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We provide conditions on a one-period-two-date pure exchange economy with rank-
dependent utility agents under which Arrow–Debreu equilibria exist. When such an
equilibrium exists, we show that the state-price density is a weighted marginal rate of
intertemporal substitution of a representative agent, where the weight depends on the
differential of the probability weighting function. Based on the result, we find that asset
prices depend upon agents’ subjective beliefs regarding overall consumption growth,
and we offer a direction for possible resolution of the equity premium puzzle.
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1. INTRODUCTION

Rank-dependent utility theory (RDUT) (Quiggin 1982, 1993; Schmeidler 1989;
Abdellaoui 2002) is an alternative model of choice under uncertainty to the classi-
cal expected utility theory (EUT). Together with Kahneman and Tversky’s cumula-
tive prospect theory (CPT),1 RDUT is among the most highly regarded theories on
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preference and choice that depart from the classical paradigm.2 RDUT can explain a
number of paradoxes that EUT has failed to capture and can provide a better representa-
tion of attitudes toward risk. This theory consists of two components: a concave outcome
utility function and a probability weighting function. The first component captures the
observation that individuals dislike a mean-preserving spread of the distribution of a
future payoff (as under EUT). The second component captures a factor that is not ac-
counted for under EUT: the tendency to overweight the tails—both left and right—of the
distribution. With a suitable weighting function, the theory also accommodates simulta-
neous risk-averse and risk-seeking behavior, a paradoxical phenomenon often observed
in experimental settings.

Previous research on equilibria and asset pricing for non-EUT models has focused pri-
marily on financial economies with CPT agents. Barberis and Huang (2008) considered
an economy in which agents had identical CPT preferences with risk-free payoff as refer-
ence point. Moreover, in addition to multiple risky assets with joint normal distributed
return, there is a skewed security that is independent of the other risky assets. Within this
setting, Barberis and Huang provided conditions under which an equilibrium existed,
and, by assuming a binomial distribution for the skewed security, they computed the
equilibrium numerically. In a more general setting, De Giorgi, Hens, and Riegers (2010)
showed that, due to discontinuities in CPT agents’ demand functions (which were caused
by the kink in the CPT value functions), an equilibrium might not exist if there were a
finite number of agents. The authors then established the existence of equilibria under
the conditions that there was a continuum of agents in the market and that agents’ final
wealth was constrained to be nonnegative. Azevedo and Gottlieb (2012) obtained a sim-
ilar negative result concerning the nonexistence of equilibria under CPT. Shefrin (2008,
chapter 28) illustrated the qualitative structures of the state-price densities for both the
CPT and SP/A economies, under the assumption that equilibrium existed.3 He and Zhou
(2011b) showed that in a one-risky-asset market with general asset return distribution, if
there were some CPT agents with the probability weighting function specified in Tversky
and Kahneman (1992) and whose reference point coincided with the risk-free return,
then there was some expected return for which these agents would be willing to hold any
positive amount of the stock. As a result, the market cleared and an equilibrium existed.4

In the context of RDUT economies, however, few results have been generated on equi-
libria despite the fact that the RDUT preference is a special case of the CPT preference
and therefore in principle should be more tractable. For concave law-invariant utilities,
Carlier and Dana (2008) derived equilibria for a two-agent economy and Dana (2011)
proved the existence of equilibria for a multiagent one. Notably, when applied to RDUT
preference, the probability weighting functions in these two papers must be assumed to
be convex.

The goal of this paper is to establish full equilibria and pricing in the classical Arrow–
Debreu sense for a one-period-two-date pure exchange economy with RDUT agents.
Our setting is fairly general, especially when applied in a financial market context. We
do not assume any particular distribution of the aggregate future endowment, nor do

2As Starmer (2000) put it in a survey paper, “the rank-dependent model is likely to become more widely
used” because it captures many empirical observations “in a model which is quite amenable to application
within the framework of conventional economic analysis.”

3SP/A stands for the theory of security, potential, and aspiration, which was proposed by Lopes (1987)
and developed by Lopes and Oden (1999).

4A similar result, lemma 3.1 of De Giorgi et al. (2010), is obtained under the assumption of a complete
market. In He and Zhou (2011b), the market is allowed to be incomplete.
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we assume the probability weighting function to have a particular shape. Furthermore,
we allow agents to have heterogeneous outcome utilities. However, we need to assume
homogeneity of both beliefs and probability weighting functions. We provide sufficient
conditions on the primitives of the underlying economy under which Arrow–Debreu
equilibria exist. Moreover, when such an equilibrium exists, we show that the state-price
density is a weighted marginal rate of intertemporal substitution of a representative agent.
This weight can be expressed as w ′(1 − Fẽ1 (ẽ1)), where w is the probability weighting
function and ẽ1 is the aggregate future endowment with its cumulative distribution
function (CDF) Fẽ1 .

The derived pricing formula is essentially a consumption-based capital asset pricing
model (CCAPM). The presence of the weighting function produces markedly different
features from the classical, EUT-based CCAPM. For instance, the classical CCAPM
stipulates that an asset price depends only on the level of risk aversion and on the “beta”
(i.e., the correlation between the asset and the overall economy). The RDUT-based
CCAPM, by contrast, displays an additional dependence on agents’ subjective beliefs
regarding overall consumption growth. As an application of this general finding, we
demonstrate, at a qualitative level, how the newly established CCAPM may shed some
light on resolving the equity premium puzzle.

The main steps in our approach are as follows. First, we solve the individual consump-
tion problem where the state-price density ρ̃ is exogenously given. Due to the presence
of the probability weighting, this is a nonconcave maximization problem. Jin and Zhou
(2008) and He and Zhou (2011a, 2014) developed a method called “quantile formulation”
to overcome this technical obstacle.5 This formulation leads to a concave maximization
problem when the quantile function of the future consumption is chosen as the decision
variable. However, the drawback of the method employed by these authors is that one
needs to impose a piecewise monotonicity condition on the function F−1

ρ̃ /w ′. This condi-
tion is unreasonable for our problem, since we cannot impose any specific assumption on
something we are ultimately going to derive. A key step, which is also the main technical
contribution of this paper, is to solve the optimal quantile function explicitly without
any monotonicity condition; this step is accomplished through calculus of variations
and introduction of the concave envelope of a certain function.6 Second, by virtue of the
explicit solution to the individual consumption problem, we are able to construct a rep-
resentative agent for the economy. Third, assuming an equilibrium exists, we derive the
state-price density ρ̃ by the market clearing and the anticomonotonicity between ρ̃ and
ẽ1. Finally, to establish the existence of equilibria we work under a suitably changed prob-
ability measure—termed the “rank-neutral measure”—and make use of the existence of
equilibria in the classical EUT economy.

The remainder of this paper is organized as follows. In Section 2, we define the econ-
omy and its Arrow–Debreu equilibria. In Section 3, we solve the individual consumption
choice problem with an exogenously given state-price density, based on which we con-
struct a representative agent in Section 4. Section 5 contains the main results, namely,
the existence and uniqueness of the equilibrium and the pricing formula. In Section 6,
we discuss the implications of our results with respect to the equity premium puzzle, and

5The idea of quantile formulation was around earlier, e.g., in Schied (2004) and in Carlier and Dana
(2006), who studied maximization problems with concave criteria.

6Carlier and Dana (2006, 2011) applied calculus of variations to characterize the optimal quantile
function; however, these authors did not find the explicit solution, which is crucial in deriving the state-price
density.
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Section 7 outlines connections between the RDUT and EUT economies. Finally, Section
8 concludes the paper.

2. THE ECONOMY

We consider a one-period-two-date pure exchange economy under uncertainty with
a single perishable consumption good. Agents choose their consumption for today,
say date t = 0, and choose contingent claims on consumption for tomorrow, say date
t = 1. Without loss of generality, the single consumption good is used as the numeraire
throughout the paper. The set of possible states of nature at date 1 is � and the set of
events at date 1 is a σ -algebra F of subsets of �. There are a finite number of agents
indexed by i = 1, . . . , I. Each agent i has an endowment (e0i , ẽ1i ), where e0i is number
of units of the good today and F-measurable random variable ẽ1i is the number of units
of the good tomorrow. The aggregate endowment is (e0, ẽ1) � (

∑I
i=1 e0i ,

∑I
i=1 ẽ1i ). The

consumption plan of an agent i is a pair (c0i , c̃1i ), where c0i is the number of units of
the good consumed today and F-measurable random variable c̃1i is the number of units
of the good consumed tomorrow. The preference �i of each agent i over consumption
plans (c0i , c̃0i ) is represented by

Vi (c0i , c̃1i ) � u0i (c0i ) + βi

∫
u1i (c̃1i )d(wi ◦ P),(2.1)

where

� P is the belief about the states of the nature;
� u0i is the utility function for consumption today;
�
∫

u1i (c̃1i ) d(wi ◦ P) �
∫

u1i (c) dw̄i (Fc̃1i (c)) is the rank-dependent utility with out-
come utility function u1i for consumption c̃1i tomorrow and probability weighting
function wi ; and

� βi > 0 is the time discount factor representing the time impatience for consumption
(we can always assume that βi ≤ 1 by appropriately modifying u0i and u1i ).

In the above (and hereafter) Fx̃ denotes the CDF of a random variable x̃ and w̄ denotes
the dual of a probability weighting function w , given by

w̄(p) � 1 − w(1 − p) for all p ∈ [0, 1].

Note that if wi is continuously differentiable, then∫
u1i (c̃1i ) d(wi ◦ P) =

∫
u1i (c)w ′

i (1 − Fc̃1i (c)) d Fc̃1i (c).

Hence, we have here an additional term w ′(1 − Fc̃1i (c)) serving as the weight on every
consumption level c when calculating the expected utility. The weight depends on the
rank, 1 − Fc̃1i (c), of level c over all possible realizations of c̃1i .

We make the following standing assumption on the economy:

ASSUMPTION 2.1.

