < 0, x ∈ R. As a result, for any x < 0,

ln(h(0)/h(x)) =

∫ 0

x

h′(u)/h(u)du ≥ Cx,

which shows that h(x) ≤ h(0)e−Cx. Similarly, for any x > 0, we have h(x) ≥
h(0)e−Cx.

On the other hand, because −U ′(x)/U ′′(x) ≤ a(1+x) and limy→0(U
′)−1(y) = +∞,
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we have

− 1

(U ′)−1(y)U ′′((U ′)−1(y))
≤ a

1 + (U ′)−1(y)

y(U ′)−1(y)
≤ 2a

y

for sufficiently small y. Then, for sufficiently small y and y0 such that y < y0, we

have

(U ′)−1(y) = (U ′)−1(y0) exp
[

ln(U ′)−1(y)− ln(U ′)−1(y0)
]

= (U ′)−1(y0) exp

[
∫ y0

y

− 1

(U ′)−1(x)U ′′((U ′)−1(x))
dx

]

≤ (U ′)−1(y0) exp

[
∫ y0

y

2a

x
dx

]

= (U ′)−1(y0)y
2a
0 y

−2a.

Therefore, for any λ > 0 and sufficiently large x,

(U ′)−1(λh(x)) ≤ (U ′)−1(λh(0)e−Cx) ≤ (U ′)−1(y0)y
2a
0 (λh(0))−2ae−2aCx.

Now, we can apply Theorem 5 and obtain that, in the optimal portfolio,

π(t, x) = (σ−1κ)uz(t, u
−1(t, x, λ∗), λ∗).

By the Feyman-Kac representation formula, u satisfies the following linear parabolic

partial differential equation (PDE):







ut +
κ2

2
uzz + (r + κ2

2
)uz − ru = 0,

u(T, z, λ∗) = (U ′)−1 (λ∗h(z)) .
(B.1)

From u(t, u−1(t, x, λ∗), λ∗) = x, we obtain

∂

∂t
u−1(t, x, λ∗) = −ut(t, u

−1(t, x, λ∗), λ∗)

uz(t, u−1(t, x, λ∗), λ∗)
,

∂

∂x
u−1(t, x, λ∗) =

1

uz(t, u−1(t, x, λ∗), λ∗)
.
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As a result,

πt(t, x)

σ−1κ
= uzt(t, u

−1(t, x, λ∗), λ∗)− uzz(t, u
−1(t, x, λ∗), λ∗)ut(t, u

−1(t, x, λ∗), λ∗)

uz(t, u−1(t, x, λ∗), λ∗)
,

πx(t, x)

σ−1κ
=
uzz(t, u

−1(t, x, λ∗), λ∗)

uz(t, u−1(t, x, λ∗), λ∗)
,

πxx(t, x)

σ−1κ
=

1

uz(t, u−1(t, x, λ∗), λ∗)2

[

uzzz(t, u
−1(t, x, λ∗), λ∗)− uzz(t, u

−1(t, x, λ∗), λ∗)2

uz(t, u−1(t, x, λ∗), λ∗)

]

.

From (B.1), we have

uzt = ruz − (r +
κ2

2
)uzz −

κ2

2
uzzz, ut = ru− (r +

κ2

2
)uz −

κ2

2
uzz.

Consequently,

πt
σ−1κ

= ruz − (r +
κ2

2
)uzz −

κ2

2
uzzz −

ruuzz
uz

+ (r +
κ2

2
)uzz +

κ2

2

u2zz
uz

= ruz −
κ2

2
(uzzz −

u2zz
uz

)− ruuzz
uz

= ruz −
κ2

2

πxx
σ−1κ

u2z − ru
πx
σ−1κ

,

where the argument in πt, πx, πxx is (t, x) and the argument in u, ut, uzt, uz, uzz, uzzz

is (t, u−1(t, x, λ∗), λ∗). Recalling that π = (σ−1κ)uz, we conclude that π satisfies the

following nonlinear parabolic PDE:

πt +
σ2

2
π2πxx + rxπx − rπ = 0, x ∈ (0,+∞), t ∈ [0, T ).

