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Abstract. We study the convergence rate of a continuous-time simulated an-

nealing process (Xt; t ≥ 0) for approximating the global optimum of a given

function f . We prove that the tail probability P(f(Xt) > min f + δ) decays
polynomial in time with an appropriately chosen cooling schedule of tempera-

ture, and provide an explicit convergence rate through a non-asymptotic bound.

Our argument applies recent development of the Eyring-Kramers law on func-
tional inequalities for the Gibbs measure at low temperatures.

1. Introduction. Simulated annealing (SA) is an umbrella term for a set of sto-
chastic optimization methods. The goal of SA is to find the global minimum of
a function f : Rd → R, in particular when f is nonconvex. These methods have
many applications in physics, operations research and machine learning; see e.g.
[10, 25, 47]. The name is inspired by annealing in metallurgy, which is a process
aiming to increase the size of crystals by controlled heating and cooling. The sto-
chastic version of SA was independently proposed by [6] and [24]. The idea is as
follows: consider a stochastic process related to f which is subject to thermal noise.
When simulating this process, one applies a higher temperature initially to escape
from saddle points and local optima, and decreases the temperature slowly over
time for the process to converge to the global minimum of f with high probability.
This works generally if the cooling is slow enough, and the problem is to find the
right stochastic process with the fastest possible cooling schedule that approximates
the global optimum.

In this paper, we explore the convergence rate of continuous-time SA with an
appropriately chosen cooling schedule of temperature. To be more precise, define
the continuous-time SA process (Xt; t ≥ 0) by

dXt = −∇f(Xt)dt+
√

2τt dBt, X0
d
= µ0(dx), (1)
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where (Bt; t ≥ 0) is a standard Brownian motion in Rd, τt is a given deterministic
cooling schedule of temperature, and µ0(dx) is some initial distribution. This for-
mulation was first considered by [17, 19]. If τt ≡ τ is constant in time, the process
(1) is the well-known overdamped Langevin equation whose stationary distribution
is the Gibbs measure ντ (dx) ∝ exp(−f(x)/τ)dx. Thus, we sometimes call (1) an
SA adapted overdamped Langevin equation; see Section 3.1 for more background.

The goal of this paper is to study the decay in time of the tail probability, i.e.
the deviation bound

P(f(Xt) > min f + δ),

under suitable conditions on the function f and the cooling schedule τt. There are
two motivations for studying this problem. First, there are a line of works on the
interplay between sampling and optimization ([27, 28, 38]). If τt ≡ τ is constant
in time, the overdamped Langevin equation converges to the Gibbs measure ντ ;
and for τ sufficiently small, the Gibbs measure ντ approximates the Dirac mass at
the global minimum of f . Accordingly, one aims to approximate min f by Ef(Xτ

t )
where (Xτ

t ; t ≥ 0) is the overdamped Langevin process with a small, fixed temper-
ature parameter τ . This way one needs to simulate multiple (many) sample paths
to estimate Ef(Xτ

t ). The advantage of SA is that for a suitable choice of time-
dependent τt, the process Xt converges almost surely to min f as t→∞. Thus, one
only needs to simulate one sample path to approximate min f . Second, there are
recent works on various noisy gradient-based algorithms [7, 16, 20, 23], aiming to
escape saddle points and find a local minimum of f as a surrogate. While finding
a local surrogate has been proved to be sufficient in many machine learning prob-
lems, global optimization is important in its own right with applications ranging
from finding Nash equilibria in various games [36] to curriculum learning [2]. Com-
pared to the gradient-based methods, SA sets priority to find the global minimum,
if at the cost of a longer exploration time.

The main technical tool in our analysis is the Eyring–Kramers law, which is a
set of functional inequalities for the Gibbs measure at low temperatures (see Section
3.2). Let us elaborate. It was shown in [9, 17, 18] that the correct order of τt for
the process (1) to converge to the global minimum of f is (ln t)−1. In fact, there is
a phase transition related to the critical depth E∗ of the function f :

(a) If lim supt→∞ τt ln t ≤ E with E < E∗, then lim supt→∞ P(f(Xt) ≤ min f +
δ) < 1.