� The agents have homogeneous beliefs P about the states of the nature. The probability
space (�,F, P) admits no atom.
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� For every i , e0i ≥ 0, P(ẽ1i ≥ 0) = 1, and e0i + P(ẽ1i > 0) > 0. The CDF Fẽ1 of ẽ1 is
continuous and P(ẽ1 > 0) = 1. Moreover, e0 > 0.

� For every i , the functions u0i , u1i : [0, ∞) → R are strictly increasing, strictly concave,
continuously differentiable on (0, ∞), and satisfy the Inada condition: u′

0i (0+) =
u′

1i (0+) = ∞, u′
0i (∞) = u′

1i (∞) = 0. Moreover, without loss of generality, u1i (∞) >

0. The asymptotic elasticity of each u1i is strictly less than one, that is, limc→∞
cu′

1i (c)
u1i (c) <

1.
� The agents have the same probability weighting function w, i.e., w1 = w2 = . . . =

w I = w. The probability weighting function w : [0, 1] → [0, 1] is strictly increasing
and continuous on [0, 1] and satisfies w(0) = 0, w(1) = 1.

DEFINITION 2.2. For every i , a consumption plan (c0i , c̃1i ) is called feasible if c0i ≥ 0
and P(c̃1i ≥ 0) = 1. The set of all feasible consumption plans is denoted by C.

The above economy is denoted by

E �
{

(�,F, P), (e0i , ẽ1i )I
i=1, C,

(
Vi (c0i , c̃1i )

)I
i=1

}
.

DEFINITION 2.3. A state-price density7 is an F-measurable random variable ρ̃ such
that P(ρ̃ > 0) = 1, E[ρ̃] < ∞ and E[ρ̃ẽ1] < ∞.

DEFINITION 2.4. An Arrow–Debreu equilibrium of the economy E is a collection{
ρ̃, (c∗

0i , c̃∗
1i )

I
i=1

}
consisting of a state-price density ρ̃ and a collection (c∗

0i , c̃∗
1i )

I
i=1 of

feasible consumption plans that satisfies the following conditions:

(i) Individual rationality: For every i , the feasible consumption plan (c∗
0i , c̃∗

1i )
maximizes the preference �i of agent i , subject to the budget constraint,
that is:

Vi (c∗
0i , c̃∗

1i ) = max
(c0i ,c̃1i )∈C

Vi (c0i , c̃1i )(2.2)

subject to c0i + E[ρ̃c̃1i ] ≤ e0i + E[ρ̃ẽ1i ].

(ii) Market clearing:
∑I

i=1 c∗
0i = e0 and

∑I
i=1 c̃∗

1i = ẽ1.

3. INDIVIDUAL CONSUMPTION

In this section, we investigate the individual optimal consumption problem (2.2) when the
state-price density ρ̃ is exogenously given. We make the following additional assumption
throughout this section only:

ASSUMPTION 3.1. The state-price density ρ̃ has a continuous CDF Fρ̃ and 0 < e0i +
E[ρ̃ẽ1i ] < ∞.

Although the outcome utility functions u0i and u1i are concave, the functional
Vi (c0i , c̃1i ) is not concave in (c0i , c̃1i ) unless the probability weighting function w is
convex. Thus, (2.2) is a problem of nonconvex programming. The appropriate technique
to overcome this difficulty is the so-called “quantile formulation” (Jin and Zhou 2008;

7Also sometimes termed “pricing kernel” or “stochastic discount factor (SDF)” in the literature.
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He and Zhou 2011a, 2014), namely, to change one of the decision variables of problem
(2.2) from the random variable c̃1i to its quantile function Gi . This formulation recovers
the implicit concavity (in terms of quantile functions) of (2.2).

Introducing the quantile formulation requires some preparation. Assume that a ran-
dom variable x̃ has a CDF Fx̃ : (−∞, ∞) → [0, 1] which is nondecreasing and right-
continuous. The upper quantile Q+

x̃ : [0, 1) → [−∞, ∞] and lower quantile Q−
x̃ : (0, 1] →

[−∞, ∞] of x̃ are defined, respectively, as

Q+
x̃ (p) � inf{x ∈ R | Fx̃(x) > p}, p ∈ [0, 1) and

Q−
x̃ (p) � sup{x ∈ R | Fx̃(x) < p}, p ∈ (0, 1].

It is well known that Q+
x̃ (Q−

x̃ ) is nondecreasing and right- (left-) continuous. More
properties of quantiles can be seen in, e.g., Föllmer and Schied (2011), appendix A.3.

Recall that w̄ is the dual of the weighting function w . The inverses of w and w̄ are
denoted by w−1 and w̄−1, respectively. Obviously, all of w̄ , w−1, and w̄−1 are strictly
increasing and continuous. Moreover, w̄−1(p) = 1 − w−1(1 − p) for all p ∈ [0, 1].

Notation. To avoid ambiguity, for a < b, we use
∫ b

a and
∫ b−

a to denote, respectively,
the integrations over the intervals [a, b] and [a, b); that is,

∫ b
a = ∫[a,b] and

∫ b−
a = ∫[a,b).

Similarly,
∫ b

a+ = ∫(a,b] and
∫ b−

a+ = ∫(a,b).

We now briefly introduce the general idea of the quantile formulation for (2.2). If Gi

is the upper quantile of c̃1i , then∫
u1i (c̃1i ) d(w ◦ P) =

∫ 1−

0
u1i (Gi (p)) dw̄(p).

Thus, the objective functional of problem (2.2) can be written as

u0i (c0i ) + βi

∫ 1−

0
u1i (Gi (p)) dw̄ (p).

To reformulate the budget constraint of problem (2.2) in terms of Gi , we consider an
expenditure minimizing problem as follows:8 given an (upper) quantile function Gi ,

Minimize
c̃1i

E[ρ̃c̃1i ] subject to c̃1i ∼ Gi .(3.1)

Here, c̃1i ∼ Gi signifies that Gi is the upper quantile of c̃1i . Using the Hardy–Littlewood
inequality, it turns out that the solution to problem (3.1) is given by c̃1i = Gi (1 − Fρ̃(ρ̃))
and the minimum is

∫ 1−
0 Gi (p)Q−

ρ̃ (1 − p) dp, where Q−
ρ̃ is the lower quantile function of

ρ̃ (see Dybvig 1988; Schied 2004; Carlier and Dana 2006; and in particular Jin and Zhou
2008, theorem B.1). Observing that RDU preserves the first-order stochastic dominance,
problem (2.2) can be finally reformulated as follows:

Maximize
c0i ≥0, Gi ∈Q

u0i (c0i ) + βi

∫ 1−

0
u1i (Gi (p)) dw̄(p)(3.2)

subject to c0i +
∫ 1−

0
Gi (p)Q−

ρ̃ (1 − p) dp ≤ e0i + E[ρ̃ẽ1i ],

8This problem goes back to Dybvig (1988).
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where

Q � {G : [0, 1) → [0, ∞] nondecreasing and right-continuous}

is the set of upper quantile functions of nonnegative random variables.
Assume (c∗

0i , G∗
i ) ∈ [0, ∞) × Q solves problem (3.2). Set c̃∗

1i = G∗
i (1 − Fρ̃(ρ̃)). Then,

(c∗
0i , c̃∗

1i ) solves problem (2.2); see proposition C.1 in Jin and Zhou (2008). Therefore, it
suffices to solve problem (3.2). Obviously, problem (3.2) is a convex programming, which
can be solved by means of two steps:

Step 1. For a fixed Lagrange multiplier λi > 0, solve the following problem:

Maximize
c0i ≥0, Gi ∈G

u0i (c0i ) + βi

∫ 1−

0
u1i (Gi (p)) dw̄ (p)(3.3)

−λi

(
c0i +

∫ 1−

0
Gi (p)Q−

ρ̃ (1 − p) dp − e0i − E[ρ̃ẽ1i ]
)

,

where

G �
{

G ∈ Q

∣∣∣∣
∫ 1−

0
G(p)Q−

ρ̃ (1 − p) dp < ∞
}

.

The strict concavity of u0i and u1i guarantees the uniqueness of the optimal solution,
denoted by (c∗

0i , G∗
i ), which depends implicitly on λi .

Step 2. Determine the Lagrange multiplier λi . The strict monotonicity of u0i and u1i

implies that the budget constraint must be binding at optimality. Thus, the
Lagrange multiplier λi can be derived from the following equation:

c∗
0i +

∫ 1−

0
G∗

i (p)Q−
ρ̃ (1 − p) dp = e0i + E[ρ̃ẽ1i ].

In Step 1, the optimal c∗
0i is clearly given by c∗

0i = (u′
0i )

−1(λi ). Problem (3.3) then
reduces to the following:

Maximize
Gi ∈G

Ui (Gi ; λi ) �
∫ 1−

0
u1i (Gi (p)) dw̄(p) − λi

βi

∫ 1−

0
Gi (p)Q−

ρ̃ (1 − p) dp.(3.4)

In the following, we first characterize the solution G∗
i of problem (3.4) via calculus of

variations, and then derive G∗
i explicitly. The explicit expression of G∗

i , in turn is crucial
in establishing the equilibrium.

3.1. Calculus of Variations

In this section, we use the Lebesgue–Stieltjes integration over interval [0, 1) of a Borel
function f w.r.t. G ∈ G. To avoid ambiguity, we set G(0−) � 0 for all G ∈ G. In such
a setting, for any Borel function f : [0, 1) → R, the integration

∫ 1−
0 f (p) dG(p) is given

by ∫ 1−

0
f (p) dG(p) � f (0)G(0) +

∫
(0,1)

f (p) dG(p).
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A solution G∗
i of problem (3.4) can be characterized by the following proposition.