Next, we derive the boundary condition for π. On the one hand, one can use the

dominance convergence theorem to show that

lim
z→−∞

uz(t, z, λ
∗) = 0, lim

z→−∞
u(t, z, λ∗) = 0.

As a result, we have

lim
x→0

π(t, x) = 0.

On the other hand, because h(·) is continuously differentiable, π(t, x) is continuous
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when t goes to T . Because

uz(T, z, λ
∗) =

λ∗h′(z)

U ′′((U ′)−1(λ∗h(z)))
,

we obtain the following boundary condition:

π(T, x) = (σ−1κ)uz(T, u
−1(T, x, λ∗), λ∗) = (σ−1κ)

λ∗h′
(

h−1
(

U ′(x)
λ∗

))

U ′′(x)

= (σ−1κ)



−
h′
(

h−1
(

U ′(x)
λ∗

))

h
(

h−1
(

U ′(x)
λ∗

))





[

−U ′(x)

U ′′(x)

]

, x ∈ (0,+∞).

To summarize, π(t, x), (t, x) ∈ [0, T ] × (0,+∞) satisfies the following nonlinear

parabolic PDE:























πt +
σ2

2
π2πxx + rxπx − rπ = 0, (t, x) ∈ [0, T )× (0,+∞),

π(t, 0) = 0, t ∈ [0, T ),

π(T, x) = (σ−1κ)

[

−h′
(

h−1
(

U′(x)
λ∗

))

h
(

h−1
(

U′(x)
λ∗

))

]

[

− U ′(x)
U ′′(x)

]

, x ∈ (0,+∞).

(B.2)

When the probability weighting function w̄(·) is the identity function, i.e., when

w̄(z) = z, z ∈ [0, 1], the corresponding h̄(·) is

h̄(x) = ˆ̄N ′(1− w̄(1− FZ(T )(x))) =
ˆ̄N ′(FZ(T )(x)),

where ˆ̄N(·) is the concave envelop of

N̄(z) = −
∫ w̄−1(1−z)

0

F−1
ξ (t)dt = −

∫ 1−z

0

e−F−1
Z(T )

(1−t)dt = −
∫ 1

z

e−F−1
Z(T )

(t)dt.

Then, N̄ ′(z) = e
−F−1

Z(T )
(z)
, which is a decreasing function. Consequently, N̄(·) is

concave and ˆ̄N(·) = N̄(·). As a result,

h̄(x) = N̄ ′(FZ(T )(x)) = e−x, x ∈ R.

Because h̄′(x)/h̄(x) = −1, we conclude that the portfolio π̄, which is optimal to

an agent with utility function U(·) and identity probability weighting function w̄(·),
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satisfies



















π̄t +
σ2

2
π̄2π̄xx + rxπx − rπ̄ = 0, (t, x) ∈ [0, T )× (0,+∞),

π̄(t, 0) = 0, t ∈ [0, T ),

π̄(T, x) = (σ−1κ)
[

− U ′(x)
U ′′(x)

]

, x ∈ (0,+∞).

When w(·) is a concave, w̄(·) is a convex transformation of w(·). From the proof

of Theorem 3, we have that ˆ̄N ′(1 − w̄(Fξ(x)))/N̂
′(1 − w(Fξ(x))) is decreasing in x.

On the other hand, Fξ(x) = 1 − FZ(T )(− ln x). Thus, we conclude that h̄(x)/h(x) is

an increasing function in x. This implies in turn that h(x)/h̄(x) is decreasing in x,

which, since h̄(x) = e−x, means that

h′(x)ex + h(x)ex ≤ 0,

whence we conclude that h′(x)/h(x) ≤ −1, x ∈ R. Similarly, when w(·) is convex,

h(x)ex is increasing, so we can conclude that h′(x)/h(x) ≥ −1, x ∈ R. As a result,

when w(·) is concave, π(T, x) ≥ π̄(T, x), x ∈ (0,+∞). When w(·) is convex, π(T, x) ≤
π̄(T, x), x ∈ (0,+∞).