(b) If E ≤ lim inft→∞ τt ln t ≤ lim supt→∞ τt ln t <∞ with E > E∗, then

lim
t→∞

P(f(Xt) ≤ min f + δ) = 1.

Roughly speaking, the critical depth E∗ is the highest hill one needs to climb starting
from a local minimum to the global minimum. The formal definition of the critical
depth E∗ will be given in Assumption 2; but see Figure 1 below for an illustration
when f is a double-well function. Part (a) above was proved by [21], who also
proved part (b) for f on a compact Riemannian manifold with a convergence rate
via a Poincaré inequality (PI). But their argument for part (b) does not extend to
the Euclidean space Rd which is inherently non-compact. [33] proved part (b) for
f on Rd and characterized the fastest cooling schedule using the Eyring–Kramers
law for the log-Sobolev inequality (LSI). See also [14, 34, 49] for similar results
under different conditions on f . However, none of these results derived any precise
convergence rate for SA in Rd. [29] was the first to derive a convergence rate of
(f(Xt); t ≥ 0) to the global minimum of f in Rd asymptotically via a large deviation
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Figure 1. Illustration of the critical depth of a double-well function.

principle, i.e. for δ sufficiently small and t sufficiently large. But the bound of
P(f(Xt) > min f + δ) for any δ > 0 and t > 0 has been absent since no estimates of
the log-Sobolev inequality for the Gibbs measure at low temperatures were known
until the mid-2010s. Taking advantage of some recently developed theory [30, 31],
we are able to give a non-asymptotic convergence rate of continuous-time SA.

To simplify the notation, we assume henceforth that

min
x∈Rd

f(x) = 0;

otherwise we could consider f−min f . Our main result is outlined as follows, whose
precise statement will be given in Section 2.

Main Result (Informal). Under some assumptions on f , and assuming that τt is

decreasing in t, τt ∼ E
ln t with E > E∗, and d

dt

(
1
τt

)
= O

(
1
t

)
as t→∞, we have for

δ > 0, there exists C > 0 independent of t such that

P(f(Xt) > δ) ≤ Ct−min( δE ,
1
2 (1−

E∗
E )).

This result provides a non-asymptotic bound on the tail probability P(f(Xt) > δ)
which decays polynomially in time. As mentioned [21] derived a convergence rate
for f on a compact Riemannian manifold, with an additional log t term. This is
because they used a weaker PI, while we apply the recently developed Eyring–
Kramers formula for LSI which is stronger than the PI. [29] proved a convergence
rate for SA in Rd: for δ > 0 sufficiently small and τt ∼ E

ln t with E > E∗,

1

ln t
lnP(f(Xt) > δ)→ − δ

E
as t→∞. (2)

For δ > 0 sufficiently small, we have δ
E < 1

2 (1− E∗
E ). So our result yields P(f(Xt) >

δ) ≤ Ct−
δ
E , which agrees with the large deviation (2) as t → ∞. On the other

hand, our deviation bound holds for all (t, δ, E,E∗). [35] obtained the same rate
of convergence for SA adapted underdamped Langevin equation, and [31] consid-
ered an improvement of SA via parallel tempering. However, the (non-asymptotic)
convergence rate for SA adapted overdamped Langevin equation has not appeared
in literature to our best knowledge, and here we provide a self-contained treatment
that bridges this gap. Moreover, in a separate paper [45], we show how the approach
presented in this work can be used to obtain new results in the discrete-time setting.
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Note that if one uses a fixed temperature τ for the overdamped Langevin process
(Xτ

t ; t ≥ 0), then the tail probability is bounded by

P(f(Xτ
t ) > δ) ≤ C

δ
(τ + e−C

′t),

for some C,C ′ > 0. The non-vanishing term in τ is inherent – it comes from Eντ f
in sampling the Gibbs measure ντ (dx). As a result, the tail probability in this
case will not converge to 0 over time. Also note that the rate min

(
δ
E ,

1
2 (1− E∗

E )
)

for the continuous-time SA is smaller than 1
2 . Empirical results from the discrete

setting (see [45]) suggests that this rate is optimal; but it remains open to prove it
theoretically. We leave the problem for future work.