PROPOSITION 3.2. Under Assumption 3.1, let G∗
i ∈ G. Then, the following statements

are equivalent:

(i) G∗
i solves problem (3.4) and

∫ 1−

0
u′

1i (G
∗
i (p))G∗

i (p) dw̄(p) < ∞;(3.5)

(ii) For all G ∈ G,

∫ 1−

0

(∫ 1−

q
u′

1i (G
∗
i (p)) dw̄(p) − λi

βi

∫ 1−

q
Q−

ρ̃ (1 − p) dp
)

dG(q)

≤
∫ 1−

0

(∫ 1−

q
u′

1i (G
∗
i (p)) dw̄ (p) − λi

βi

∫ 1−

q
Q−

ρ̃ (1 − p) dp
)

dG∗
i (q) < ∞;

(iii) G∗
i satisfies

⎧⎪⎪⎨
⎪⎪⎩

∫ 1−

q
u′

1i (G
∗
i (p)) dw̄(p) − λi

βi

∫ 1−

q
Q−

ρ̃ (1 − p) dp ≤ 0 for all q ∈ [0, 1),∫ 1−

0

(∫ 1−

q
u′

1i (G
∗
i (p)) dw̄ (p) − λi

βi

∫ 1−

q
Q−

ρ̃ (1 − p) dp
)

dG∗
i (q) = 0.

(3.6)

Moreover, any of the above conditions implies that G∗
i (p) > 0 for all p ∈ (0, 1).

Proof. Let G∗
i ∈ G.

(i) ⇒(ii) Assume (i) holds true. Let G ∈ G be arbitrary and fixed. For any ε ∈ (0, 1), set
Gε = (1 − ε)G∗

i + εG. Then, by optimality of G∗
i and concavity of u1i , we have

0 ≥ 1
ε

{[∫ 1−

0
u1i (Gε(p)) dw̄(p) − λi

βi

∫ 1−

0
Gε(p)Q−

ρ̃ (1 − p) dp
]

−
[∫ 1−

0
u1i (G∗

i (p)) dw̄(p) − λi

βi

∫ 1−

0
G∗

i (p)Q−
ρ̃ (1 − p) dp

]}

≥ 1
ε

(∫ 1−

0
u′

1i (G
ε(p))(Gε(p) − G∗

i (p)) dw̄(p)

−λi

βi

∫ 1−

0
(Gε(p) − G∗

i (p))Q−
ρ̃ (1 − p) dp

)

=
∫ 1−

0
u′

1i (G
ε(p))(G(p) − G∗

i (p)) dw̄(p) − λi

βi

∫ 1−

0
(G(p) − G∗

i (p))Q−
ρ̃ (1 − p) dp

ε ↓ 0
−→

∫ 1−

0
u′

1i (G
∗
i (p))(G(p) − G∗

i (p)) dw̄ (p) − λi

βi

∫ 1−

0
(G(p) − G∗

i (p))Q−
ρ̃ (1 − p) dp
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by monotone convergence theorem. This unarguably yields

∫ 1−

0
u′

1i (G
∗
i (p))G∗

i (p) dw̄(p) − λi

βi

∫ 1−

0
G∗

i (p)Q−
ρ̃ (1 − p) dp

≥
∫ 1−

0
u′

1i (G
∗
i (p))G(p) dw̄ (p) − λi

βi

∫ 1−

0
G(p)Q−

ρ̃ (1 − p) dp.(3.7)

The right-hand side of (3.7) can be written as

∫ 1−

0
u′

1i (G
∗
i (p))

(∫ p

0
dG(q)

)
dw̄(p) − λi

βi

∫ 1−

0

(∫ p

0
dG(q)

)
Q−

ρ̃ (1 − p) dp.

By Fubini’s theorem, it is equal to

∫ 1−

0

(∫ 1−

q
u′

1i (G
∗
i (p)) dw̄(p) − λi

βi

∫ 1−

q
Q−

ρ̃ (1 − p) dp
)

dG(q).

Similarly, the left-hand side of (3.7)

∫ 1−

0
u′

1i (G
∗
i (p))G∗

i (p) dw̄(p) − λi

βi

∫ 1−

0
G∗

i (p)Q−
ρ̃ (1 − p) dp

=
∫ 1−

0

(∫ 1−

q
u′

1i (G
∗
i (p)) dw̄ (p) − λi

βi

∫ 1−

q
Q−

ρ̃ (1 − p) dp
)

dG∗
i (q).(3.8)

Then, (ii) follows from the above analysis.
(ii)⇒(iii) Consider the following problem:

Maximize
G∈G

V(G) �
∫ 1−

0

(∫ 1−

q
u′

1i (G
∗
i (p)) dw̄(p) − λi

βi

∫ 1−

q
Q−

ρ̃ (1 − p) dp
)

dG(q).(3.9)

Let V∗ denote the optimal value of problem (3.9), that is, V∗ = supG∈G V(G). Assume
that (ii) holds true; then V∗ = V(G∗

i ) < ∞. For any given G ∈ G, we have αV(G) =
V(αG) ≤ V∗ for all α > 0, implying V(G) ≤ 0. Thus, we have V∗ ≤ 0 and

∫ 1−

q
u′

1i (G
∗
i (p)) dw̄(p) − λi

βi

∫ 1−

q
Q−

ρ̃ (1 − p) dp ≤ 0 for all q ∈ [0, 1).

On the other hand, V∗ ≥ V(αG) = αV(G) for any α > 0 and G ∈ G, implying V∗ ≥ 0.
Thus, V(G∗

i ) = V∗ = 0. Then, (iii) follows.
(iii)⇒(i) Suppose that (iii) holds true. For any G ∈ G, by the concavity of u1i , we

have

Ui (G∗
i ; λi ) − Ui (G; λi )

=
∫ 1−

0

[
u1i (G∗

i (p)) − u1i (G(p))
]

dw̄(p) − λi

βi

∫ 1−

0
Q−

ρ̃ (1 − p)(G∗
i (p) − G(p)) dp

≥
∫ 1−

0
u′

1i (G
∗
i (p))(G∗

i (p) − G(p)) dw̄(p) − λi

βi

∫ 1−

0
Q−

ρ̃ (1 − p)(G∗
i (p) − G(p)) dp
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=
∫ 1−

0
u′

1i (G
∗
i (p))

(∫ p

0
(dG∗

i (q) − dG(q))
)

dw̄(p)

−λi

βi

∫ 1−

0
Q−

ρ̃ (1 − p)
(∫ p

0
(dG∗

i (q) − dG(q))
)

dp.

It follows from Fubini’s theorem and from (iii) that

Ui (G∗
i ; λi ) − Ui (G; λi )

≥
∫ 1−

0

(∫ 1−

q
u′

1i (G
∗
i (p)) dw̄ (p) − λi

βi

∫ 1−

q
Q−

ρ̃ (1 − p) dp
)

(dG∗
i (q) − dG(q))

≥ 0.

Moreover, by (3.6) and (3.8), we have∫ 1−

0
u′

1i (G
∗
i (p))G∗

i (p) dw̄ (p) =
∫ 1−

0

(∫ 1−

q
u′

1i (G
∗
i (p)) dw̄(p)

)
dG∗

i (q)

= λi

βi

∫ 1−

0

(∫ 1−

q
Q−

ρ̃ (1 − p) dp
)

dG∗
i (q) = λi

βi

∫ 1−

0
G∗

i (p)Q−
ρ̃ (1 − p) dp < ∞.

Thus, (i) follows.
Finally, by (3.6), we have∫ 1−

0
u′

1i (G
∗
i (p)) dw̄(p) ≤ λi

βi

∫ 1−

0
Q−

ρ̃ (1 − p) dp = λi

βi
E[ρ̃] < ∞,

implying u′
1i (G

∗
i (p)) < ∞ for all p ∈ (0, 1), since w̄ is strictly increasing and u′

1i (G
∗
i (·)) is

nonincreasing. Thus, G∗
i (p) > 0 for all p ∈ (0, 1), in view of the Inada condition on u1i .

�

3.2. Optimal Solution

Recall that the concave envelope, denoted by f̂ , of an arbitrarily given function f
defined on a nonempty convex subset of an Euclidean space is the smallest concave
function that dominates f .

THEOREM 3.3. Under Assumption 3.1, let N be given by

N(q) = −
∫ 1−

w̄−1(q)
Q−

ρ̃ (1 − p) dp,(3.10)

where N̂ the concave envelope of N, and N̂′ the right derivative of N̂. If∫ 1−

0
(u′

1i )
−1(μN̂′(w̄(p)))Q−

ρ̃ (1 − p) dp < ∞(3.11)

for all μ > 0, then the optimal consumption plan of each agent i is given by{
c̃∗

0i = (u′
0i )

−1(λ∗
i )

c̃∗
1i = (u′

1i )
−1
(

λ∗
i

βi
N̂′
(

1 − w(Fρ̃(ρ̃))
))

,
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where the Lagrange multiplier λ∗
i is determined by

(u′
0i )

−1(λ∗
i ) + E

[
ρ̃(u′

1i )
−1
(

λ∗
i

βi
N̂′
(

1 − w(Fρ̃(ρ̃))
))]

= e0i + E[ρ̃ẽ1i ].(3.12)

Proof. Set

Q0 � {G ∈ Q |G(p) > 0 for all p ∈ (0, 1) } .

By Proposition 3.2, there exists at most one G∗
i ∈ G ∩ Q0 satisfying (3.6). We will first

derive G∗
i ∈ Q0 that satisfies (3.6) and then verify that G∗

i ∈ G.
A substitution of variables yields

∫ 1−

q
u′

1i (G
∗
i (p)) dw̄ (p) − λi

βi

∫ 1−

q
Q−

ρ̃ (1 − p) dp

=
∫ 1−

w̄(q)
u′

1i (G
∗
i (w̄−1(p))) dp − λi

βi

∫ 1−

w̄(q)
Q−

ρ̃ (1 − w̄−1(p)) dw̄−1(p)

for all q ∈ [0, 1). Moreover,

∫ 1−

0

(∫ 1−

q
u′

1i (G
∗
i (p)) dw̄ (p) − λi

βi

∫ 1−

q
Q−

ρ̃ (1 − p) dp
)

dG∗
i (q)

=
∫ 1−

0

(∫ 1−

w̄(q)
u′

1i (G
∗
i (w̄−1(p))) dp − λi

βi

∫ 1−

w̄(q)
Q−

ρ̃ (1 − w̄−1(p)) dw̄−1(p)
)

dG∗
i (q)

=
∫ 1−

0

(∫ 1−

q
u′

1i (G
∗
i (w̄−1(p))) dp − λi

βi

∫ 1−

q
Q−

ρ̃ (1 − w̄−1(p)) dw̄−1(p)
)

dG∗
i (w̄−1(q)).