Define V (·) through

− V ′(x)

V ′′(x)
=
π(T, x)

σ−1κ
= ϕ(x)

[

−U ′(x)

U ′′(x)

]

,

i.e.,

V ′(x) = V ′(x0) exp

[

−
∫ x

x0

1

ϕ(s)

(

−U
′′(s)

U ′(s)

)

ds

]

where

ϕ(x) := −
h′
(

h−1
(

U ′(x)
λ∗

))

h
(

h−1
(

U ′(x)
λ∗

)) .
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Because 0 < −h′(y)/h(y) ≤ C < +∞, we have 1
ϕ(x)

≥ 1/C. As a result, for x > x0,

∫ x

x0

1

ϕ(s)

(

−U
′′(s)

U ′(s)

)

ds ≥ 1/C

∫ x

x0

(

−U
′′(s)

U ′(s)

)

ds

= −1/C[ln(U ′(x))− ln(U ′(x0))].

Thus, for x > x0, we have

V ′(x) ≤ V ′(x0)(U
′(x0))

−1/C(U ′(x))1/C .

For x < x0, we have

∫ x

x0

1

ϕ(s)

(

−U
′′(s)

U ′(s)

)

ds = −
∫ x0

x

1

ϕ(s)

(

−U
′′(s)

U ′(s)

)

ds

≤ −1/C

∫ x0

x

(

−U
′′(s)

U ′(s)

)

ds

= −1/C[ln(U ′(x))− ln(U ′(x0))].

As a result,

V ′(x) ≥ V ′(x0)(U
′(x0))

−1/C(U ′(x))1/C .

Because limx→0U
′(x) = +∞, limx→+∞U ′(x) = 0, we conclude that

lim
x→0

V ′(x) = +∞, lim
x→+∞

V ′(x) = 0.

On the other hand, it is easy to check that V ′(·) is strictly decreasing because ϕ(x) >

0, x > 0. Thus, V (·) satisfies Assumption 2. In addition, − V ′(x)
V ′′(x)

≤ C(− U ′(x)
U ′′(x)

) ≤
Ca(1 + x), x > 0.

Finally, when w(·) is concave, − V ′(x)
V ′′(x)

≥ − U ′(x)
U ′′(x)

, x > 0. Because both V and U

satisfy Assumption 2.2 and the conditions in Definition 2.1 of Xia (2011), we can apply

Theorem 4.2 of Xia (2011) to conclude that π(t, x) ≥ π̄(t, x), (t, x) ∈ [0, T )×(0,+∞).

Similarly, when w(·) is convex, we conclude that π(t, x) ≤ π̄(t, x), (t, x) ∈ [0, T ) ×
(0,+∞). �

Proof of Corollary 1 Without loss of generality, we assume that agent 2 has EU

preferences, i.e., w2(x) ≡ x. Consider another EU agent, say agent 3, with utility
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function U1(·) and denote his portfolio as π3(t, x). Because agent 1 is more risk

averse than agent 2, U1(·) is a concave transformation of U2(·) and w1(·) is a convex

transformation of w2(·). Clearly, w1(·) is convex since w2(x) ≡ x. Thus, we can apply

Theorem 6 to conclude that π1(t, x) ≤ π3(t, x), (t, x) ∈ [0, T )× (0,∞). On the other

hand, Xia (2011, Theorem 4.2) shows that π3(t, x) ≤ π2(t, x), (t, x) ∈ [0, T )× (0,∞)

because both agents 2 and 3 have EU preferences with utility functions U2(·) and

U1(·), respectively, and U1(·) is a concave transformation of U2(·). Therefore, we

conclude that π1(t, x) ≤ π2(t, x), (t, x) ∈ [0, T )× (0,∞). �
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