The dependence of the constant C on the dimension d is another interesting prob-
lem. It is also a subtle problem, since most analysis including the Eyring–Kramers
law uses Laplace’s method. However, the latter may fail if both the dimension d
and the inverse temperature 1/τ tend to infinity [42]. As shown in Remark 1 below,
we obtain an upper bound for C which is exponential in d. This suggests the con-
vergence rate is exponentially slow as the dimension increases, which concurs the
fact that finding the global minimum of a general nonconvex function is NP-hard
[22].

Finally, we mention a few approaches in the literature to accelerate or improve
SA. [13] considered a cooling schedule depending on both time and state; [37] used
the Lévy flight; [35] studied SA adapted to underdamped Langevin equation; [31]
applied the replica exchange technique; [15] employed a relaxed stochastic control
formulation, originally proposed by [48] for reinforcement learning, to derive a state-
dependent temperature control schedule.

The remainder of the paper is organized as follows. Section 2 presents the as-
sumptions and our main results. Section 3 provides background on diffusion pro-
cesses and functional inequalities. The result for the continuous-time simulated
annealing (Theorem 2.1) is proved in Section 4. We conclude with Section ??.

2. Main results. In this section, we make precise the informal statement in the in-
troduction, and present the main results of the paper. We first collect the notations
that will be used throughout this paper.

– The notation | · | is the Euclidean norm of a vector, and a · b is the scalar
product of vectors a and b.

– For a function f : Rd → R, let ∇f , ∇2f and ∆f denote its gradient, Hessian
and Laplacian respectively.

– The symbol a ∼ b means that a/b → 1 as some problem parameter tends to
0 or ∞. Similarly, the symbol a = O(b) means that a/b is bounded as some
problem parameter tends to 0 or ∞.

We use C for a generic constant which depends on problem parameters (δ, f, E . . .),
and may change from line to line.

Next, we present a few assumptions on the function f . These assumptions are
standard in the study of metastability, which we take from [30, 31].

Assumption 1. Let f : Rd → R be smooth, bounded from below, and satisfy the
conditions:
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(i) There exists C > 0 such that

|ξ|
C
≤ |∇2f(x)ξ| ≤ C|ξ| for each x ∈ {z : ∇f(z) = 0} and ξ ∈ Rd.

(ii) There exist C,C ′ > 00 such that

lim inf
|x|→∞

|∇f(x)|2 −∆f(x)

|x|2
≥ C, inf

x∈Rd
∇2f(x) ≥ −C ′.

Let us make a few comments on Assumption 1. The condition (i) implies that f
is non-degenerate on the set of critical points. The condition (ii) is a version of the
dissipative condition, and it implies that f has at least quadratic growth at infinity.
This is a necessary and sufficient condition to obtain the log-Sobolev inequality
which is key to convergence analysis; see [40, Theorem 3.1.21] and Section 3.2. The
conditions (i) and (ii) imply that the set of critical points is discrete and finite
[30, Remark 1.6]. In particular, it follows that the set of local minimum points
{m1, . . . ,mN} is also finite, with N the number of local minimum points of f .

To keep the presentation simple, we make additional assumptions on f , follow-

ing [31, Assumption 2.5]. Define the saddle height f̂(mi,mj) between two local
minimum points mi,mj by

f̂(mi,mj) := inf

{
max
s∈[0,1]

f(γ(s)) : γ ∈ C[0, 1], γ(0) = mi, γ(1) = mj

}
. (3)

See Figure 1 for an illustration of the saddle height f̂(m1,m2) when f is a double-
well function with m1 the global minimum and m2 the local minimum.