Set ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H(q) = −u′
1i (G

∗
i (w̄−1(q)))

K(q) = −
∫ 1−

q
u′

1i (G
∗
i (w̄−1(p))) dp

N(q) = −
∫ 1−

q
Q−

ρ̃ (1 − w̄−1(p)) dw̄−1(p)

(3.13)

for all q ∈ [0, 1). Then, (3.6) is equivalent to{
K(q) ≥ λi

βi
N(q) for all q ∈ [0, 1),∫ 1−

0

[
K(q) − λi

βi
N(q)

]
dG∗

i (w̄−1(q)) = 0;

that is, {
K(q) ≥ λi

βi
N(q) for all q ∈ [0, 1),

K(q) = λi
βi

N(q) for all q ∈ supp (dG∗
i (w̄−1(·))).(3.14)

Here, supp (d L(·)) denotes the support of the Lebesgue–Stieltjes measure d L(·) on [0, 1)
generated by a nondecreasing and right-continuous function L : [0, 1) → R. Notably, the
measure of the singleton {0} is given by L(0). Moreover, the strict monotonicity of u′

1i
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implies that9

supp (d H(·)) = supp (dG∗
i (w̄−1(·))

and therefore (3.14) is equivalent to{
K(q) ≥ λi

βi
N(q) for all q ∈ [0, 1),

K(q) = λi
βi

N(q) for all q ∈ supp (d H(·)).

Obviously, G∗
i ∈ Q0 if and only if H : [0, 1) → [−∞, 0) defined by (3.13) is a nonde-

creasing and right-continuous function such that H(q) > −∞ for all q ∈ (0, 1). Therefore,
we can see that finding a G∗

i ∈ Q0 satisfying (3.6) is equivalent to finding a nondecreasing,
continuous, and concave function K satisfying⎧⎪⎨

⎪⎩
K(q) ≥ λi

βi
N(q) for all q ∈ (0, 1),

K(q) = λi
βi

N(q) for all q ∈ supp (d K ′(·)),
K(1−) = 0.

(3.15)

Here, K ′ denotes the right derivative of K .
A substitution of variables yields (3.10). Consequently, N is continuous and strictly

increasing on [0, 1) with N(1−) = 0. The continuity of K and N implies that {q ∈ (0, 1) :
K(q) > λi

βi
N(q)} is an open set and can be written as a countable union of open intervals.

Thus, condition (3.15) is equivalent to10

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K(q) ≥ λi
βi

N(q) for all q ∈ (0, 1),

K is affine on
{

q ∈ (0, 1) : K(q) > λi
βi

N(q)
}

,

(K(0) − λi
βi

N(0))G∗
i (w̄−1(0)) = 0,

K(1−) = 0.

(3.16)

Now, we show that (3.16) implies K(0) = λi
βi

N(0). Otherwise, suppose K(0) > λi
βi

N(0).
Then, the continuity of K and N implies that, for some ε ∈ (0, 1), K(q) > λi

βi
N(q)

on (0, ε). By (3.16), K is affine on (0, ε). Then, we know that K ′(0) < ∞, that is,
u′

1i (G
∗
i (w̄−1(0))) < ∞. Therefore, G∗

i (w̄−1(0)) > 0. By (3.16), we arrive at K(0) = λi
βi

N(0),
a contradiction. Thus, K(0) > λi

βi
N(0) is impossible. Consequently, we can conclude that

(3.16) is equivalent to

⎧⎪⎨
⎪⎩

K(q) ≥ λi
βi

N(q) for all q ∈ (0, 1),

K is affine on
{

q ∈ (0, 1) : K(q) > λi
βi

N(q)
}

,

K(0) = λi
βi

N(0), K(1−) = λi
βi

N(1−).

(3.17)

9Function H : [0, 1) → [−∞, 0) defined by (3.13) satisfies the conditions that: (i) H(q) > −∞ for all
q ∈ (0, 1); (ii) H is nondecreasing and right-continuous (assuming H(0) = −∞, we say H is right-continuous
at q = 0 if H(q) ↓ −∞ as q ↓ 0); (iii) H(0−) = −∞. Moreover, 0 ∈ supp (d H(·)) if and only if H(0) > −∞.

10The point q = 0 should be discussed separately. Footnote 9 stipulates that 0 ∈ supp (d K ′(·)) if and
only if H(0) > −∞. However, H(0) = −u′

1i (G
∗
i (w̄−1(0)); hence, it follows from the Inada condition of u1i

that 0 ∈ supp (d K ′(·)) if and only if G∗
i (w̄−1(0)) > 0. Thus, at point q = 0, the second condition in (3.15) is

equivalent to (K(0) − λi
βi

N(0))G∗
i (w̄−1(0)) = 0.
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The stipulation (3.17) is equivalent to the fact that K is the concave envelope of λi
βi

N;
namely, K = λi

βi
N̂. Then,

u′
1i (G

∗
i (1 − w−1(1 − q))) = K ′(q) = λi

βi
N̂′(q),

or, equivalently,

G∗
i (p) = (u′

1i )
−1
(

λi

βi
N̂′(w̄(p))

)

for all p ∈ [0, 1).
Obviously, (3.11) implies that G∗

i ∈ G. The desired result then follows from Proposition
3.2. �

REMARK 3.4. If w is continuously differentiable, then, by (3.13), we have

N(q) = −
∫ 1−

q

Q−
ρ̃ (1 − w̄−1(p))

w̄ ′(w̄−1(p))
dp = −

∫ 1−

q

Q−
ρ̃ (w−1(1 − p))

w ′(w−1(1 − p))
dp.

If N itself is concave, that is,
Q−

ρ̃ (p)
w ′(p) is increasing, then N̂ = N and N̂′(q) = N′(q) =

Q−
ρ̃ (w−1(1−q))

w ′(w−1(1−q)) . In this case, we have

c̃∗
1i = (u′

1i )
−1
(

λ∗
i

βi

ρ̃

w ′(Fρ̃(ρ̃))

)
,

which recovers the solution of the “positive part problem” in Jin and Zhou (2008), where
the authors investigated a portfolio choice problem under CPT. The monotonicity of
Q−

ρ̃ (p)
w ′(p) , or, equivalently, the concavity of N imposed by Jin and Zhou (2008), is, however,

not reasonable for the purposes of the present paper since we need ultimately to derive the
state-price density without any prior assumption imposed on it. Interestingly, however,
we will show that this monotonicity is indeed fulfilled automatically by an endogenous
state-price density in an equilibrium under mild conditions on the primitives of the
economy (see Remark 5.3).

REMARK 3.5. An RDUT agent displays significantly different consumption behavior
compared to an EUT agent. For example, suppose w(p) is “sufficiently convex,” namely
that w ′′ (p)

w ′ (p) is sufficiently large, when p is close to 1. In this case, it is easy to show that
Q−

ρ̃
(p)

w ′ (p) is decreasing when p is in the neighborhood of 1. Thus, in the same neighborhood,
N is convex and hence N̂ is affine, implying that c̃∗

1i is a positive constant in the states
of nature in which ρ̃ is sufficiently large. Economically, this suggests that if the agent
puts too much weight on the left tail, then he would set an endogenous “consumption
insurance” that would ensure his “minimal positive consumption” in the bad states of
nature. This kind of insurance is not seen in the EUT setting, no matter how “concave”
the agent’s outcome utility function might be.
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4. REPRESENTATIVE AGENTS

Assume (3.11) holds for all i and for all μ > 0. Given a state-price density ρ̃ having a
continuous CDF Fρ̃ , according to Theorem 3.3, the aggregate consumptions are thus

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c∗
0 =

I∑
i=1

(u′
0i )

−1(λ∗
i )

c̃∗
1 =

I∑
i=1

(u′
1i )

−1
(

λ∗
i

βi
N̂′
(

1 − w(Fρ̃(ρ̃))
))

.

For all λ1 > 0, ..., λI > 0, set λ = (λ1, . . . , λI ) and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h0λ(y) �
I∑

i=1

(u′
0i )

−1 (λi y)

h1λ(y) �
I∑

i=1

(u′
1i )

−1
(

λi y
βi

)

for all y ∈ (0, ∞). It is easy to see, for each t ∈ {0, 1}, that htλ is strictly decreasing and
continuous on (0, ∞) with htλ(0+) = ∞ and htλ(∞) = 0, implying that h−1

tλ is strictly
decreasing and continuous on (0, ∞) with h−1

tλ (0+) = ∞ and h−1
tλ (∞) = 0. We can verify

for all x > 0 that

∫ x

0
h−1

0λ (z)dz =
∫ h−1

0λ (x)

∞
y dh0λ(y)

=
I∑

i=1

∫ h−1
0λ (x)

∞
y d
(
(u′

0i )
−1(λi y)

)

=
I∑

i=1

∫ (u′
0i )

−1(λi h−1
0λ (x))

0

u′
0i (z)

λi
dz

=
I∑

i=1

1
λi

u0i

(
(u′

0i )
−1 (λi h−1

0λ (x)
) )

.

Similarly, for all x > 0,

∫ x

0
h−1

1λ (z) dz =
I∑

i=1

βi

λi
u1i

(
(u′

1i )
−1
(

λi

βi
h−1

1λ (x)
))

.

Put

utλ(x) =
∫ x

0
h−1

tλ (z) dz

for all x > 0, t = 0, 1. Then u′
tλ = h−1

tλ . Obviously, utλ : [0, ∞) → R is strictly increasing
and strictly concave, is continuously differentiable on (0, ∞), and satisfies the Inada
conditions: u′

tλ(0+) = ∞ and u′
tλ(∞) = 0.
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Set λ∗ � (λ∗
1, . . . , λ

∗
I ). Then, we have{

c∗
0 = h0λ∗ (1)

c̃∗
1 = h1λ∗

(
N̂′ (1 − w(Fρ̃(ρ̃))

))
.

Now, we consider an agent, indexed by λ∗, whose preference over consumption plans
(c0, c̃1) is represented by

Vλ∗ (c0, c̃1) � u0λ∗ (c0) +
∫

u1λ∗ (c̃1) d(w ◦ P)(4.1)

and whose endowment is the aggregate endowment (e0, ẽ1). It is easy to verify that (3.11)
implies ∫ 1−

0
(u′

1λ∗ )−1(μN̂′(w̄(p)))Q−
ρ̃ (1 − p) dp < ∞

for all μ > 0. By the construction of utλ∗ , we have{
c∗

0 = (u′
0λ∗ )−1(1)

c̃∗
1 = (u′

1λ∗ )−1
(

N̂′ (1 − w(Fρ̃(ρ̃))
))

.
(4.2)

Moreover, we have

(u′
0λ∗ )−1(1) + E

[
ρ̃(u′

1λ∗ )−1
(

N̂′
(

1 − w(Fρ̃(ρ̃))
))]

= e0 + E[ρ̃ẽ1].

It follows from Theorem 3.3 that the aggregate consumption plan (c∗
0, c̃∗

1) is the optimal
consumption plan for the agent λ∗ and that the corresponding Lagrange multiplier is 1.
Thus, we have constructed a representative agent λ∗ such that:

� She is still an RDUT agent, with her preference represented by (4.1);
� Her endowment is the aggregate endowment; and
� Her optimal consumption plan is the aggregate consumption plan with Lagrange

multiplier being 1.

REMARK 4.1. In a classical EUT economy with concave outcome utility functions, the
representative agent can be constructed via solving a linearly weighted expected utility
maximization problem,11

Maximize
(c0i ,c̃1i )∈C

I∑
i=1

λi (u0i (c0i ) + βi E[u1i (c̃1i )])

subject to
I∑

i=1

(c0i , c̃1i ) = (e0, ẽ1),

(4.3)

for some (λ1, . . . , λI ) ∈ RI
+. This is the case because an equilibrium allocation must be

Pareto optimal and a Pareto optimal allocation can be constructed by solving problem
(4.3) owing to the fact that the expected utilities are concave functionals of consumption
plans. In an RDUT economy, however, the rank-dependent utilities are generally no

11The indirect utility over (e0, ẽ1), which is the maximal objective value of (4.3), represents the preference
of the representative agent.
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longer concave functionals of consumption plans and therefore the agents’ preferences
are generally not convex, except in special cases in which the probability weighting
functions are convex.12 As a result, a Pareto optimal allocation may generally not solve
problem (4.3) for any (λ1, . . . , λI ) ∈ RI

+. The representative agent in an RDUT economy
cannot be constructed in the above standard way. However, it can be constructed by
summing up the individual optimal consumptions directly, as shown in the preceding
analysis. It should be also noted that the time discount factors βi are now hidden behind
the derived utility functions u1λ when the individual consumptions are aggregated (see
also Example 4.2).

EXAMPLE 4.2. Consider constant relative risk aversion (CRRA) utility functions

uti (c) = c1−αi

1 − αi

where αi ∈ (−∞, 0) ∪ (0, 1) is the relative risk aversion coefficient of agent i . By an
obvious calculation, we have ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
h0λ(y) =

I∑
i=1

(
1

λi y

) 1
αi

h1λ(y) =
I∑

i=1

(
βi

λi y

) 1
αi

.

We now consider two special cases:

(a) Agents have homogeneous utilities, i.e., αi = α for all i . In this case, we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h0λ(y) =
I∑

i=1

(
1
λi

) 1
α

y− 1
α ,

h1λ(y) =
I∑

i=1

(
βi

λi

) 1
α

y− 1
α .

Therefore,

u1λ(c) =
∫ c

0
h−1

1λ (x) dx =
[

I∑
i=1

(
βi

λi

) 1
α

]α

c1−α

1 − α
.

Similarly,

u0λ(c) =
[

I∑
i=1

(
1
λi

) 1
α

]α

c1−α

1 − α
.

So both u0λ and u1λ are still CRRA. Moreover, since 0 < βi ≤ 1, we have[
I∑

i=1

(
βi

λi

) 1
α

]α

≤
[

I∑
i=1

(
1
λi

) 1
α

]α

;

12In these cases, the representative agents can be constructed in the same way as in an EUT economy (see
Dana 2011).
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that is, the time impatience of the representative agent for consumptions is preserved.
(b) Agents have heterogeneous utilities. For simplicity, assume I = 2, α1 = 1

2 , and
α2 = 1

4 . In this case, we have

h1λ(y) =
(

β1

λ1 y

)2

+
(

β2

λ2 y

)4

.

Therefore,

u′
1λ(c) = h−1

1λ (c) =
√

2β2
2

λ2
2

√√
4
(

β2
λ2

)4
c +

(
β1
λ1

)4
−
(

β1
λ1

)2

= 1√
2

√√√√√
4
(

β2

λ2

)4 1
c

+
(

β1

λ1

)4 1
c2

+
(

β1

λ1

)2 1
c

.

Similarly,

u′
0λ(c) = 1√

2

√√√√√
4
(

1
λ2

)4 1
c

+
(

1
λ1

)4 1
c2

+
(

1
λ1

)2 1
c

.

So the utility functions of the representative agent are in general no longer CRRA. How-
ever, if β1 = β2 = β ≤ 1, then u′

1λ(c) = βu′
0λ(c), which still captures the time impatience

of the representative agent for consumption.

5. EQUILIBRIA

In this section, we introduce the following assumption:

ASSUMPTION 5.1. In addition to Assumption 2.1, w is continuously differentiable on
(0, 1).

For any λ = (λ1, . . . , λI ), let function 	λ : [0, 1] → [0, ∞) be given by

	λ(p) � w ′(p) u′
1λ

(
Q+

ẽ1
(1 − p)

)
,

where u1λ is defined in Section 4.

5.1. Rank-Dependent Asset Pricing

In this subsection, we derive an explicit expression relating the endogenous state-price
density ρ̃, the marginal rate of substitution between the initial and the end-of-period
consumption of a representative agent, and the probability weighting function, for the
economy E , under the assumption that an equilibrium exists where ρ̃ has a continuous
CDF. The existence of such an equilibrium will be studied in the next subsection.

THEOREM 5.2. Under Assumption 5.1, if there exists an equilibrium of economy E where
the state-price density ρ̃ has a continuous CDF and condition (3.11) is satisfied for all i and
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μ > 0, then the function 	λ∗ is strictly increasing on [0, 1) (here λ∗ is given in Section 4).
Moreover,

Q−
ρ̃ (p) = 	λ∗ (p)(5.1)

and

ρ̃ = w ′(1 − Fẽ1 (ẽ1))
u′

1λ∗ (ẽ1)
u′

0λ∗ (e0)
a.s.(5.2)

Proof. Recall that (u′
1λ∗ )−1(·) is strictly decreasing and continuous on (0, ∞). Moreover,

N̂′(1 − w(·)) is nondecreasing and left-continuous. Therefore, (4.2) indicates that c̃∗
1 is a

nonincreasing and left-continuous function of Fρ̃(ρ̃). By Föllmer and Schied (2011)
appendix A.3, we know that the upper quantile of c̃∗

1 is given by

(u′
1λ∗ )−1

(
N̂′(1 − w(1 − p))

)
.

At equilibrium, by the market clearing condition, we have c̃∗
1 = ẽ1. Thus, the upper

quantiles of c̃∗ and ẽ1 coincide; that is,

(u′
1λ∗ )−1

(
N̂′(1 − w(1 − p))

)
= Q+

ẽ1
(p).

Observe that Q+
ẽ1

(·) is strictly increasing due to the continuity of Fẽ1 . Then, N̂′ must be
strictly decreasing, and hence N̂ is strictly concave. Therefore, N = N̂, implying that (see
Remark 3.4)

N̂′(p) = Q−
ρ̃ (w−1(1 − p))

w ′(w−1(1 − p))
.

An obvious substitution yields that

(u′
1λ∗ )−1

(
Q−

ρ̃ (1 − p)

w ′(1 − p)

)
= Q+

ẽ1
(p),

which implies (5.1). Moreover, since Q−
ρ̃ (·) is strictly increasing, function 	λ∗ must also

be strictly increasing.
On the other hand, recalling that ẽ1 ≡ c̃∗

1 is a nonincreasing and left-continuous func-
tion of ρ̃, we have

Fẽ1 (ẽ1) = g(ρ̃)

for a nonincreasing and left-continuous function g. Considering the upper quantiles of
both sides in the above, it follows that

g(Q−
ρ̃ (1 − p)) = p

for all p, implying g = 1 − Fρ̃ . Thus,

Fẽ1 (ẽ1) = 1 − Fρ̃(ρ̃).
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Consequently,

ρ̃ = Q−
ρ̃ (1 − Fẽ1 (ẽ1)) a.s.

Then, by a substitution and by (5.1), we deduce

ρ̃ = w ′(1 − Fẽ1 (ẽ1))u′
1λ∗ (ẽ1) a.s.

Finally, at equilibrium, by the market clearing condition, we have c∗
0 = e0, implying

u′
0λ∗ (e0) = u′

0λ∗ (c∗
0) = 1. Thus, we arrive at (5.2). �

This theorem asserts that, under its assumptions, the state-price density ρ̃ is a weighted
marginal rate of substitution between initial and end-of-period consumption of the
representative agent, where the (random) weight is w ′(1 − Fẽ1 (ẽ1)) depending on the
rank 1 − Fẽ1 (ẽ1) of the realization of the aggregate future endowment ẽ1.13 So, via (5.2),
we have effectively established a rank-dependent CCAPM.

Now, suppose the probability weighting function w is convex (corresponding to risk
aversion; see Yaari 1987). In states of nature in which future consumption is sufficiently
high, marginal utility, u′

1λ∗ (ẽ1), is low, but w ′(1 − Fẽ1 (ẽ1)) is less than one, which further
lowers the price of a future payoff. Conversely, an asset is even more desired in low con-
sumption states compared to the classical setting. So, the effects of a convex probability
weighting and a concave outcome utility are compounded in the same direction: they
both highly value low consumption states and lowly value high consumption ones. By
contrast, with a concave probability weighting all of the conclusions are reversed: the
weighting offsets the effect of concave outcome utility in asset pricing. Finally, if the
probability weighting is inverse-S shaped (namely w(p) is concave close to p = 0 and
convex close to p = 1), then the market offers a premium when evaluating assets in both
very high and very low future consumption states.14

We provide further discussion of the implications, interpretation, and application of
the rank-dependent CCAPM in the next two sections.