Assumption 2. Let m1, · · · ,mN be the positions of the local minima of f .

(i) m1 is the unique global minimum point of f , and m1, . . . ,mN are ordered in
the sense that there exists δ > 0 such that

f(mN ) ≥ f(mN−1) ≥ · · · ≥ f(m2) ≥ δ and f(m1) = 0.

(ii) For each i, j ∈ {1, . . . , N}, the saddle height between mi,mj is attained at

a unique critical point sij of index one. That is, f(sij) = f̂(mi,mj), and
if {λ1, . . . , λn} are the eigenvalues of ∇2f(sij), then λ1 < 0 and λi > 0 for
i ∈ {2, . . . , n}. The point sij is called the communicating saddle point between
the minima mi and mj.

(iii) There exists p ∈ [N ] such that the energy barrier f(sp1) − f(mp) dominates
all the others. That is, there exists δ > 0 such that for all i ∈ [N ] \ {p},

E∗ := f(sp1)− f(mp) ≥ f(si1)− f(mi) + δ.

The dominating energy barrier E∗ is called the critical depth.

The convergence result for the continuous-time SA (1) is stated as follows. The
proof will be given in Section 4.

Theorem 2.1. Let f satisfy Assumptions 1 and 2, and a deterministic function τt

be decreasing in t, τt ∼ E
ln t with E > E∗, and d

dt

(
1
τt

)
= O

(
1
t

)
as t → ∞. Also

assume the moment condition holds for the initial distribution µ0: for each p ≥ 1,
there exists Cp > 0 such that ∫

Rd
f(x)pµ0(dx) ≤ Cp. (4)
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Then for each δ, ε > 0, there exists C > 0 independent of t such that

P(f(Xt) > δ) ≤ Ct−min( δE ,
1
2 (1−

E∗
E ))+ε. (5)

3. Preliminaries. In this section, we present a few vocabularies and basic results
of diffusion processes and functional inequalities. We also explain how these results
are applied in the setting of SA, which will be useful in our convergence analysis.

3.1. Diffusion processes and SA. Consider the general diffusion process (Xt; t ≥
0) in Rd of form:

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, X0
d
= µ0(dx), (6)

where (Bt; t ≥ 0) is a d-dimensional Brownian motion, with the drift b : R+×Rd →
Rd and the covariance matrix σ : R+ × Rd → Rd×d. To ensure the well-posedness
of the SDE (6), it requires some growth and regularity conditions on b and σ. For
instance,

• If b and σ are Lipschitz and have linear growth in x uniformly in t, then (6)
has a strong solution which is pathwise unique.

• If b is bounded, and σ is bounded, continuous and strictly elliptic, then (6)
has a weak solution which is unique in distribution.

We refer to [43, 39] for background and further developments on the well-posedness
of SDEs, and to [8, Chapter 1] for a review of related results.

Another important aspect is the distributional property of (Xt; t ≥ 0) governed
by the SDE (6). Let L be the infinitesimal generator of the diffusion process X
defined by

Lg(t, x) := b(t, x) · ∇g(x) +
1

2
σ(t, x)σ(t, x)T : ∇2g(x)

:=

d∑
i=1

bi(t, x)
∂

∂xi
g(x) +

1

2

d∑
i,j=1

(
σ(t, x)σ(t, x)T

)
ij

∂2

∂xi∂xj
g(x), (7)

and L∗ be the corresponding adjoint operator given by

L∗g(t, x) := −∇ · (b(t, x)g(x)) +
1

2
∇2 : (σ(t, x)σ(t, x)T g(x))

:= −
d∑
i=1

∂

∂xi
(bi(t, x)g(x)) +

1

2

d∑
i,j=1

∂2

∂xi∂xj
(σ(t, x)σ(t, x)T g(x))ij , (8)

where g : Rd → R is a suitably smooth test function, and : denotes the Frobenius
inner product which is the component-wise inner product of two matrices. The
probability density function ρt(·) of the process X at time t then satisfies the Fokker-
Planck equation:

∂ρt
∂t

= L∗ρt. (9)

Specializing (9) to the SA process (1) with b(t, x) = −∇f(x) and σ(t, x) =
√

2τt Id,
we have that the probability density µt(·) of X governed by the SDE (1) satisfies

∂µt
∂t

= ∇ · (µt∇f) + τt∆µt. (10)

In the time-homogeneous case where b(t, x) = b(x) and σ(t, x) = σ(x), it can
be shown that as t → ∞, ρt(·) → ρ∞(·), which is the stationary distribution of
(Xt; t ≥ 0), under further growth conditions on b and σ. It is easily deduced from
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(9) that ρ∞ is characterized by the equation L∗ρ∞ = 0; see [11, 32] for a general
theory on stability of diffusion processes, and [44, Section 2] for a summary with
various pointers to the literature. However, for general b and σ, the stationary
distribution ρ∞(·) does not have a closed-form expression. One good exception is

b(t, x) = −∇f(x) and σ(t, x) =
√

2τ Id, where X is governed by the overdamped
Langevin equation:

dXt = −∇f(Xt)dt+
√

2τ dBt, X0
d
= µ0(dx). (11)

Such a process is time-reversible, and the stationary distribution, under some growth
condition on f , is the Gibbs measure

ντ (dx) =
1

Zτ
exp

(
−f(x)

τ

)
dx, (12)

where Zτ :=
∫
Rd exp(−f(x)/τ)dx is the normalizing constant. Much is known about

the overdamped Langevin dynamics. For instance, if f is λ-convex (i.e. ∇2f + λId
is positive definite), the overdamped Langevin process governed by (11) converges
exponentially in the Wasserstein metric with rate λ to the Gibbs measure ντ [5]. See
also [1] for modern techniques to analyze the evolution of the overdamped Langevin
equation and generalizations.

Now we turn to the SA process (1). The difference between the overdamped
Langevin process (11) and the process (1) is that the temperature τt of the latter
is decreasing in time. Due to the time dependence, the limiting distribution of SA
is unknown. As we will see in Section 4, the idea of analyzing (1) is to approxi-
mate it by a process whose stationary distribution is the Gibbs measure with the
temperature τt. Since τt decreases to 0 in the limit, the problem boils down to
studying Gibbs measures at low temperatures. In the next section, we recall some
results of Gibbs measures at low temperatures, which are originally motivated by
applications in molecular dynamics and Bayesian statistics.

3.2. Functional inequalities and the Eyring–Kramers law. Here we present
functional inequalities of Gibbs measures at low temperatures (τ → 0). Let µ and
ν be two probability measures on Rd such that µ is absolutely continuous relative
to ν, with dµ/dν the Radon-Nikodym derivative. Define the relative entropy or
KL-divergence H(µ|ν) of µ with respect to ν by

H(µ|ν) :=

∫
log

(
dµ

dν

)
dµ =

∫
dµ

dν
log

(
dµ

dν

)
dν, (13)

and the Fisher information I(µ|ν) of µ with respect to ν by

I(µ|ν) :=
1

2

∫ ∣∣∣∣∇(dµdν
)∣∣∣∣2(dµdν

)−1
dν. (14)

We say that the probability measure ν satisfies the log-Sobolev inequality (LSI)
with constant α > 0, if for all probability measures µ with I(µ|ν) <∞,

H(µ|ν) ≤ 1

α
I(µ|ν). (15)

The constant α is called the LSI constant for the probability measure ν. For in-
stance, the LSI constant α = 1 when ν is the multivariate Gaussian with mean 0
and covariance matrix Id.