REMARK 5.3. The identity (5.1) reads

Q−
ρ̃ (p)

w ′(p)
= u′

1λ∗
(
Q+

ẽ1
(1 − p)

)
,

which implies that, necessarily,
Q−

ρ̃ (p)
w ′(p) is monotonically increasing. This suggests that even

though the monotone condition on
Q−

ρ̃

w ′ introduced by Jin and Zhou (2008) is restrictive
for an individual agent portfolio choice problem, it is automatically satisfied in equilibria
provided that the state-price density has no atom and (3.11) is valid.

REMARK 5.4. We note that (5.2) is not an explicit formula for calculating the state-price
density ρ̃, since λ∗ implicitly depends on ρ̃ via (3.12). Instead, (5.2) can be considered
as an (explicit) necessary condition for the existence of a state-price density (the same
can be said about the EUT counterpart of the result). As discussed earlier, this condition
has rich economic interpretations. Moreover, it can be used to derive the RDUT-based
equity premium and risk-free rate formulae (see Section 6).

13In the classical EUT setting, the state-price density is simply the marginal rate of substitution between
initial and end-of-period consumption.

14A similar phenomenon was qualitatively observed and discussed by Shefrin (2008, p. 471).
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5.2. Existence of Equilibria

Theorem 5.2 requires the existence of an equilibrium of the economy E with the
state-price density having a continuous CDF. We now derive conditions that ensure this
existence. To this end, we introduce an auxiliary, “weighted” economy as follows:

� Each agent i has an endowment (e0i , ẽ1i );
� The agents have homogeneous beliefs P� about the states of nature, which is given

by15

dP�

dP
= w ′(1 − Fẽ1 (ẽ1));

� The preference of each agent i over consumption plans (c0i , c̃0i ) is represented by

V�
i (c0i , c̃1i ) = u0i (c0i ) + βi E

�[u1i (c̃1i )],

where E�[·] stands for the expectation under P�.

For simplicity, the above economy is denoted by

E� �
{

(�,F, P�), (e0i , ẽ1i )I
i=1, C,

(
V�

i (c0i , c̃0i )
)I

i=1

}
.

In this economy, the agents have homogeneous “weighted” beliefs P� and the preferences
for tomorrow consumptions c̃1i are represented by expected utilities E�[u1i (c̃1i )]. Indi-
viduals’ optimization on consumption in this “weighted economy” follow the classical
expected utility maximization.

An Arrow–Debreu equilibrium of economy E� is a collection
{
ρ̃�, (c∗

0i , c̃∗
1i )

I
i=1

}
con-

sisting of a state-price density ρ̃� and a collection (c∗
0i , c̃∗

1i )
I
i=1 of feasible consumption

plans, such that the feasible consumption plan (c∗
0i , c̃∗

1i ) solves the following optimization
problem:

V�
i (c∗

0i , c̃∗
1i ) = max

(c0i ,c̃1i )∈C
V�

i (c0i , c̃1i )

subject to c0i + E�[ρ̃�c̃1i ] ≤ e0i + E�[ρ̃�ẽ1i ](5.3)

for all i , and such that

c∗
0 �

I∑
i=1

c∗
0i = e0 and c̃∗

1 �
I∑

i=1

c̃∗
1i = ẽ1.(5.4)

THEOREM 5.5. Let two state-pricing densities, ρ̃ and ρ̃�, be related by

ρ̃ = w ′(1 − Fẽ1 (ẽ1))ρ̃�.(5.5)

Moreover, set λ∗ = (λ∗
1, . . . , λ

∗
I ), where λ∗

i is the Lagrange multiplier for optimization prob-
lem (5.3) (i = 1, . . . , I). Then, under Assumption 5.1, the following two statements are
equivalent:

(i)
{
ρ̃�, (c∗

0i , c̃∗
1i )

I
i=1

}
is an Arrow–Debreu equilibrium of the economy E� and 	λ∗ is

strictly increasing on [0, 1);
15Noting that 1 − Fẽ1 (ẽ1) is uniformly distributed on (0, 1), we have E[w ′(1 − Fẽ1 (ẽ1))] = ∫ 1

0 w ′(t)dt =
w(1) − w(0) = 1. So P� is a probability measure.
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(ii) (ρ̃, (c∗
0i , c̃∗

1i )
I
i=1) is an Arrow–Debreu equilibrium of the economy E , ρ̃ has a contin-

uous CDF and condition (3.11) is fulfilled for all i and μ > 0.

Furthermore, (i) implies that

E�[(u′
1i )

−1(μρ̃�)ρ̃�] < ∞(5.6)

for all i and μ > 0.

Proof. We prove only (i) ⇒ (ii)+(5.6), since (ii) ⇒ (i) can be similarly proved (with the
help of Theorem 5.2).

Assume (i) holds. Then, for every i , the consumption plan (c∗
0i , c̃∗

1i ) solves problem
(5.3) and is given by {

c∗
0i = (u′

0i )
−1(λ∗

i )

c̃∗
1i = (u′

1i )
−1
(

λ∗
i

βi
ρ̃�
)

,
(5.7)

where the Lagrange multiplier λ∗
i satisfies

(u′
0i )

−1(λ∗
i ) + E�

[
ρ̃�(u′

1i )
−1
(

λ∗
i

βi
ρ̃�
)]

= e0i + E�[ρ̃�ẽ1i ].(5.8)

Let λ∗ � (λ∗
1, . . . , λ

∗
I ), and let h1λ∗ and u1λ∗ be defined as in Section 4. Then, by (5.4), we

have

h1λ∗ (ρ̃�) =
I∑

i=1

c̃∗
1i = c̃∗

1 = ẽ1.

Thus, ρ̃� = u′
1λ∗ (ẽ1), and hence by (5.5),

ρ̃ = w ′(1 − Fẽ1 (ẽ1))u′
1λ∗ (ẽ1) = 	λ∗ (1 − Fẽ1 (ẽ1)).

Since ẽ1 has a continuous CDF, 1 − Fẽ1 (ẽ1) is uniformly distributed on (0, 1). Moreover,
	λ∗ is strictly increasing, so we know that ρ̃ has a continuous CDF. By the left-continuity
of 	λ∗ , we have (see Föllmer and Schied 2011, appendix A.3)

Q−
ρ̃ (p) = 	λ∗ (p).

By Remark 3.4 and by a substitution, we have

N(q) = −
∫ 1−

q

	λ∗ (w−1(1 − p))
w ′(w−1(1 − p))

dp = −
∫ 1−

q
u′

1λ∗
(
Q+

ẽ1
(1 − w−1(1 − p))

)
dp.

It is easy to see that N is strictly concave, implying N̂ = N. Hence,

N̂′(q) = N′(q) = u′
1λ∗
(
Q+

ẽ1
(1 − w−1(1 − q))

)
.

Moreover,

Fρ̃(ρ̃) = Fρ̃ (	λ∗ (1 − Fẽ1 (ẽ1))) = Fρ̃

(
Q−

ρ̃ (1 − Fẽ1 (ẽ1))
)

= 1 − Fẽ1 (ẽ1).



22 J. XIA AND X. Y. ZHOU

Thus, we have

N′(1 − w(Fρ̃(ρ̃))
) = N′(1 − w(1 − Fẽ1 (ẽ1))

) = u′
1λ∗ (ẽ1) = ρ̃�.

By (5.7) and by substitutions, we get

c∗
0i = (u′

0i )
−1(λ∗

i )

and

c̃∗
1i = (u′

1i )
−1
(

λ∗
i

βi
ρ̃�
)

= (u′
1i )

−1
(

λ∗
i

βi
N̂′
(

1 − w(Fρ̃(ρ̃))
))

.

Moreover, for any nonnegative random variable x̃, we have

E[ρ̃ x̃] = E[w ′(1 − Fẽ1 (ẽ1))ρ̃�x̃] = E�[ρ̃�x̃].

Then, (5.8) reads

(u′
0i )

−1(λ∗
i ) + E

[
ρ̃(u′

1i )
−1
(

λ∗
i

βi
N̂′
(

1 − w(Fρ̃(ρ̃))
))]

= e0i + E[ρ̃ẽ1i ].

Furthermore, recall that the asymptotic elasticity of each u1i is assumed to be strictly
less than one. Then, by Kramkov and Schachermayer (1999), theorems 2.2 and 3.2, for
every μ > 0, (u′

1i )
−1(μρ̃�) solves the problem

Maximize
x̃≥0

E�[u1i (x̃)] subject to E�[ρ̃�x̃] = a

for some a > 0. Thus (5.6) follows. Moreover,

E�[(u′
1i )

−1(μρ̃�)ρ̃�] = E[(u′
1i )

−1(μρ̃�)ρ̃]

= E[(u′
1i )

−1(μN̂′(1 − w(Fρ̃(ρ̃)))ρ̃]

=
∫ 1−

0
(u′

1i )
−1(μN̂′(w̄(p)))Q−

ρ̃ (1 − p) dp,

implying (3.11). Therefore, it follows from Theorem 3.3 that (c∗
0i , c̃∗

1i ) is the optimal
consumption plan in economy E for agent i . Finally, (5.4) yields that the market clears
in economy E . Thus, (ii) follows. �

We now introduce the following condition, which is needed to ensure the existence of
an equilibrium of economy E .

ASSUMPTION 5.6. For any λ, function 	λ is strictly increasing on [0, 1).

THEOREM 5.7. Under Assumptions 5.1 and 5.6, assume further that⎧⎨
⎩

E[w ′(1 − Fẽ1 (ẽ1))u1i (ẽ1)] < ∞

E
[
w ′(1 − Fẽ1 (ẽ1))u′

1i

( ẽ1
I

)]
< ∞

(5.9)

for all i = 1, . . . , I. Then, there exists an Arrow–Debreu equilibrium of economy E where
the state-price density has a continuous CDF and (3.11) is satisfied for all i and μ > 0. If,
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in addition, the utility functions u1i satisfy

−cu′′
1i (c)

u′
1i (c)

≤ 1 for all i = 1, . . . , I and c > 0,

then the equilibrium is unique.

Proof. In view of Theorem 5.5, we obtain the existence of an equilibrium from the
standard existence result for an EUT economy; see, e.g., Dana (1993a, b) and Föllmer
and Schied (2011, section 3.6). The uniqueness follows from Dana (1993a, b). �

Let us now discuss the key condition for the existence of equilibria stipulated in
Assumption 5.6. This condition has a prominent economic interpretation, which will
be elaborated in Section 7 after we have introduced the notion of “implied relative risk
aversion.” Mathematically, the condition is necessary, at least for λ = λ∗, for the existence
of an equilibrium, as stipulated in Theorem 5.2. It is automatically satisfied, for example,
when w is strictly convex, since function p �→u′

1λ(Q+
ẽ1

(1−p)) is strictly increasing. Note that
the convexity of the probability weighting function underlines risk aversion in the Yaari
sense.

Nevertheless, Assumption 5.6 may hold even when w is concave or inverse-S shaped.
Here are examples:

EXAMPLE 5.8. Assume that the aggregate future endowment ẽ1 follows the Pareto
distribution, namely,

Fẽ1 (x) =
⎧⎨
⎩

1 − ( xm
x

)γ
, x ≥ xm,

0, x < xm,

where xm > 0 is the scale parameter and γ > 0 the Pareto index. Obviously, Q+
ẽ1

(p) =
xm(1 − p)−

1
γ .

(i) A concave weighting function. Take the power weighting function w(p) = p1−δ, where
δ ∈ (0, 1) measures the degree of concavity of w (and hence the level of risk-loving
associated with the probability weighting). Clearly, w ′(p) = (1 − δ)p−δ .

(i.a) Consider the utility functions in Example 4.2-(a). In this case,

	λ(p) = w ′(p)u′
1λ

(
Q+

ẽ1
(1 − p)

) =
[

I∑
i=1

(
βi

λi

) 1
α

]α

(1 − δ)x−α
m p

α
γ
−δ

.

This is a strictly increasing function if and only if δ < α
γ

. The latter condition
is more likely to be satisfied with a less concave weighting function, a more
concave outcome utility function, or a less positively skewed future total
consumption distribution.

(i.b) Consider the utility functions in Example 4.2-(b). In this case,

	λ(p) = 1 − δ√
2

√√√√√4
(

β2

λ2

)4 1
xm

p
1
γ
−4δ +

(
β1

λ1

)4 1
x2

m
p

2
γ
−4δ +

(
β1

λ1

)2 1
xm

p
1
γ
−2δ

.

This is a strictly increasing function if δ < 1
4γ

= min{α1,α2}
γ

.
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(ii) An inverse-S shaped weighting function. Take the Prelec weighting function w(p) =
e−δ(− ln p)σ where δ > 0 and σ ∈ (0, 1), which is inverse-S shaped (see Prelec 1998).
Obviously, w ′(p) = σδe−δ(− ln p)σ (− ln p)σ−1 p−1.

(ii.a) Consider the utility functions in Example 4.2-(a). In this case,

	λ(p) =
[

I∑
i=1

(
βi

λi

) 1
α

]α

σδx−α
m p

α
γ
−1e−δ(− ln p)σ (− ln p)σ−1.

This is a strictly increasing function if α
γ

> 1.
(ii.b) Consider the utility functions in Example 4.2-(b). In this case,

	λ(p) = 1√
2
σδe−δ(− ln p)σ (− ln p)σ−1

×

√√√√√4
(

β2

λ2

)4 1
xm

p
1
γ
−4 +

(
β1

λ1

)4 1
x2

m
p

2
γ
−4 +

(
β1

λ1

)2 1
xm

p
1
γ
−2

.

This is a strictly increasing function if γ < 1
4 , or, equivalently, min{α1,α2}

γ
> 1.

6. EQUITY PREMIUM

In this section, we first derive some approximation forms of the equity premium and
risk-free rate based on the rank-dependent CCAPM (5.2), and then suggest a possible
direction of thinking about the equity premium puzzle.

Consider a security whose payoff at t = 1 is a random variable x̃. Its price is given by
s = E[ρ̃ x̃]. In particular, for a riskless security whose payoff xf = 1, its price is s f = E[ρ̃].
The rate of return of the risky security is r̃ = x̃

s − 1 and the risk-free rate is r f = 1
s f

− 1.
It is easy to see that E[ρ̃r̃ ] = E[ρ̃r f ], or

−Cov(ρ̃, r̃ ) = E[ρ̃](r̄ − r f ),

where r̄ = E[r̃ ]. Thus, we arrive at

r̄ − r f = −Cov(ρ̃, r̃ )
E[ρ̃]

= −(1 + r f )Cov(ρ̃, r̃ ).(6.1)

In the following, we write

u1λ∗ (c) = βu0λ∗ (c), β ∈ (0, 1]

in order to highlight the discount factor β for the representative agent.16 This is necessary
since we are going to derive the risk-free rate, which is partly related to the time impatience
of the agent.

16For the benchmark utility given by Example 4.2-(a), we have u1λ∗ (c) = βu0λ∗ (c) = β c1−α

1−α
for some

β ∈ (0, 1].
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Assume that the absolute value of the growth rate g̃ � ẽ1
e0

− 1 of aggregate endowment
is very small. Then, by (5.2), we have

ρ̃ = βw ′(1 − Fẽ1 (e0(1 + g̃))
u′

1λ∗ (e0(1 + g̃))
u′

1λ∗ (e0)

and, therefore, by an expansion,

ρ̃ = βw ′(1 − Fẽ1 (e0))
[

1 − αg̃ − w ′′(1 − Fẽ1 (e0))
w ′(1 − Fẽ1 (e0))

fẽ1 (e0)e0g̃
]

+ o(|g̃|),(6.2)

where

α � −e0u′′
1λ∗ (e0)

u′
1λ∗ (e0)

is the relative risk aversion index of u1λ∗ . Setting ḡ = E[g̃], we can obtain

1 + r f = 1
E[ρ̃]

≈ 1

βw ′(1 − Fẽ1 (e0))
[

1 − αḡ − w ′′(1 − Fẽ1 (e0))
w ′(1 − Fẽ1 (e0))

fẽ1 (e0)e0ḡ
]

and, therefore,

1 + r f ≈ 1
βw ′(1 − Fẽ1 (e0))

[
1 + αḡ + w ′′(1 − Fẽ1 (e0))

w ′(1 − Fẽ1 (e0))
fẽ1 (e0)e0ḡ

]
,(6.3)

provided that

αḡ + w ′′(1 − Fẽ1 (e0))
w ′(1 − Fẽ1 (e0))

fẽ1 (e0)e0ḡ

is small. Substituting (6.2) and (6.3) into (6.1) leads to

r̄ − r f ≈
[
α + w ′′(1 − Fẽ1 (e0))

w ′(1 − Fẽ1 (e0))
fẽ1 (e0)e0

] [
1 + αḡ + w ′′(1 − Fẽ1 (e0))

w ′(1 − Fẽ1 (e0))
fẽ1 (e0)e0ḡ

]
Cov(g̃, r̃ )

≈
[
α + w ′′(1 − Fẽ1 (e0))

w ′(1 − Fẽ1 (e0))
fẽ1 (e0)e0

]
Cov(g̃, r̃ ).

The first term above, αCov(g̃, r̃ ), is provided by the standard CCAPM under EUT. The
second term,

w ′′(1 − Fẽ1 (e0))
w ′(1 − Fẽ1 (e0))

fẽ1 (e0)e0Cov(g̃, r̃ ),

depends on the weighted probability of the future endowment exceeding the current
endowment, namely, the rank of the current endowment over all possible realizations
of the future endowment. Thus, we have established an approximation of the equity
premium:

r̄ − r f ≈ αCov(g̃, r̃ ) + w ′′(1 − Fẽ1 (e0))
w ′(1 − Fẽ1 (e0))

fẽ1 (e0)e0Cov(g̃, r̃ ).(6.4)
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We may write (6.4) in a more compact way. Recall that g̃ = ẽ1−e0
e0

; thus,

Fẽ1 (x) = Fg̃

(
x − e0

e0

)
, fẽ1 (x) = fg̃

(
x − e0

e0

)
1
e0

.

Therefore,

w ′′(1 − Fẽ1 (e0))
w ′(1 − Fẽ1 (e0))

fẽ1 (e0)e0 = w ′′(1 − Fg̃(0))
w ′(1 − Fg̃(0))

fg̃(0).

This leads to the following alternative form of the approximated equity premium:

r̄ − r f ≈
[
α + w ′′(1 − Fg̃(0))

w ′(1 − Fg̃(0))
fg̃(0)

]
Cov(g̃, r̃ ).(6.5)

Similarly, we may rewrite (6.3) as

1 + r f ≈ 1
βw ′(1 − Fg̃(0))

[
1 + αḡ + w ′′(1 − Fg̃(0))

w ′(1 − Fg̃(0))
fg̃(0)ḡ

]
.(6.6)

The corresponding approximations under the classical (EUT) CCAPM can be repro-
duced by letting w ′(·) = 1 in (6.5) and (6.6); that is,

r̄ − r f ≈ αCov(g̃, r̃ ),(6.7)

1 + r f ≈ 1 + αḡ
β

(6.8)

provided that αḡ is small.
The classical formula (6.7) stipulates that the equity premium depends only on the

relative risk aversion level and on the “beta” (i.e., correlation between the equity return
and the overall economy); nevertheless, the rank-dependent formula (6.5) suggests that
it depends additionally on agents’ subjective views of the overall consumption growth,
represented by 1 − Fg̃(0) ≡ P(g̃ > 0). This, in turn, provides a new perspective from
which to consider the classical equity premium puzzle.