The LSI also plays an important role in studying the convergence rate of the
overdamped Langevin equation. Recall that ντ is the Gibbs measure defined by
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(12), and assume that ντ satisfies the LSI with constant ατ > 0. It follows from
[41, Theorem 1.7] that by letting µτ,t be the probability distribution of Xt defined
by (11), we have

H(µτ,t|ντ ) ≤ e−2τατ tH(µτ,0|ντ ). (16)

So larger the value of ατ is, faster the convergence of the overdamped Langevin
process in the KL divergence is. The subscript ‘τ ’ in ατ suggests the dependence of
the LSI constant on the temperature τ , and we are interested in the asymptotics of
ατ at low temperatures as τ → 0. This problem was considered by [30, Corollary
3.18], who derived a sharp lower bound for ατ as τ → 0.

Lemma 3.1. Let f satisfy Assumptions 1 and 2. Then the Gibbs measure ντ
defined by (12) satisfies the LSI with constant ατ > 0 such that

ατ ∼ C exp

(
−E∗
τ

)
as τ → 0, (17)

where C > 0 depends on f, d.

The Eyring–Kramers law provides an estimate on the spectral gap of the over-
damped Langevin equation (11). It dates back to [12, 26] in the study of metasta-
bility in chemical reactions (i.e. mean transition times between local minima and
the global one), and is proved rigorously by [3, 4] in terms of the spectral gap.
Lemma 3.1 is the LSI version of the Eyring–Kramers law, which is stronger than
the spectral gap estimate implied by the Poincaré inequality.

4. Continuous-time simulated annealing. In this section, we prove Theorem
2.1 by using the ideas developed in [31, 33, 35]. Let µt be the probability measure
of Xt defined by (1). The key idea is to compare µt with the time-dependent Gibbs
measure ντt given by

ντt(dx) =
1

Zτt
exp

(
−f(x)

τt

)
dx, (18)

where Zτt :=
∫
Rd exp(−f(x)/τt) is the normalizing constant. Note that ντt will

concentrate on the minimum point of f as t→∞ since τt → 0 as t→∞. We will
see that ντt is close to µt in some sense as t → ∞. The proof of Theorem 2.1 is
broken into four steps.

Step 1: Reduce µt to ντt . We establish a bound that relates ντt to µt. Let

(X̃t; t ≥ 0) be a process (i.e. a collection of random variables parameterized by
t ≥ 0) whose distribution is ντt at time t, defined on the same probability space as
(Xt; t ≥ 0). Fix δ > 0. We have

P(f(Xt) > δ) = P(f(Xt) > δ, f(X̃t) > δ) + P(f(Xt) > δ, f(X̃t) ≤ δ)

≤ P(f(X̃t) > δ) + P(Xt 6= X̃t)

≤ P(f(X̃t) > δ) +
√

2H(µt|ντt), (19)

where the first inequality follows from the fact that {f(Xt) > δ, f(X̃t) ≤ δ} ⊂
{Xt 6= X̃t}, and and second one follows from Pinsker’s inequality [46, Lemma 2.5].

Now the problem boils down to estimating P(f(X̃t) > δ) and H(µt|ντt).

Step 2: Long-time behavior of f(X̃t). We study the asymptotics of P(f(X̃t) >
δ) as t→∞. The following lemma provides a quantitative estimate of how ντt , or

equivalently X̃t concentrates on the minimum point of f as t→∞.
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Lemma 4.1. Let f satisfy Assumption 1 & 2. Assume that τt ∼ E
ln t as t → ∞

with E > E∗. For each ε ∈ (0, δ), there exists C > 0 independent of t such that

P(f(X̃t) > δ) ≤ Ct−
δ−ε
E . (20)

Proof. Note that

P(f(X̃t) > δ) =

∫
f(x)>δ

exp(−f(x)/τt)dx∫
Rd exp(−f(x)/τt)dx

. (21)

Under Assumption 1, f has quadratic growth, so at least linear growth at infinity
[30, Lemma 3.14]: there exists C > 0 such that for R large enough,

f(x) ≥ min
|z|=R

f(z) + C(|x| −R) for |x| > R.