Briefly put, the equity premium puzzle (Mehra and Prescott 1985) states that the
observed equity premium is too high to be explainable by the classical CCAPM. In
particular, Mehra and Prescott (1985) found the historical average annual equity premium
of the S&P 500 index for the period 1889–1978 to be 6.18%, implying an implausibly
high relative risk aversion based on the classical CCAPM. Subsequent empirical studies
have confirmed that the equity premium puzzle is robust across different time periods
and different countries.

The rank-dependent CCAPM, in particular the presence of the probability weighting
function, may offer a way, at least at the qualitative level, to explain the puzzle.

Indeed, assume that the probability weighting function w is inverse-S shaped, as sup-
ported by many experimental/empirical studies. Due to the high probability of positive
economic growth (in particular on average over periods of approximately 100 years, as
in the study of Mehra and Prescott 1985), it is plausible to assume that P(g̃ > 0) is
large. Hence, 1 − Fg̃(0) = P(g̃ > 0) lies in the convex domain of w and w ′′(1−Fg̃ (0))

w ′(1−Fg̃ (0)) fg̃(0)
is positive. Therefore, the expected rate of return provided by our model (6.5) is indeed
larger than that yielded by the standard model (6.7), a fact that contributes positively
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to the theoretical value of the equity premium. The economic reason is that the repre-
sentative agent is effectively making decisions based primarily on the convex part of w .
The convexity of probability weighting corresponds to risk aversion and therefore leads
to both an enhancement of the overall risk aversion level and a higher rate of return
than that encountered under the standard CCAPM. As a result, an extremely high α is
no longer required to account for the observed equity premium. Moreover, the explicit
expression (6.5) provides qualitative information on the premium. For example, it is seen
that this “theoretical enhancement,” w ′′(1−Fg̃(0))

w ′(1−Fg̃(0)) fg̃(0)Cov(g̃, r̃ ), increases with the level of

convexity, measured by w ′′
w ′ .

We stress, however, that the above discussion is qualitative only. To investigate whether
our theoretical model matches the observed market data will require a careful empirical
study, including calibration of the weighting function, which goes beyond the scope and
objectives of this paper. Nonetheless, our study shows that the rank-dependent pricing
model provides a potentially fruitful path in explaining some of the intriguing puzzles in
the literature.

7. THE RDUT ECONOMY VERSUS THE EUT ECONOMY

At the individual consumption choice level, RDUT agents exhibit remarkably different
behavior than their EUT counterparts (see Remark 3.5). In terms of equilibrium and
asset pricing, the RDUT model also displays distinctly different properties than the
EUT one. However, in this section we will argue that at equilibrium an RDUT economy
is “equivalent” to an EUT one with proper modification on some primitives. In fact,
the proofs of the main results in this paper have been based on the idea of making a
connection between the RDUT and EUT models and then utilizing the existing results
that pertain to the latter. Let us examine this connection in two different directions.

Implied Relative Risk Aversion. Risk preferences are captured in an RDUT model
via two components: outcome utility and probability weighting. The outcome utility
function is assumed to be concave, representing risk aversion in the classical sense. If the
probability weighting is convex, implying risk aversion in the Yaari sense, then the overall,
aggregate risk taste of the agent is clearly risk aversion. If the probability weighting is
concave or inverse-S shaped, then there are two conflicting preferences in force, and the
overall attitude toward risk depends on a quantitative assessment of the two. Intriguingly,
the pricing formula (5.2) can shed light on how this may be done. The relevant analysis,
to which we now turn, leads to the conclusion of an implied relative risk aversion on the
part of an RDUT agent.

The idea is to interpret (5.2) within the classical EUT setting where the representative
agent has a modified outcome utility function. Indeed, under the assumptions of Theorem
5.2, we know that function

x �→ w ′(1 − Fẽ1 (x))u′
1λ∗ (x)

is strictly decreasing. Consider a function uw such that

u′
w (x) = w ′(1 − Fẽ1 (x))u′

1λ∗ (x).
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Then, uw is strictly increasing and concave. The marginal utility u′
1λ∗ (x) weighted by

w ′(1 − Fẽ1 (x)) yields the marginal utility u′
w (x). Now, we can rewrite (5.2) as

ρ̃ = u′
w (ẽ1)

u′
0λ∗ (e0)

.

This formulation can be regarded as representing a state-price density for a fictitious
EUT economy (under the original probability P without weighting), where uw is the
outcome utility function of a “weighted” representative agent. Moreover, assuming ẽ1

has a probability density function fẽ1 and w is twice continuously differentiable, we have

Rw (x) � − xu′′
w (x)

u′
w (x)

= − xu′′
1λ∗ (x)

u′
1λ∗ (x)

+ xw ′′(1 − Fẽ1 (x))
w ′(1 − Fẽ1 (x))

fẽ1 (x).(7.1)

This representation gives the rank-dependent implied relative index of risk aversion, which
can be used to assess the overall degree of risk aversion (or risk-loving) of the RDUT
agent. Specifically, the rank-dependent implied utility uw is, in the Arrow–Pratt sense,
more (less) risk averse than u1λ∗ in the domain where w is convex (concave). In particular,
if w is inverse-S shaped, then the probability weighting effectively increases the level of
risk aversion in lower consumption states and enhances that of risk-seeking in higher
consumption states.

The preceding analysis also explains and justifies the sufficient condition for the exis-
tence of equilibria, Assumption 5.6. The function 	λ being strictly increasing is equivalent
to the function

x �→ w ′(1 − Fẽ1 (x))u′
1λ(x)

being strictly decreasing, and the arbitrariness of λ corresponds to that of the initial
endowments. Therefore, in economics terms, Assumption 5.6 requires an implied overall
positive index of relative risk aversion for any initial distribution of the wealth.

In a similar spirit, we can recover (6.5) from (6.7) by replacing the relative risk aversion
index α with the rank-dependent implied relative risk aversion index

α + w ′′(1 − Fg̃(0))
w ′(1 − Fg̃(0))

fg̃(0).

We can also recover (6.6) from (6.8) in the same way, while noticing that the former has
one more term w ′(1 − Fg̃(0)). This finding is interesting, since it suggests that the discount
factor of the weighted agent should be multiplied by the factor w ′(1 − Fg̃(0)) in addition
to the adjustment of the degree of risk aversion. This factor is larger than one if the
agents have an inverse-S shaped weighting function and envisage positive consumption
growth. So, RDUT agents place more weight on future consumption—a finding that is,
after all, consistent with the empirically observed low interest rate.

Instead of revising the outcome utility function of the representative agent, we can also
revise those of the individual agents in the following way:

uwi (x) = w ′(1 − Fẽ1 (ẽ1))u1i (x), i = 1, 2, · · · , I.

Each uwi is a state-dependent utility function, inheriting all of the properties of u1i at
each state of nature. With this revision of individual utility functions, the original RDUT
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economy is equivalent to the resulting EUT economy in terms of equilibrium allocation
and pricing.

The above discussion leads to the conclusion that, at equilibrium, one cannot actually
distinguish an RDUT economy from an EUT one. However, the “reasonable” or “plau-
sible” range of relative coefficients of risk aversion under the latter may be significantly
shifted from that which pertains under the former. This is the case because under RDUT,
the relative risk aversion consists of contributions from both the outcome utility and the
probability weighting. For instance, Mehra and Prescott (1985) found that the observed
equity premium corresponded to a relative index of risk aversion over 30. A measure
of 30 on this index means that investors would have to be indifferent between a gam-
ble equally likely to pay $50,000 or $100,000 and a certain payoff of $51,209 (Mankiw
and Zeldes 1991). Such a case, however, is highly implausible because few individuals
are likely to be that risk averse. Nonetheless, once we understand that the probability
weighting, in addition to the outcome utility, also contributes to this total measure of
30, then the number may no longer be implausible and the equity premium puzzle may
be less—indeed, perhaps not at all—puzzling.

Rank-Neutral Probability. There is another way of reconciling our rank-dependent
CCAPM with the standard one. The idea has actually been revealed in the proof of
Theorem 5.5. Let

ρ̃� = u′
1λ∗ (c̃∗

1)
u′

0λ∗ (c∗
0)

(7.2)

and ρ̃ be determined by (5.5). In Section 5.2 of this paper, we obtained the result that
ρ̃� is the equilibrium state-price density in an EUT economy E� where the agents have
homogeneous beliefs P�, and that ρ̃ is the equilibrium state-price density in an RDUT
economy E where the agents have homogeneous beliefs P. The relation (5.5) between ρ̃

and ρ̃� can be reformulated as follows:

ρ̃ = ρ̃� dP�

dP
.

Consequently, for any claim x̃ we have

E[ρ̃ x̃] = E�[ρ̃�x̃].

Moreover, the two economies have the same equilibrium allocation.
Therefore, by analogy to the risk-neutral probability in option pricing, the RDUT

economy E is equivalent, as far as asset pricing is concerned, to the EUT economy E�

where a “rank-neutral” probability measure is used instead of the original measure.

8. CONCLUSION

We provide conditions on an RDUT economy under which the Arrow–Debreu equilib-
rium exists uniquely. We reveal, in an explicit way, how probability weighting will affect
this economy. A key step in our derivation, which is also a major technical contribution of
the paper, is to obtain an analytical solution to the individual consumption problem that
involves the concave envelope of a certain nonconcave function. We find that asset prices
depend not only upon level of risk aversion and beta, but also upon agents’ subjective
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views regarding overall consumption growth. This suggests that probability weighting
may help to explain a number of intriguing economic phenomena.

The setting of our economy is fairly general, with general future endowment distri-
butions, general shape of probability weighting functions, and heterogeneous outcome
utilities. However, we realize that one of the key assumptions in this paper is the ho-
mogeneity of the agents’ probability weightings. Without this condition our approach
in proving the existence of a representative agent fails. Economically, with both hetero-
geneous outcome utilities and probability weightings, the agents’ preferences might be
too diverse to permit the existence of an RDUT representative agent. This remains a
significant research problem that we endeavor to attack in our future studies.
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