We can also choose R sufficiently large so that min|z|=R f(z) > δ. Consequently,∫
f(x)>δ

exp(−f(x)/τt)dx =

∫
f(x)>δ,|x|≤R

exp(−f(x)/τt)dx+

∫
f(x)>δ,|x|>R

exp(−f(x)/τt)dx

≤ e−
δ
τt Vol(BR) + e−

δ
τt

∫
|x|>R

exp

(
C(|x| −R)

τt

)
dx

= e−
δ
τt (Vol(BR) +O(τt)), (22)

where Vol(BR) is the volume of a ball with radius R. Moreover, there exists r > 0
such that f(x) < ε when |x−m1| < r. Thus,∫

Rd
exp(−f(x)/τt)dx >

∫
|x−m1|<r

exp(−f(x)/τt)dx ≥ e−
ε
τt Vol(Br). (23)

Injecting (22), (23) into (21) yields (20).

Remark 1. It is interesting to get a bound for P(f(X̃t) > δ) when the dimension
d is large. As mentioned in the introduction, the Laplace bound (23) may fail when
d, t→∞ simultaneously. Recall that m1 is the minimum point of f . By continuity
of f , there exists r > 0 such that f(x) < ε when |x−m1| < r. Thus,∫

Rd
exp(−f(x)/τt)dx ≥

∫
|x−m1|<r

exp(−f(x)/τt)dx

≥ e−
ε
τt Vol(Br). (24)

Further, if t/e
Ed
CR →∞ as d→∞,∫
f(x)>δ

exp(−f(x)/τt)dx = e−
δ
τt Vol(BR)(1 +O(τtd)). (25)

Combining (24) and (25), we get

P(f(X̃t) > δ) ≤ Cγdt−
δ−ε
E , (26)

where C > 0 depends on δ, ε, f, E, and γ = max(R/r, e
δ−ε
CR ). Also note that [38]

obtained the bound Ef(X̃t) ≤ Cd/ ln t. By Markov’s inequality, we get

P(f(X̃t) > δ) ≤ Cδ−1d (ln t)−1. (27)

In comparison with (27), the bound (26) is better in ‘t’ but worse in ‘d’. In terms

of relaxation time, i.e. letting P(f(X̃t) > δ) be of constant order, both estimates
show an exponential dependence of t on d. This suggests that SA is exponentially
slow as the dimension increases.
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Step 3: Differential inequality for H(µt|ντt). To get an estimate ofH(µt|ντt),
we need to consider the time derivative d

dtH(µt|ντt). The following lemma is a re-
formulation of [33, Proposition 3]. For ease of reference, we give a simplified proof
here. First let us convent some notation. For an absolutely continuous measure
µ(dx), we abuse the notation µ(dx) = µ(x)dx, i.e. µ(x) is the density of µ(dx). So

for two such probability measures µ and ν, the Radon-Nikodym derivative dµ
dν (x) is

identified with µ(x)
ν(x) .

Lemma 4.2. Let τt be decreasing in t. We have

d

dt
H(µt|ντt) ≤ −2τtI (µt|ντt) +

d

dt

(
1

τt

)
Ef(Xt), (28)

where I(µt|ντt) is the Fisher information defined by (14).

Proof. Observe that

d

dt
H(µt|ντt) =

d

dt

∫
µt ln

(
µt
ντt

)
dx

=

∫
∂µt
∂t

ln

(
µt
ντt

)
dx︸ ︷︷ ︸

(a)

+

∫
µt
∂

∂t

(
ln

(
µt
ντt

))
dx︸ ︷︷ ︸

(b)

. (29)

We first consider the term (a). Recall that µt satisfies the Fokker–Planck equation
(10). Together with the fact that ∇(τtντt) = −ντt∇f , we have

∂µt
∂t

= ∇ ·
(
τtντt∇

(
µt
ντt

))
. (30)

By injecting (30) into the term (a) and further by integration by parts, we get

(a) =

∫
∇ ·
(
τtντt∇

(
µt
ντt

))
ln

(
µt
ντt

)
dx

= −
∫
τtντt∇

(
µt
ντt

)
· ∇ ln

(
µt
ντt

)
dx

= −τt
∫ ∣∣∣∣∇( µtντt

)∣∣∣∣2( µtντt
)−1

dντt = −2τtI(µt|ντt). (31)

Now we consider the term (b). Direct computation leads to

(b) =

∫ (
∂µt
∂t
− µt
ντt

∂ντt
∂t

)
dx = −

∫
∂

∂t
(ln ντt) dµt

=

∫
d

dt
(lnZτt) dµt +

d

dt

(
1

τt

)
Ef(Xt)

≤ d

dt

(
1

τt

)
Ef(Xt), (32)

where we use the facts that
∫
µtdx = 1 in the second equality and that τt is de-

creasing in t so lnZτt is decreasing in t in the last inequality. Combining (29) with
(31) and (32) yields (28).

Step 4: Estimating H(µt|ντt) via the Eyring–Kramers law. Note that
there are two terms on the right hand side of (28). We start with an estimate of
the second term.



SIMULATED ANNEALING 11

Lemma 4.3. Let f satisfy Assumption 1, and assume that the condition (4) for µ0

holds. Then, for each ε > 0, there exists C > 0 independent of t such that

Ef(Xt) ≤ C(1 + t)ε. (33)

Proof. It is easy to see that Assumption 1 implies Assumption H1 in [33]. Together
with the moment condition (4), the proof follows the line of reasoning in [33, Lemma
2].

Now we apply the Eyring–Kramers law, combining with a Grönwall-type argu-
ment to bound H(µt|ντt) for large t.

Lemma 4.4. Under the assumptions of Theorem 2.1, for each ε > 0, there exists
C > 0 independent of t such that

H(µt|ντt) ≤ Ct−(1−E∗E −ε). (34)

Proof. Using Lemma 3.1 and the bound (28), we have

d

dt
H(µt|ντt) ≤ −2τtαtH(µt|ντt) +

C

t
Ef(Xt), (35)

where αt is the LSI constant for the Gibbs measure ντt . By the Eyring–Kramers
formula (17), for each ε > 0, there exist C > 0 and t0 > 0,

2τtαt ≥ Ct−(E∗E −ε) for t ≥ t0. (36)

Combining (35) with (33), (36), we get

d

dt
H(µt|ντt) ≤ −Ct−(E∗E −ε)H(µt|ντt) + C ′t−1+ε. (37)

Fix ε ∈ (0, 12 −
E∗
2E ), let

Q(t) := H(µt|ντt)−
2C ′

C
t−1+

E∗
E +2ε.

Then for t0 sufficiently large and t ≥ t0, we have d
dtQ(t) ≤ −Ct−

E∗
E +εQ(t) by (37).

This implies that Q(t) ≤ Q(t0)e
−C

∫ t
t0
s−

E∗
E

+εds
. Thus,

H(µt|ντt) ≤
2C ′

C
t−1+

E∗
E +2ε +H(µt0 |νt0)e−

C
κ (tκ−tκ0 ), (38)

where κ := 1− E∗
E − ε > 0. Note that the first term on the right hand side of (38)

dominates, and the conclusion follows.

Finally, by injecting (20), (34) into (19), we get the desired estimate (5).

5. Conclusion. In this paper, we study the convergence rate of SA in continu-
ous time. The main tool is functional inequalities for the Gibbs measures at low
temperatures. We prove that the tail probability exhibits a polynomial decay in
time, and provide a non-asymptotic deviation bound. The decay rate is given as a
function of the model parameters.

There are a few directions to extend this work. For instance, one can study the
convergence rate of SA for Lévy flight with a suitable cooling schedule. Another
problem is to study the dependence of the convergence rate in the dimension d.
This requires a deep understanding of the Eyring–Kramers law in high dimensions,
and is related to the Laplace approximation of high dimensional integrals. Both
problems are worth exploring, if challenging.
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